WorldWideScience

Sample records for vesicle omv vaccines

  1. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update.

    Science.gov (United States)

    Jan, Arif Tasleem

    2017-01-01

    Outer Membrane Vesicles (OMVs) of Gram-negative bacteria are spherical membrane-enclosed entities of endocytic origin. Reported in the consortia of different bacterial species, production of OMVs into extracellular milieu seems essential for their survival. Enriched with bioactive proteins, toxins, and virulence factors, OMVs play a critical role in the bacteria-bacteria and bacteria-host interactions. Emergence of OMVs as distinct cellular entities helps bacteria in adaptating to diverse niches, in competing with other bacteria to protect members of producer species and more importantly play a crucial role in host-pathogen interaction. Composition of OMV, their ability to modulate host immune response, along with coordinated secretion of bacterial effector proteins, endows them with the armory, which can withstand hostile environments. Study of the OMV production under natural and diverse stress conditions has broadened the horizons, and also opened new frontiers in delineating the molecular machinery involved in disease pathogenesis. Playing diverse biological and pathophysiological functions, OMVs hold a great promise in enabling resurgence of bacterial diseases, in concomitance with the steep decline in the efficiency of antibiotics. Having multifaceted role, their emergence as a causative agent for a series of infectious diseases increases the probability for their exploitation in the development of effective diagnostic tools and as vaccines against diverse pathogenic species of Gram-negative origin.

  2. Next-generation outer membrane vesicle vaccines from concept to clinical trials

    NARCIS (Netherlands)

    Waterbeemd, van de B.

    2013-01-01

    Only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. The OMV vaccines, however, provide limited coverage and are difficult to produce. This is caused by an obligatory detergent treatment, which removes lipopolysaccharide

  3. Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis Implications for Vaccine Development

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Zomer, G.; IJssel, van den J.; Keulen, van L.; Eppink, M.H.M.; Ley, de P.; Pol, van der L.A.

    2013-01-01

    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use

  4. Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant.

    Science.gov (United States)

    Alves, Nathan J; Turner, Kendrick B; DiVito, Kyle A; Daniele, Michael A; Walper, Scott A

    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function. Published by Elsevier Masson SAS.

  5. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.

    Science.gov (United States)

    Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T

    2015-01-01

    The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.

  6. Protection from hemolytic uremic syndrome by eyedrop vaccination with modified enterohemorrhagic E. coli outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Kyoung Sub Choi

    Full Text Available We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs is effective for protecting against hemolytic uremic syndrome (HUS caused by enterohemorrhagic E. coli (EHEC O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB. Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN/Creatinin (Cr were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.

  7. Safety and immunogenicity of New Zealand strain meningococcal serogroup B OMV vaccine in healthy adults: beginning of epidemic control.

    Science.gov (United States)

    Thornton, V; Lennon, D; Rasanathan, K; O'Hallahan, J; Oster, P; Stewart, J; Tilman, S; Aaberge, I; Feiring, B; Nokleby, H; Rosenqvist, E; White, K; Reid, S; Mulholland, K; Wakefield, M J; Martin, D

    2006-02-27

    As the first step towards control of a strain specific epidemic of meningococcal disease in New Zealand (NZ), this study, an observer-blind, randomised controlled trial in 75 healthy adults, evaluated safety and immunogenicity of two different dosages of a meningococcal group B vaccine administered in a three dose regime. The "tailor-made" outer membrane vesicle (OMV) vaccine (candidate vaccine) developed using a New Zealand meningococcal group B strain (B:4:P1.7b,4) was well tolerated with no vaccine related serious adverse events. Similar local and systemic reactions were observed in those receiving the New Zealand candidate vaccine and the control parent Norwegian vaccine (MenBvac). A four-fold rise in serum bactericidal antibodies (SBAb) against the vaccine strain 4-6 weeks after the third vaccination was achieved in 100% of New Zealand candidate vaccine 2,519 microg participants and in 87% of 50 microg participants. The safety and immunogenicity profile observed in this study of healthy adults enabled studies in children to be initiated using 25 microg dosage.

  8. A deeper mining on the protein composition of VA-MENGOC-BC®: An OMV-based vaccine against N. meningitidis serogroup B and C.

    Science.gov (United States)

    Masforrol, Yordanka; Gil, Jeovanis; García, Darien; Noda, Jesús; Ramos, Yassel; Betancourt, Lázaro; Guirola, Osmany; González, Sonia; Acevedo, Boris; Besada, Vladimir; Reyes, Osvaldo; González, Luis Javier

    2017-11-02

    The protein composition of an Outer Membrane Vesicle (OMV) preparation that constitutes the active pharmaceutical ingredient of VA-MENGOC-BC®, an effective vaccine against Neisseria meningitidis serogroups B, and C is presented. This preparation has a high lipid content and five abundant membrane proteins (FetA, PorA, PorB, RmpM, and Opc), constituting approximately 70% of the total protein mass. The protein composition was determined by combining the use of the Hexapeptide Ligand Library and an orthogonal tandem fractionation of tryptic peptides by reverse-phase chromatography at alkaline and acid pH. This approach equalizes the concentration of tryptic peptides derived from low- and high-abundance proteins as well as considerably simplifying the number of peptides analyzed by LC-MS/MS, enhancing the possibility of identifying low-abundance species. Fifty-one percent of the proteins originally annotated as membrane proteins in the genome of the MC58 strain were identified. One hundred and sixty-eight low-abundance cytosolic proteins presumably occluded within OMV were also identified. Four (NadA, NUbp, GNA2091, and fHbp), out of the five antigens constituting the Bexsero® vaccine, were detected in this OMV preparation. In particular, fHbp is also the active principle of the Trumenba® vaccine developed by Pfizer. The HpuA and HpuB gene products (not annotated in the MC58 genome) were identified in the CU385 strain, a clinical isolate that is used to produce this OMV. Considering the proteins identified here and previous work done by our group, the protein catalogue of this OMV preparation was extended to 266 different protein species.

  9. Production of outer membrane vesicles (OMV in batch cultivation of Neisseria meningitidis serogroup B Produção de vesículas da membrana externa (OMV em cultivo batelada de Neisseria meningitidis sorogrupo B

    Directory of Open Access Journals (Sweden)

    Silvia Santos

    2006-12-01

    Full Text Available Meningococcal disease is an important cause of death and morbidity throughout the world. Nearly 330,000 cases and 35,000 deaths occur yearly. Neisseria meningitidis, serogroup B strain N.44/89, is prevalent in Brazil. Its outer membrane vesicles (OMV with iron regulated proteins (IRP are released to the culture medium and are used as antigen for vaccine production. In order to have knowledge about the kinetic parameters, especially the final OMV concentration values, 20-h batch cultivations were carried out in Catlin medium with iron restriction. Process conditions comprised: 7 L bioreactor, 36ºC, 0.5 atm, overlay air flowrate of 1 L/min, agitation varying from 250 rpm to 850 rpm and dissolved oxygen control set at 10% of saturation condition. Biomass was determined by optical density at 540 nm and dry weight. Glycerol, lactate, pH and dissolved oxygen were measured from samples taken during cultivation. Outer membrane vesicle (OMV concentration was determined by Lowry's method after ultracentrifugation. IRP presence was verified by SDS-PAGE. Highest biomass value, corresponding to the highest initial lactate concentration (7.84 g/L was achieved at the 9th hour process time corresponding to 1.0 g/L dry biomass and 2.3 optical density at 540 nm. Lactate consumption was directly related to cell growth (yield factor: 0.24 g dry biomass / g lactate. Glycerol concentration in the medium did not change significantly during the process. OMV concentration reached the highest value of 80 mg/L at end cultivation time. The obtained results suggest that lactate is a main limiting growth factor and the maximum amount of antigen is obtained during stationary growth and cell death phases.A doença meningocócica é uma causa importante de morte a nível mundial. Aproximadamente 330.000 casos e 35.000 mortes ocorrem anualmente. A cepa N.44/89 do sorogrupo B de Neisseria meningitidis é prevalente no Brasil. Suas vesículas de membrana externa (OMV - "outer

  10. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Bas van de Waterbeemd

    Full Text Available Outer membrane vesicles (OMV contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV, which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation. Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis.

  11. Outer membrane vesicles harboring modified lipid A moiety augment the efficacy of an influenza vaccine exhibiting reduced endotoxicity in a mouse model.

    Science.gov (United States)

    Lee, Tae-Young; Kim, Chang-Ung; Bae, Eun-Hye; Seo, Sang-Hwan; Jeong, Dae Gwin; Yoon, Sun-Woo; Chang, Kyu-Tae; Kim, Young Sang; Kim, Sang-Hyun; Kim, Doo-Jin

    2017-01-23

    Influenza is an acute respiratory disease and a major health problem worldwide. Since mucosal immunity plays a critical role in protection against influenza virus infection, mucosal immunization is considered a promising vaccination route. However, except for live-attenuated vaccines, there are no effective killed or recombinant mucosal influenza vaccines to date. Outer membrane vesicles (OMVs) are nano-sized vesicles produced by gram-negative bacteria, and contain various bacterial components capable of stimulating the immune system of the host. We generated an OMV with low endotoxicity (fmOMV) by modifying the structure of the lipid A moiety of lipopolysaccharide and investigated its effect as an intranasal vaccine adjuvant in an influenza vaccine model. In this model, fmOMV exhibited reduced toll-like receptor 4-stimulating activity and attenuated endotoxicity compared to that of native OMV. Intranasal injection of the vaccine antigen with fmOMV significantly increased systemic antibody and T cell responses, mucosal IgA levels, and the frequency of lung-resident influenza-specific T cells. In addition, the number of antigen-bearing CD103+ dendritic cells in the mediastinal lymph nodes was significantly increased after fmOMV co-administration. Notably, the mice co-immunized with fmOMV showed a significantly higher protection rate against challenge with a lethal dose of homologous or heterologous influenza viruses without adverse effects. These results show the potential of fmOMV as an effective mucosal adjuvant for intranasal vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs.

    Science.gov (United States)

    Godlewska, Renata; Kuczkowski, Maciej; Wyszyńska, Agnieszka; Klim, Joanna; Derlatka, Katarzyna; Woźniak-Biel, Anna; Jagusztyn-Krynicka, Elżbieta K

    2016-10-01

    Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.

  13. In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Antenucci, Fabio; Fougeroux, Cyrielle; Deeney, Alannah

    2018-01-01

    vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection...... by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine...

  14. Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Streefland, M.; Keulen, van L.J.M.; IJssel, van den J.; Bakker-de Haan, A.M.C.; Eppink, M.H.M.; Pol, van der L.A.

    2012-01-01

    Outer membrane vesicles (OMV) are used as a vaccine against Neisseria meningitidis serogroup B and are traditionally produced with detergent-extraction to remove toxic lipopolysaccharide. Engineered strains with attenuated lipopolysaccharide allowed the use of native vesicles (NOMV) with improved

  15. Functional and specific antibody responses in adult volunteers in new zealand who were given one of two different meningococcal serogroup B outer membrane vesicle vaccines.

    Science.gov (United States)

    Wedege, E; Bolstad, K; Aase, A; Herstad, T K; McCallum, L; Rosenqvist, E; Oster, P; Martin, D

    2007-07-01

    This study presents detailed analyses of total and specific serum antibody levels among 26 and 24 adult volunteers before vaccination and after the third dose of the meningococcal serogroup B outer membrane vesicle (OMV) vaccines MeNZB and MenBvac, respectively, in a clinical trial in New Zealand (V. Thornton, D. Lennon, K. Rasanathan, J. O'Hallahan, P. Oster, J. Stewart, S. Tilman, I. Aaberge, B. Feiring, H. Nokleby, E. Rosenqvist, K. White, S. Reid, K. Mulholland, M. J. Wakefield, and D. Martin, Vaccine 24:1395-1400, 2006). With the homologous vaccine strains as targets, both vaccines induced significant increases in serum bactericidal and opsonophagocytic activities and in the levels of immunoglobulin G (IgG) to OMV antigens in an enzyme-linked immunosorbent assay (ELISA) and to live meningococci by flow cytometry. They also induced high levels of activity against the heterologous strains, particularly in terms of opsonophagocytic activity and IgG binding to live bacteria. The antibody levels with the homologous and heterologous strains in the four assays showed high and significant positive correlations. Specific IgG binding to 10 major OMV antigens in each vaccine was measured by scanning of immunoblots; ELISAs for two antigens, lipopolysaccharide and Neisseria surface protein A (NspA), were also performed. Both vaccines elicited significant increases in IgG binding to all homologous and heterologous OMV antigens except NspA. The total IgG band intensity on the blots correlated significantly with the IgG levels determined by the OMV ELISA and flow cytometry. In conclusion, the results of the various immunological assays showed that both OMV vaccines gave rise to high levels of specific and cross-reacting antibodies.

  16. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    Science.gov (United States)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  17. Salmonella Choleraesuis outer membrane vesicles: Proteomics and immunogenicity.

    Science.gov (United States)

    Liu, Qiong; Yi, Jie; Liang, Kang; Zhang, Xiangmin; Liu, Qing

    2017-10-01

    Salmonella enterica serotype Choleraesuis (S. Choleraesuis), Gram-negative facultative intracellular pathogen is capable of inducing the cholera in pigs whose symptoms manifest as fever, depression, septicemia, arthritis, and diarrhea. Infections with S. Choleraesuis has resulted in great economic loss for the swine breeding operations. Bacterial outer membrane vesicles (OMVs) play an important role in pathogenicity and host-pathogen interaction. In this study, we purified OMVs released by S. Choleraesuis strain χ3545 and characterized their lipopolysaccharide (LPS) profile. The OMVs contained intact LPS molecules. By using LC-MS/MS, we identified 192 proteins in the OMVs. In addition, the subcellular location and biological functions of the vesicles was predicted. The proteins were mainly derived from outer membranes and cytoplasm. Several proteins were immunoreactive and associated with the secretion pathway. Some putative multi-drug resistance-associated proteins were also identified. Furthermore, immunization experiment via intranasal or intraperitoneal route in mice demonstrated that S. Choleraesuis OMVs could elicit strong humoral and mucosal immune responses. Although OMVs as vaccine did not provide strong protection against clinical strain of wild-type S. Choleraesuis, immunization of OMVs still prolonged the survival time of vaccinated mice after high dose of S. Choleraesuis infection. Overall, this study provides valuable fundamental information toward elucidating the pathogenicity and functions of OMVs secreted from S. Choleraesuis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  19. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Role of Outer Membrance Vesicles of Bacteria. M V Jagannadham M K Chattopadhyay. General Article Volume 20 Issue 8 ... Keywords. Outer membrane ves ic les (OMVs); secretion; communication; virulence; antibiotic resistance; vaccines.

  20. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    Science.gov (United States)

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform. PMID:24009891

  1. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles

    Science.gov (United States)

    Roier, Sandro; Fenninger, Judith C.; Leitner, Deborah R.; Rechberger, Gerald N.; Reidl, Joachim; Schild, Stefan

    2013-01-01

    Pasteurella multocida is able to cause disease in humans and in a wide range of animal hosts, including fowl cholera in birds, atrophic rhinitis in pigs, and snuffles in rabbits. Together with Mannheimia haemolytica, P. multocida also represents a major bacterial causative agent of bovine respiratory disease (BRD), which is one of the most important causes for economic losses for the cattle backgrounding and feedlot industry. Commercially available vaccines only partially prevent infections caused by P. multocida and M. haemolytica. Thus, this study characterized the immunogenicity of P. multocida and M. haemolytica outer membrane vesicles (OMVs) upon intranasal immunization of BALB/c mice. Enzyme-linked immunosorbent assays (ELISA) revealed that OMVs derived from P. multocida or M. haemolytica are able to induce robust humoral and mucosal immune responses against the respective donor strain. In addition, also significant cross-immunogenic potential was observed for both OMV types. Colonization studies showed that a potential protective immune response against P. multocida is not only achieved by immunization with P. multocida OMVs, but also by immunization with OMVs derived from M. haemolytica. Immunoblot and immunoprecipitation analyses demonstrated that M. haemolytica OMVs induce a more complex immune response compared to P. multocida OMVs. The outer membrane proteins OmpA, OmpH, and P6 were identified as the three major immunogenic proteins of P. multocida OMVs. Amongst others, the serotype 1-specific antigen, an uncharacterized outer membrane protein, as well as the outer membrane proteins P2 and OmpA were found to be the most important antigens of M. haemolytica OMVs. These findings are useful for the future development of broad-spectrum OMV based vaccines against BRD and other infections caused by P. multocida or M. haemolytica. PMID:23731905

  2. Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge.

    Science.gov (United States)

    Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun

    2017-08-26

    Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Berbers GAM; Labadie J; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW van; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report describes the results with respect to immunogenicity as well as reactogenicity of a monovalent P1.7h,4 OMV vaccine (MonoMen) used as booster vaccination in children previously vaccinated with a hexavalent MenB vaccine. The participants in this study were immunised in 1995-1996 with

  4. Prevention of meningococcal serogroup B infections in children: A protein-based vaccine induces immunologic memory

    NARCIS (Netherlands)

    E.D. de Kleijn (Ester); R. de Groot (Ronald); A.B. van Gageldonk-Lafeber (Rianne); J. Labadie (J.); C.J.P. van Limpt (C. J P); J. Visser (John); G.A. Berbers; L. van Alphen (Loek); H. Rümke (Hans)

    2001-01-01

    textabstractImmunologic memory against meningococci was studied in 177 children (100 children were 10-11 years old and 77 were 5-6 years old) 2.5 years after vaccination with hexavalent meningococcal outer membrane vesicle (OMV) vaccine or hepatitis B (HepB) vaccine. Children were revaccinated with

  5. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates.

    Science.gov (United States)

    Sotillo, Javier; Pearson, Mark; Potriquet, Jeremy; Becker, Luke; Pickering, Darren; Mulvenna, Jason; Loukas, Alex

    2016-01-01

    Herein we show for the first time that Schistosoma mansoni adult worms secrete exosome-like extracellular vesicles ranging from 50 to 130nm in size. Extracellular vesicles were collected from the excretory/secretory products of cultured adult flukes and purified by Optiprep density gradient, resulting in highly pure extracellular vesicle preparations as confirmed by transmission electron microscopy and Nanosight tracking analysis. Extracellular vesicle proteomic analysis showed numerous known vaccine candidates, potential virulence factors and molecules implicated in feeding. These findings provide new avenues for the exploration of host-schistosome interactions and offer a potential mechanism by which some vaccine antigens exert their protective efficacy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response.

    Science.gov (United States)

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-10-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant.

    Science.gov (United States)

    Turner, Lorinda; Praszkier, Judyta; Hutton, Melanie L; Steer, David; Ramm, Georg; Kaparakis-Liaskos, Maria; Ferrero, Richard L

    2015-08-01

    Multiple studies have established the importance of the tol-pal gene cluster in bacterial cell membrane integrity and outer membrane vesicle (OMV) formation in Escherichia coli. In contrast, the functions of Tol-Pal proteins in pathogenic organisms, including those of the Epsilonproteobacteria, remain poorly if at all defined. The aim of this study was to characterize the roles of two key components of the Tol-Pal system, TolB and Pal, in OMV formation in the pathogenic bacterium, Helicobacter pylori. H. pylori ΔtolB, Δpal and ΔtolBpal mutants, as well as complemented strains, were generated and assessed for changes in morphology and OMV production by scanning electron microscopy and enzyme-linked immunoassay (ELISA), respectively. The protein content and pro-inflammatory properties of OMVs were determined by mass spectroscopy and interleukin-8 (IL-8) ELISA on culture supernatants from OMV-stimulated cells, respectively. H. pylori ΔtolB and Δpal bacteria exhibited aberrant cell morphology and/or flagella biosynthesis. Importantly, the disruption of H. pylori tolB but not pal resulted in a significant increase in OMV production. The OMVs from H. pylori ΔtolB and Δpal bacteria harbored many of the major outer membrane and virulence proteins observed in wild-type (WT) OMVs. Interestingly, ΔtolB, Δpal and ΔtolBpal OMVs induced significantly higher levels of IL-8 production by host cells, compared with WT OMVs. This work demonstrates that TolB and Pal are important for membrane integrity in H. pylori. Moreover, it shows how H. pylori tolB-pal genes may be manipulated to develop "hypervesiculating" strains for vaccine purposes. © 2015 John Wiley & Sons Ltd.

  8. Scale-up for bulk production of vaccine against meningococcal disease

    NARCIS (Netherlands)

    Baart, G.J.E.; Jong, de G.; Philippi, M.; Riet, van 't K.; Pol, van der L.A.; Beuvery, E.C.; Tramper, J.; Martens, D.E.

    2007-01-01

    At the Netherlands Vaccine Institute (NVI) a vaccine against Neisseria meningitidis serogroup B organisms based on different porA subtypes contained in outer membrane vesicles (OMVs) is in advanced stage of development and will be evaluated in clinical trial studies in the near future. In order to

  9. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury.

    Directory of Open Access Journals (Sweden)

    Martina Bielaszewska

    2017-02-01

    Full Text Available Outer membrane vesicles (OMVs are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a, cytolethal distending toxin V (CdtV, EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV

  10. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  11. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  12. Commensal-derived OMVs elicit a mild proinflammatory response in intestinal epithelial cells.

    Science.gov (United States)

    Patten, Daniel A; Hussein, Enas; Davies, Scott P; Humphreys, Paul N; Collett, Andrew

    2017-05-01

    Under normal physiological conditions, the intestinal immunity remains largely hyporesponsive to the commensal microbiota, yet also retains the inherent ability to rapidly respond to pathogenic antigens. However, immunomodulatory activities of extracellular products from commensal bacteria have been little studied, with previous investigations generally utilizing the live bacterium to study microbiota-epithelial interactions. In this study, we demonstrate that extracellular products of a commensal bacterium, Escherichia coli C25, elicit a moderate release of proinflammatory IL-8 and stimulate transcriptional up-regulation of Toll-like receptors (TLRs) in intestinal epithelial cell lines HT29-19A and Caco-2. Additionally, we show that removal of outer membrane vesicles (OMVs) reduces the proinflammatory effect of secreted products from E. coli C25. Furthermore, we show that isolated OMVs have a dose-dependent proinflammatory effect on intestinal epithelial cells (IECs). Interestingly, a relatively high concentration (40 µg ml-1 protein) of OMVs had no significant regulatory effects on TLR mRNA expression in both cell lines. Finally, we also demonstrate that pre-incubation with E. coli C25-derived OMVs subsequently inhibited the internalization of the bacterium itself in both cell lines. Taken together, our results suggest that commensal-derived extracellular products, in particular OMVs, could significantly contribute to intestinal homeostasis. We also demonstrate a unique interaction between commensal-derived OMVs and host cells.

  13. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    Science.gov (United States)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  14. Improved Production Process for Native Outer Membrane Vesicle Vaccine against Neisseria meningitidis

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Wijffels, R.H.; Zomer, G.; Kaaijk, P.; Ruiterkamp, N.; Dobbelsteen, van den G.J.M.; Pol, van der L.A.

    2013-01-01

    An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable

  15. Adjuvant efficacy of mOMV against avian influenza virus infection in mice.

    Science.gov (United States)

    Lee, Byeong-Jae; Lee, Sang-Ho; Song, Min-Suk; Pascua, Philippe Noriel Q; Kwon, Hyeok-il; Park, Su-Jin; Kim, Eun-Ha; Decano, Arun; Kim, Se Mi; Lim, Gyo Jin; Kim, Doo-Jin; Chang, Kyu-Tae; Kim, Sang-Hyun; Choi, Young Ki

    2013-10-01

    Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 10(3.5) EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.

  16. Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45

    Directory of Open Access Journals (Sweden)

    Michael Pritsch

    2016-01-01

    Full Text Available Purified protein vaccines often require adjuvants for efficient stimulation of immune responses. There is no licensed mucosal adjuvant on the market to adequately boost the immune response to purified antigens for intranasal applications in humans. Bacterial outer membrane vesicles (OMV are attractive candidates potentially combining antigenic and adjuvant properties in one substance. To more precisely characterize the potential of Escherichia coli OMV for intranasal vaccination with heterologous antigens, immune responses for AnAPN1 and Pfs48/45 as well as ovalbumin as a reference antigen were assessed in mice. The intranasal adjuvant cholera toxin (CT and parenteral adjuvant MF59C.1 were used in comparison. Vaccinations were administered intranasally or subcutaneously. Antibodies (total IgG and IgM as well as subclasses IgG1, IgG2a, IgG2b, and IgG3 were measured by ELISA. T cell responses (cytotoxic T cells, Th1, Th17, and regulatory T cells were determined by flow cytometry. When OMV were used as adjuvant for intranasal immunization, antibody and cellular responses against all three antigens could be induced, comparable to cholera toxin and MF59C.1. Antigen-specific IgG titres above 1 : 105 could be detected in all groups. This study provides the rationale for further development of OMV as a vaccination strategy in malaria and other diseases.

  17. Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses.

    Science.gov (United States)

    Nakao, Ryoma; Takashiba, Shogo; Kosono, Saori; Yoshida, Minoru; Watanabe, Haruo; Ohnishi, Makoto; Senpuku, Hidenobu

    2014-01-01

    Porphyromonas gingivalis is a major etiological agent of periodontal diseases and the outer membrane vesicles (OMVs) contain virulence factors such as LPS and gingipains. In this study, we investigated the potential role of the OMVs in host immune response and tissue destruction during P. gingivalis infection. Firstly, we found that sera from periodontitis patients had significantly stronger reactivity against an OMV-producing wild type strain than the isogenic OMV-depleted strain. OMVs were found to be highly antigenic, as absorption of patient sera with OMVs greatly reduced reactivity with whole cells of P. gingivalis. LC-MS/MS analysis of OMVs revealed multiple forms of gingipains and several gingipain-related proteins. Western blots of OMVs using patient sera revealed a conserved immunoreactive antigen profile resembling the profile of OMV antigens that were recognized by gingipain antiserum, suggesting a potential role of OMV-associated gingipains in triggering antibody-mediated immune responses to P. gingivalis infection. When OMVs were added to a monolayer of an oral squamous epithelial cell line, OMVs caused cell detachment, which was inhibited by preincubating OMVs with anti-gingipain antiserum. These data suggest that gingipain-laden OMVs may contribute to tissue destruction in periodontal diseases by serving as a vehicle for the antigens and active proteases. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases

    Science.gov (United States)

    Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Cronemberger Andrade, André; Batista, Wagner Luiz; Torrecilhas, Ana Claudia

    2015-01-01

    Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases. PMID:26380326

  19. Outer membrane vesicles of Pasteurella multocida contain virulence factors

    Science.gov (United States)

    Fernández-Rojas, Miguel A; Vaca, Sergio; Reyes-López, Magda; de la Garza, Mireya; Aguilar-Romero, Francisco; Zenteno, Edgar; Soriano-Vargas, Edgardo; Negrete-Abascal, Erasmo

    2014-01-01

    Pasteurella multocida (Pm) is a gram-negative bacterium able to infect different animal species, including human beings. This bacterium causes economic losses to the livestock industry because of its high morbidity and mortality in animals. In this work, we report the characterization of outer membrane vesicles (OMVs) released into the culture medium by different Pm serogroups. Purified OMVs in the range of 50–300 nm were observed by electron microscopy. Serum obtained from chickens infected with Pm recognized several proteins from Pm OMVs. Additionally, rabbit antiserum directed against a secreted protease from Actinobacillus pleuropneumoniae recognized a similar protein in the Pm OVMs, suggesting that OMVs from these bacterial species contain common immunogenic proteins. OmpA, a multifunctional protein, was identified in OMVs from different Pm serogroups, and its concentration was twofold higher in OMVs from Pm serogroups B and D than in OMVs from other serogroups. Three outer membrane proteins were also identified: OmpH, OmpW, and transferrin-binding protein. Three bands of 65, 110, and 250 kDa with proteolytic activity were detected in Pm OMVs of serogroups A and E. Additionally, β-lactamase activity was detected only in OMVs from Pm 12945 Ampr (serogroup A). Pm OMVs may be involved in different aspects of disease pathogenesis. PMID:25065983

  20. Outer membrane vesicles of Pasteurella multocida contain virulence factors.

    Science.gov (United States)

    Fernández-Rojas, Miguel A; Vaca, Sergio; Reyes-López, Magda; de la Garza, Mireya; Aguilar-Romero, Francisco; Zenteno, Edgar; Soriano-Vargas, Edgardo; Negrete-Abascal, Erasmo

    2014-10-01

    Pasteurella multocida (Pm) is a gram-negative bacterium able to infect different animal species, including human beings. This bacterium causes economic losses to the livestock industry because of its high morbidity and mortality in animals. In this work, we report the characterization of outer membrane vesicles (OMVs) released into the culture medium by different Pm serogroups. Purified OMVs in the range of 50-300 nm were observed by electron microscopy. Serum obtained from chickens infected with Pm recognized several proteins from Pm OMVs. Additionally, rabbit antiserum directed against a secreted protease from Actinobacillus pleuropneumoniae recognized a similar protein in the Pm OVMs, suggesting that OMVs from these bacterial species contain common immunogenic proteins. OmpA, a multifunctional protein, was identified in OMVs from different Pm serogroups, and its concentration was twofold higher in OMVs from Pm serogroups B and D than in OMVs from other serogroups. Three outer membrane proteins were also identified: OmpH, OmpW, and transferrin-binding protein. Three bands of 65, 110, and 250 kDa with proteolytic activity were detected in Pm OMVs of serogroups A and E. Additionally, β-lactamase activity was detected only in OMVs from Pm 12945 Amp(r) (serogroup A). Pm OMVs may be involved in different aspects of disease pathogenesis. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-05

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  2. Health economics of a hexavalent meningococcal outer-membrane vesicle vaccine in children : potential impact of introduction in the Dutch vaccination program

    NARCIS (Netherlands)

    Bos, JM; Rumke, HC; Welte, R; Postma, MJ; Jager, JC

    2001-01-01

    The cost-effectiveness of universal vaccination of infants with a new hexavalent meningococcal B outer-membrane vesicle vaccine is projected for The Netherlands by applying decision analysis. The societal perspective is taken and direct and productivity costs (friction costs method) are considered.

  3. [Bacterial outer membrane vesicles as nano carriers to study immunological activities].

    Science.gov (United States)

    Qi, Chen; Min, W U; Hongzhen, Bai; Zeling, Guo; Jun, Zhou; Qingqing, Wang; Guping, Tang

    2017-03-25

    Objective: To prepare a nano-carrier based on combining bacterial outer membrane vesicles (OMV) with three block polymer pluronic F127 (PEO 100 -PPO 65 -PEO 100 ) (OMV-F127) and to investigate its immunological activity. Methods: Attenuated salmonella (sal) was cultivated. OMV were separated by centrifugal ultrafiltration or ultrasonication, and OMV-F127 was prepared by mechanical extrudation method. The protein contents and compositions were tested with BCA and SDS-PAGE; the morphology of OMV, F127 and OMV-F127 were observed with FM and TEM; the particle sizes and their zeta potential were determined with DLS. Mouse macrophage RAW246.7 cells were treated with OMV-F127 (50 μg/mL, 100 μg/mL) in vitro, and the concentrations of IL-12, TNF-α and IFN-γ in culture supernatant were measured with ELISA kits. Results: The contents of protein in separated OMV by centrifugal ultrafiltration and ultrasonication were 2.8 mg/mL and 2.7 mg/mL, respectively. SDS-PAGE showed the marker protein OmpF/C in OMV. Under the FM and TEM, ball-like structure of F127 and OMV-F127 was observed. Size analysis revealed that the diameters of OMV, F127 and OMV-F127 were 72±2 nm, 90±3 nm and 92±2 nm, respectively. ELISA tests revealed that OMV-F127 significantly stimulated the secretion of IL-12, TNF-α and IFN-γ in RAW246.7 cells. Conclusion: A nano-carrier based on bacterial outer membrane vesicles has been prepared, which can stimulate the secretion of cytokines and may have immunomodulatory effects.

  4. Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins.

    Science.gov (United States)

    Jun, So Hyun; Lee, Jung Hwa; Kim, Bo Ra; Kim, Seung Il; Park, Tae In; Lee, Je Chul; Lee, Yoo Chul

    2013-01-01

    Acinetobacter baumannii is increasingly becoming a major nosocomial pathogen. This opportunistic pathogen secretes outer membrane vesicles (OMVs) that interact with host cells. The aim of this study was to investigate the ability of A. baumannii OMVs to elicit a pro-inflammatory response in vitro and the immunopathology in response to A. baumannii OMVs in vivo. OMVs derived from A. baumannii ATCC 19606(T) induced expression of pro-inflammatory cytokine genes, interleukin (IL)-1β and IL-6, and chemokine genes, IL-8, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1, in epithelial cells in a dose-dependent manner. Disintegration of OMV membrane with ethylenediaminetetraacetic acid resulted in low expression of pro-inflammatory cytokine genes, as compared with the response to intact OMVs. In addition, proteinase K-treated A. baumannii OMVs did not induce significant increase in expression of pro-inflammatory cytokine genes above the basal level, suggesting that the surface-exposed membrane proteins in intact OMVs are responsible for pro-inflammatory response. Early inflammatory processes, such as vacuolization and detachment of epithelial cells and neutrophilic infiltration, were clearly observed in lungs of mice injected with A. baumannii OMVs. Our data demonstrate that OMVs produced by A. baumannii elicit a potent innate immune response, which may contribute to immunopathology of the infected host.

  5. Characterization of fHbp, nhba (gna2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008 and potential coverage of an investigational group B meningococcal vaccine.

    Science.gov (United States)

    Lucidarme, Jay; Comanducci, Maurizio; Findlow, Jamie; Gray, Stephen J; Kaczmarski, Edward B; Guiver, Malcolm; Vallely, Pamela J; Oster, Philipp; Pizza, Mariagrazia; Bambini, Stefania; Muzzi, Alessandro; Borrow, Ray

    2010-06-01

    Invasive disease caused by meningococcal capsular groups A, C, W-135, and Y is now preventable by means of glycoconjugate vaccines that target their respective polysaccharide capsules. The capsule of group B meningococci (MenB) is poorly immunogenic and may induce autoimmunity. Vaccines based on the major immunodominant surface porin, PorA, are effective against clonal epidemics but, thus far, have a limited scope of coverage against the wider MenB population at large. In an alternative approach, the first-generation, investigational, recombinant MenB (rMenB) plus outer membrane vesicle (OMV) (rMenB-OMV) vaccine contains a number of relatively conserved surface proteins, fHBP, NHBA (previously GNA2132), and NadA, alongside PorA P1.4-containing OMVs from the New Zealand MeNZB vaccine. MenB currently accounts for approximately 90% of cases of meningococcal disease in England and Wales. To assess potential rMenB-OMV vaccine coverage of pathogenic MenB isolates within this region, all English and Welsh MenB case isolates from January 2008 (n = 87) were genetically characterized with respect to fHBP, NHBA, NadA, and PorA. Alleles for fHbp, nhba, and porA were identified in all of the isolates, of which 22% were also found to harbor nadA alleles. On the basis of genotypic data and predicted immunological cross-reactivity, the potential level of rMenB-OMV vaccine coverage in England and Wales ranges from 66% to 100%.

  6. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong; Liu, Liguo; Fu, Hua; Wei, Candong, E-mail: weicando@ipbcams.ac.cn; Jin, Qi, E-mail: zdsys@vip.sina.com

    2014-10-31

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria.

  7. Safety and immunogenicity of the RIVM hexavalent meningococcal B vesicle vaccine for Rotterdam children aged 2-3 and 7-8

    NARCIS (Netherlands)

    Labadie J; Kleijn ED de; Lafeber AB; Mees MMM; Booy K; Groot R de; Omme GW van; Dijken H van; Kuipers AJ; Dobbelsteen G van den; Juttmann RE; Wala M; Alphen AJW van; Rumke HC; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report documents the results of a randomised controlled phase-II clinical study into the safety and immunogenicity of the RIVM hexavalent MenB vesicle vaccine among 189 children aged 2-3 and 168 children aged 7-8 in the city of Rotterdam, the Netherlands. Two concentrations of the MenB vesicle

  8. Epoxide-mediated differential packaging of Cif and other virulence factors into outer membrane vesicles.

    Science.gov (United States)

    Ballok, Alicia E; Filkins, Laura M; Bomberger, Jennifer M; Stanton, Bruce A; O'Toole, George A

    2014-10-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles.

    Science.gov (United States)

    Elhenawy, Wael; Debelyy, Mykhaylo O; Feldman, Mario F

    2014-03-11

    Outer membrane vesicles (OMV) are spherical membranous structures released from the outer membrane (OM) of Gram-negative bacteria. OMV have been proposed to play several different roles during both pathogenesis and symbiosis. Despite the fact that OMV were described several decades ago, their biogenesis is a poorly characterized process. Whether OMV are produced by an active mechanism or by passive disintegration of the OM is a still matter of controversy. Bacteroides fragilis and Bacteroides thetaiotaomicron are important members of the human microbiota. In this work, we determined and compared the protein compositions of OM and OMV from B. fragilis and B. thetaiotaomicron. SDS-PAGE analysis of both fractions revealed dramatically different protein profiles. Proteomic analysis of OM and OMV in B. fragilis identified more than 40 proteins found exclusively in OMV and more than 30 proteins detectable only in the OM. The OMV-specific proteome showed a high prevalence of glycosidases and proteases, some of which were shown to be active in vitro. Similar results were obtained for B. thetaiotaomicron. Most of the OMV-exclusive proteins were acidic. Based on these results, we propose that these species possess machinery devoted to selectively pack acidic proteins into the OMV. These OMV equipped with hydrolytic enzymes could help in securing nutrients for the benefit of the whole bacterial community present in the microbiota, uncovering a novel function for bacterial OMV. IMPORTANCE The members of genus Bacteroides are key players in the symbiosis between the human host and the gut microbiota. It is known for its ability to degrade a wide variety of glycans that are not substrates for human glycosidases. The cleaved glycans can be utilized by Bacteroides and other microbiota members, resulting in the production of short-chain fatty acids that are beneficial for the host. Although members of the genus Bacteroides are known to secrete different hydrolases, their secretion

  10. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes.

    Science.gov (United States)

    Jäger, Jens; Keese, Susanne; Roessle, Manfred; Steinert, Michael; Schromm, Andra B

    2015-05-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. © 2014 John Wiley & Sons Ltd.

  11. Vibrio fischeri-derived outer membrane vesicles trigger host development.

    Science.gov (United States)

    Aschtgen, Marie-Stephanie; Wetzel, Keith; Goldman, William; McFall-Ngai, Margaret; Ruby, Edward

    2016-04-01

    Outer membrane vesicles (OMV) are critical elements in many host-cell/microbe interactions. Previous studies of the symbiotic association between Euprymna scolopes and Vibrio fischeri had shown that within 12 h of colonizing crypts deep within the squid's light organ, the symbionts trigger an irreversible programme of tissue development in the host. Here, we report that OMV produced by V. fischeri are powerful contributors to this process. The first detectable host response to the OMV is an increased trafficking of macrophage-like cells called haemocytes into surface epithelial tissues. We showed that exposing the squid to other Vibrio species fails to induce this trafficking; however, addition of a high concentration of their OMV, which can diffuse into the crypts, does. We also provide evidence that tracheal cytotoxin released by the symbionts, which can induce haemocyte trafficking, is not part of the OMV cargo, suggesting two distinct mechanisms to induce the same morphogenesis event. By manipulating the timing and localization of OMV signal delivery, we showed that haemocyte trafficking is fully induced only when V. fischeri, the sole species able to reach and grow in the crypts, succeeds in establishing a sustained colonization. Further, our data suggest that the host's detection of OMV serves as a symbiotic checkpoint prior to inducing irreversible morphogenesis. © 2015 John Wiley & Sons Ltd.

  12. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    OpenAIRE

    Bellier, Bertrand; Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccine...

  13. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles.

    Science.gov (United States)

    Gui, M J; Dashper, S G; Slakeski, N; Chen, Y-Y; Reynolds, E C

    2016-10-01

    Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. OMV's German pipeline system rehabilitation; Rehabilitierungsmassnahmen am OMV D Pipelinesystem

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, T. [ILF Beratende Ingenieure GmbH, Muenchen (Germany)

    2008-05-15

    Preparations for renewal of the operating permit for the OMV Deutschland GmbH long-distance pipelines, which will expire at the end of 2008, began in 2004. These systems comprise, in detail, the 12'' Steinhoering-to-Burghausen crude oil pipeline (61 km, constructed in 1967), the 8'' Burghausen-to-Feldkirchen product pipeline (87 km, constructed in 1967) and 8'' Feldkirchen-to-Erding jet-fuel pipeline (36 km, 1991). The project, which has been awarded to the ILF Beratende Ingenieure GmbH engineering consultancy, consisted essentially of determination of the current condition of the pipeline system, including monitoring of smart-pig surveys, definition of the necessary rehabilitation input, and drafting of the approval application, including the environmental impact assessment (EIA). The second phase of the project, deriving from the actual-condition survey, involved the performance of extremely diverse rehabilitation works, a major portion of which necessitated the drainage of the pipelines. (orig.)

  15. Stenotrophomonas maltophilia outer membrane vesicles elicit a potent inflammatory response in vitro and in vivo.

    Science.gov (United States)

    Kim, Yoo Jeong; Jeon, Hyejin; Na, Seok Hyeon; Kwon, Hyo Il; Selasi, Gati Noble; Nicholas, Asiimwe; Park, Tae In; Lee, Sang Hwa; Lee, Je Chul

    2016-11-01

    Stenotrophomonas maltophilia has become one of the most prevalent opportunistic pathogens in hospitalized patients. This microorganism secretes outer membrane vesicles (OMVs), but the pathogenesis of S. maltophilia as it relates to OMVs has not been characterized. This study investigated the cytotoxic activity of S. maltophilia OMVs and their ability to induce inflammatory responses both in vitro and in vivo Stenotrophomonas maltophilia ATCC 13637 and two clinical isolates were found to secrete spherical OMVs during in vitro culture. OMVs from S. maltophilia ATCC 13637 were cytotoxic to human lung epithelial A549 cells. Stenotrophomonas maltophilia OMVs stimulated the expression of proinflammatory cytokine and chemokine genes, including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α and monocyte chemoattractant protein-1, in A549 cells. Early inflammatory responses such as congestion and neutrophilic infiltrations and profound expression of proinflammatory cytokine and chemokine genes were observed in the lungs of mice injected with S. maltophilia OMVs, and were similar to responses elicited by the bacteria. Our data demonstrate that S. maltophilia OMVs are important secretory nanocomplexes that elicit a potent inflammatory response that might contribute to S. maltophilia pathogenesis during infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Transcutaneous subunit vaccine delivery. A combined approach of vesicle formulations and microneedle arrays

    NARCIS (Netherlands)

    Ding, Zhi

    2010-01-01

    Traditional vaccination is performed via subcutaneous or intramuscular injections, which is painful, causes stress, especially in children and requires trained personnel. Vaccination via the skin provides effective, easy-to-use, painless, and needle-free vaccination with fewer side effects and safer

  17. The Lethal Cargo of Myxococcus xanthus Outer Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    James E Berleman

    2014-09-01

    Full Text Available Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including MXAN_3564 (mepA, an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is the long-predicted (yet to date unknown primary extracellular protease in M. xanthus.

  18. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  19. Moraxella catarrhalis Outer Membrane Vesicles Carry β-Lactamase and Promote Survival of Streptococcus pneumoniae and Haemophilus influenzae by Inactivating Amoxicillin▿

    Science.gov (United States)

    Schaar, Viveka; Nordström, Therése; Mörgelin, Matthias; Riesbeck, Kristian

    2011-01-01

    Moraxella catarrhalis is a common pathogen found in children with upper respiratory tract infections and in patients with chronic obstructive pulmonary disease during exacerbations. The bacterial species is often isolated together with Streptococcus pneumoniae and Haemophilus influenzae. Outer membrane vesicles (OMVs) are released by M. catarrhalis and contain phospholipids, adhesins, and immunomodulatory compounds such as lipooligosaccharide. We have recently shown that M. catarrhalis OMVs exist in patients upon nasopharyngeal colonization. As virtually all M. catarrhalis isolates are β-lactamase positive, the goal of this study was to investigate whether M. catarrhalis OMVs carry β-lactamase and to analyze if OMV consequently can prevent amoxicillin-induced killing. Recombinant β-lactamase was produced and antibodies were raised in rabbits. Transmission electron microscopy, flow cytometry, and Western blotting verified that OMVs carried β-lactamase. Moreover, enzyme assays revealed that M. catarrhalis OMVs contained active β-lactamase. OMVs (25 μg/ml) incubated with amoxicillin for 1 h completely hydrolyzed amoxicillin at concentrations up to 2.5 μg/ml. In functional experiments, preincubation of amoxicillin (10× MIC) with M. catarrhalis OMVs fully rescued amoxicillin-susceptible M. catarrhalis, S. pneumoniae, and type b or nontypeable H. influenzae from β-lactam-induced killing. Our results suggest that the presence of amoxicillin-resistant M. catarrhalis originating from β-lactamase-containing OMVs may pave the way for respiratory pathogens that by definition are susceptible to β-lactam antibiotics. PMID:21576428

  20. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri.

    Science.gov (United States)

    Shibata, Satoshi; Visick, Karen L

    2012-01-01

    Robust biofilm formation by Vibrio fischeri depends upon activation of the symbiosis polysaccharide (syp) locus, which is achieved by overexpressing the RscS sensor kinase (RscS(+)). Other than the Syp polysaccharide, however, little is known about V. fischeri biofilm matrix components. In other bacteria, biofilms contain polysaccharides, secreted proteins, and outer membrane vesicles (OMVs). Here, we asked whether OMVs are part of V. fischeri biofilms. Transmission electron microscopy revealed OMV-like particles between cells within colonies. In addition, OMVs could be purified from culture supernatants of both RscS(+) and control cells, with the former releasing 2- to 3-fold more OMVs. The increase depended upon the presence of an intact syp locus, as an RscS(+) strain deleted for sypK, which encodes a putative oligosaccharide translocase, exhibited reduced production of OMVs; it also showed a severe defect in biofilm formation. Western immunoblot analyses revealed that the RscS(+) strain, but not the control strain or the RscS(+) sypK mutant, produced a distinct set of nonproteinaceous molecules that could be detected in whole-cell extracts, OMV preparations, and lipopolysaccharide (LPS) extracts. Finally, deletion of degP, which in other bacteria influences OMV production, decreased OMV production and reduced the ability of the cells to form biofilms. We conclude that overexpression of RscS induces OMV production in a manner that depends on the presence of the syp locus and that OMVs produced under these conditions contain antigenically distinct molecules, possibly representing a modified form of lipopolysaccharide (LPS). Finally, our data indicate a correlation between OMV production and biofilm formation by V. fischeri.

  1. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    Science.gov (United States)

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  2. Extracellular Vesicles from a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protective Immunity

    Directory of Open Access Journals (Sweden)

    Gillian Coakley

    2017-05-01

    Full Text Available Recent studies have demonstrated that many parasites release extracellular vesicles (EVs, yet little is known about the specific interactions of EVs with immune cells or their functions during infection. We show that EVs secreted by the gastrointestinal nematode Heligmosomoides polygyrus are internalized by macrophages and modulate their activation. EV internalization causes downregulation of type 1 and type 2 immune-response-associated molecules (IL-6 and TNF, and Ym1 and RELMα and inhibits expression of the IL-33 receptor subunit ST2. Co-incubation with EV antibodies abrogated suppression of alternative activation and was associated with increased co-localization of the EVs with lysosomes. Furthermore, mice vaccinated with EV-alum generated protective immunity against larval challenge, highlighting an important role in vivo. In contrast, ST2-deficient mice are highly susceptible to infection, and they are unable to clear parasites following EV vaccination. Hence, macrophage activation and the IL-33 pathway are targeted by H. polygyrus EVs, while neutralization of EV function facilitates parasite expulsion.

  3. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms.

    Science.gov (United States)

    Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde; Bellier, Bertrand

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8(+) T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4(+) T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.

  4. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Science.gov (United States)

    Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde; Bellier, Bertrand

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases. PMID:25206960

  5. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Directory of Open Access Journals (Sweden)

    Christine Sedlik

    2014-08-01

    Full Text Available The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA antigen to EVs: (a by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin, which is exposed on the surface of secreted membrane vesicles; and (b by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs. We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.

  6. Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice

    Directory of Open Access Journals (Sweden)

    María-José Fábrega

    2017-07-01

    Full Text Available Escherichia coli Nissle 1917 (EcN is a probiotic strain with proven efficacy in inducing and maintaining remission of ulcerative colitis. However, the microbial factors that mediate these beneficial effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs as a direct pathway for delivering selected bacterial proteins and active compounds to the host. In fact, vesicles released by gut microbiota are emerging as key players in signaling processes in the intestinal mucosa. In the present study, the dextran sodium sulfate (DSS-induced colitis mouse model was used to investigate the potential of EcN OMVs to ameliorate mucosal injury and inflammation in the gut. The experimental protocol involved pre-treatment with OMVs for 10 days before DSS intake, and a 5-day recovery period. Oral administration of purified EcN OMVs (5 μg/day significantly reduced DSS-induced weight loss and ameliorated clinical symptoms and histological scores. OMVs treatment counteracted altered expression of cytokines and markers of intestinal barrier function. This study shows for the first time that EcN OMVs can mediate the anti-inflammatory and barrier protection effects previously reported for this probiotic in experimental colitis. Remarkably, translation of probiotics to human healthcare requires knowledge of the molecular mechanisms involved in probiotic–host interactions. Thus, OMVs, as a non-replicative bacterial form, could be explored as a new probiotic-derived therapeutic approach, with even lower risk of adverse events than probiotic administration.

  7. Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis

    Science.gov (United States)

    Kunsmann, Lisa; Greune, Lilo; Bauwens, Andreas; Zhang, Wenlan; Kuczius, Thorsten; Kim, Kwang Sik; Mellmann, Alexander; Schmidt, M. Alexander; Karch, Helge

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in

  8. Proteomic study via a non-gel based approach of meningococcal outer membrane vesicle vaccine obtained from strain CU385: a road map for discovering new antigens.

    Science.gov (United States)

    Gil, Jeovanis; Betancourt, L Zaro H; Sardiñas, Gretel; Yero, Daniel; Niebla, Olivia; Delgado, Maité; García, Darien; Pajón, Rolando; Sánchez, Aniel; González, Luis J; Padrón, Gabriel; Campa, Concepción; Sotolongo, Franklin; Barberó, Ramón; Guillén, Gerardo; Herrera, Luis; Besada, Vladimir

    2009-05-01

    This work presents the results from a study of the protein composition of outer membrane vesicles from VA-MENGOC-BC (Finlay Institute, Cuba), an available vaccine against serogroup B Neisseria meningitidis. Proteins were identified by means of SCAPE, a 2DE-free method for proteome studies. More than one hundred proteins were detected by tandem liquid chromatographymass spectrometry analysis of fractions enriched in peptides devoid of histidine or arginine residues, providing a detailed description of the vaccine. A bioinformatic analysis of the identified components resulted in the identification of 31 outer membrane proteins and three conserved hypothetical proteins, allowing the cloning, expression, purification and immunological study of two of them (NMB0088 and NMB1796) as new antigens.

  9. OMV man/system simulation integration: A preliminary analysis and recommendation

    Science.gov (United States)

    Rogers, Jon G.

    1988-01-01

    The Orbital Maneuvering Vehicle (OMV) presents a series of challenges to the human operator. Some are unique to the OMV system itself, and are largely due to remote control versus control from the cockpit. Other challenges are not necessarily unique to the OMV, but are characteristic of many man-machine space flight systems. All of these challenges affect the operator's ability to perform his portion of the mission, and could lead to human error which might jeopardize the vehicle, mission, or both. It is imperative to make every effort to design the control and displays to facilitate the operator's task. The experimental program should address the perceptual, mediational, and motor dimensions of operator performance. With this in mind, a literature review with relevant design considerations was initiated, and a comprehensive outline of control/display parameters were developed. Out of this, a series of questions not answered in the literature was derived which can be converted into experimental protocols for the simulation program. A major task of the aircraft pilot as well as the OMV operator is prediction. Certain display principles have proved to enhance the pilot's ability to predict. A brief examination of some of these principles in relationship to OMV may be useful.

  10. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens

    DEFF Research Database (Denmark)

    Pors, Susanne Elisabeth; Pedersen, Ida Just; Skjerning, Ragnhild Bager

    2016-01-01

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previo...

  11. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics.

    Science.gov (United States)

    Stentz, Régis; Horn, Nikki; Cross, Kathryn; Salt, Louise; Brearley, Charles; Livermore, David M; Carding, Simon R

    2015-03-01

    To identify β-lactamase genes in gut commensal Bacteroides species and to assess the impact of these enzymes, when carried by outer membrane vesicles (OMVs), in protecting enteric pathogens and commensals. A deletion mutant of the putative class A β-lactamase gene (locus tag BT_4507) found in the genome of the human commensal Bacteroides thetaiotaomicron was constructed and a phenotypic analysis performed. A phylogenetic tree was built from an alignment of nine Bacteroides cephalosporinase protein sequences, using the maximum likelihood method. The rate of cefotaxime degradation after incubation with OMVs produced by different Bacteroides species was quantified using a disc susceptibility test. The resistance of Salmonella Typhimurium and Bifidobacterium breve to cefotaxime in liquid culture in the presence of B. thetaiotaomicron OMVs was evaluated by measuring bacterial growth. The B. thetaiotaomicron BT_4507 gene encodes a β-lactamase related to the CepA cephalosporinase of Bacteroides fragilis. OMVs produced by B. thetaiotaomicron and several other Bacteroides species, except Bacteroides ovatus, carried surface-associated β-lactamases that could degrade cefotaxime. β-Lactamase-harbouring OMVs from B. thetaiotaomicron protected Salmonella Typhimurium and B. breve from an otherwise lethal dose of cefotaxime. The production of membrane vesicles carrying surface-associated β-lactamases by Bacteroides species, which constitute a major part of the human colonic microbiota, may protect commensal bacteria and enteric pathogens, such as Salmonella Typhimurium, against β-lactam antibiotics. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  12. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

    Science.gov (United States)

    Tavano, Regina; Franzoso, Susanna; Cecchini, Paola; Cartocci, Elena; Oriente, Francesca; Aricò, Beatrice; Papini, Emanuele

    2009-07-01

    Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).

  13. Vesicle Photonics

    Science.gov (United States)

    Vasdekis, A. E.; Scott, E. A.; Roke, S.; Hubbell, J. A.; Psaltis, D.

    2013-07-01

    Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transport molecular payloads. Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane. Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy). We conclude with emerging vesicle applications in biology and photochemical microreactors.

  14. HOW TO MANAGE SUSTAINABLE DEVELOPMENT IN OIL INDUSTRY: THE CASE OF OMV PETROM

    Directory of Open Access Journals (Sweden)

    MARIUS BULEARCA

    2016-12-01

    Full Text Available As exploration and exploitation of oil and gas deposits continue to be among the most polluting industrial activities, this paper deals with revealing the way OMV Petrom, a major oil company from Romania, cope with these issues aiming at protecting the environment and ensuring safe and efficient operations in order to achieve sustainable development and constant growth.

  15. Outer Membrane Vesicles from the Probiotic Escherichia coli Nissle 1917 and the Commensal ECOR12 Enter Intestinal Epithelial Cells via Clathrin-Dependent Endocytosis and Elicit Differential Effects on DNA Damage.

    Directory of Open Access Journals (Sweden)

    María-Alexandra Cañas

    Full Text Available Interactions between intestinal microbiota and the human host are complex. The gut mucosal surface is covered by a mucin layer that prevents bacteria from accessing the epithelial cells. Thus, the crosstalk between microbiota and the host mainly rely on secreted factors that can go through the mucus layer and reach the epithelium. In this context, vesicles released by commensal strains are seen as key players in signaling processes in the intestinal mucosa. Studies with Gram-negative pathogens showed that outer membrane vesicles (OMVs are internalized into the host cell by endocytosis, but the entry mechanism for microbiota-derived vesicles is unknown. Escherichia coli strains are found as part of normal human gut microbiota. In this work, we elucidate the pathway that mediate internalization of OMVs from the probiotic E.coli Nissle 1917 (EcN and the commensal ECOR12 strains in several human intestinal epithelial cell lines. Time course measurement of fluorescence and microscopy analysis performed with rhodamine B-R18-labeled OMVs in the presence of endocytosis inhibitors showed that OMVs from these strains enter epithelial cells via clathrin-mediated endocytosis. Vesicles use the same endocytosis pathway in polarized epithelial monolayers. Internalized OMVs are sorted to lysosomal compartments as shown by their colocalization with clathrin and specific markers of endosomes and lysosomes. OMVs from both strains did not affect cell viability, but reduce proliferation of HT-29 cells. Labeling of 8-oxo-dG adducts in DNA revealed that neither OMVs from EcN nor from ECOR12 promoted oxidative DNA damage. In contrast, flow cytometry analysis of phosphorylated γH2AX evidenced that OMVs from the probiotic EcN significantly produced more double strand breaks in DNA than ECOR12 OMVs. The EcN genotoxic effects have been attributed to the synthesis of colibactin. However, it is not known how colibactin is exported and delivered into host cells. Whether

  16. Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles.

    Science.gov (United States)

    Hickey, Christina A; Kuhn, Kristine A; Donermeyer, David L; Porter, Nathan T; Jin, Chunsheng; Cameron, Elizabeth A; Jung, Haerin; Kaiko, Gerard E; Wegorzewska, Marta; Malvin, Nicole P; Glowacki, Robert W P; Hansson, Gunnar C; Allen, Paul M; Martens, Eric C; Stappenbeck, Thaddeus S

    2015-05-13

    Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Host cell interactions of outer membrane vesicle-associated virulence factors of Enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, confocal laser...

  18. In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host

    Directory of Open Access Journals (Sweden)

    William A. Bryant

    2017-12-01

    Full Text Available The interactions between the gut microbiota and its host are of central importance to the health of the host. Outer membrane vesicles (OMVs are produced ubiquitously by Gram-negative bacteria including the gut commensal Bacteroides thetaiotaomicron. These vesicles can interact with the host in various ways but until now their complement of small molecules has not been investigated in this context. Using an untargeted high-coverage metabolomic approach we have measured the small molecule content of these vesicles in contrasting in vitro conditions to establish what role these metabolites could perform when packed into these vesicles. B. thetaiotaomicron packs OMVs with a highly conserved core set of small molecules which are strikingly enriched with mouse-digestible metabolites and with metabolites previously shown to be associated with colonization of the murine GIT. By use of an expanded genome-scale metabolic model of B. thetaiotaomicron and a potential host (the mouse we have established many possible metabolic pathways between the two organisms that were previously unknown, and have found several putative novel metabolic functions for mouse that are supported by gene annotations, but that do not currently appear in existing mouse metabolic networks. The lipidome of these OMVs bears no relation to the mouse lipidome, so the purpose of this particular composition of lipids remains unclear. We conclude from this analysis that through intimate symbiotic evolution OMVs produced by B. thetaiotaomicron are likely to have been adopted as a conduit for small molecules bound for the mammalian host in vivo.

  19. Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles

    Science.gov (United States)

    Fleetwood, Andrew J.; Lee, Man K.S.; Singleton, William; Achuthan, Adrian; Lee, Ming-Chin; O'Brien-Simpson, Neil M.; Cook, Andrew D.; Murphy, Andrew J.; Dashper, Stuart G.; Reynolds, Eric C.; Hamilton, John A.

    2017-01-01

    Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs), which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their products, so we sought to directly compare the response of macrophages to P. gingivalis or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of TNFα, IL-12p70, IL-6, IL-10, IFNβ, and nitric oxide compared to cells infected with P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, which was supported by enhanced lactate release, decreased mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as increased mitochondrial reactive oxygen species (ROS) production. Corresponding to this metabolic shift, gene expression analysis of macrophages infected with P. gingivalis or stimulated with OMVs revealed a broad transcriptional upregulation of genes critical to glycolysis and a downregulation of genes associated with the TCA cycle. Upon examination of inflammasome signaling and pyroptosis it was found that P. gingivalis did not activate the inflammasome in macrophages as the mature forms of caspase-1, IL-1β, and IL-18 were not detected and there was no extracellular release of lactate dehydrogenase (LDH) or 7-AAD staining. In comparison, macrophages stimulated with OMVs potently activated caspase-1, produced large amounts of IL-1β, IL-18, released LDH, and were positive for 7-AAD indicative of pyroptotic cell death. These data directly quantitate the distinct effects of P. gingivalis and its OMVs on macrophage inflammatory phenotype, mitochondrial function, inflammasome activation, and pyroptotic cell death that may have potential implications for

  20. Patientens upplevelse av oro i samband med den preoperativa omvårdnaden : En litteraturstudie

    OpenAIRE

    Hellman, Kelly; Zhao Chen, Lijun

    2016-01-01

    Bakgrund: Oro drabbar de flesta patienter inför operation. Det finns många faktorer som påverkar patientens upplevelser av oro både inom vården och det liv patienten befinner sig i. Det är av stor vikt att få en ökad förståelse av hur den preoperativa omvårdnaden kan minska patientens oro och lidande utifrån patientens perspektiv.  Syfte: Att beskriva patientens upplevelse av oro i samband med den preoperativa omvårdnaden.  Metod: En deskriptiv litteraturstudie baserad på kvalitativa artiklar...

  1. Literature concerning control and display technology applicable to the Orbital Maneuvering Vehicle (OMV)

    Science.gov (United States)

    1990-01-01

    A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.

  2. Opportunities and challenges at the interface between petrochemicals and refinery. The OMV view

    Energy Technology Data Exchange (ETDEWEB)

    Lichtscheidl, J. [OMV Refining and Marketing GmbH, Vienna (Austria)

    2007-07-01

    OMV's refineries have been integrated into petrochemicals since the first steam cracker came on line in 1970. The refineries in Schwechat, Burghausen and Romania, especially Arpechim, have significant petrochemical capacities. In 1998 PCD was merged with Borealis, a leading producer of high grade polymers. OMV's initial 25% stake in Borealis increased to 36 in 2007. The last years have seen major investments in Schwechat and Burghausen: Schwechat's cracker was expanded by approximately 150 KTA to a nominal 500 KTA of ethylene. And in Burghausen the revamp of the cracker has been combined with a metathesis unit in order to feed a new 330 KTA polypropylene plant. The polymer market is still growing. However, the bulk of investments to increase capacity are located in the Middle East and in the Asia-Pacific region, predominately in China. As more and more products from these regions find their way to Europe, the European petrochemicals industry faces fierce competition. The response is restructuring: the creation of Arkema (Total), the takeover of BP's petrochemical assets by INEOS, the disposal of Shell-BASF subsidiary Basell to Haldia Petrochemical and Accent Industries, and the transfer of Statoil's interest in Borealis to IPIC and OMV. And most recently, Basell's acquisition of Lyondell. Compared with competitors in the Middle East and the Asia-Pacific region, producers in Europe are burdened with serious disadvantages: fairly old, small units and high costs of labor, energy and raw materials. There is no single solution. OMV, however, will continue to follow the strategies that have been successful so far: - Ever closer integration of refining and petrochemicals; - Capturing market opportunities for profitable growth; -Remaining market orientated. (orig.)

  3. Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations

    OpenAIRE

    Quesenberry, Peter J.; Goldberg, Laura R.; Aliotta, Jason M.; Mark S Dooner; Pereira, Mandy G.; Wen, Sicheng; Camussi, Giovanni

    2014-01-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung o...

  4. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens.

    Science.gov (United States)

    Choi, J-W; Kim, S-C; Hong, S-H; Lee, H-J

    2017-04-01

    MicroRNAs (miRNAs) have been shown to be major regulators of eukaryotic gene expression. However, bacterial RNAs comparable in size to eukaryotic miRNAs (18-22 nucleotides) have received little attention. Recently, a novel class of small RNAs similar in size to miRNAs (miRNA-size, small RNAs or msRNAs) have also been found in several bacteria. Like miRNAs, msRNAs are approximately 15 to 25 nucleotides in length, and their precursors are predicted to form a hairpin loop secondary structure. Here, we identified msRNAs in the periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. We examined these msRNAs using a deep sequencing method and characterized dozens of msRNAs through bioinformatic analysis. Highly expressed msRNAs were selected for further validation. The findings suggest that this class of small RNAs is well conserved across the domains of life. Indeed, msRNAs secreted via bacterial outer membrane vesicles (OMVs) were detected. The ability of bacterial OMVs to deliver RNAs into eukaryotic cells was also observed. These msRNAs in OMVs allowed us to identify their potential human immune-related target genes. Furthermore, we found that exogenous msRNAs could suppress expression of certain cytokines in Jurkat T cells. We propose msRNAs may function as novel bacterial signaling molecules that mediate bacteria-to-human interactions. Furthermore, this study may provide fresh insight into bacterial pathogenic mechanisms of periodontal diseases.

  5. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Maria José eFábrega

    2016-05-01

    Full Text Available The influence of microbiota in human health is well known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well known. Gram-negative bacteria release outer membrane vesicles (OMVs as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i peripheral blood mononuclear cells (PBMCs as a model of intestinal barrier disruption, (ii apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier.

  6. Musik som en omvårdnadsåtgärd i det dagliga livet för omvårdnad av personer med demenssjukdom : En litteraturstudie

    OpenAIRE

    O’Connell, Denise

    2016-01-01

    Musik som verktyg för att lindra oro och stress är en tilltalande omvårdnadsåtgärd då den kan anpassas direkt till individen. Den är utan biverkningar samt kostnadseffektiv. Syfte: Att undersöka effekten av musikåtgärder i omvårdnad av personer med demenssjukdom. Metod: Föreliggande studie är en litteraturstudie omfattande båda kvantitativa och kvalitativa studier från databaserna Web of Science, PubMed och CINAHL. 13 artiklar skrivna på engelska utgjorde resultatunderlaget. Resultat: Resulta...

  7. Immunogenic presentation of viral and bacterial antigens: iscom and OMV as a basis for new vaccines

    NARCIS (Netherlands)

    I.J.Th.M. Claassen (Ivo)

    1998-01-01

    textabstractDuring life the body is challenged by a wide variety of infectious agents. To combat and constrain infections with these agents the immune system uses a complex network of defence mechanisms. One of these is the ability to respond in a specific way (adaptive innnunity) to unique

  8. CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber

    Science.gov (United States)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.

    1993-01-01

    The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the

  9. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2009-04-01

    Full Text Available Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane-derived vesicles (OMV secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including beta-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP-mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

  10. Rotation of Vibrio fischeri Flagella Produces Outer Membrane Vesicles That Induce Host Development.

    Science.gov (United States)

    Aschtgen, Marie-Stephanie; Lynch, Jonathan B; Koch, Eric; Schwartzman, Julia; McFall-Ngai, Margaret; Ruby, Edward

    2016-08-15

    Using the squid-vibrio association, we aimed to characterize the mechanism through which Vibrio fischeri cells signal morphogenesis of the symbiotic light-emitting organ. The symbiont releases two cell envelope molecules, peptidoglycan (PG) and lipopolysaccharide (LPS) that, within 12 h of light organ colonization, act in synergy to trigger normal tissue development. Recent work has shown that outer membrane vesicles (OMVs) produced by V. fischeri are sufficient to induce PG-dependent morphogenesis; however, the mechanism(s) of OMV release by these bacteria has not been described. Like several genera of both beneficial and pathogenic bacteria, V. fischeri cells elaborate polar flagella that are enclosed by an extension of the outer membrane, whose function remains unclear. Here, we present evidence that along with the well-recognized phenomenon of blebbing from the cell's surface, rotation of this sheathed flagellum also results in the release of OMVs. In addition, we demonstrate that most of the development-inducing LPS is associated with these OMVs and that the presence of the outer membrane protein OmpU but not the LPS O antigen on these OMVs is important in triggering normal host development. These results also present insights into a possible new mechanism of LPS release by pathogens with sheathed flagella. Determining the function(s) of sheathed flagella in bacteria has been challenging, because no known mutation results only in the loss of this outer membrane-derived casing. Nevertheless, the presence of a sheathed flagellum in such host-associated genera as Vibrio, Helicobacter, and Brucella has led to several proposed functions, including physical protection of the flagella and masking of their immunogenic flagellins. Using the squid-vibrio light organ symbiosis, we demonstrate another role, that of V. fischeri cells require rotating flagella to induce apoptotic cell death within surface epithelium, which is a normal step in the organ's development

  11. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Soni Priya Valeru

    2014-01-01

    Full Text Available Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA and outer membrane vesicles (OMVs in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

  12. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These

  13. Vaccinations

    Science.gov (United States)

    ... disease — reinforcing the importance of vaccines in your pet's preventive health care program. Are there risks? Any treatment carries some risk, but these risks should be weighed against the benefits of protecting your pet from potentially fatal diseases. ...

  14. Analysis of bacteria-derived outer membrane vesicles using tunable resistive pulse sensing

    Science.gov (United States)

    Bogomolny, Evgeny; Hong, Jiwon; Blenkiron, Cherie; Simonov, Denis; Dauros, Priscila; Swift, Simon; Phillips, Anthony; Willmott, Geoff R.

    2015-03-01

    Accurate characterization of submicron particles within biological fluids presents a major challenge for a wide range of biomedical research. Detection, characterization and classification are difficult due to the presence of particles and debris ranging from single molecules up to particles slightly smaller than cells. Especial interest arises from extracellular vesicles (EVs) which are known to play a pivotal role in cell-signaling in multicellular organisms. Tunable resistive pulse sensing (TRPS) is increasingly proving to be a useful tool for high throughput particle-by-particle analysis of EVs and other submicron particles. This study examines the capability of TRPS for characterization of EVs derived from bacteria, also called outer membrane vesicles (OMVs). Measurement of a size distribution (124 +/- 3 nm modal diameter) and concentration (lower bound 7.4 x 109 mL-1) are demonstrated using OMVs derived from uropathogenic Escherichia coli. Important aspects of measurement are discussed, including sample preparation and size selection. Application of TRPS to study EVs could assist the development of these particles in clinical diagnostics and therapeutics.

  15. Gram-negative and Gram-positive bacterial extracellular vesicles.

    Science.gov (United States)

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lee, Jaewook; Kim, Si-Hyun; Choi, Dong-Sic; Lee, Jong Seok; Kim, Dae-Kyum; Go, Gyeongyun; Park, Seon-Min; Kim, Si Hyun; Shin, Jeong Hwan; Chang, Chulhun L; Gho, Yong Song

    2015-10-01

    The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC-MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 (http://proteomecentral.proteomexchange.org/dataset/PXD001160). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.

    Science.gov (United States)

    Deatherage, Brooke L; Cookson, Brad T

    2012-06-01

    Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.

  18. Controlling of CSFV in European wild boar using oral vaccination: a review

    Directory of Open Access Journals (Sweden)

    Sophie eRossi

    2015-10-01

    Full Text Available Classical swine fever (CSF is among the most detrimental diseases for the swine industry worldwide. Infected wild boar populations can play a crucial role in CSF epidemiology and controlling wild reservoirs is of utmost importance for preventing domestic outbreaks. Oral mass vaccination (OMV has been implemented to control CSF in wild boars and limit the spill over to domestic pigs. This retrospective overview of vaccination experiences illustrates the potential for that option. The C-strain live vaccine was confirmed to be highly efficacious and palatable baits were developed for oral delivery in free ranging wild boars. The first field trials were performed in Germany in the 1990’s and allowed deploying oral baits at a large scale. The delivery process was further improved during the 2000’s among different European countries. Optimal deployment has to be early regarding disease emergence and correctly designed regarding the landscape structure and the natural food sources that can compete with oral baits. OMV deployment is also highly dependent on a local veterinary support working closely with hunters, wildlife and forestry agencies. Vaccination has been the most efficient strategy for CSF control in free ranging wild boar when vaccination is wide spread and lasting for a sufficient period of time. Alternative disease control strategies such as intensified hunting or creating physical boundaries such as fences have been, in contrast, seldom satisfactory and reliable. However, monitoring outbreaks has been challenging during and after vaccination deployment since OMV results in a low probability to detect virus-positive animals and the live-vaccine currently available does not allow serological differentiation of infected from vaccinated animals. The development of a new marker vaccine and companion test is thus a promising option for better monitoring outbreaks during OMV deployment as well as help to better determine when to stop

  19. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    Science.gov (United States)

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  20. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  1. Cellular phenotype and extracellular vesicles: basic and clinical considerations.

    Science.gov (United States)

    Quesenberry, Peter J; Goldberg, Laura R; Aliotta, Jason M; Dooner, Mark S; Pereira, Mandy G; Wen, Sicheng; Camussi, Giovanni

    2014-07-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.

  2. Synaptic Vesicle Endocytosis

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  3. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  4. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  5. How pure are your vesicles?

    Science.gov (United States)

    Webber, Jason; Clayton, Aled

    2013-01-01

    We propose a straightforward method to estimate the purity of vesicle preparations by comparing the ratio of nano-vesicle counts to protein concentration, using tools such as the increasingly available NanoSight platform and a colorimetric protein assay such as the BCA-assay. Such an approach is simple enough to apply to every vesicle preparation within a given laboratory, assisting researchers as a routine quality control step. Also, the approach may aid in comparing/standardising vesicle purity across diverse studies, and may be of particular importance in evaluating vesicular biomarkers. We herein propose some criteria to aid in the definition of pure vesicles. PMID:24009896

  6. Immune responses to a recombinant, four-component, meningococcal serogroup B vaccine (4CMenB) in adolescents: a phase III, randomized, multicentre, lot-to-lot consistency study.

    Science.gov (United States)

    Perrett, Kirsten P; McVernon, Jodie; Richmond, Peter C; Marshall, Helen; Nissen, Michael; August, Allison; Percell, Sandra; Toneatto, Daniela; Nolan, Terry

    2015-09-22

    For decades, a broadly effective vaccine against serogroup B Neisseria meningitidis (MenB) has remained elusive. Recently, a four-component recombinant vaccine (4CMenB) has been developed and is now approved in Europe, Canada, Australia and some Latin American countries. This phase III, randomized study evaluated the lot consistency, early immune responses and the safety profile of 4CMenB in 11 to 17-year-old adolescents in Australia and Canada (NCT01423084). In total, 344 adolescents received two doses of one of 2 lots of 4CMenB, 1-month apart. Immunogenicity was assessed before, 2-weeks and 1-month following the second vaccination. Serum bactericidal activity using human complement (hSBA) was measured against three reference strains 44/76-SL, 5/99 and NZ98/254, selected to express one of the vaccine antigens; Neisseria adhesin A (NadA), factor H binding protein (fHbp) and porin A (PorA) containing outer membrane vesicle (OMV), respectively. Responses to the Neisseria heparin binding antigen (NHBA) were assessed with enzyme linked immunosorbent assay (ELISA). Local and systemic reactions were recorded for 7 days following each vaccination; unsolicited adverse events were monitored throughout the study. Immunological equivalence of the two lots of 4CMenB was established at 1-month. At baseline, ≤7% of participants had hSBA titers ≥5 to all three reference strains. Two weeks following the second dose of 4CMenB, all participants had hSBA titers ≥5 against fHbp and NadA compared with 84-96% against the PorA reference strains. At 1-month, corresponding proportions were 99%, 100% and 70-79%, respectively. Both lots were generally well tolerated and had similar adverse event profiles. Two doses of 4CMenB had an acceptable safety profile and induced a robust immune response in adolescents. Peak antibody responses were observed at 14 days following vaccination. While a substantial non-uniform antigen-dependent early decline in antibody titers was seen thereafter, a

  7. The toolbox of vesicle sidedness determination

    NARCIS (Netherlands)

    Meszaros, Peter; Hoekstra, Dick; Kok, Jan Willem

    2012-01-01

    Vesicles prepared from cellular plasma membranes are widely used in science for different purposes. The outer membrane leaflet differs from the inner membrane leaflet of the vesicle, and during vesicle preparation procedures two types of vesicles will be generated: right-side-out vesicles, of which

  8. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta.

    Science.gov (United States)

    Tzelos, Thomas; Matthews, Jacqueline B; Buck, Amy H; Simbari, Fabio; Frew, David; Inglis, Neil F; McLean, Kevin; Nisbet, Alasdair J; Whitelaw, C Bruce A; Knox, David P; McNeilly, Tom N

    2016-05-15

    Teladorsagia circumcincta is a major cause of ovine parasitic gastroenteritis in temperate climatic regions. The development of high levels of anthelmintic resistance in this nematode species challenges its future control. Recent research indicates that many parasite species release extracellular vesicles into their environment, many of which have been classified as endocytic in origin, termed exosomes. These vesicles are considered to play important roles in the intercellular communication between parasites and their hosts, and thus represent potentially useful targets for novel control strategies. Here, we demonstrate that exosome-like extracellular vesicles can be isolated from excretory-secretory (ES) products released by T. circumcincta fourth stage larvae (Tci-L4ES). Furthermore, we perform a comparative proteomic analysis of vesicle-enriched and vesicle-free Tci-L4ES. Approximately 73% of the proteins identified in the vesicle-enriched fraction were unique to this fraction, whilst the remaining 27% were present in both vesicle-enriched and vesicle-free fraction. These unique proteins included structural proteins, nuclear proteins, metabolic proteins, proteolytic enzymes and activation-associated secreted proteins. Finally, we demonstrate that molecules present within the vesicles-enriched material are targets of the IgA and IgG response in T. circumcincta infected sheep, and could potentially represent useful targets for future vaccine intervention studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Vesicles and vesicle gels - structure and dynamics of formation

    CERN Document Server

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and ...

  10. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Carina Shianya Alvarez

    2016-12-01

    Full Text Available The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrier integrity by reducing gut permeability and reinforcing tight junctions. Probiotic Escherichia coli Nissle 1917 (EcN is a good colonizer of the human gut with proven therapeutic efficacy in the remission of ulcerative colitis in humans. EcN positively modulates the intestinal epithelial barrier through upregulation and redistribution of the tight junction proteins ZO-1, ZO-2 and claudin-14. Upregulation of claudin-14 has been attributed to the secreted protein TcpC. Whether regulation of ZO-1 and ZO-2 is mediated by EcN secreted factors remains unknown. The aim of this study was to explore whether outer membrane vesicles (OMVs released by EcN strengthen the epithelial barrier. This study includes other E. coli strains of human intestinal origin that contain the tcpC gene, such as ECOR63. Cell-free supernatants collected from the wild-type strains and from the derived tcpC mutants were fractionated into isolated OMVs and soluble secreted factors. The impact of these extracellular fractions on the epithelial barrier was evaluated by measuring transepithelial resistance and expression of several tight junction proteins in T84 and Caco-2 polarized monolayers. Our results show that the strengthening activity of EcN and ECOR63 does not exclusively depend on TcpC. Both OMVs and soluble factors secreted by these strains promote upregulation of ZO-1 and claudin-14, and down-regulation of claudin-2. The OMVs-mediated effects are TcpC-independent. Soluble secreted TcpC contributes to the upregulation of ZO-1 and claudin-14, but this protein has no effect on the

  11. Preeclampsia and Extracellular Vesicles.

    Science.gov (United States)

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers.

  12. HPV vaccine

    Science.gov (United States)

    Vaccine - HPV; Immunization - HPV; Gardasil; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; Abnormal ...

  13. Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles

    Science.gov (United States)

    Solé, Magali; Scheibner, Felix; Hoffmeister, Anne-Katrin; Hartmann, Nadine; Hause, Gerd; Rother, Annekatrin; Jordan, Michael; Lautier, Martine; Arlat, Matthieu

    2015-01-01

    substrates are being studied in several plant-pathogenic bacteria, including Xanthomonas campestris pv. vesicatoria, which causes bacterial spot disease in tomato and pepper. Here, we show that the T2S system from X. campestris pv. vesicatoria secretes virulence-associated xylanases, a predicted protease, and a lipase. Secretion assays with the related pathogen X. campestris pv. campestris revealed important differences in the T2S substrate specificities of the two pathogens. Furthermore, electron microscopy showed that T2S substrates from X. campestris pv. vesicatoria are targeted to outer membrane vesicles (OMVs). Our results, therefore, suggest that OMVs provide an alternative transport route for type II secreted extracellular enzymes. PMID:26124239

  14. Extracellular Vesicles in Cardiovascular Theranostics

    OpenAIRE

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro,Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells pla...

  15. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  16. RNA in extracellular vesicles.

    Science.gov (United States)

    Kim, Kyoung Mi; Abdelmohsen, Kotb; Mustapic, Maja; Kapogiannis, Dimitrios; Gorospe, Myriam

    2017-07-01

    Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  17. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  18. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  19. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. Cystadenoma of the seminal vesicle

    Directory of Open Access Journals (Sweden)

    Gil Antônio O.

    2003-01-01

    Full Text Available Primary tumors of the seminal vesicle are extremely rare. Among them, there is a spectrum of tumors derived from both epithelium and stroma and so classified as epithelial-stromal tumors. Herein, we report a case of a cystadenoma in a 49-year-old asymptomatic man, detected in a routine ultrasonography for liver disease follow-up. The digital rectal examination detected a large mass anterior to rectum and posterior to bladder. Computed tomography scan and magnetic resonance imaging showed a normal prostate and a 9.0 cm cystic tumor, replacing the left seminal vesicle. The gross appearance and microscopic aspect was compatible with cystadenoma of seminal vesicle. Patient's postoperative recovery was uneventful. He is currently alive, 3 years after the diagnosis, with no signs of recurrence.

  1. When to biopsy seminal vesicles.

    Science.gov (United States)

    Panach-Navarrete, J; García-Morata, F; Hernández-Medina, J A; Martínez-Jabaloyas, J M

    2015-05-01

    The involvement of seminal vesicles in prostate cancer can affect the prognosis and determine the treatment. The objective of this study was to determine whether we could predict its infiltration at the time of the prostate biopsy to know when to indicate the biopsy of the seminal vesicles. observational retrospective study of 466 patients who underwent seminal vesicle biopsy. The indication for this biopsy was a prostate-specific antigen (PSA) level greater than 10 ng/ml or an asymmetric or obliterated prostatoseminal angle. The following variables were included in the analysis: PSA level, PSA density, prostate volume, number of cores biopsied, suspicious rectal examination, and preservation of the prostatoseminal angle, studying its relationship with the involvement of the seminal vesicles. Forty-one patients (8.8%) had infiltrated seminal vesicles and 425 (91.2%) had no involvement. In the univariate analysis, the cases with infiltration had a higher mean PSA level (P 19.60 ng/dL (P < .01) and 2.95 times higher if there is a suspicious rectal examination (P = .014). Furthermore, this probability increases by 1.04 times for each unit of prostate volume lower (P < .01). The ROC curves showed maximum sensitivity and specificity at 19.6 ng/mL for PSA and 0.39 for PSA density. In this series, greater involvement of seminal vesicles was associated with a PSA level ≥20 ng/ml, a suspicious rectal examination and a lack of prostatoseminal angle preservation. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. SMALL VESICLES, BIG VEHICLES: EXOSOMES.

    Directory of Open Access Journals (Sweden)

    Saiz-Lopez P

    2016-09-01

    Full Text Available Exosomes are small membranous vesicles released by different cell types. Since their discovery, they have evolved from being considered simple vehicles for the liberation of cellular wastes, to become one of the most promising fields in the area of biomedical research, and more specifically in oncology, since the different malignant tumors release exosomes to all biological fluids, being involved in various functions of the neoplastic process. At present, it is possible to study these vesicles by minimally invasive techniques in patients, which approach us to obtain a more detailed diagnosis and prognosis, as well as to the discovery of new antitumoral therapies

  3. Potential Roles of Fungal Extracellular Vesicles during Infection

    Science.gov (United States)

    Joffe, Luna S.; Nimrichter, Leonardo

    2016-01-01

    ABSTRACT Extracellular vesicles (EVs) are produced by virtually all cell types. Within the past few years, work in this field has revealed more information about fungal EVs. Fungal EVs have been shown to carry proteins, lipids, pigments, polysaccharides, and RNA; these components are known virulence factors, a fact which supports the hypothesis that fungal EVs concentrate pathogenic determinants. Additionally, recent studies have demonstrated that fungal EVs stimulate the host immune system. In this review, putative roles of fungal EVs are discussed, including their potential as vaccination tools and their possible contribution to pathogenesis in invasive fungal diseases. PMID:27390779

  4. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature of v...

  5. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance

    Science.gov (United States)

    Hsu, Alan Yi-Hui; Wu, Shang-Rung; Tsai, Jih-Jin; Chen, Po-Lin; Chen, Ya-Ping; Chen, Tsai-Yun; Lo, Yu-Chih; Ho, Tzu-Chuan; Lee, Meed; Chen, Min-Ting; Chiu, Yen-Chi; Perng, Guey Chuen

    2015-01-01

    The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a “sunny-side up egg” appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development. PMID:26657027

  6. The study of H. pylori putative candidate factors for single- and multi-component vaccine development.

    Science.gov (United States)

    Mirzaei, Nasrin; Poursina, Farkhondeh; Moghim, Sharareh; Rashidi, Niloufar; Ghasemian Safaei, Hajieh

    2017-09-01

    Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.

  7. Ca2+ Dependence of Synaptic Vesicle Endocytosis.

    Science.gov (United States)

    Leitz, Jeremy; Kavalali, Ege T

    2016-10-01

    Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.

  8. Extracellular vesicles in physiological and pathological conditions

    NARCIS (Netherlands)

    Yuana, Yuana; Sturk, Auguste; Nieuwland, Rienk

    2013-01-01

    Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation.

  9. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  10. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles.

    Science.gov (United States)

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-08-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Kaeser, Pascal S; Regehr, Wade G

    2017-04-01

    Each presynaptic bouton is densely packed with many vesicles, only a small fraction of which are available for immediate release. These vesicles constitute the readily releasable pool (RRP). The RRP size, and the probability of release of each vesicle within the RRP, together determine synaptic strength. Here, we discuss complications and recent advances in determining the size of the physiologically relevant RRP. We consider molecular mechanisms to generate and regulate the RRP, and discuss the relationship between vesicle docking and the RRP. We conclude that many RRP vesicles are docked, that some docked vesicles may not be part of the RRP, and that undocked vesicles can contribute to the RRP by rapid recruitment to unoccupied, molecularly activated ready-to-release sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Membrane Vesicles Released by a hypervesiculating Escherichia coli Nissle 1917 tolR Mutant Are Highly Heterogeneous and Show Reduced Capacity for Epithelial Cell Interaction and Entry.

    Directory of Open Access Journals (Sweden)

    Carla Pérez-Cruz

    Full Text Available Membrane vesicles (MVs produced by Gram-negative bacteria are being explored for novel clinical applications due to their ability to deliver active molecules to distant host cells, where they can exert immunomodulatory properties. MVs released by the probiotic Escherichia coli Nissle 1917 (EcN are good candidates for testing such applications. However, a drawback for such studies is the low level of MV isolation from in vitro culture supernatants, which may be overcome by the use of mutants in cell envelope proteins that yield a hypervesiculation phenotype. Here, we confirm that a tolR mutation in EcN increases MV production, as determined by protein, LPS and fluorescent lipid measurements. Transmission electron microscopy (TEM of negatively stained MVs did not reveal significant differences with wild type EcN MVs. Conversely, TEM observation after high-pressure freezing followed by freeze substitution of bacterial samples, together with cryo-TEM observation of plunge-frozen hydrated isolated MVs showed considerable structural heterogeneity in the EcN tolR samples. In addition to common one-bilayer vesicles (OMVs and the recently described double-bilayer vesicles (O-IMVs, other types of MVs were observed. Time-course experiments of MV uptake in Caco-2 cells using rhodamine- and DiO-labelled MVs evidenced that EcN tolR MVs displayed reduced internalization levels compared to the wild-type MVs. The low number of intracellular MVs was due to a lower cell binding capacity of the tolR-derived MVs, rather than a different entry pathway or mechanism. These findings indicate that heterogeneity of MVs from tolR mutants may have a major impact on vesicle functionality, and point to the need for conducting a detailed structural analysis when MVs from hypervesiculating mutants are to be used for biotechnological applications.

  13. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  14. Dynamics of endocytic vesicle creation.

    Science.gov (United States)

    Perrais, David; Merrifield, Christien J

    2005-11-01

    Clathrin-mediated endocytosis is the main path for receptor internalization in metazoans and is essential for controlling cell integrity and signaling. It is driven by a large array of protein and lipid interactions that have been deciphered mainly by biochemical and genetic means. To place these interactions into context, and ultimately build a fully operative model of endocytosis at the molecular level, it is necessary to know the kinetic details of the role of each protein in this process. In this review, we describe the recent efforts made, by using live cell imaging, to define clear steps in the formation of endocytic vesicles and to observe the recruitment of key proteins during membrane invagination, the scission of a newly formed vesicle, and its movement away from the plasma membrane.

  15. Extracellular vesicles and blood diseases.

    Science.gov (United States)

    Nomura, Shosaku

    2017-04-01

    Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.

  16. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  17. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  18. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  19. Vaccine hesitancy

    Science.gov (United States)

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  20. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles

    NARCIS (Netherlands)

    Farsi, Z.; Preobraschenski, J.; Bogaart, G. van den; Riedel, D.; Jahn, R.; Woehler, A.

    2016-01-01

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided

  1. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  2. Exosomes: secreted vesicles and intercellular communications

    OpenAIRE

    Théry, Clotilde

    2011-01-01

    Exosomes are small membrane vesicles of endocytic origin secreted by most cell types, and are thought to play important roles in intercellular communications. Although exosomes were originally described in 1983, interest in these vesicles has really increased dramatically in the last 3 years, after the finding that they contain mRNA and microRNA. This discovery sparked renewed interest for the general field of membrane vesicles involved in intercellular communications, and research on these s...

  3. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  4. Reversibly formed bilayer vesicles: Energetics and polydispersity

    DEFF Research Database (Denmark)

    Bergstöm, M.

    1997-01-01

    orders of magnitude larger than where the local free energy minima of the equilibrium vesicle actually occur. Moreover, according to our analysis, the relative width of a vesicle size distribution, sigma(R)/R-max, is generally at full equilibrium equal to 0.283, independently of the energetic vesicle....... and a statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work...

  5. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-02-19

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  6. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  7. Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles.

    Science.gov (United States)

    Wurpel, Daniël J; Moriel, Danilo G; Totsika, Makrina; Easton, Donna M; Schembri, Mark A

    2015-02-06

    Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome. In this study a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles was used to define the outer membrane proteome of a large uropathogenic E. coli (UPEC) collection. Our results provide an inventory of proteins expressed on the surface of UPEC, and provide a framework for understanding the composition of the UPEC OM proteome. The method enables the rapid characterisation of the E. coli surface proteome and could easily be applied to the large-scale outer membrane protein profiling of other Gram-negative bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [Travelers' vaccines].

    Science.gov (United States)

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  9. Extracellular Vesicles in Cardiovascular Theranostics.

    Science.gov (United States)

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.

  10. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  11. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  12. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  13. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  14. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Urinary extracellular vesicles: biomarkers and beyond

    NARCIS (Netherlands)

    M. Salih (Mahdi)

    2017-01-01

    markdownabstractExtracellular vesicles have been isolated in various body fluids including urine. The cargo of urinary extracellular vesicles (uEVs) is composed of proteins and nucleic acids reflecting the physiological and possibly the pathophysiological state of cells lining the nephron. Because

  16. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    Science.gov (United States)

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  18. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    Science.gov (United States)

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case.

  20. Pushing synaptic vesicles over the RIM.

    Science.gov (United States)

    Kaeser, Pascal S

    2011-05-01

    In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.

  1. Apoptotic Bodies: Selective Detection in Extracellular Vesicles.

    Science.gov (United States)

    Hauser, Paul; Wang, Sha; Didenko, Vladimir V

    2017-01-01

    Normal and dying cells release various types of membrane-bound vesicles including microvesicles, exosomes, and apoptotic bodies. These vesicles play important roles in intercellular communication and signal transduction. However, their diverse forms and subtypes fluctuate in size and other properties. In result current purification approaches do not fully discriminate between different categories of extracellular vesicles. Here, we present a fluorescence technique that specifically identifies apoptotic bodies in preparations of microvesicles, exosomes, and other extracellular vesicles.The approach exclusively labels the vesicles that contain DNA with 5'PO 4 blunt-ended DNA breaks, such as those produced by the apoptotic CAD nuclease during apoptotic DNA degradation. The technique can be useful in studies of apoptosis involving microvesicles and exosomes.

  2. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes

    National Research Council Canada - National Science Library

    M A Zoccoli; G E Lienhard

    1977-01-01

    .... Based on comparisons between erythrocytes and vesicles with regard to specificity, temparture dependence, and effects of inhibitors, we conclude that sorbose uptake into the vesicles occurs by way...

  3. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    Science.gov (United States)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field. PMID:23271954

  4. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation.

    Directory of Open Access Journals (Sweden)

    Hina Kalra

    Full Text Available Extracellular vesicles (EVs are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.

  5. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  6. Structure of Amphiphilic Terpolymer Raspberry Vesicles

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2017-07-01

    Full Text Available Terpolymer raspberry vesicles contain domains of different chemical affinities. They are potential candidates as multi-compartment cargo carriers. Their efficacy depends on their stability and load capacity. Using a model star terpolymer system in an aqueous solution, a dissipative particle dynamic (DPD simulation is employed to investigate how equilibrium aggregate structures are affected by polymer concentration and pairwise interaction energy in a solution. It is shown that a critical mass of polymer is necessary for vesicle formation. The free energy of the equilibrium aggregates are calculated and the results show that the transition from micelles to vesicles is governed by the interactions between the longest solvophobic block and the solvent. In addition, the ability of vesicles to encapsulate solvent is assessed. It is found that reducing the interaction energy favours solvent encapsulation, although solvent molecules can permeate through the vesicle’s shell when repulsive interactions among monomers are low. Thus, one can optimize the loading capacity and the release rate of the vesicles by turning pairwise interaction energies of the polymer and the solvent. The ability to predict and control these aspects of the vesicles is an essential step towards designing vesicles for specific purposes.

  7. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  8. Polio Vaccine

    Science.gov (United States)

    ... doctorMost kids have no problems with the polio vaccine. However, call your doctor if your child has any reaction after getting the vaccine. Call ... Tell the doctor when (day and time) your child received the vaccine. You also should file a Vaccine Adverse Event ...

  9. Classification, Functions, and Clinical Relevance of Extracellular Vesicles

    NARCIS (Netherlands)

    van der Pol, Edwin; Böing, Anita N.; Harrison, Paul; Sturk, Augueste; Nieuwland, Rienk

    2012-01-01

    Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the

  10. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer

    OpenAIRE

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz

    2016-01-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data in...

  11. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  12. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  13. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  14. Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling

    OpenAIRE

    Harris, Todd W.; Hartwieg, Erika; Horvitz, H. Robert; Jorgensen, Erik M.

    2000-01-01

    Synaptojanin is a polyphosphoinositide phosphatase that is found at synapses and binds to proteins implicated in endocytosis. For these reasons, it has been proposed that synaptojanin is involved in the recycling of synaptic vesicles. Here, we demonstrate that the unc-26 gene encodes the Caenorhabditis elegans ortholog of synaptojanin. unc-26 mutants exhibit defects in vesicle trafficking in several tissues, but most defects are found at synaptic termini. Specifically, we observed defects in ...

  15. Concentration-Independent Spontaneously Forming Biomimetric Vesicles

    Science.gov (United States)

    Nieh, M.-P.; Harroun, T. A.; Raghunathan, V. A.; Glinka, C. J.; Katsaras, J.

    2003-10-01

    In this Letter we present small-angle neutron scattering data from a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC-DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+), leads to the spontaneous formation of energetically stabilized monodisperse unilamellar vesicles whose radii are concentration independent and in contrast with previous experimental observations.

  16. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry

    OpenAIRE

    Aizea Morales-Kastresana; Bill Telford; Musich, Thomas A.; Katherine McKinnon; Cassandra Clayborne; Zach Braig; Ari Rosner; Thorsten Demberg; Watson, Dionysios C.; Karpova, Tatiana S.; Freeman, Gordon J.; DeKruyff, Rosemarie H.; Pavlakis, George N.; Masaki Terabe; Marjorie Robert-Guroff

    2017-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles, are 30?800?nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be brig...

  17. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  18. Elastic energy of polyhedral bilayer vesicles.

    Science.gov (United States)

    Haselwandter, Christoph A; Phillips, Rob

    2011-06-01

    In recent experiments [M. Dubois, B. Demé, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. Désert, E. Perez, and T. Zemb, Nature (London) 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. USA 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron.

  19. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  20. Extracellular Vesicles in Metabolic Syndrome.

    Science.gov (United States)

    Martínez, M Carmen; Andriantsitohaina, Ramaroson

    2017-05-12

    Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches. © 2017 American Heart Association, Inc.

  1. A two phase field model for tracking vesicle-vesicle adhesion.

    Science.gov (United States)

    Gu, Rui; Wang, Xiaoqiang; Gunzburger, Max

    2016-11-01

    A multi-phase-field model for simulating the adhesion between two vesicles is constructed. Two phase field functions are introduced to simulate each of the two vesicles. An energy model is defined which accounts for the elastic bending energy of each vesicle and the contact potential energy between the two vesicles; the vesicle volume and surface area constraints are imposed using a penalty method. Numerical results are provided to verify the efficacy of our model and to provide visual illustrations of the different types of contact. The method can be adjusted to solve endocytosis problems by modifying the bending rigidity coefficients of the two elastic bending energies. The method can also be extended to simulate multi-cell adhesions, one example of which is erythrocyte rouleaux. A comparison with laboratory observations demonstrates the effectiveness of the multi-phase field approach.

  2. Insights into the self-reproduction of oleate vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P [' Enrico Fermi' Centre, Compendio Viminale, 00184 Rome (Italy); Wehrli, E [Electron Microscopy Centre (EMEZ), Applied Physics Institute, ETH Hoenggerberg, 8093 Zurich (Switzerland); Luisi, P L [Biology Department, University of RomaTre, Viale Marconi 446, 00146 Rome (Italy)

    2006-08-23

    In view of the importance of vesicles as models for early cells, several groups have started work looking for conditions under which vesicles can undergo growth and division. Evidence for growth and division has been obtained with the help of ferritin-labelled vesicles; furthermore, it has been shown that in such processes the vesicle size distribution is largely conserved. In both cases, the data suggest that the process under study is mainly characterized by vesicle growth and eventually division into daughter vesicles. However, direct evidence for vesicle division has not been obtained. In this paper, mostly based on freeze-fracture electron microscopy, we describe conditions under which for the first time division intermediates can be trapped in the form of twin vesicles. This finding, together with supporting dynamic light scattering and fluorescence investigations, permits us to establish some additional points in the mechanism of vesicle self-reproduction.

  3. Vaccine Finder

    Science.gov (United States)

    ... list . Showing availability for 25,354 locations. Influenza Vaccine Recommended for everyone greater than or equal to ... which one may be right for you! Flu Vaccines Protects again influenza, commonly called flu, a respiratory ...

  4. Vaccine Safety

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Vaccine Safety Note: Javascript is disabled or is not ... CDC.gov . Recommend on Facebook Tweet Share Compartir Vaccine Adverse Events Reporting System (VAERS) New website and ...

  5. Rotavirus Vaccine

    Science.gov (United States)

    ... are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common and serious health ... to 60 died. Since the introduction of the rotavirus vaccine, hospitalizations and emergency visits for rotavirus have dropped ...

  6. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes.

    Science.gov (United States)

    Lee, Jung Hwa; Choi, Chi-Won; Lee, Taewon; Kim, Seung Il; Lee, Je-Chul; Shin, Ji-Hyun

    2013-01-01

    Gram-negative bacteria produce extracellular outer membrane vesicles (OMVs) that interact with host cells. Unlike Gram-negative bacteria, less is known about the production and role of extracellular membrane vesicles (MVs) in Gram-positive bacteria. The food-borne pathogen Listeria monocytogenes can survive under extreme environmental and energy stress conditions and the transcription factor σ(B) is involved in this survival ability. Here, we first determined the production of MVs from L. monocytogenes and evaluated whether general stress transcription factor σ(B) affected production of MVs in L. monocytogenes. L. monocytogenes secreted MVs during in vitro broth culture. The wild-type strain actively produced MVs approximately nine times more and also produced more intact shapes of MVs than those of the isogenic ΔsigB mutant. A proteomic analysis showed that 130 and 89 MV proteins were identified in the wild-type and ΔsigB mutant strains, respectively. Wild-type strain-derived MVs contained proteins regulated by σ(B) such as transporters (OpuCA and OpuCC), stress response (Kat), metabolism (LacD), translation (InfC), and cell division protein (FtsZ). Gene Ontology (GO) enrichment analysis showed that wild-type-derived MV proteins corresponded to several GO terms, including response to stress (heat, acid, and bile resistance) and extracellular polysaccharide biosynthetic process, but not the ΔsigB mutant. Internalin B (InlB) was almost three times more contained in MVs derived from the wild-type strain than in MVs derived from the ΔsigB mutant. Taken together, these results suggest that σ(B) plays a pivotal role in the production of MVs and protein profiles contained in MVs. L. monocytogenes MVs may contribute to host infection and survival ability under various stressful conditions.

  7. Mechanics of post-fusion exocytotic vesicle.

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-05-23

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  8. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  9. Mechanics of post-fusion exocytotic vesicle

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-06-01

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  10. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  11. Functionally polymerized surfactant vesicles: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Kippenberger, D.J.; Klahn, P.L.; Prieto, N.E.; Fendler, J.H.

    1982-01-27

    Bis(2-(10-undecenoyloxycarbony bromide, bis(2-(10-undecenoyloxycarbony (2-hydroxyethyl)methylammonium bromide, bis(2-(10-undecenoyloxycarbony acid, bis(2-(10-undecenoyloxycarbony allylbis(2-dodecanoyloxycarbon bromide, and dimethyl-n-hexadecyl (10-(p-vin decyl)ammonium bromide have been synthesized. The predominantly single compartment bilayer vesicles formed from these surfactants could be polymerized either by exposure to ultraviolet irradiation or by the use of azoisobutyronitrile as an initiator. The presence of vesicles (unpolymerized and polymeric) has been demonstrated by electron micrography, H/sup 1/ NMR, gel filtration, phase transition, turbidity changes, substrate entrapment, and permeability. Polymerized vesicles are considerably more stable and less permeable and have reduced rates of turbidity changes compared to their unpolymerized counterparts. 19 references.

  12. Directed vesicle transport by diffusio-osmosis

    Science.gov (United States)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  13. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  14. Electrohydrodynamics of a compound vesicle under an AC electric field.

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M

    2017-07-12

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius [Formula: see text], is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  15. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  16. Contraceptive Vaccines

    Directory of Open Access Journals (Sweden)

    M.V. Supotnitsky

    2014-02-01

    Full Text Available Researches to develop vaccines with contraceptive effect are being carried out since the 1920s. Since 1972, the contraceptive vaccines are one of the priority programs of the World Health Organization (WHO Special Programme of Research, Development and Research Training in Human Reproduction. Rockefeller Foundation participates in implementing the program. Openly declared objective of creating such vaccines — the regulation of the population in the Third World countries. There are currently three main directions of contraceptive vaccine design: 1 vaccines targeted at blocking the production of gametes; 2 impairing their function; 3 violating the fertilization process. Contraceptive vaccines for more than 10 years are widely used to reduce fertility and castration of wild and domestic animals. In the commercial realization there are veterinary vaccines Equity®, Improvac®, GonaCon®, Repro-BLOC (based on gonadotropin-releasing hormone; SpayVac™ and IVT-PZP® (based on zona pellucida antigens. Clinical studies have shown effective contraceptive action (in women of vaccines, in which human chorionic gonadotropin is used as an antigen. At the same time, there are found the side effects of such vaccines: for vaccines containing gonadotropin-releasing hormone and luteinizing hormone as antigenic components — castration, impotence; for vaccines containing follicle stimulating hormone — oligospermia; zona pellucida antigens — irreversible oophoritis. This paper discusses approaches to detection of sterilizing components in vaccines intended for mass prevention of infectious diseases, not reported by manufacturers, and the consequences of their use. Hidden use of contraceptive vaccines, which already took place, can be detected: 1 by the presence of antibodies to their antigenic components (in unvaccinated by contraceptive vaccines people such antibodies do not exist, except infertility cases; 2 by change in the hormonal levels of the

  17. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    Science.gov (United States)

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. FLU VACCINATION

    CERN Multimedia

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  19. Rotavirus vaccines.

    Science.gov (United States)

    Lynch, Maureen; Bresee, Joseph S.; Gentsch, Jon R.; Glass, Roger I.

    2000-10-01

    The past few years have seen important developments in understanding the epidemiological and virological characteristics of rotaviruses, and rapid progress has been made in rotavirus vaccine development, but further challenges remain before a vaccine is introduced into widespread use. The licensure of the first rotavirus vaccine, a tetravalent rhesus-based rotavirus vaccine, in the United States in 1998, marked a significant advance in preventing the morbidity associated with rotavirus diarrhea. The association between the tetravalent rhesus-based rotavirus vaccine and intussusception has created significant hurdles as well as new opportunities to study the pathogenesis of rotavirus and rotavirus vaccine infection. Several other rotavirus vaccine candidates are in late stages of development, and results from trials have been encouraging.

  20. The role of extracellular vesicles in malaria biology and pathogenesis.

    Science.gov (United States)

    Sampaio, Natalia Guimaraes; Cheng, Lesley; Eriksson, Emily M

    2017-06-09

    In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted.

  1. Adsorption of DOPC vesicles on hydrophobic substrates in the ...

    Indian Academy of Sciences (India)

    Administrator

    In the present study, the interaction between an intact DOPC vesicle and the hydropho- bic surface is mainly through van der Waals interac- tion. In presence of increasing concentrations of electrolytes, counter ions are present in the vicinity of the DOPC vesicle. As the vesicle approaches the solid substrate, the counter ions ...

  2. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  3. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    Directory of Open Access Journals (Sweden)

    David R Stevens

    2011-02-01

    Full Text Available The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP and a slowly releasable (SRP pool are followed by sustained release, due to maturation and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.

  4. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  5. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  6. Towards traceable size determination of extracellular vesicles

    NARCIS (Netherlands)

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. In this manuscript, the size distribution of an

  7. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  8. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  9. Characterization of Extracellular Vesicles using Raman Spectroscopy

    NARCIS (Netherlands)

    Lee, Wooje; Nanou, Afroditi; Terstappen, Leonardus Wendelinus Mathias Marie; Rho, Hoon Suk; le Gac, Severine; Offerhaus, Herman L.

    2017-01-01

    In this research, we aim to characterize extracellular vesicles(EVs) with Confocal Raman spectroscopy to reveal relevant spectral lines that signify differences between EVs derived from different cell lines. In the first stage we performed confocal Raman measurements on various EV samples. For these

  10. Vaccine allergies.

    Science.gov (United States)

    Chung, Eun Hee

    2014-01-01

    Currently, the increasing numbers of vaccine administrations are associated with increased reports of adverse vaccine reactions. Whilst the general adverse reactions including allergic reactions caused by the vaccine itself or the vaccine components, are rare, they can in some circumstances be serious and even fatal. In accordance with many IgE-mediated reactions and immediate-type allergic reactions, the primary allergens are proteins. The proteins most often implicated in vaccine allergies are egg and gelatin, with perhaps rare reactions to yeast or latex. Numerous studies have demonstrated that the injectable influenza vaccine can be safely administered, although with appropriate precautions, to patients with severe egg allergy, as the current influenza vaccines contain small trace amounts of egg protein. If an allergy is suspected, an accurate examination followed by algorithms is vital for correct diagnosis, treatment and decision regarding re-vaccination in patients with immediate-type reactions to vaccines. Facilities and health care professionals should be available to treat immediate hypersensitivity reactions (anaphylaxis) in all settings where vaccines are administered.

  11. FLU VACCINATION

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  12. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  13. Flu Vaccination

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  14. Flu Vaccination

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  15. Influenza Vaccine, Live Intranasal

    Science.gov (United States)

    ... influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT be ... What is live, attenuated influenza vaccine-LAIV (nasal spray)?A dose of flu vaccine is recommended every flu season. Children younger ...

  16. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  17. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis.

    Science.gov (United States)

    Erne, Petra M; van Bezouwen, Laura S; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Boekema, Egbert J; Feringa, Ben L

    2015-12-07

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based flexible bilayers. When a hyperosmotic gradient is applied to these vesicle-capped nanotubes, the closed system loses water and the more flexible vesicle bilayer is pulled inwards. This leads to inclusion of vesicles inside the nanotubes without affecting the tube structure, showing controlled reorganization of the self-assembled multicomponent system upon a simple osmotic stimulus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Coated vesicles as protein release mechanism in myeloma cells.

    Science.gov (United States)

    Trombetta, L D; Lazarus, S S

    An electron microscopic study was undertaken of the protein release mechanism within myeloma cells showing a very high degree of protein production. Smooth surfaced vesicles (50 millimicrons) were seen to originate from the outer margin of the perinuclear cistern. Similar vesicles were also associated with distended Golgi sacs. Possible function of these vesicles could not be determined. Coated vesicles (60 millimicrons) originated as evaginations from endoplasmic reticulum in the transitional region. They were present throughout the cytoplasm and were seen to fuse with the cell membrane discharging an electron dense material. These vesicles are, therefore, thought to transport protein from the rough endoplasmic reticulum and discharge it at the cell surface.

  19. Interaction of insulin with SDS/CTAB catanionic Vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Tah, Bidisha; Pal, Prabir; Talapatra, G.B., E-mail: spgbt@iacs.res.in

    2014-01-15

    In the present study, a novel method was used for entrapping the protein, insulin into the catanionic SDS/CTAB vesicle membrane. The anionic SDS and cationic CTAB formed catanionic vesicles at particular concentration (35:65 by volume). In this study, vesicle membrane can be considered as model membrane. The vesicle formation and entrapment efficiency depend on the pH of the aqueous solution. The insulin molecules have attached with the vesicular membrane at pH 7.0. However, at acidic pH, the vesicles were ruptured and the insulin did not entrap into the vesicle membrane, whereas at alkaline pH insulin became fibriller. The scanning electron microscope (SEM), Dynamic light scattering (DLS), and Zeta potential studies established the self-assembled structure formation of insulin and catanionic vesicles. To know the protein confirmations, Circular dichroism (CD) was also employed. The temperature dependent steady state and time resolved emission spectroscopy show that at room temperature (25 °C), apart from the 305 nm tyrosine fluorescence, a new emission peak at 450 nm was observed only in case of insulin-vesicle system, and was assigned as the tyrosine phosphorescence. This phosphorescence peak is the signature of the entrapment of insulin into the vesicle membrane. Highlights: • SDS-CTAB based catanionic vesicle has been fabricated. • Insulin has been successfully immobilized on these vesicles. • Immobilized insulin shows room temperature phosphorescence.

  20. Soft vesicles in the synthesis of hard materials.

    Science.gov (United States)

    Dong, Renhao; Liu, Weimin; Hao, Jingcheng

    2012-04-17

    Vesicles of surfactants in aqueous solution have received considerable attention because of their use as simple model systems for biological membranes and their applications in various fields including colloids, pharmaceuticals, and materials. Because of their architecture, vesicles could prove useful as "soft" templates for the synthesis of "hard materials". The vesicle phase, however, has been challenging and difficult to work with in the construction of hard materials. In the solution-phase synthesis of various inorganic or macromolecular materials, templating methods provide a powerful strategy to control the size, morphology, and composition of the resulting micro- and nanostructures. In comparison with hard templates, soft templates are generally constructed using amphiphilic molecules, especially surfactants and amphiphilic polymers. These types of compounds offer advantages including the wide variety of available templates, simple fabrication processes under mild conditions, and easy removal of the templates with less damage to the final structures. Researchers have used many ordered molecular aggregates such as vesicles, micelles, liquid crystals, emulsion droplets, and lipid nanotubes as templates or structure-directing agents to control the synthesis or assembly hard micro- and nanomaterials composed from inorganic compounds or polymers. In addition to their range of sizes and morphologies, vesicles present unique structures that can simultaneously supply different microenvironments for the growth and assembly of hard materials: the inner chamber of vesicles, the outer surface of the vesicles, and the space between bilayers. Two main approaches for applying vesicles in the field of hard materials have been explored: (i) in situ synthesis of micro- or nanomaterials within a specific microenvironment by vesicle templating and (ii) the assembly or incorporation of guest materials during the formation of vesicles. This Account provides an in-depth look at

  1. Signaling by Extracellular Vesicles Advances Cancer Hallmarks.

    Science.gov (United States)

    Kanada, Masamitsu; Bachmann, Michael H; Contag, Christopher H

    2016-02-01

    Mammalian cells secrete various extracellular vesicles (EVs; exosomes, microvesicles, and apoptotic bodies) that differ in biogenesis, composition, and function. Each vesicle type can originate from normal or cancerous cells, transfer molecular cargo to both neighboring and distant cells, and modulate cellular behaviors involved in eubiology and pathology, such as tumor development. Here, we review evidence for the role of EVs in the establishment and maintenance of cancer hallmarks, including sustaining proliferative signaling, evading growth suppression, resisting cell death, reprogramming energy metabolism, acquiring genomic instability, and remodeling the tumor microenvironment. We also discuss how EVs are implicated in the induction of angiogenesis, control of cellular invasion, initiation of premetastatic niches, maintenance of inflammation, and evasion of immune surveillance. The deeper understanding of the biology of EVs and their contribution to the development and progression of tumors is leading to new opportunities in the diagnosis and treatment of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Seminal vesicle cystadenoma: a rare clinical perspective.

    Science.gov (United States)

    Lorber, Gideon; Pizov, Galina; Gofrit, Ofer N; Pode, Dov

    2011-08-01

    A 52-yr-old man presented with severe obstructive urinary symptoms. Ten years earlier, a digital rectal examination disclosed a small mass above the prostate, and a computed tomography (CT) scan showed a 3.5-cm cystic tumor of the right seminal vesicle. He had been followed conservatively elsewhere. Reevaluation of the mass with a CT scan and magnetic resonance imaging showed that the mass had grown to a maximal diameter of 14 cm. A transabdominal needle biopsy revealed benign fibromuscular tissue. The tumor was then resected by an open transvesical approach. Pathology was consistent with a benign seminal vesicle cystadenoma. The natural history, pathology, and surgical approach are described. Copyright © 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  3. Docking of secretory vesicles is syntaxin dependent.

    Directory of Open Access Journals (Sweden)

    Heidi de Wit

    Full Text Available Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.

  4. Cancer Vaccines

    Science.gov (United States)

    ... foreign. Most preventive vaccines, including those aimed at cancer-causing viruses ( hepatitis B virus and human papillomavirus ), stimulate the ... 9 through 25 for the prevention of cervical cancer caused by HPV. Hepatitis B virus (HBV) vaccines. Chronic HBV infection can lead to ...

  5. BCG Vaccines.

    Science.gov (United States)

    Tran, Vanessa; Liu, Jun; Behr, Marcel A

    2014-02-01

    BCG is the collective name for a family of live attenuated strains of Mycobacterium bovis that are currently used as the only vaccine against tuberculosis (TB). There are two major reasons for studying the genome of these organisms: (i) Because they are attenuated, BCG vaccines provide a window into Mycobacterium tuberculosis virulence, and (ii) because they have provided protection in several clinical trials and case-control studies, BCG vaccines may shed light on properties required of a TB vaccine. Since the determination of the M. tuberculosis genome in 1998, the study of BCG vaccines has accelerated dramatically, offering data on the genomic differences between virulent M. tuberculosis, M. bovis, and the vaccine strains. While these findings have been rewarding for the study of virulence, there is unfortunately less accrued knowledge about protection. In this chapter, we review briefly the history of BCG vaccines and then touch upon studies over the past two decades that help explain how BCG underwent attenuation, concluding with some more speculative comments as to how these vaccines might offer protection against TB.

  6. Vitrification of Germinal Vesicle Stage Oocytes

    OpenAIRE

    ABE, Yasuyuki; AONO, Nobuya; Hara, Kenshiro; Matsumoto, Hiromichi; BAKHTIYARI, Mehrdad; Sasada, Hiroshi; Sato, Eimei

    2004-01-01

    In order to cryopreserve germinal vesicle (GV) stage oocytes, we first need to develop a novel container for keeping large quantities of GV oocytes, because of collecting them as cumulus oocytes complexes (COCs) that have bigger size and larger volume than oocytes themselves, and second modify a protocol for optimizing vitrification of them. In this mini-review, we describe our recent progress for attaining these objectives. When 65 bovine COCs having GV oocytes could be placed on a sheet of ...

  7. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    Science.gov (United States)

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (inflammation in immune cells. © 2017 American Heart Association, Inc.

  8. A readily retrievable pool of synaptic vesicles

    OpenAIRE

    Hua, Y; Sinha, R.; Thiel, C.; Schmidt, R.; Hueve, J.; Martens, H.; Hell, S.; Egner, A.; Klingauf, J.

    2011-01-01

    Abstract Although clathrin-mediated endocytosis (CME) is thought to be the predominant mechanism of synaptic vesicle (SV) recycling, it seems to be too slow for fast recycling. Therefore, it was suggested that a pre-sorted and pre-assembled pool of SV proteins on the presynaptic membrane might support a first wave of fast CME. In this study we monitored the temporal dynamics of such a 'readily retrievable pool' of SV proteins in rat hippocampal neurons using a novel probe. Applying...

  9. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  10. Combination vaccines

    Directory of Open Access Journals (Sweden)

    David AG Skibinski

    2011-01-01

    Full Text Available The combination of diphtheria, tetanus, and pertussis vaccines into a single product has been central to the protection of the pediatric population over the past 50 years. The addition of inactivated polio, Haemophilus influenzae, and hepatitis B vaccines into the combination has facilitated the introduction of these vaccines into recommended immunization schedules by reducing the number of injections required and has therefore increased immunization compliance. However, the development of these combinations encountered numerous challenges, including the reduced response to Haemophilus influenzae vaccine when given in combination; the need to consolidate the differences in the immunization schedule (hepatitis B; and the need to improve the safety profile of the diphtheria, tetanus, and pertussis combination. Here, we review these challenges and also discuss future prospects for combination vaccines.

  11. ATP: The crucial component of secretory vesicles.

    Science.gov (United States)

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  12. Detection of platelet vesicles by flow cytometry.

    Science.gov (United States)

    Nolan, John P; Jones, Jennifer C

    2017-05-01

    The composition and function of platelet-derived extracellular vesicles (EVs) in health and in disease are a major topic of investigation in biomedical research. However, efforts to delineate specific molecular repertoires and roles for different types of EVs in the circulation are limited not only by the lack of flow cytometers capable of analyzing submicron- and nano-materials across the full size spectrum of plasma EVs, but also by the lack of standardized methods and reference materials that would permit inter-laboratory reproducibility for these analyses. In this review, we summarize the flow cytometry of EVs, with a focus on platelet vesicles in plasma. In addition to delineating the basic principles that govern what precautions must be considered when using flow cytometry for the analysis of platelet vesicles, we provide an overview for how to standardize, control, annotate, and report EV flow cytometry data reproducibly, while looking forward to a next generation of high sensitivity instruments for the analysis of EVs and other submicron biomaterials in the circulation.

  13. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  14. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers?

    Science.gov (United States)

    Erdbrügger, Uta; Le, Thu H

    2016-01-01

    Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles. Copyright © 2016 by the American Society of Nephrology.

  15. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith?

    Science.gov (United States)

    Osteikoetxea, Xabier; Németh, Andrea; Sódar, Barbara W; Vukman, Krisztina V; Buzás, Edit Irén

    2016-06-01

    In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... Educators Search English Español Your Child's Immunizations: Meningococcal Vaccines KidsHealth / For Parents / Your Child's Immunizations: Meningococcal Vaccines Print The meningococcal vaccines protect ...

  17. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  19. DNA-mediated self-assembly of artificial vesicles.

    Science.gov (United States)

    Hadorn, Maik; Eggenberger Hotz, Peter

    2010-03-26

    Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and

  20. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  1. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  2. [Seminal vesicle cystadenoma as the cause of a retrovesical tumor].

    Science.gov (United States)

    Kaminsky, A; Kania, U; Ortloff, P; Sperling, H

    2014-04-01

    Tumors of the seminal vesicle are rare. Malignant tumors are more common than benign tumors. A seminal vesicle cystadenoma is a rarity. We report on a 41-year-old man with the incidental finding of an asymptomatic retrovesical tumor. The tumor, the seminal vesicle, and the abdominal part of the ductus deferens were surgically removed. The operative access is variable and surgical treatment is the method of choice. The patient's prognosis is good and there are no signs of recurrence.

  3. Dynamic properties of the alkaline vesicle population at hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Mareike Röther

    Full Text Available In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.

  4. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    Science.gov (United States)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  5. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  6. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Types Seasonal Avian Swine/Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) Español ... of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. Hundreds ...

  7. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Avian Swine/Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend on ... or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose vials ...

  8. Vaccine Basics (Smallpox)

    Science.gov (United States)

    ... Side Effects of Vaccination Who Should Get a Smallpox Vaccination? Bioterrorism The Threat Preparedness Detection and Response Bioterrorism ... Revaccinees Examples of Major or “Take” Reactions to Smallpox Vaccination Vaccine Adverse Reaction Images Laboratory Personnel Specimen Collection ...

  9. Your child's first vaccines

    Science.gov (United States)

    ... multi.html . CDC review information for Multi Pediatric Vaccines: Your Child's First Vaccines: What you need to know (VIS): ... of that vaccine. Tell the person giving the vaccines if your child has ever had a severe reaction after any ...

  10. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  11. Local and Systemic Antibody Responses in Mice Immunized Intranasally with Native and Detergent-Extracted Outer Membrane Vesicles from Neisseria meningitidis

    Science.gov (United States)

    Guthrie, Terry; Wong, Simon Y. C.; Liang, Bin; Hyland, Lisa; Hou, Sam; Høiby, E. Arne; Andersen, Svein Rune

    2004-01-01

    The mouse humoral immune response toward native or detergent-extracted outer membrane vesicles (NOMVs and DOMVs, respectively) from Neisseria meningitidis was determined after intranasal immunization. Both preparations elicited high frequencies of NOMV-specific antibody-forming cells (AFCs) locally in the nasal associated lymphoid tissue (NALT) after three or four weekly doses. The diffuse NALT (D-NALT) contained ca. 10-fold more NOMV-specific AFCs than those observed in the mediastinal lymph node, spleen, and bone marrow. AFCs observed in the D-NALT were primarily immunoglobulin A positive (IgA+) and were maintained for at least 1 month. In contrast, the organized NALT (O-NALT) contained low numbers of AFCs, and the response was relatively short-lived. In other lymphoid tissues, AFCs producing various IgG subclasses and IgM were present with IgG2b-producing AFCs being dominant or codominant with IgA or IgG2a. In serum and in all of the tissues examined, with the exception of the NALT, NOMVs clearly induced a stronger antibody response and a broader range of antibody isotypes than DOMVs. The development of NOMV-specific AFCs in spleen and bone marrow after intranasal immunization was slow compared to intravenous immunization but, once established, the intranasally elicited responses increased steadily for at least 75 days. NOMV-specific antibodies induced via several routes of immunization had high bactericidal activities in serum. Our results indicated that intranasally administered OMVs induced strong local and systemic antibody responses in mice that were relatively long-lived. PMID:15102760

  12. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  13. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  14. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  15. Role of extracellular vesicles in autoimmune diseases.

    Science.gov (United States)

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Human Vaccines & Immunotherapeutics: News

    OpenAIRE

    Riedmann, Eva M.

    2013-01-01

    Long-term effectiveness shown for Merck’s chickenpox vaccine Again—no link between vaccines and autism Experimental ovarian cancer vaccine successful in phase 1 Sinovac’s HFMD vaccine meets phase 3 study goal A vaccine for long-suffering cat allergy patients Vaccines are key to breaking infectious disease-malnutrition cycle Cancer vaccine failures due to the adjuvant IFA? Novartis’ typhoid vaccine make good progress

  17. Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa

    Directory of Open Access Journals (Sweden)

    Marcianò Vito

    2008-01-01

    Full Text Available Abstract Background The presence of small membranous particles characterizes the male genital fluids of different mammalian species. The influence of semen vesicles, denominated prostasomes, on sperm functional properties has been well documented in humans, but their biological activity is scarcely known in other species. The present work investigated prostasome-like vesicles in pig semen for their ability to interact with spermatozoa and to affect acrosome reaction. Methods Prostasome-like vesicles have been isolated from pig seminal plasma by high-speed centrifugation and Sephadex G-200 gel chromatography. Morphology of purified vesicles has been checked by scanning electron microscopy while their protein pattern has been investigated by SDS-PAGE. Then prostasome- like vesicles have been incubated with pig spermatozoa and their ability to interact with sperm has been tested by the aminopeptidase assay. In addition, the efficiency of vesicles to influence the acrosome reaction has been investigated by assessing the sperm acrosomal status by the PI/FITC-PNA (propidium iodide/fluorescein isothiocyanate-labeled peanut agglutinin stainings. Results Purified vesicles revealed a complex protein pattern with the occurrence of bands in the high, medium and low molecular weight range. However, the two major bands were observed at ~90 kDa and ~60 kDa. A vesicle-mediated transfer of aminopeptidase to sperm cells has been also detected. Furthermore, a significant increase of acrosome reaction extent has been revealed in spermatozoa incubated with prostasome-like vesicles in comparison to control sperm. Conclusion This is the first report demonstrating that pig prostasome-like vesicles are able, in vitro, to interact with spermatozoa and to stimulate the acrosome reaction. These findings lead to hypothesize a transfer of molecules from vesicles to sperm membrane, thus sensitizing male gametes to undergo the acrosome reaction

  18. Bioinformatics Tools for Extracellular Vesicles Research.

    Science.gov (United States)

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Gho, Yong Song; Mathivanan, Suresh

    2017-01-01

    Extracellular vesicles (EVs) are a class of membranous vesicles that are released by multiple cell types into the extracellular environment. This unique class of extracellular organelles which play pivotal role in intercellular communication are conserved across prokaryotes and eukaryotes. Depending upon the cell origin and the functional state, the molecular cargo including proteins, lipids, and RNA within the EVs are modulated. Owing to this, EVs are considered as a subrepertoire of the host cell and are rich reservoirs of disease biomarkers. In addition, the availability of EVs in multiple bodily fluids including blood has created significant interest in biomarker and signaling research. With the advancement in high-throughput techniques, multiple EV studies have embarked on profiling the molecular cargo. To benefit the scientific community, existing free Web-based resources including ExoCarta, EVpedia, and Vesiclepedia catalog multiple datasets. These resources aid in elucidating molecular mechanism and pathophysiology underlying different disease conditions from which EVs are isolated. Here, the existing bioinformatics tools to perform integrated analysis to identify key functional components in the EV datasets are discussed.

  19. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion...

  20. IN-VITRO FUSION OF RETICULOCYTE ENDOCYTIC VESICLES WITH LIPOSOMES

    NARCIS (Netherlands)

    VIDAL, M; HOEKSTRA, D

    1995-01-01

    Since reticulocytes have a high demand for iron, which is required for heme biosynthesis, these cells are highly specialized in the endocytosis of the iron carrier transferrin (Tf). From the resulting endocytic vesicles (EVs), iron is released and the vesicles rapidly return to the cell membrane

  1. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  2. Vesicle transport and photoreceptor death: fishing for molecular links.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2013-06-10

    Intracellular vesicle transport defects can induce retinal degeneration and photoreceptor cell death, but the molecular connections between these processes remains poorly understood. Reporting in Developmental Cell, Nishiwaki et al. (2013) suggest that a vesicle fusion cis-SNARE complex component translates vesicular transport defects into photoreceptor cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Formation and structural properties of multi-block copolymer vesicles

    Science.gov (United States)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  4. Slow Sedimentation and Deformability of Charged Lipid Vesicles

    Science.gov (United States)

    Rey Suárez, Iván; Leidy, Chad; Téllez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity. PMID:23874582

  5. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...... and partly removed from between the surfaces under high loads. These layers offer very low friction coefficient (

  6. Block-Copolymer Vesicles as Nanoreactors for Enzymatic Reactions

    NARCIS (Netherlands)

    Chen, Qi; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    The impact of the spatial confinement of polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer (BCP) vesicles on the reactivity of encapsulated bovine pancreas trypsin is studied. Enzymes, as well as small molecules, are encapsulated with loading efficiencies up to 30% in BCP vesicles with

  7. The freezing process of small lipid vesicles at molecular resolution

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    At present very little is known about the kinetic barriers which a small vesicle will face during the transformation from the liquid-crystalline to the gel phase, and what the structure of frozen vesicles looks like at the molecular level. The formation of gel domains in the strongly curved bilayer

  8. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    Artificial vesicles have been used for decades as model systems of biological cells to investigate scientific questions in simulacra. In recent years, the significance of artificial vesicles further increased because they represent ideal candidates to become the building block of a de novo...... construction of a cell in a bottom-up manner. Numerous efforts to build an artificial cell that bridge the living and non-living world will most presumably represent one of the main goals of science in the 21st century. It was shown that artificial genetic programs and the required cellular machinery can...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  9. Recognition and tethering of transport vesicles at the Golgi apparatus.

    Science.gov (United States)

    Witkos, Tomasz M; Lowe, Martin

    2017-08-01

    The Golgi apparatus occupies a central position within the secretory pathway where it is a hub for vesicle trafficking. Distinct classes of transport vesicles traffic diverse cargoes into and out of this organelle, as well as between the different Golgi subcompartments. A key feature of Golgi trafficking is the specific recognition of transport vesicles at the different regions of the Golgi apparatus, required for the correct cargo delivery. Specificity is ensured by coiled-coil golgins and multi-subunit tethering complexes (MTCs), which act together to capture vesicles and promote their subsequent fusion with the Golgi membrane. In this review we discuss our current understanding of how golgins and MTCs function together to mediate the specific recognition of vesicles at the Golgi apparatus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  11. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  12. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    Science.gov (United States)

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Placental Extracellular Vesicles and Feto-Maternal Communication

    Science.gov (United States)

    Tong, M.; Chamley, L.W.

    2015-01-01

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. PMID:25635060

  14. Renal Disease and Adult Vaccination

    Science.gov (United States)

    ... Vaccines: The Basics Adult Vaccination Resources for Healthcare Professionals ... Influenza vaccine each year to protect against seasonal flu Tdap vaccine to protect against whooping cough and ...

  15. Liver Disease and Adult Vaccination

    Science.gov (United States)

    ... Vaccines: The Basics Adult Vaccination Resources for Healthcare Professionals ... Influenza vaccine each year to protect against seasonal flu Tdap vaccine to protect against whooping cough and ...

  16. HIV Infection and Adult Vaccination

    Science.gov (United States)

    ... Vaccines: The Basics Adult Vaccination Resources for Healthcare Professionals ... Influenza vaccine each year to protect against seasonal flu Tdap vaccine to protect against whooping cough and ...

  17. Aceclofenac encapsulated ethanolic nano-vesicles for effective treatment of osteoarthritis

    National Research Council Canada - National Science Library

    Kaur, Arvinder; Jain, Sunil K; Pandey, Ravi S

    2012-01-01

    .... Ethanolic nano-vesicles were prepared by solvent dispersion method. Vesicles were characterized for vesicular size, surface morphology, size and size distribution, zeta potential, entrapment efficiency...

  18. Hookworm vaccines.

    Science.gov (United States)

    Diemert, David J; Bethony, Jeffrey M; Hotez, Peter J

    2008-01-15

    Hookworm infection caused by the soil-transmitted nematodes Necator americanus and Ancylostoma duodenale is one of the most common parasitic infections worldwide. Although not directly responsible for substantial mortality, it causes significant morbidity in the form of chronic anemia and protein malnutrition. Current global control efforts based on periodic mass anthelmintic administration are unsustainable, and new control strategies must be developed. This review describes progress in the development of vaccines against hookworm infection, including the preclinical and initial clinical testing of the N. americanus Ancylostoma Secreted Protein-2 Hookworm Vaccine. Plans call for eventual development of a vaccine that will combine at least 2 hookworm antigens--one targeting the larval stage of the life cycle and another targeting the adult worm living in the gastrointestinal tract.

  19. Mucosal vaccines

    Science.gov (United States)

    Nizard, Mevyn; Diniz, Mariana O; Roussel, Helene; Tran, Thi; Ferreira, Luis CS; Badoual, Cecile; Tartour, Eric

    2014-01-01

    The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites. PMID:25424921

  20. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  1. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    Science.gov (United States)

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles ? about microvesicles, exosomes, ectosomes and other extracellular vesicles

    OpenAIRE

    L?tvall, Jan; Rajendran, Lawrence; Gho, Yong-Song; Thery, Clotilde; Wauben, Marca; Raposo, Graca; Sj?strand, Margareta; Taylor, Douglas; Telemo, Esbj?rn; Breakefield, Xandra O.

    2012-01-01

    In 2011, researchers around the world interested in extracellular vesicles (EV) joined forces and founded the International Society for Extracellular Vesicles (ISEV). Membership has grown to approximately 750 in eight months, and the Society’s first meeting will take place in Gothenburg, Sweden, on 18-21 April 2012. Already approximately 500 participants have been attracted to this event. These are signs of rapid expansion in global research in the field of EV.(Published: 16 April 2012)Citati...

  3. Extracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic Applications.

    Science.gov (United States)

    Giusti, Ilaria; Di Francesco, Marianna; Dolo, Vincenza

    2017-01-01

    Glioblastoma is the most common and malignant form of primary brain cancer; it is characterized by one of the highest mortality among human cancers. Maximal and aggressive surgical resection is the first approach treatment even if not usually definitive, being the tumor characterized by a high proliferative rate and extensive invasion. Early diagnosis, associated to careful monitoring, is pivotal in glioblastoma treatment; Magnetic Resonance Imaging is used for monitoring purpose, but it's not sensitive enough to detect very small tumors; a valid alternative could be a repeated biopsy, but it is associated to a significant morbidity: less invasive options for diagnosis and therapeutic monitoring are unfailingly researched. A careful search was performed on PubMed, mainly considering papers in the last 10 years. In recent years it has begun to take hold the knowledge that glioblastoma cells secrete extracellular vesicles (microvesicles and exosomes), which mirror the molecular features of parental cells and are able to escape from tumor microenvironment, reaching cerebrospinal fluid and systemic blood circulation. Such information led to consider the possibility to use extracellular vesicles in biological fluids as markers of glioblastoma pathology and to use them as a more feasible "liquid-biopsy" to gain diagnostic information, follow the disease progression and the response to clinical treatment, just through a blood test or cerebrospinal fluid collection. The most interesting extracellular vesiclesassociated molecules studied as glioblastoma markers are taken into account, as well as approaches aiming to use extracellular vesicles as cell-free vaccines or vehicle of therapeutic molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine.

    Science.gov (United States)

    Fais, Stefano; O'Driscoll, Lorraine; Borras, Francesc E; Buzas, Edit; Camussi, Giovanni; Cappello, Francesco; Carvalho, Joana; Cordeiro da Silva, Anabela; Del Portillo, Hernando; El Andaloussi, Samir; Ficko Trček, Tanja; Furlan, Roberto; Hendrix, An; Gursel, Ihsan; Kralj-Iglic, Veronika; Kaeffer, Bertrand; Kosanovic, Maja; Lekka, Marilena E; Lipps, Georg; Logozzi, Mariantonia; Marcilla, Antonio; Sammar, Marei; Llorente, Alicia; Nazarenko, Irina; Oliveira, Carla; Pocsfalvi, Gabriella; Rajendran, Lawrence; Raposo, Graça; Rohde, Eva; Siljander, Pia; van Niel, Guillaume; Vasconcelos, M Helena; Yáñez-Mó, María; Yliperttula, Marjo L; Zarovni, Natasa; Zavec, Apolonija Bedina; Giebel, Bernd

    2016-04-26

    Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.

  5. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    ... cholera, hepatitis-B, and many more are in the process of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1 Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. African Journal of Biotechnology Vol. 2 (12), pp. 679-683, December 2003 ...

  6. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  7. A Perspective on Extracellular Vesicles Proteomics

    Directory of Open Access Journals (Sweden)

    Livia Rosa-Fernandes

    2017-11-01

    Full Text Available Increasing attention has been given to secreted extracellular vesicles (EVs in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  8. Versatile roles of extracellular vesicles in cancer

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  9. Role of extracellular vesicles in rheumatoid arthritis.

    Science.gov (United States)

    Fu, Haitao; Hu, Die; Zhang, Licheng; Tang, Peifu

    2018-01-01

    Cell-derived extracellular vesicles (EVs) are involved in the pathogenesis of rheumatoid arthritis (RA), playing important roles in antigen presentation, inflammation, angiogenesis, cell-cell signal communication, thrombosis, and articular cartilage extracellular matrix degradation. Understanding the pathogenic mechanism of RA is important for developing therapies. The pathogenic indicators of RA, such as submicron-sized EVs, represent promising biomarkers for evaluating RA activity. This review summarizes the recent advances in understanding the pathogenesis of RA, and sheds light on the pathogenic as well as anti-inflammatory or immunosuppressive roles of EVs. We suggest that EVs could be harnessed as tools for drug delivery or targets for RA therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Isolation of Platelet-Derived Extracellular Vesicles.

    Science.gov (United States)

    Aatonen, Maria; Valkonen, Sami; Böing, Anita; Yuana, Yuana; Nieuwland, Rienk; Siljander, Pia

    2017-01-01

    Platelets participate in several physiological functions, including hemostasis, immunity, and development. Additionally, platelets play key roles in arterial thrombosis and cancer progression. Given this plethora of functions, there is a strong interest of the role of platelet-derived (extracellular) vesicles (PDEVs) as functional mediators and biomarkers. Moreover, the majority of the blood-borne EVs are thought to originate from either platelets or directly from the platelet precursor cells, the megakaryocytes, which reside in the bone marrow. To circumvent confusion, we use the term PDEVs for both platelet-derived and/or megakaryocyte-derived EVs. PDEVs can be isolated from blood or from isolated platelets after activation. In this chapter, we describe all commonly used PDEV isolation methods from blood and prepurified platelets.

  11. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  12. A Perspective on Extracellular Vesicles Proteomics.

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  13. Biological reference materials for extracellular vesicle studies.

    Science.gov (United States)

    Valkonen, S; van der Pol, E; Böing, A; Yuana, Y; Yliperttula, M; Nieuwland, R; Laitinen, S; Siljander, P R M

    2017-02-15

    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Extracellular vesicles in obesity and diabetes mellitus.

    Science.gov (United States)

    Pardo, Fabián; Villalobos-Labra, Roberto; Sobrevia, Bastián; Toledo, Fernando; Sobrevia, Luis

    2017-11-24

    Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In vitro toxicology studies of extracellular vesicles.

    Science.gov (United States)

    Maji, Sayantan; Yan, Irene K; Parasramka, Mansi; Mohankumar, Swathi; Matsuda, Akiko; Patel, Tushar

    2017-03-01

    Extracellular vesicles (EVs) are membrane-bound vesicles released from cells into the extracellular environment. There is emerging interest in the use of EVs as potential therapeutic interventions. We sought to evaluate the safety of EVs that may be therapeutically used by performing in vitro toxicological assessments. EVs were obtained from mesenchymal stem cells (MSC-EV) or from bovine milk (BM-EV) by differential ultracentrifugation, and quantitated using nanoparticle tracking analysis. Genotoxic effects, hematological effects, immunological effects and endotoxin production were evaluated at two dose levels. Neither MSC-EVs nor BM-EVs elicited detectable genotoxic effects using either the alkaline comet assay or micronucleus assay. Hemolysis was observed with BM-EVs but not with MSC-EVs. MSC-EVs did not have any significant effect on either spontaneous or collagen-induced platelet aggregation. In contrast, BM-EVs were noted to increase collagen-induced platelet aggregation, even though no spontaneous increase in platelet aggregation was noted. Both types of EVs induced leukocyte proliferation, which was greater with BM-EV. Neither MSC-EVs nor BM-EVs induced HL-60 phagocytosis, although BM-EVs decreased zymosan-induced phagocytosis. Furthermore, neither MSC-EVs nor BM-EVs induced nitric oxide production. Unlike MSC-EVs, BM-EVs tested positive for endotoxin and induced complement activation. There are significant differences in toxicological profiles between MSC-EVs and BM-EVs that may reflect variations in techniques for EV isolation, EV content or cross-species differences. The safety of MSC-EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM-EVs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Vexing Vaccines

    Science.gov (United States)

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  17. Valuing vaccination

    Science.gov (United States)

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  18. DNA Vaccines

    Indian Academy of Sciences (India)

    research interests include: eukaryotic gene expres- sion and infectious diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL I ... T -cells: Lymphocytes that differentiate primarily in the thymus and are central to the control and ... enhance DNA delivery into skeletal muscle.

  19. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  20. Removal of Vesicle Structures From Transmission Electron Microscope Images

    Science.gov (United States)

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  1. [EXTRACELLULAR VESICLES: INTERCELLULAR INFORMATION FLOW AND MEDICAL APPLICATIONS].

    Science.gov (United States)

    Pupyshev, A B

    2015-01-01

    The major features of extracellular vesicles secreted by mammalian cells are considered. Cell activation caused by formation of pathology stimulates the secretion acutely. The vesicles (exosomes, microvesicles) are enriched with annexin V, tetraspanin, miRNA. Exosomes are enriched especially by integrins, heat shock proteins. Microvesicles contain elevated amounts of tissue factors, phosphatidylserine, mRNA. The vesicles carry information about the pathological process, and microvesicles contain more proteins characteristic of inflammation and death than exosomes. They are important mediators of inflammation and infection in the body, have different effects on the immune system and the processes of carcinogenesis and neurodegeneration. However, antigenic profiles of extracellular vesicles differ not profoundly in various pathologies and so far they help diagnostics limitedly. The vesicles carry signals of genetic reprogramming of the cells and epigenetic stimulation, connected with both protein factors and mRNA and miRNA. Profiles of miRNA vesicles produced by the various pathological sources are studied actively and are useful as indicators of source and stage of cancer. Some ways of therapeutic use of the vesicles are also considered.

  2. Placenta-derived extracellular vesicles: their cargo and possible functions.

    Science.gov (United States)

    Familari, Mary; Cronqvist, Tina; Masoumi, Zahra; Hansson, Stefan R

    2017-03-01

    The literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions. A meta-analysis of available trophoblast-derived extracellular vesicle proteomic datasets revealed only three proteins in common: albumin, fibronectin-1 and plasminogen activator inhibitor-1, suggesting some variability in vesicle cargo, most likely reflecting stage and cell type of origin. We discuss the possible sources of variability that may have led to the low number of common markers, which has led us to speculate that markers and density in common use may not be strict criteria for identifying and isolating placenta-derived exosomes.

  3. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    Science.gov (United States)

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  4. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2006-07-01

    Full Text Available Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.

  5. Leukocytospermia and function of the seminal vesicles on seminal quality.

    Science.gov (United States)

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1992-05-01

    To determine possible relationships between number of leukocytes, function of seminal vesicles, and seminal quality. The study was carried out on men who consecutively attended an infertility clinic between June 1989 to June 1991. This study was conducted in a private immunological center for infertility, a tertiary care center, The Centro Immunológico-Sección Esterilidad y Reproducción. Semen samples from 280 infertility patients attending an Immunological Center for Infertility were analyzed. We evaluated the effect of leukocytospermia in the presence of normal or abnormal function of seminal vesicles on seminal quality. Sperm count, percent of motile sperm, and percent of sperm vitality were significantly reduced when both leukocytospermia and hypofunction of seminal vesicles were present (P less than 0.01). Leukocytospermic subjects with normal function of seminal vesicles showed similar seminal parameters to those nonleukocytspermics. The incidence of subjects with antisperm antibodies measured by direct immunobeads was significantly higher in leukocytospermic men with hypofunction of seminal vesicles. No differences in the incidence of antisperm antibodies with nonleukocytospermic samples were observed in those with both leukocytospermia and normal function of seminal vesicles. These data provide evidence that white blood cells were deleterious for seminal quality when seminal vesicles were also affected.

  6. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Haiyan eLi

    2011-11-01

    Full Text Available Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2, and a presynaptically-localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3 with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Re-acidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real-time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.

  7. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  8. Dynamics of multicomponent vesicles in a viscous fluid

    Science.gov (United States)

    Sohn, Jin Sun; Tseng, Yu-Hau; Li, Shuwang; Voigt, Axel; Lowengrub, John S.

    2010-01-01

    We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small. PMID:20808718

  9. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus

    Science.gov (United States)

    Burns, Gregory; Brooks, Kelsey; Wildung, Mark; Navakanitworakul, Raphatphorn; Christenson, Lane K.; Spencer, Thomas E.

    2014-01-01

    Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy. PMID:24614226

  10. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  11. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. Published by Elsevier Ltd.

  12. Mating-reactive membrane vesicles from cilia of Paramecium caudatum

    Science.gov (United States)

    1976-01-01

    Membrane vesicles with a high mating reactivity were obtained from cilia of Paramecium caudatum by treatment with a solution containing 2 M urea and 0.1 mM Na2-EDTA. All processes of conjugation were induced in cells of the complementary mating type by approximately 10 mug/ml proteins of the vesicles. Electron microscope observation showed that the membrane vesicles have a diameter of 100-150 nm. Electrophoretic analysis on SDS polyacrylamide gel revealed no significant difference in polypeptide patterns of the particles from the two complementary mating types. PMID:818093

  13. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  14. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis.

    Science.gov (United States)

    Petrie, Matt; Esquibel, Joseph; Kabachinski, Greg; Maciuba, Stephanie; Takahashi, Hirohide; Edwardson, J Michael; Martin, Thomas F J

    2016-09-30

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca 2+ -triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P 2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P 2 -triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced...... by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non...

  16. Vaccine Adverse Events

    Science.gov (United States)

    ... Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More sharing options ... the primary immunization series in infants Report Adverse Event Report a Vaccine Adverse Event Contact FDA (800) ...

  17. Childhood Vaccine Schedule

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Childhood Vaccine Schedule Past Issues / Spring 2008 Table of Contents ... please turn Javascript on. When to Vaccinate What Vaccine Why Birth (or any age if not previously ...

  18. Human Papillomavirus (HPV) Vaccine

    Science.gov (United States)

    Why get vaccinated?HPV vaccine prevents infection with human papillomavirus (HPV) types that are associated with cause ... at http://www.cdc.gov/hpv. HPV Vaccine (Human Papillomavirus) Information Statement. U.S. Department of Health and ...

  19. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  20. Vaccine-Preventable Disease Photos

    Science.gov (United States)

    Home | About | A-Z | Contact | Follow Vaccine Information You Need VACCINE BASICS Evaluating Online Health Information FAQs How Vaccines Work Importance of Vaccines Paying for Vaccines State Immunization Programs ...

  1. Current Vaccine Shortages and Delays

    Science.gov (United States)

    ... value="Submit" /> Related Links Vaccines & Immunizations Current Vaccine Shortages & Delays Recommend on Facebook Tweet Share Compartir ... vaccination are included in this update. Chart of Vaccines* in Delay or Shortage National Vaccine Supply Shortages ...

  2. Visualization of peptide secretory vesicles in living nerve cells.

    Science.gov (United States)

    Park, Joshua J; Loh, Y Peng

    2011-01-01

    Analysis of real-time movements of peptidergic vesicles in live neurons provides insight into molecular mechanism(s) supporting the activity-dependent secretion of neurotrophins and neuropeptides. We examined the effect of overexpression of exogenous peptides comprising of the cytoplasmic tail sequence of vesicular carboxypeptidase E (CPE), proposed to be involved in the mechanism of trafficking of peptidergic secretory vesicles, in live hippocampal neurons. E16 rat hippocampal neurons were transfected with the peptidergic vesicle markers, CPE C-terminally tagged with red or green fluorescent protein, or brain-derived neurotrophic factor (BDNF) tagged with green fluorescent protein, and grown on dishes specialized for real-time live cell visualization. Movements of peptidergic vesicles were imaged in a temperature-controlled chamber on a confocal inverted microscope and analyzed with respect to their velocity, displacement distance, and processivity.

  3. Tension-induced fusion of bilayer membranes and vesicles

    Science.gov (United States)

    Shillcock, Julian C.; Lipowsky, Reinhard

    2005-03-01

    Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 × 50 nm2 planar membrane patches over 2 μs. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.

  4. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  5. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  6. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  7. Theory of dielectric response of charged-bilayer-vesicle solutions

    Science.gov (United States)

    Lu, C.-Y. D.

    1996-10-01

    The dielectric response is calculated for a solution containing charged bilayer vesicles and simple electrolyte. The solution is assumed to contain a high salt concentration so that the Debye screening length is small compared to the size of the vesicles. The presence of two (electric) double layers, one on each side of the bilayer, gives low-frequency salt relaxations (kHz for 1 μm vesicles) that explain the experimentally observed α relaxations which are known to appear only for charged vesicles. The double layers also modify the high-frequency β relaxations which have been previously modeled by using the Maxwell-Wagner theory. The calculation method can be easily extended to other bilayer geometries.

  8. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  9. Yeast Membrane Vesicles: Isolation and General Characteristics1

    Science.gov (United States)

    Christensen, Michael S.; Cirillo, Vincent P.

    1972-01-01

    Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848

  10. Large Deformation Mechanics of Plasma Membrane Chained Vesicles in Cells

    Science.gov (United States)

    Kosawada, Tadashi; Sanada, Kouichi; Takano, Tetsuo

    The clathrin-coated pits, vesicles and chained vesicles on the inner surface of the plasma membrane facilitate the cell to transport specific extracellular macromolecules. This cellular process is strongly involved with large mechanical deformations of the plasma membrane accompanied by changes in membrane curvature. The assembly of the clathrin coat is thought to provide curvature into the membrane. Hence, effects of in-plane shear elasticity due to these coat structure may be significant on the vesicular mechanics. In this study, large deformation mechanics of plasma membrane chained vesicles in cells have been formulated based on minimization of bending and in-plane shear strain energy of the membrane. Effects of outer surrounding cytoplasmic flat membrane upon mechanically stable shapes of the vesicles were revealed, while effects of in-plane shear elasticity were partly discussed.

  11. Assembly of cells and vesicles for organ engineering

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tetsushi, E-mail: taguchi.tetsushi@nims.go.jp [Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-12-15

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  12. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain...... obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...... regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation...

  13. Assembly of cells and vesicles for organ engineering

    Science.gov (United States)

    Taguchi, Tetsushi

    2011-12-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.

  14. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  15. Extracellular vesicles in human follicular fluid do not promote coagulation.

    Science.gov (United States)

    Franz, Cordula; Böing, Anita N; Montag, Markus; Strowitzki, Thomas; Markert, Udo R; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-11-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an observational study, follicular fluid from women undergoing IVF/intracytoplasmic sperm injection (ICSI) was analysed by fluorescence-activated cell sorting (FACS), electron microscopy, resistive pulse sensing (RPS), nanoparticle-tracking analysis (NTA) and fibrin generation tests (FGT). The presence of extracellular vesicles, especially CD9-positive extracellular vesicles in follicular fluid, was proven. However, clotting tests revealed no procoagulant properties of the detected extracellular vesicles. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Unilamellar Vesicle Formation and Encapsulation by Microfluidic Jetting

    National Research Council Canada - National Science Library

    Jeanne C. Stachowiak; David L. Richmond; Thomas H. Li; Allen P. Liu; Sapun H. Parekh; Daniel A. Fletcher

    2008-01-01

    ...) using a pulsed microfluidic jet. Akin to blowing a bubble, the microfluidic jet deforms a planar lipid bilayer into a vesicle that is filled with solution from the jet and separates from the planar bilayer...

  17. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  18. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    OpenAIRE

    Yuana, Yuana; Koning, Roman I.; Maxim E. Kuil; Rensen, Patrick C.N.; Koster, Abraham J.; Bertina, Rogier M.; Osanto, Susanne

    2013-01-01

    Introduction: Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.Objectives: To image EV and determine the morphology, ...

  19. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  20. Luminescent functionalized vesicles: synthesis, characterization and analytical applications

    OpenAIRE

    Balk, Stefan

    2014-01-01

    This work describes the membrane functionalization of small unilamellar phospholipid vesicles by incorporation of artificial amphiphiles. The presented investigations demonstrate a fast and simple approach for sensing molecular recognition events at the membrane-water interface. Chapter 1 describes the dynamic recognition of multivalent ligands by receptor recruiting in fluid vesicle membranes. Two amphiphilic metal-complexes with attached FRET-pair labels were prepared and embedded into D...

  1. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative...... vesicles. Pulse-chase and intravital imaging experiments suggested EVs liberated by exercise have a propensity to localize in the liver and can transfer their protein cargo. Moreover, by employing arteriovenous balance studies across the contracting human limb, we identified several novel candidate...

  2. TNF-? promotes extracellular vesicle release in mouse astrocytes through glutaminase

    OpenAIRE

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C.

    2017-01-01

    Background Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-? promotes glutaminase expression in neurons. However, the expressio...

  3. Adsorption and encapsulation of flexible polyelectrolytes in charged spherical vesicles

    Science.gov (United States)

    Shojaei, H. R.; Muthukumar, M.

    2017-06-01

    We present a theory of adsorption of flexible polyelectrolytes on the interior and exterior surfaces of a charged vesicle in an electrolyte solution. The criteria for adsorption and the density profiles of the adsorbed polymer chain are derived in terms of various characteristics of the polymer, vesicle, and medium, such as the charge density and length of the polymer, charge density and size of the vesicle, electrolyte concentration and dielectric constant of the medium. For adsorption inside the vesicle, the competition between the loss of conformational entropy and gain in adsorption energy results in two kinds of encapsulated states, depending on the strength of the polymer-vesicle interaction. By considering also the adsorption from outside the vesicle, we derive the entropic and energy contributions to the free energy change to transfer an adsorbed chain in the interior to an adsorbed chain on the exterior. In this paper, we have used the Wentzel-Kramers-Brillouin (WKB) method to solve the equation for the probability distribution function of the chain. The present WKB results are compared with the previous results based on variational methods. The WKB and variational results are in good agreement for both the interior and exterior states of adsorption, except in the zero-salt limit for adsorption in the exterior region. The adsorption criteria and density profiles for both the interior and exterior states are presented in terms of various experimentally controllable variables. Calculation of the dependencies of free energy change to transfer an adsorbed chain from the interior to the exterior surface on salt concentration and vesicle radius shows that the free energy penalty to expel a chain from a vesicle is only of the order of thermal energy.

  4. Hepatitis B Vaccine

    Science.gov (United States)

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  5. Immunology Update: New Vaccines.

    Science.gov (United States)

    Starr, S Paul

    2016-11-01

    A new 9-valent human papillomavirus (HPV) vaccine is effective against more cancer-causing HPV types than previous vaccines. HPV vaccine series started with previous vaccines can be completed with the 9-valent vaccine. Two new influenza vaccines are available for adults 65 years and older: a high-dose vaccine and an enhanced adjuvant vaccine. These elicit stronger antibody responses than standard-dose vaccines. Current guidelines specify no preference for the new versus standard-dose vaccines. Two new group B meningococcal vaccines are intended for use during outbreaks and for patients with asplenia, complement deficiencies, frequent occupational meningococcus exposure, or for patients who desire protection from type B meningococcus. These are not substitutes for the quadrivalent vaccine already in use. For pneumococcus, new recommendations state that 13-valent pneumococcal conjugate vaccine (PCV13) should be administered to patients 65 years and older, followed at least 1 year later by the polyvalent pneumococcal polysaccharide vaccine (PPSV23). For patients ages 19 to 64 years with immunocompromise and not previously vaccinated against pneumococcus, administration of these two vaccines should be separated by at least 8 weeks. Rotavirus vaccine is standard for infants at age 2 months. Also, there is a new cholera vaccine approved for use in the United States. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  6. Melanoma affects the composition of blood cell-derived extracellular vesicles

    OpenAIRE

    Nina Koliha; Ute Heider; Tobias Ozimkowski; Martin Wiemann; Andreas Bosio; Stefan Wild

    2016-01-01

    Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of...

  7. Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision

    OpenAIRE

    Jernej Zupanc; Barbara Drašler; Sabina Boljte; Veronika Kralj-Iglič; Aleš Iglič; Deniz Erdogmus; Damjana Drobne

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their ...

  8. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  9. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    Science.gov (United States)

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.

  10. Extracellular Vesicles and Autophagy in Osteoarthritis

    Science.gov (United States)

    Guo, Weimin; Chen, Mingxue; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Li, Penghao; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Zhang, Li; Xu, Wenjing; Lu, Shibi

    2016-01-01

    Osteoarthritis (OA) is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs) are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies. PMID:28078284

  11. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  12. Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.

    Science.gov (United States)

    Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang

    2017-09-04

    During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.

  13. Asymmetric osmotic water permeation through a vesicle membrane

    Science.gov (United States)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  14. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  15. Formation of asymmetric vesicles via phospholipase D-mediated transphosphatidylation.

    Science.gov (United States)

    Takaoka, Rina; Kurosaki, Haruko; Nakao, Hiroyuki; Ikeda, Keisuke; Nakano, Minoru

    2018-02-01

    Most biomembranes have an asymmetric structure with regard to phospholipid distribution between the inner and outer leaflets of the lipid bilayers. Control of the asymmetric distribution plays a pivotal role in several cellular functions such as intracellular membrane fusion and cell division. The mechanism by which membrane asymmetry and its alteration function in these transformation processes is not yet clear. To understand the significance of membrane asymmetry on trafficking and metabolism of intracellular vesicular components, a system that experimentally reproduces the asymmetric nature of biomembranes is essential. Here, we succeeded in obtaining asymmetric vesicles by means of transphosphatidylation reactions with phospholipase D (PLD), which acts exclusively on phosphatidylcholine (PC) present in the outer leaflet of vesicles. By treating PC vesicles with PLD in the presence of 1.7M serine and 0.3M ethanolamine, we obtained asymmetric vesicles that are topologically similar to intracellular vesicles containing phosphatidylserine and phosphatidylethanolamine in the cytosolic leaflet. PLD and other unwanted compounds could be removed by trypsin digestion followed by dialysis. Our established technique has a great advantage over conventional methods in that asymmetric vesicles can be provided at high yield and high efficiency, which is requisite for most physicochemical assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  17. Biogenesis and function of ESCRT-dependent extracellular vesicles.

    Science.gov (United States)

    Juan, Thomas; Fürthauer, Maximilian

    2018-02-01

    From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure.

    Science.gov (United States)

    Peters, K R; Carley, W W; Palade, G E

    1985-12-01

    Capillary endothelial cells have a large population of small (65-80 nm diameter in transmission electron microscopy) vesicles of which a large fraction is associated with the plasmalemma of the luminal and abluminal side. We studied the fine structure and distribution of these plasmalemmal vesicles by high resolution scanning electron microscopy in cultured endothelial cells obtained from bovine adrenal cortical capillaries. Cell monolayers were covered with polylysine-coated silicon chips, split in high potassium buffer, fixed in aldehyde mixtures, and then treated with OsO4 and thiocarbohydrazide. After critical point drying, the specimens were coated with a thin (less than 2 nm) continuous film of chromium. On the cytoplasmic aspect of the dorsal plasmalemmal fragments seen in such specimens, plasmalemmal vesicles appear as uniform vesicular protrusions approximately 70-90 nm in diameter, preferentially concentrated in distinct large fields in which they occur primarily as single units. Individual plasmalemmal vesicles exhibit a striped surface fine structure which consists of ridges approximately 10 nm in diameter, separated by furrows and oriented as meridians, often ending at two poles on opposite sides of the vesicles in a plane parallel to the plasmalemma. This striped surface structure is clearly distinct from the cage structure of coated pits found, at low surface density, on the same specimens. The cytoplasmic aspect of the plasmalemma proper is covered by a fibrillar infrastructure which does not extend over plasmalemmal vesicles but on which the latter appear to be anchored by fine filaments.

  19. Minimal experimental requirements for definition of extracellular vesicles and their functions : a position statement from the International Society for Extracellular Vesicles

    NARCIS (Netherlands)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently

  20. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  1. Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii.

    Science.gov (United States)

    Knitsch, Regine; Schneefeld, Marie; Weitzel, Kerstin; Pfeifer, Felicitas

    2017-09-12

    Gas vesicles are proteinaceous, gas-filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in-silico 3D-model of GvpA of the predicted coil-α1-β1-β2-α2-coil structure is available and implies that the two β-chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac(+) phenotype). In most cases, an alanine substitution of a non-polar residue did not abolish gas vesicle formation, but the replacement of single non-polar by charged residues in β1 or β2 resulted in Vac(-) transformants. A replacement of residues near the β-turn altered the spindle-shape to a cylindrical morphology of the gas vesicles. Vac(-) transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt-bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac(-) transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid-state NMR. © 2017 John Wiley & Sons Ltd.

  2. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  3. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles.

    Science.gov (United States)

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-02-06

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  4. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  5. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  6. An immunoassay for urinary extracellular vesicles.

    Science.gov (United States)

    Salih, Mahdi; Fenton, Robert A; Knipscheer, Jeroen; Janssen, Joost W; Vredenbregt-van den Berg, Mirella S; Jenster, Guido; Zietse, Robert; Hoorn, Ewout J

    2016-04-15

    Although nanosized urinary extracellular vesicles (uEVs) are increasingly used for biomarker discovery, their isolation currently relies on time-consuming techniques hindering high-throughput application. To navigate this problem, we designed an immunoassay to isolate, quantify, and normalize uEV proteins. The uEV immunoassay consists of a biotinylated CD9 antibody to isolate uEVs, an antibody against the protein of interest, and two conjugated antibodies to quantify the protein of interest and CD9. As a proof of principle, the immunoassay was developed to analyze the water channel aquaporin-2 (AQP2) and the sodium-chloride cotransporter (NCC). CD9 was used as a capture antibody because immunoprecipitation showed that anti-CD9 antibody, but not anti-CD63 antibody, isolated AQP2 and NCC. CD9 correlated strongly with urine creatinine, allowing CD9 to be used for normalization of spot urines. The uEV immunoassay detected AQP2 and NCC with high sensitivity, low coefficients of variance, and stability in dilution series. After water loading in healthy subjects, the uEV immunoassay detected decreases in AQP2 and NCC equally well as the traditional method using ultracentrifugation and immunoblot. The uEV immunoassay also reliably detected lower and higher AQP2 or NCC levels in uEVs from patients with pathological water or salt reabsorption, respectively. In summary, we report a novel approach to analyze uEVs that circumvents existing isolation and normalization issues, requires small volumes of urine, and detects anticipated changes in physiological responses and clinical disorders. Copyright © 2016 the American Physiological Society.

  7. Procoagulant extracellular vesicles in amniotic fluid.

    Science.gov (United States)

    Hell, Lena; Wisgrill, Lukas; Ay, Cihan; Spittler, Andreas; Schwameis, Michael; Jilma, Bernd; Pabinger, Ingrid; Altevogt, Peter; Thaler, Johannes

    2017-06-01

    Embolization of amniotic fluid (AF) into the blood circulation leads to disseminated intravascular coagulation (DIC). Procoagulant phosphatidylserine (PS)- and tissue factor (TF)-exposing extracellular vesicles (EVs) might play an important role in AF embolism-induced DIC. It was the aim of the present study to perform analyses of the procoagulant properties of AF with a panel of functional coagulation assays and flow cytometry. We applied a prothrombinase assay (that quantifies PS exposure on EVs), an EV-associated TF activity assay, a fibrin generation assay, a thrombin generation assay, a whole blood clotting model, and flow cytometry in AF and control plasma. We found that PS exposure on EVs was 21-fold increased in AF compared with plasma. Also, EV-associated TF activity was highly increased in AF compared with plasma. AF-derived EVs activated the blood coagulation cascade via PS and TF in the fibrin and thrombin generation assays. In a whole blood clotting model, AF-derived EVs significantly shortened the clotting time from 734 ± 139 seconds in the presence to 232 ± 139 seconds in the absence of an anti-TF antibody. The contact activation pathway via factor XII (FXII) was not affected. Applying flow cytometry, a subpopulation of PS+ and TF+ EVs was identified in AF but not in control plasma. In conclusion, we investigated the effect of AF on blood coagulation and found that PS+ and TF+ EVs determine their procoagulant potential. Taken together, our data further delineate the pathomechanisms underlying AF-induced coagulopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  9. Vaccination in food allergic patients

    African Journals Online (AJOL)

    allergy: • Vaccines produced in embryonated eggs, such as yellow fever vaccine, influenza vaccine and rabies vaccine. Yellow fever vaccine is most likely to contain significant amounts of egg protein. • Vaccines produced in chick fibroblast cell cultures, such as measles and measles-mumps-rubella (MMR) vaccines, do not.

  10. History of vaccination

    OpenAIRE

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  11. History of vaccination.

    Science.gov (United States)

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  12. Your Baby's First Vaccines

    Science.gov (United States)

    ... Barcodes Related Link Vaccines & Immunizations Immunization Schedules Your Child's First Vaccines Format: Select One PDF [336K] RTF [260K] Recommend ... of that vaccine. Tell the person giving the vaccines if your child has ever had a severe reaction after any ...

  13. VACCINATION SAFETY: MODERN DATA

    Directory of Open Access Journals (Sweden)

    V.К. Tatochenko

    2007-01-01

    Full Text Available Vaccination aided disease control over infection pathology among the children led to elimination of smallpox and poliomyelitis, drastic decrease of the tuberculous meningitis recurrences, tetanus, measles and other infection diseases and their complications. At the same time, Russia is still afraid to apply certain vaccines. The reasons for that are mainly subjective. This is the unjustified caution related to the fear that it may cause severe vaccine associated complications. The data in view of the lecture indicates the safety of the vaccinal prevention procedures and measures for the prevention of their complications.Key words: vaccinal prevention, vaccination complications, vaccination safety, children.

  14. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    significant losses in aquacultural enterprises but vaccination methods implemented since the 1990s have demonstrated their role as one of the most efficient disease control strategies. These have been particularly successful with regard to bacterial diseases in Norwegian salmon farming where multivalent...... vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...

  15. Oncolytic vaccines.

    Science.gov (United States)

    Elsedawy, Noura B; Russell, Stephen J

    2013-10-01

    Oncolytic viruses are ideal platforms for tumor vaccination because they can mediate the direct in situ killing of tumor cells that release a broad array of tumor antigens and alarmins or danger signals thereby cross-priming antitumor cytotoxic T lymphocytes (CTLs), which mediate the indirect killing of uninfected cells. The balance between the direct and indirect killing phases of oncolytic virotherapy is the key to its success and can be manipulated by incorporating various immunomodulatory genes into the oncolytic virus genome. Recently, the interim analysis of a large multicenter Phase III clinical trial for Talimogene laherparepvec, a granulocyte-macrophage colony stimulating factor-armed oncolytic herpes simplex virus, revealed significant improvement in objective response and durable response rates over control arm and a trend toward improved overall survival. Meanwhile, newer oncolytics are being developed expressing additional immunomodulatory transgenes to further enhance cross-priming and the generation of antitumor CTLs and to block the immunosuppressive actions of the tumor microenvironment. Since oncolytic vaccines can be engineered to kill tumor cells directly, modulate the kinetics of the antitumor immune response and reverse the immunosuppressive actions of the tumor, they are predicted to emerge as the preferred immunotherapeutic anticancer weapons of the future.

  16. Melanoma affects the composition of blood cell-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-07-01

    Full Text Available Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer cells, monocytes, monocyte-derived dendritic cells and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on extracellular vesicles. Hierarchal clustering of protein intensity patterns grouped extracellular vesicles according to their originating cell type. The analysis of extracellular vesicles from stimulated B cells and monocyte-derived dendritic cells revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of extracellular vesicles from platelets, antigen presenting cells and natural cells as shown by platelet markers, costimulatory proteins, and a natural killer cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers indicating a changed vesicle secretion or protein loading of extracellular vesicles by platelets and a lower CD8 signal that might be associated with a diminished activity of natural killer cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of extracellular vesicles in melanoma plasma, but rather argue

  17. α-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling

    Directory of Open Access Journals (Sweden)

    Audrey T. Medeiros

    2017-12-01

    Full Text Available α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV trafficking. In Parkinson’s disease (PD and several other neurodegenerative disorders, aberrant oligomerization and aggregation of α-synuclein lead to synaptic dysfunction and neurotoxicity. Despite evidence that α-synuclein oligomers are generated within neurons under physiological conditions, and that altering the balance of monomers and oligomers contributes to disease pathogenesis, how each molecular species of α-synuclein impacts SV trafficking is currently unknown. To address this, we have taken advantage of lamprey giant reticulospinal (RS synapses, which are accessible to acute perturbations via axonal microinjection of recombinant proteins. We previously reported that acute introduction of monomeric α-synuclein inhibited SV recycling, including effects on the clathrin pathway. Here, we report the effects of α-synuclein dimers at synapses. Similar to monomeric α-synuclein, both recombinant α-synuclein dimers that were evaluated bound to small liposomes containing anionic lipids in vitro, but with reduced efficacy. When introduced to synapses, the α-synuclein dimers also induced SV recycling defects, which included a build up of clathrin-coated pits (CCPs with constricted necks that were still attached to the plasma membrane, a phenotype indicative of a vesicle fission defect. Interestingly, both α-synuclein dimers induced longer necks on CCPs as well as complex, branching membrane tubules, which were distinct from the CCPs induced by a dynamin inhibitor, Dynasore. In contrast, monomeric α-synuclein induced a buildup of free clathrin-coated vesicles (CCVs, indicating an inhibition of clathrin-mediated endocytosis at a later stage during the clathrin uncoating process. Taken together, these data further support the conclusion that excess α-synuclein impairs SV recycling. The data additionally reveal that monomeric and dimeric α-synuclein produce

  18. End-capping of amphiphilic nanotubes with phospholipid vesicles: impact of the phospholipid on the cap formation and vesicle loading under osmotic conditions.

    Science.gov (United States)

    Erne, Petra M; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Feringa, Ben L

    2016-09-22

    Soft amphiphilic nanotubes are capped with vesicles comprised of either overall neutral, zwitterionic phospholipids, or those that carry a net charge. The phase transition temperature of the zwitterionic phospholipids plays a crucial role in the phase separation that leads to the end-capped nanotubes. The cationic vesicle caps can be loaded into the nanotubes via osmosis whereas the anionic vesicle caps are stable under hyper-osmotic conditions. Furthermore, no additional salt needs to be added for the cationic vesicle caps to induce the loading of the vesicles into the nanotubes due to the presence of counterions.

  19. Discovering vesicle traffic network constraints by model checking.

    Science.gov (United States)

    Shukla, Ankit; Bhattacharyya, Arnab; Kuppusamy, Lakshmanan; Srivas, Mandayam; Thattai, Mukund

    2017-01-01

    A eukaryotic cell contains multiple membrane-bound compartments. Transport vesicles move cargo between these compartments, just as trucks move cargo between warehouses. These processes are regulated by specific molecular interactions, as summarized in the Rothman-Schekman-Sudhof model of vesicle traffic. The whole structure can be represented as a transport graph: each organelle is a node, and each vesicle route is a directed edge. What constraints must such a graph satisfy, if it is to represent a biologically realizable vesicle traffic network? Graph connectedness is an informative feature: 2-connectedness is necessary and sufficient for mass balance, but stronger conditions are required to ensure correct molecular specificity. Here we use Boolean satisfiability (SAT) and model checking as a framework to discover and verify graph constraints. The poor scalability of SAT model checkers often prevents their broad application. By exploiting the special structure of the problem, we scale our model checker to vesicle traffic systems with reasonably large numbers of molecules and compartments. This allows us to test a range of hypotheses about graph connectivity, which can later be proved in full generality by other methods.

  20. Vesicle shape, molecular tilt, and the suppression of necks

    Science.gov (United States)

    Jiang, Hongyuan; Huber, Greg; Pelcovits, Robert A.; Powers, Thomas R.

    2007-09-01

    Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of +2 are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.

  1. Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis

    Science.gov (United States)

    Riedel, Dietmar; Schomburg, Christoph; Cerdà, Joan; Vollack, Nadine; Dosch, Roland

    2014-01-01

    During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research. PMID:24967841

  2. Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis.

    Directory of Open Access Journals (Sweden)

    Palsamy Kanagaraj

    2014-06-01

    Full Text Available During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP gene SPASTIZIN (SPG15. We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.

  3. Overall energy conversion efficiency of a photosynthetic vesicle.

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  4. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods.

    Science.gov (United States)

    Song, Jibin; Pu, Lu; Zhou, Jiajing; Duan, Bo; Duan, Hongwei

    2013-11-26

    We have developed surface-initiated organocatalytic ring-opening polymerization on functional nanocrystals and synthesized amphiphilic gold nanorods carrying well-defined mixed polymer brushes of poly(ethylene glycol) and polylactide. Self-assembly of the amphiphilic gold nanorods affords biodegradable plasmonic vesicles that can be destructed by both enzymatic degradation and near-infrared photothermal heating. When tagged with Raman probes, strongly coupled gold nanorods in the self-assembled vesicles give rise to highly active SERS signals. The biodegradable plasmonic vesicles exhibit a unique combination of optical and structural properties that are of particular interest for theranostic applications. We have demonstrated that bioconjugated SERS-active plasmonic vesicles can specifically target EpCAM-positive cancer cells, leading to ultrasensitive spectroscopic detection of cancer cells. Furthermore, integration of photothermal effect of gold nanorods and large loading capacity of the vesicles provides opportunities for localized synergistic photothermal ablation and photoactivated chemotherapy, which have shown higher efficiency in killing targeted cancer cells than either single therapeutic modality. The versatile chemistry of organocatalytic ring-opening polymerization, in conjugation with recent development in synthesizing functional nanocrystals with tailored optical, electronic, and magnetic properties opens the possibilities for constructing multifunctional biodegradable platforms for clinical translation.

  5. Characteristic spatial scale of vesicle pair interactions in a plane linear flow.

    Science.gov (United States)

    Levant, Michael; Deschamps, Julien; Afik, Eldad; Steinberg, Victor

    2012-05-01

    We report the experimental studies on interaction of two vesicles trapped in a microfluidic four-roll mill, where a plane linear flow is realized. We found that the dynamics of a vesicle in tank-treading motion is significantly altered by the presence of another vesicle at separation distances up to 3.2-3.7 times of the vesicle effective radius. This result is supported by measurement of a single vesicle back-reaction on the velocity field. Thus the experiment provides the upper bound for the volume fraction φ = 0.08-0.13 of noninteracting vesicle suspensions.

  6. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-09

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Gene delivery into human skin in vitro using biphasic lipid vesicles.

    Science.gov (United States)

    Foldvari, Marianna; Kumar, Praveen; King, Martin; Batta, Ravinder; Michel, Deborah; Badea, Ildiko; Wloch, Mary

    2006-01-01

    Topical gene delivery to the skin shows great potential for painless, non-invasive administration of novel vaccines and therapeutic agents. The challenge is to develop a pharmaceutically acceptable system that can deliver suitable amounts of plasmid DNA to produce the desired level of response. The purpose of this study was to quantitatively assess DNA delivery by a novel lipid-based biphasic delivery system into the viable layers of excised human skin. Biphasic lipid vesicle formulations, incorporating plasmid DNA were evaluated in vitro in flow-through diffusion cells. Fifty mg DNA formulation containing 10 microg DNA was applied to full-thickness human breast skin for 24 hours. Residual formulation was removed and the skin was washed with PBS, then tape-stripped, followed by DNase treatment to remove surface bound DNA. Skin samples were homogenised and digested overnight with Proteinase K. The resulting supernatant was used as a template for quantitative PCR. Three formulations yielded a significant degree of dermal absorption compared to the controls. Formulation 26-3-2-DNA indicated that approximately 1x10(9) copies of plasmid were absorbed per cm2 skin. Other formulations resulted in 5x10(6) copies/cm2 skin (17C3-1-DNA) and 5x10(8) copies/cm2 skin (26-3-1-DNA). Biphasic vesicles delivered significant quantities of plasmid DNA into the 'viable' layers of human skin in vitro. The successful delivery of this large (approximately 4,400 kDa) charged molecule through intact stratum corneum represents a major advance in transdermal macromolecule delivery.

  8. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    Directory of Open Access Journals (Sweden)

    Thomas Lener

    2015-12-01

    Full Text Available Extracellular vesicles (EVs, such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a anti-tumour therapy, (b pathogen vaccination, (c immune-modulatory and regenerative therapies and (d drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV and of the European Cooperation in Science and Technology (COST program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD, summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.

  9. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    Science.gov (United States)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A.; del Portillo, Hernando A.; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M.; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C.; Hendrix, An; Hermann, Dirk M.; Hill, Andrew F.; Hochberg, Fred; Horn, Peter A.; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W.; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J.; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A.; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G.; Rivera, Francisco J.; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W. M.; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed. PMID:26725829

  10. Immobilization of stable thylakoid vesicles in conductive nanofibers by electrospinning.

    Science.gov (United States)

    Bedford, Nicholas M; Winget, G Douglas; Punnamaraju, Srikoundinya; Steckl, Andrew J

    2011-03-14

    Electrospun fibers consisting of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS) and poly(ethylene oxide) (PEO) have been used to successfully encapsulate and stabilize thylakoid membrane vesicles isolated from spinach. Light-driven electronic properties were measured. Fibers with immobilized thylakoids show higher electrical conductivity compared with fibers without thylakoids under white light conditions. This is attributed to the electron-generating photosynthetic reactions from the thylakoids. Electron and optical microscopy show the presence of thylakoid vesicles within the fibers using lipid-specific stains. After electrospinning into fibers, the thylakoid vesicles still exhibit an ability to produce a light-driven electron gradient, indicating that activity is preserved during the electrospinning process. These electrospun fibers provide an excellent example of incorporating photosynthetic function into an artificial system.

  11. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...

  12. Exosomes and other extracellular vesicles in host–pathogen interactions

    Science.gov (United States)

    Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L

    2015-01-01

    An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940

  13. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  14. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  15. Obesity vaccines.

    Science.gov (United States)

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  16. A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking.

    Science.gov (United States)

    Cole, Andy A; Chen, Xiaobing; Reese, Thomas S

    2016-03-16

    Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release. Copyright © 2016 the authors 0270-6474/16/363222-09$15.00/0.

  17. Cryo-electron microscopy of extracellular vesicles in fresh plasma.

    Science.gov (United States)

    Yuana, Yuana; Koning, Roman I; Kuil, Maxim E; Rensen, Patrick C N; Koster, Abraham J; Bertina, Rogier M; Osanto, Susanne

    2013-12-31

    Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25-260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  18. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2013-12-01

    Full Text Available Introduction: Extracellular vesicles (EV are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives: To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM. Methods: Fresh citrate- and ethylenediaminetetraacetic acid (EDTA-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results: EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles. In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm. The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET was employed to determine the 3D structure of platelet secretory granules. Conclusions: Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  19. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  20. [Developments in HPV vaccination].

    Science.gov (United States)

    de Melker, Hester; Kenter, Gemma; van Rossum, Tekla; Conyn-van Spaendonck, Marina

    2012-01-01

    Vaccination against the human papilloma virus (HPV) has been included in the national Vaccination Programme of the Netherlands for 12-year-old girls since 2010. Vaccination coverage for the birth cohort of 1997 was 56.; there is a gradual increase in uptake. Continuous safety monitoring brought no new unknown serious side effects to light; many girls suffered from transient symptoms such as painful arm, fatigue and headache. After the current vaccines that protect against HPV types 2 and 4 types, respectively and induce some cross protection, vaccines are being developed that can induce broader protection. HPV vaccination of 12-year-old girls is cost-effective, even for relatively low vaccination coverage. The potential protection of HPV vaccination extends beyond prevention of cervical cancer by preventing other oncological manifestations of HPV infection in women as well as men and genital warts. The preventive HPV vaccines do not appear to be effective in treating existing abnormalities.

  1. Neurologic complications of vaccinations.

    Science.gov (United States)

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination. © 2014 Elsevier B.V. All rights reserved.

  2. Postcoital Hemorrhage of a Recurrent Seminal Vesicle Cyst Requiring Embolization

    Directory of Open Access Journals (Sweden)

    Eric Royston

    2014-09-01

    Full Text Available Herein is a case of a 23-year-old man with recurrence of a seminal vesicle cyst after percutaneous drainage and laparoscopic excision complicated by hemorrhage requiring embolization. He presented to the emergency department for pain after ejaculation. Computed tomographic scan of his pelvis revealed extravasation of contrast near his cyst and pelvic fluid collection suspicious for a hematoma. The patient had steadily decreasing hemoglobin and hematocrit levels. An interventional radiologist performed an embolization of the left seminal vesicle cystic arteries. Hemoglobin and hematocrit values improved and he was discharged. Hemorrhage resolved with embolization procedure and pain dissipated over the course of follow up care.

  3. Potentials and capabilities of the Extracellular Vesicle (EV Array

    Directory of Open Access Journals (Sweden)

    Malene Møller Jørgensen

    2015-04-01

    Full Text Available Extracellular vesicles (EVs and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10 has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes for up to 60 antigens without any enrichment or purification prior to analysis.

  4. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.

    Science.gov (United States)

    Chiasserini, Davide; van Weering, Jan R T; Piersma, Sander R; Pham, Thang V; Malekzadeh, Arjan; Teunissen, Charlotte E; de Wit, Heidi; Jiménez, Connie R

    2014-06-25

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in conjunction with bioinformatics. We report an extensive catalog of 1315 proteins identified in EVs isolated from two different CSF pools by ultracentrifugation, including 230 novel EV proteins. Out of 1315 proteins, 760 were identified in both CSF pools and about 30% of those were also quantitatively enriched in the EV fraction versus the soluble CSF fraction. The proteome of CSF EVs was enriched in exosomal markers such as alix and syntenin-1, heat shock proteins and tetraspanins and contained a high proportion of brain-derived proteins (n=373). Interestingly, several known biomarkers for neurodegenerative diseases such as the amyloid precursor protein, the prion protein and DJ-1 were identified in the EV fractions. Our dataset represents the first comprehensive inventory of the EV proteome in CSF, underscoring the biomarker potential of this organelle. Further comparative studies on CSF EVs isolated from patients diagnosed with neurological disorders are warranted. Data are available via ProteomeXchange with identifier PXD000608. Biological significance In this study we analyzed the protein composition of extracellular vesicles isolated from pooled samples of human cerebrospinal fluid (CSF). CSF is a colorless fluid surrounding the brain and the spinal cord, important for the physiology of the central nervous system, ensuing mechanical protection, regulation of brain blood flow and elimination of byproducts of the brain. Since brain (patho)physiology is reflected in CSF, this biological fluid represents an ideal source of soluble and vesicle-based biomarkers for neurological diseases. Here we confirm the presence of exosome-like extracellular vesicles in CSF, underscoring

  5. Erythrocyte-derived optical nano-vesicles as theranostic agents

    Science.gov (United States)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  6. Vaccinations for Adults with Diabetes

    Science.gov (United States)

    Vaccinations for Adults with Diabetes The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  7. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  8. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  9. Vaccines against poverty.

    Science.gov (United States)

    MacLennan, Calman A; Saul, Allan

    2014-08-26

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.

  10. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma

    OpenAIRE

    Matsuzaki, Kyosuke; Fujita, Kazutoshi; Jingushi, Kentaro; Kawashima, Atsunari; Ujike, Takeshi; Nagahara, Akira; Ueda, Yuko; Tanigawa, Go; Yoshioka, Iwao; Ueda, Koji; Hanayama, Rikinari; Uemura, Motohide; Miyagawa, Yasushi; Tsujikawa, Kazutake; Nonomura, Norio

    2017-01-01

    Background Extracellular vesicles are lipid bilayer vesicles containing protein, messengerRNA and microRNA. Cancer cell-derived extracellular vesicles may be diagnostic and therapeutic targets. We extracted extracellular vesicles from urine of urothelial carcinoma patients and the control group to identify cancer-specific microRNAs in urinary extracellular vesicles as new biomarkers. Materials and methods microRNA from urinary extracellular vesicles extracted from 6 urothelial carcinoma patie...

  11. Polymer/TiO₂ hybrid vesicles for excellent UV screening and effective encapsulation of antioxidant agents.

    Science.gov (United States)

    Du, Jianzhong; Sun, Hui

    2014-08-27

    Presented in this paper is a hybrid polymer/titanium dioxide (TiO2) vesicle that has excellent UV-screening efficacy and strong capacity to encapsulate antioxidant agents. Poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-polystyrene (PEO-b-PDMAEMA-b-PS) triblock terpolymer was synthesized by atom transfer radical polymerization (ATRP) and then self-assembled into vesicles. Those vesicles showed excellent UV-screening property due to the scattering by vesicles and the absorption by PS vesicle membrane. The selective deposition of solvophobic tetrabutyl titanate in the PDMAEMA shell and the PS membrane of the vesicles led to the formation of polymer/TiO2 hybrid vesicles, resulting in an enhanced UV-screening property by further reflecting and scattering UV radiation. The vesicles can effectively encapsulate antioxidant agents such as ferulic acid (up to 57%), showing a rapid antioxidant capability (within 1 min) and a long-lasting antioxidant effect.

  12. Matrix-dependent local retention of secretory vesicle cargo in cortical neurons

    NARCIS (Netherlands)

    de Wit, J.; Toonen, R.F.G.; Verhage, M.

    2009-01-01

    Neurons secrete many diffusible signals from synaptic and other secretory vesicles. We characterized secretion of guidance cues, neuropeptides, neurotrophins, and proteases from single secretory vesicles using pHluorin-tagged cargo in cortical neurons. Stimulation triggered transient and persistent

  13. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

    Science.gov (United States)

    Abels, Erik R; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.

  15. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta

    NARCIS (Netherlands)

    Pieters, B.C.; Arntz, O.J.; Bennink, M.B.; Broeren, M.G.; Caam, A.P.M. van; Koenders, M.I.; Lent, P.L. van; Berg, W.B. van den; Vries, M. de; Kraan, P.M. van der; Loo, F.A.J. van de

    2015-01-01

    SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in

  16. Vaccine Associated Myocarditis

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2017-04-01

    Full Text Available Most of the cases of vaccine associated myocarditis have been following small pox vaccination. Reports have also been there after streptococcal pneumonia vaccine and influenza vaccine. In some cases, autoimmune/inflammatory syndrome induced by adjuvants (ASIA used in the vaccine have been implicated. Exclusion of other causes is very important in the diagnostic process, especially that of acute coronary syndrome. Management is similar to that of other etiologies of myocarditis. These rare instances of myocarditis should not preclude one from taking necessary immunization for vaccine preventable diseases.

  17. Vaccines and Immunization Practice.

    Science.gov (United States)

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Immune Interference After Sequential Alphavirus Vaccine Vaccinations

    Science.gov (United States)

    2009-01-01

    containing 50gmL−1 each of neomycin and streptomycin and supplemented with 0.5% human serum albumin , U.S.P. The lyophilized vaccine is the filtered...vaccine was prepared from specific pathogen-free eggs infected with the attenuated CM4884 strain of WEE virus. The supernatant was harvested and filtered...supernatant harvested from primary chicken embryo cell cultures. The vaccine was prepared from spe- cific pathogen-free eggs infected with the

  19. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    OpenAIRE

    Böing, Anita N.; van der Pol, Edwin; Anita E. Grootemaat; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively.Aim: To develop a single-step protocol to isolate vesicles from human body fluids.Methods: Platelet-free supernatant, derived from platelet...

  20. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca2+ + Mg2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca2+ + Mg2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca2+ mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization.

  1. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    Science.gov (United States)

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  2. Studies of matrix vesicle-induced mineralization in a gelatin gel

    Science.gov (United States)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  3. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  4. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    Science.gov (United States)

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  5. Molecular Recognition of Vesicles : Host-Guest Interactions Combined with Specific Dimerization of Zwitterions

    NARCIS (Netherlands)

    Voskuhl, Jens; Fenske, Tassilo; Stuart, Marc C. A.; Wibbeling, Birgit; Schmuck, Carsten; Ravoo, Bart Jan

    2010-01-01

    The aggregation of beta-cyclodextrin vesicles can be induced by an adamantyl-substituted zwitterionic guanidiniocarbonylpyrrole carboxylate guest molecule (1). Upon addition of 1 to the cyclodextrin vesicles at neutral pH, the vesicles aggregate (but do not fuse), as shown by using UV/Vis and

  6. The function of vesicles in the actinomycete Frankia

    NARCIS (Netherlands)

    Meesters, T.

    1988-01-01

    The actinomycete Frankia is a symbiotic nitrogen fixer, living in root nodules of many non-leguminous plants. A typical characteristic of this endophytic organism is the formation of specialized swollen cell structures, called vesicles. Frankia

  7. Ultrasound-guided seminal vesicle biopsies in prostate cancer

    NARCIS (Netherlands)

    Wymenga, LFA; Duisterwinkel, FJ; Groenier, K; Mensink, HJA

    2000-01-01

    Invasion of prostatic adenocarcinoma into the seminal vesicles (SV) is generally accepted as an index of poor prognosis. The pre-operative identification of SV invasion is an important element in staging since it may alter subsequent treatment decisions. We studied the possibility of diagnosing SV

  8. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  9. Swinging of two-domains vesicles in shear flow

    Science.gov (United States)

    Viallat, Annie; Tusch, Simon; Khelloufi, Kamel; Leonetti, Marc

    2014-11-01

    Giant lipid vesicles and red blood cells in shear flow at low shear rates tank tread (TT) at small viscosity ratio between the inner particle volume and the external fluid, and flip or tumble (T) at large viscosity ratio. The phase diagram of motion of red blood cells is however much more complex. Swinging superimposes to TT, cells wobble and roll rather than tumble with increasing shear rate and present a shear-rate driven transition between TT to T. These features are attributed to the shear elasticity and the non spherical stress-free shape of the cell membrane, which stores shear elastic energy as a function of the relative position of its elements. We have created vesicles with a phase diagram of motion comparable to that of red blood cells by preparing membranes with two lipids and cholesterol. These membranes present two domains separated by a contact line. The line has a tension energy that depends on its relative position on the vesicle. Similarly to red blood cells, two-domains vesicles swing and wobble. An analytical model where line tension energy is added to the Keller and Skalak's model fits our experimental data without any adjustable parameter. Our experiments and model shed light on the motion of deformable particles in shear flow.

  10. Dimensional characterization of extracellular vesicles using atomic force microscopy

    NARCIS (Netherlands)

    Sebaihi, N.; de Boeck, B.; Yuana, Y.; Nieuwland, R.; Petry, J.

    2017-01-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from

  11. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  12. Effect of sodium deoxycholate and sodium cholate on DPPC vesicles

    Indian Academy of Sciences (India)

    TECS

    monitor different stages of interaction of bile salts with DPPC vesicles. NaDC induced significant changes in the ... more hydrophilic NaC does not interact with the membrane efficiently. Complete solubilisation of phos- pholipids .... the temperature was controlled by circulating water through a jacketted cuvette holder from a ...

  13. Patterns of Surface Immobilized Block Copolymer Vesicle Nanoreactors

    NARCIS (Netherlands)

    Chen, Qi; de Groot, G.W.; Schönherr, Holger; Vancso, Gyula J.

    2011-01-01

    The immobilization and positioning of ultra small reaction vessels on solid supports open new pathways in applications such as lab-on-a-chip, sensors, microanalyses and microreactors. In our work block copolymer vesicles made from polystyrene-block-polyacrylic acid (PS-b-PAA) were immobilized from

  14. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  15. Response of midpiece vesicles on human sperm to osmotic stress

    DEFF Research Database (Denmark)

    Abraham-Peskir, Joanna V; Chantler, Eric; Uggerhøj, Erik

    2002-01-01

    BACKGROUND: We investigated the osmotic response of midpiece vesicles (MPV) on human sperm. METHODS: Light microscopy, transmission X-ray microscopy and computer-aided semen analysis was used to investigate sperm in normozoospermic semen from healthy donors, separated from semen and suspended...

  16. Packing states of multilamellar vesicles in a nonionic surfactant system

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2001-01-01

    under shear. Here, we focused only in the MLV region, L-alpha(*), of a temperature sensitive surfactant system (C12E4-water) to investigate the packing of multilamellar vesicles as a function of temperature under constant shear. Two sets of temperature scan experiments were performed in the L...

  17. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle

    Directory of Open Access Journals (Sweden)

    P.F. Wong

    2014-09-01

    Conclusion: The results demonstrated that the inhibitory action of IMD on NE-induced seminal vesicle contraction was mediated via the ADM receptor(s and the nitric oxide production pathway, partially by the IMD receptor, but not by the CGRP receptor and the cAMP-PKA pathway.

  18. Glucose-oxidase based self-destructing polymeric vesicles

    NARCIS (Netherlands)

    Napoli, A.; Boerakker, M.J.; Tirelli, N.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.; Hubbell, J.A.

    2004-01-01

    We have designed oxidation-responsive vesicles from synthetic amphiphilic block copolymers ("polymersomes") of ethylene glycol and propylene sulfide. Thioethers in the hydrophobic poly(propylene sulfide) block are converted into the more hydrophilic sulfoxides and sulfones upon exposure to an

  19. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset

    NARCIS (Netherlands)

    Chiasserini, D.; van Weering, J.R.T.; Piersma, S.R.; Pham, T.V.; Malekzadeh, A.; Teunissen, C.E.; de Wit, H.; Jimenez, C.R.

    2014-01-01

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in

  20. Cell-derived vesicles exposing coagulant tissue factor in saliva

    NARCIS (Netherlands)

    Berckmans, René J.; Sturk, Auguste; van Tienen, Laurens M.; Schaap, Marianne C. L.; Nieuwland, Rienk

    2011-01-01

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is non-coagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism

  1. Cell-derived vesicles exposing coagulant tissue factor in saliva.

    Science.gov (United States)

    Berckmans, René J; Sturk, Auguste; van Tienen, Laurens M; Schaap, Marianne C L; Nieuwland, Rienk

    2011-03-17

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.

  2. Extracellular vesicles in human follicular fluid do not promote coagulation

    NARCIS (Netherlands)

    Franz, Cordula; Böing, Anita N.; Montag, Markus; Strowitzki, Thomas; Markert, Udo R.; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-01-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an

  3. The role of extracellular vesicles in neurodegenerative diseases.

    Science.gov (United States)

    Quek, Camelia; Hill, Andrew F

    2017-02-19

    Extracellular vesicles, including exosomes, are small membranous vesicles released from many biotypes, contributing to the disease progression and spreading. These extracellular vesicles provide an important mode of cell-to-cell communication by delivering proteins, lipids and RNA to target cells. Exosomes are found associated with neurodegenerative diseases, which are characterised by progressive degeneration of neurons and often associated with misfolded protein. The common diseases include Parkinson's disease (PD), Alzheimer's diseases (AD), amyotrophic lateral sclerosis (ALS), and the prion diseases. Of all neurodegenerative diseases, prion diseases are classified as the distinctive group owing to its transmissible and infectious nature of misfolded prion protein. The infectious prion particles have been demonstrated to be present in exosomes to spread prion infectivity within cells. Similarly, misfolded proteins involved in other neurodegenerative diseases such as Amyloid-β and tau in AD, α-synuclein in PD, and superoxide dismutase 1 in ALS have been demonstrated to exploit exosomes for induced spreading of misfolded proteins in a prion-like mechanism. Furthermore, RNA molecules can be taken up by the recipient cells as cargo in exosomes. These RNAs can module the expression of the target genes by repressing or inhibiting protein translation. Here we review the role of exosomes in prion diseases and other common neurodegenerative diseases, and discuss the potential of these vesicles for disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Transmembrane topology of the acetylcholine receptor examined in reconstituted vesicles

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, P.D.

    1987-01-01

    Each of the five acetylcholine receptor (AChR) subunits, ..cap alpha../sub 2/..beta..-..gamma..delta, is believed to have the same number of transmembrane crossing and to share the same general folding pattern. AChR isolated from the electric organ of electric fish is predominantly dimeric. We have used this bridge as a marker for the C-terminus of the delta subunit, and presumably that of the other subunits in addition. The disulfide's accessibility to hydrophilic reductants, principally glutathione (GSH), was tested in a reconstituted vesicle system. The reduction of the delta-delta desulfide, as evidenced by the transition of AChrR dimers to monomers, was quantitatively monitored on velocity sedimentation sucrose gradients. Alternatively, the reduction of delta/sub 2/ to delta was followed by employing non-reducing SDS-PAGE. Reductants such as GSH were able to access the bridge in intact right-side-out vesicles. No acceleration of this process was evident when the vesicles were disrupted by freeze-thaw or by detergents. Control experiments which determined the rate of reduction of entrapped diphtheria toxin, or that of /sup 3/H-GSH efflux, demonstrated that intact reconstituted vesicles provide an adequate permeability barrier to GSH access of their intravesicular space.

  5. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.

    Science.gov (United States)

    Tanner, Pascal; Baumann, Patric; Enea, Ramona; Onaca, Ozana; Palivan, Cornelia; Meier, Wolfgang

    2011-10-18

    One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes. Polymeric vesicles--structures similar to lipid vesicles but created using synthetic block copolymers--represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to enhance their target specificity. The optimization of these properties will allow researchers to design smart compartments that can co-encapsulate sensitive molecules, such as RNA, enzymes, and proteins, and their membranes allow insertion of membrane proteins rather than simply serving as passive carriers. In this Account, we illustrate the advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles. Polymeric vesicles generated by the self-assembly of amphiphilic copolymers (polymersomes) offer the advantage of simultaneous encapsulation of hydrophilic compounds in their aqueous cavities and the insertion of fragile, hydrophobic compounds in their membranes. This strategy has permitted us and others to design and develop new systems such as nanoreactors and artificial organelles in which active compounds are simultaneously protected and allowed to

  6. ORAL LIVE TULAREMIA VACCINE

    Science.gov (United States)

    Previously reported data on the pathogenesis and immunogenicity of live vaccine strain LVS have been sufficiently encouraging to warrant an...potential for oral immunization with live tularemia vaccine prepared from strain LVS.

  7. Vaccine Safety Datalink

    Science.gov (United States)

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  8. Vaccine Policy Issues

    National Research Council Canada - National Science Library

    Thaul, Susan

    2005-01-01

    .... Whether a vaccine's target is naturally occurring or present because of hostile intent, the issues policy makers must deal with include vaccine development, production, availability, safety, effectiveness, and access...

  9. Vaccinating against cervical cancer

    OpenAIRE

    Parry, Jane

    2007-01-01

    Since last year, it has become possible to vaccinate against the human papillomavirus (HPV) that causes most cases of cervical cancer, but countries face tough decisions before making the vaccine widely available.

  10. Vaccines and animal welfare.

    Science.gov (United States)

    Morton, D B

    2007-04-01

    Vaccination promotes animal welfare by protecting animal health, but it also has other welfare benefits, e.g. recent investigations have looked at the potential of vaccines in immunoneutering such as immunocastration--a humane alternative to the painful traditional methods. Similarly, vaccination can be used during disease outbreaks as a viable alternative to stamping-out, thus avoiding the welfare problems that on-farm mass slaughter can cause. Protecting animal health through vaccination leads to improved animal welfare, and maintaining good welfare ensures that animals can respond successfully to vaccination (as poor welfare can lead to immunosuppression, which can affect the response to vaccination). It is clear that vaccination has tremendous advantages for animal welfare and although the possible side effects of vaccination can have a negative effect on the welfare of some individual animals, the harm caused by these unwanted effects must be weighed against the undoubted benefits for groups of animals.

  11. Vaccines and Pregnancy

    Science.gov (United States)

    ... before I knew I was pregnant? Will this harm my baby? Probably not. The chance of the ... pertussis-tdap-vaccine-pregnancy/pdf/ . The need for vaccination for other diseases during pregnancy will vary and ...

  12. Vaccines and Thimerosal

    Science.gov (United States)

    ... medicines and vaccines. There is no evidence of harm caused by the low doses of thimerosal in ... and is therefore less likely to cause any harm. Thimerosal prevents the growth of bacteria in vaccines. ...

  13. The HPV Vaccination Crisis

    Science.gov (United States)

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  14. Ingredients of Vaccines

    Science.gov (United States)

    ... No vaccine produced in the United States contains penicillin. Egg protein is found in influenza and yellow ... bacteria. For children with a prior history of allergic reactions to any of these substances in vaccines, parents ...

  15. Vaccinations during Pregnancy

    Science.gov (United States)

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... Pregnancy > Prenatal care > Vaccinations and pregnancy Vaccinations and pregnancy E-mail to a friend Please fill in ...

  16. Vaccines Stop Illness

    Science.gov (United States)

    ... vaccines. Vaccine-preventable diseases have many social and economic costs: sick children miss school and can cause ... there are only a few cases of disease today, if we take away the protection given by ...

  17. Vaccines in Multiple Sclerosis.

    Science.gov (United States)

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  18. Pneumococcal Vaccines (PCV, PPSV)

    Science.gov (United States)

    ... Term Complications of Diabetes Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth > For Parents > Your Child's Immunizations: ... or HIV infection); or cochlear implants. Why the Vaccines Are Recommended Children younger than 2 years old, ...

  19. Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin

    Science.gov (United States)

    1979-01-01

    A mixture of HVJ (Sendai virus) spike proteins, the nontoxic fragment A of diphtheria toxin, lecithin, and cholesterol was solubilized in sucrose solution containing a nonionic neutral detergent. The liposomal vesicles which formed on removal of the detergent by dialysis were purified by gel filtration and centrifugation on a sucrose gradient. The resulting purified vesicles had hemagglutinating activity, hemolytic activity and, after solubilization, the enzymic activity of fragment A. The vesicles had no cell fusion activity. Electron microscopy showed that both the outside and inside of membranes of the vesicles were associated with the spikes. When the vesicles were freeze- fractured, no large aggregates of particles were seen on either face. Such fragment A-containing lipid vesicles (liposomes) with HVJ spikes bound to mamalian cell membrane and released their fragment A into the cytoplasm causing cell death. Neither fragment A-containing liposomes without spikes nor empty liposomes with spikes were toxic. PMID:217880

  20. [Mumps vaccine virus transmission].

    Science.gov (United States)

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  1. Conscientious Objection to Vaccination

    OpenAIRE

    Clarke, Steve; Giubilini, Alberto; Walker, Mary Jean

    2016-01-01

    ABSTRACT Vaccine refusal occurs for a variety of reasons. In this article we examine vaccine refusals that are made on conscientious grounds; that is, for religious, moral, or philosophical reasons. We focus on two questions: first, whether people should be entitled to conscientiously object to vaccination against contagious diseases (either for themselves or for their children); second, if so, to what constraints or requirements should conscientious objection (CO) to vaccination be subject. ...

  2. Rotavirus vaccines: an overview.

    OpenAIRE

    Midthun, K; Kapikian, A Z

    1996-01-01

    Rotavirus vaccine development has focused on the delivery of live attenuated rotavirus strains by the oral route. The initial "Jennerian" approach involving bovine (RIT4237, WC3) or rhesus (RRV) rotavirus vaccine candidates showed that these vaccines were safe, well tolerated, and immunogenic but induced highly variable rates of protection against rotavirus diarrhea. The goal of a rotavirus vaccine is to prevent severe illness that can lead to dehydration in infants and young children in both...

  3. Vaccine-associated hypersensitivity.

    Science.gov (United States)

    McNeil, Michael M; DeStefano, Frank

    2018-02-01

    Vaccine-associated hypersensitivity reactions are not infrequent; however, serious acute-onset, presumably IgE-mediated or IgG and complement-mediated anaphylactic or serious delayed-onset T cell-mediated systemic reactions are considered extremely rare. Hypersensitivity can occur because of either the active vaccine component (antigen) or one of the other components. Postvaccination acute-onset hypersensitivity reactions include self-limited localized adverse events and, rarely, systemic reactions ranging from urticaria/angioedema to full-blown anaphylaxis with multisystem involvement. Risk of anaphylaxis after all vaccines is estimated to be 1.31 (95% CI, 0.90-1.84) per million vaccine doses, respectively. Serious hypersensitivity reactions after influenza vaccines are particularly important because of the large number of persons vaccinated annually. Influenza vaccines are unique in requiring annual changes in the vaccines' antigenic composition to match the predicted circulating influenza strains. Recently, novel influenza vaccine types were introduced in the United States (recombinant vaccines, some with higher antigen content and a new adjuvanted vaccine). Providers should be aware of changing recommendations on the basis of recent published evidence for persons with a history of egg allergy to receive annual influenza vaccination. Further research is needed to elucidate the pathophysiology and risk factors for reported vaccine-associated adverse events. Further research is also needed to determine whether repeated annual inactivated influenza vaccination, the number of vaccine antigens administered at the same time, and the current timing of routine infant vaccinations are optimal for overall population well-being. Published by Elsevier Inc.

  4. Veterinary Replicon Vaccines

    NARCIS (Netherlands)

    Hikke, Mia C.; Pijlman, Gorben P.

    2017-01-01

    Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have

  5. Vaccines against mucosal infections.

    Science.gov (United States)

    Holmgren, Jan; Svennerholm, Ann-Mari

    2012-06-01

    There remains a great need to develop vaccines against many of the pathogens that infect mucosal tissues or have a mucosal port of entry. Parenteral vaccination may protect in some instances, but usually a mucosal vaccination route is necessary. Mucosal vaccines also have logistic advantages over injectable vaccines by being easier to administer, having less risk of transmitting infections and potentially being easier to manufacture. Still, however, only relatively few vaccines for human use are available: oral vaccines against cholera, typhoid, polio, and rotavirus, and a nasal vaccine against influenza. For polio, typhoid and influenza, in which the pathogens reach the blood stream, there is also an injectable vaccine alternative. A problem with available oral live vaccines is their reduced immunogenicity when used in developing countries; for instance, the efficacy of rotavirus vaccines correlates closely with the national per capita income. Research is needed to define the impact of factors such as malnutrition, aberrant intestinal microflora, concomitant infections, and preexisting immunity as well as of host genetic factors on the immunogenicity of these vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Mucosal vaccination of fish

    NARCIS (Netherlands)

    Rombout, J.H.W.M.; Kiron, V.

    2014-01-01

    Among the novel vaccination methods, mucosal vaccination seems to possess all the desired criteria. The chapter reviews the state-of-the-art knowledge regarding this type of vaccination with a focus on their uptake, immune stimulation, and where possible, discusses their potential as future

  7. Vaccination Records for Kids

    Science.gov (United States)

    ... can also ask your doctor to record the vaccines your child has received in your state’s immunization registry. Just ... Talk to your child’s doctor to determine what vaccines your child needs for protection against vaccine preventable diseases. Immunization ...

  8. Oral vaccination of fish

    NARCIS (Netherlands)

    Embregts, Carmen W.E.; Forlenza, Maria

    2016-01-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen

  9. Vaccination: problems and perspectives.

    Directory of Open Access Journals (Sweden)

    S. M. Kharit

    2009-01-01

    Full Text Available Massive vaccination had proved its effective morbidity reduction. Today it is necessary to extend vaccination schedule, creation of selective, regional schedules based on epidemiological, clinical, economical substantiation. Development of vaccination needs the profound scientific research, modernization of adverse reaction observing system, betterment training system and awareness of population.

  10. Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype.

    Science.gov (United States)

    Chaiyadet, Sujittra; Sotillo, Javier; Smout, Michael; Cantacessi, Cinzia; Jones, Malcolm K; Johnson, Michael S; Turnbull, Lynne; Whitchurch, Cynthia B; Potriquet, Jeremy; Laohaviroj, Marut; Mulvenna, Jason; Brindley, Paul J; Bethony, Jeffrey M; Laha, Thewarach; Sripa, Banchob; Loukas, Alex

    2015-11-15

    Throughout Asia, there is an unprecedented link between cholangiocarcinoma and infection with the liver fluke Opisthorchis viverrini. Multiple processes, including chronic inflammation and secretion of parasite proteins into the biliary epithelium, drive infection toward cancer. Until now, the mechanism and effects of parasite protein entry into cholangiocytes was unknown. Various microscopy techniques were used to identify O. viverrini extracellular vesicles (EVs) and their internalization by human cholangiocytes. Using mass spectrometry we characterized the EV proteome and associated changes in cholangiocytes after EV uptake, and we detected EV proteins in bile of infected hamsters and humans. Cholangiocyte proliferation and interleukin 6 (IL-6) secretion was measured to assess the impact of EV internalization. EVs were identified in fluke culture medium and bile specimens from infected hosts. EVs internalized by cholangiocytes drove cell proliferation and IL-6 secretion and induced changes in protein expression associated with endocytosis, wound repair, and cancer. Antibodies to an O. viverrini tetraspanin blocked EV uptake and IL-6 secretion by cholangiocytes. This is the first time that EVs from a multicellular pathogen have been identified in host tissues. Our findings imply a role for O. viverrini EVs in pathogenesis and highlight an approach to vaccine development for this infectious cancer. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  11. Isolation, Characterization and Biological Properties of Membrane Vesicles Produced by the Swine Pathogen Streptococcus suis.

    Directory of Open Access Journals (Sweden)

    Bruno Haas

    Full Text Available Streptococcus suis, more particularly serotype 2, is a major swine pathogen and an emerging zoonotic agent worldwide that mainly causes meningitis, septicemia, endocarditis, and pneumonia. Although several potential virulence factors produced by S. suis have been identified in the last decade, the pathogenesis of S. suis infections is still not fully understood. In the present study, we showed that S. suis produces membrane vesicles (MVs that range in diameter from 13 to 130 nm and that appear to be coated by capsular material. A proteomic analysis of the MVs revealed that they contain 46 proteins, 9 of which are considered as proven or suspected virulence factors. Biological assays confirmed that S. suis MVs possess active subtilisin-like protease (SspA and DNase (SsnA. S. suis MVs degraded neutrophil extracellular traps, a property that may contribute to the ability of the bacterium to escape the host defense response. MVs also activated the nuclear factor-kappa B (NF-κB signaling pathway in both monocytes and macrophages, inducing the secretion of pro-inflammatory cytokines, which may in turn contribute to increase the permeability of the blood brain barrier. The present study brought evidence that S. suis MVs may play a role as a virulence factor in the pathogenesis of S. suis infections, and given their composition be an excellent candidate for vaccine development.

  12. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  13. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification.

    Science.gov (United States)

    New, Sophie E P; Aikawa, Elena

    2013-08-01

    Extracellular vesicles are membrane micro/nanovesicles secreted by many cell types into the circulation and the extracellular milieu in physiological and pathological conditions. Evidence suggests that extracellular vesicles, known as matrix vesicles, play a role in the mineralization of skeletal tissue, but emerging ultrastructural and in vitro studies have demonstrated their contribution to cardiovascular calcification as well. Cells involved in the progression of cardiovascular calcification release active vesicles capable of nucleating hydroxyapatite on their membranes. This review discusses the role of extracellular vesicles in cardiovascular calcification and elaborates on this additional mechanism of calcification as an alternative pathway to the currently accepted mechanism of biomineralization via osteogenic differentiation.

  14. Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis.

    Science.gov (United States)

    Baldan-Martin, Montserrat; de la Cuesta, Fernando; Alvarez-Llamas, Gloria; Ruiz-Hurtado, Gema; Ruilope, Luis M; Barderas, Maria G

    2017-01-01

    Extracellular vesicles are membrane vesicles related to cell communication. These vesicles consist of proteins, RNA, and microRNA and are an interesting and important tool to understand the processes taking place in the secreting cell, especially in diseases in which its release is often enhanced. The used of blood extracellular vesicles in cardiovascular disease as a low invasive, easily accessible source of circulating markers could give us important information related to pathological process even more with the use of proteomic analysis. In this chapter, we describe a protocol to isolate and proteomic analyze extracellular vesicles from blood associated with cardiovascular disease.

  15. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Science.gov (United States)

    Hill, Andrew F.; Hochberg, Fred; Buzás, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs. PMID:25536934

  16. Brucellosis vaccines for livestock.

    Science.gov (United States)

    Goodwin, Zakia I; Pascual, David W

    2016-11-15

    Brucellosis is a livestock disease responsible for fetal loss due to abortions. Worldwide, this disease has profound economic and social impact by reducing the ability of livestock producers to provide an adequate supply of disease-free meat and dairy products. In addition to its presence in domesticated animals, brucellosis is harbored in a number of wildlife species creating new disease reservoirs, which adds to the difficulty of eradicating this disease. Broad and consistent use of the available vaccines would contribute in reducing the incidence of brucellosis. Unfortunately, this practice is not common. In addition, the current brucellosis vaccines cannot provide sterilizing immunity, and in certain circumstances, vaccinated livestock are not protected against co-mingling Brucella-infected wildlife. Given that these vaccines are inadequate for conferring complete protection for some vaccinated livestock, alternatives are being sought, and these include genetic modifications of current vaccines or their reformulations. Alternatively, many groups have sought to develop new vaccines. Subunit vaccines, delivered as a combination of soluble vaccine plus adjuvant or the heterologous expression of Brucella epitopes by different vaccine vectors are currently being tested. New live attenuated Brucella vaccines are also being developed and tested in their natural hosts. Yet, what is rarely considered is the route of vaccination which could improve vaccine efficacy. Since Brucella infections are mostly transmitted mucosally, mucosal delivery of a vaccine has the potential of eliciting a more robust protective immune response for improved efficacy. Hence, this review will examine these questions and provide the status of new vaccines for livestock brucellosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking

    Science.gov (United States)

    Li, Dongdong; Hérault, Karine; Zylbersztejn, Kathleen; Lauterbach, Marcel A; Guillon, Marc; Oheim, Martin; Ropert, Nicole

    2015-01-01

    Key points Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca2+-independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. Abstract Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca2+-regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca2+-independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes. PMID:25864578

  18. Economics of animal vaccination.

    Science.gov (United States)

    McLeod, A; Rushton, J

    2007-08-01

    This paper describes the steps that might be used in assessing the economic justification for using vaccination to control animal disease, and the way that vaccination is financed and administered. It describes decisions that have been taken with respect to preserving international trade, and issues related to protection of livelihoods. Regardless of the motivation for vaccination, its costs can usually be shared between the public and private sectors. Cost-effective vaccination requires methods of delivery to be adapted to livestock production systems. The paper concludes by suggesting questions around the use of vaccination that would merit further economic analysis.

  19. Vaccinations in Older Adults.

    Science.gov (United States)

    Burke, Megan; Rowe, Theresa

    2018-02-01

    Vaccines are important for preventing infections in adults aged ≥65 years. Older adults are at increased risk for complications from vaccine-preventable illnesses due to age-associated changes in immune function and chronic medical comorbidities. Vaccination rates for older adults remain low despite widely accepted practice guidelines. Recommended vaccinations for older adults include (1) influenza; (2) pneumococcal; (3) herpes zoster; (4) tetanus, diphtheria, pertussis; and (5) hepatitis B. Cost influences vaccination rates in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  1. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    Science.gov (United States)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  2. Emerging Vaccine Informatics

    Science.gov (United States)

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  3. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  4. Endotoxins in commercial vaccines.

    Science.gov (United States)

    Geier, M R; Stanbro, H; Merril, C R

    1978-01-01

    Twenty samples of commercial vaccines intended for administration to humans were assayed for the presence of bacterial endotoxins by using the Limulus amebocyte lysate test. Sixteen of the vaccines contained more than 0.1 ng of endotoxin per ml (which corresponds to 103 bacterial cell wall equivalents per ml in the undiluted vaccines). These results suggest that at some stage of preparation, the vaccines have contained varying amounts of gram-negative bacteria and may indicate the presence of other bacterial products as well. It might be useful to list the level of endotoxins, phage, and other contaminants on each vaccine lot to facilitate studies on any side effects of these contaminants. Selection of vaccine lots with the least endotoxin might reduce some of the adverse effects of vaccinations. PMID:727776

  5. Vaccines as Epidemic Insurance

    Directory of Open Access Journals (Sweden)

    Mark V. Pauly

    2017-10-01

    Full Text Available This paper explores the relationship between the research for and development of vaccines against global pandemics and insurance. It shows that development in advance of pandemics of a portfolio of effective and government-approved vaccines does have some insurance properties: it requires incurring costs that are certain (the costs of discovering, developing, and testing vaccines in return for protection against large losses (if a pandemic treatable with one of the vaccines occurs but also with the possibility of no benefit (from a vaccine against a disease that never reaches the pandemic stage. It then argues that insurance against the latter event might usefully be offered to organizations developing vaccines, and explores the benefits of insurance payments to or on behalf of countries who suffer from unpredictable pandemics. These ideas are then related to recent government, industry, and philanthropic efforts to develop better policies to make vaccines against pandemics available on a timely basis.

  6. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients.

    Science.gov (United States)

    Bryzgunova, Olga E; Zaripov, Marat M; Skvortsova, Tatyana E; Lekchnov, Evgeny A; Grigor'eva, Alina E; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Ryabchikova, Elena I; Yurchenko, Yuri B; Voitsitskiy, Vladimir E; Laktionov, Pavel P

    2016-01-01

    Recent studies suggest that extracellular vesicles may be the key to timely diagnosis and monitoring of genito-urological malignancies. In this study we investigated the composition and content of extracellular vesicles found in the urine of healthy donors and prostate cancer patients. Urine of 14 PCa patients and 20 healthy volunteers was clarified by low-speed centrifugation and total extracellular vesicles fraction was obtain by high-speed centrifugation. The exosome-enriched fraction was obtained by filtration of total extracellular vesicles through a 0.1 μm pore filter. Transmission electron microscopy showed that cell-free urine in both groups contained vesicles from 20 to 230 nm. Immunogold staining after ultrafiltration demonstrated that 95% and 90% of extracellular vesicles in healthy individuals and cancer patients, respectively, were exosomes. Protein, DNA and RNA concentrations as well as size distribution of extracellular vesicles in both fractions were analyzed. Only 75% of the total protein content of extracellular vesicles was associated with exosomes which amounted to 90-95% of all vesicles. Median DNA concentrations in total extracellular vesicles and exosome-enriched fractions were 18 pg/ml and 2.6 pg/ml urine, correspondingly. Urine extracellular vesicles carried a population of RNA molecules 25 nt to 200 nt in concentration of no more than 290 pg/ml of urine. Additionally, concentrations of miR-19b, miR-25, miR-125b, and miR-205 were quantified by qRT-PCR. MiRNAs were shown to be differently distributed between different fractions of extracellular vesicles. Detection of miR-19b versus miR-16 in total vesicles and exosome-enriched fractions achieved 100%/93% and 95%/79% specificity/sensitivity in distinguishing cancer patients from healthy individuals, respectively, demonstrating the diagnostic value of urine extracellular vesicles.

  7. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kobæk Larsen, Morten; Tuck, Simon; Færgeman, Nils J.

    2006-01-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydro...

  8. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes.

    Science.gov (United States)

    Jin, Haibao; Zhou, Yongfeng; Huang, Wei; Zheng, Yongli; Zhu, Xinyuan; Yan, Deyue

    2014-06-11

    Large-scale and robust vesicle aggregates were obtained through molecular recognition among cell-sized polymer vesicles, carbon nanotubes and AuNPs, driven by adhesion interactions between Au and polydopamine. Vesicle fusion was effectively avoided in this three-component vesicle aggregation process.

  9. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Vad, Brian; Christiansen, Gunna

    2009-01-01

    changed to serines to emulate the reduced peptide. SerADan aggregates rapidly at pH 5.0 and 7.5 in a series of conformational transitions to form beta-sheet rich fibril-like structures, which nevertheless do not bind amyloid-specific dyes, probably due to the absence of organized beta-sheet contacts....... Aggregation is prevented at neutral/acidic pH and low ionic strength by anionic lipid vesicles. These vesicles are permeabilized by monomeric SerADan assembling on the membrane to form stable beta-sheet structures which are different from the solution aggregates. In contrast, solution ageing of SerADan first......-fibrillar aggregates can assemble in a series of steps to form a hierarchy of higher-order assemblies, where rapid formation of stable local beta-sheet structure may prevent rearrangement to amyloid proper....

  10. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Kosaka

    2016-02-01

    Full Text Available One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs. EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs, are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer.

  11. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Science.gov (United States)

    Kosaka, Nobuyoshi

    2016-01-01

    One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408

  12. Complex motions of vesicles and capsules in flow

    Science.gov (United States)

    Vlahovska, Petia; Young, Yuan-Nan; Misbah, Chaouqi

    2009-11-01

    Membrane-bound particles exhibit rich dynamics when placed in flow. For example, in simple shear flow, vesicles made of lipid bilayers tank-tread or tumble. Capsules and red blood cells also show oscillations in the tank-treading inclination angle, called swinging. This motion originates from membrane shear--elasticity and non--spherical unstressed shape. We develop an analytical theory that quantitatively describes the swinging dynamics. Our analysis takes into account that the membrane is deformable, incompressible, and resists bending and shearing. Analytical results for the shape evolution are derived by considering a nearly-spherical particle shape. The phase diagram is constructed and compared to previous models which assume fixed ellipsoidal shape. Dynamics in quadratic and time-dependent flows is also discussed. Floquet analysis is conducted to investigate the vesicle dynamics and conditions for chaotic shape and flow dynamics are established.

  13. Significance of Extracellular Vesicles: Pathobiological Roles in Disease.

    Science.gov (United States)

    Yamamoto, Seiji; Azuma, Erika; Muramatsu, Masashi; Hamashima, Takeru; Ishii, Yoko; Sasahara, Masakiyo

    2016-11-25

    Over the past decade, many studies have been conducted on extracellular vesicles (EVs) in the fields of basic and clinical research. EVs are small sized membranous vesicles generated from many type of cells upon activation by environmental stresses such as heat, hypoxia, and irradiation. EVs theoretically consist of microparticles/microvesicles, exosomes, and apoptotic bodies by different productive mechanisms. Clinically, EVs are observed in the blood stream of patients suffering from acute and chronic inflammation evoked by various diseases, and number of EVs in blood flow is often dependent on the inflammatory status and severity of the diseases. To date, it has been reported that small molecules such as RNAs and proteins are encapsulated in EVs; however, the functions of EVs are still unclear in the biological, pathological, and clinical aspects. In this review, we summarize and discuss the biogenesis-based classification, expected function, and pathobiological activities of EVs.

  14. Emerging roles of extracellular vesicles in cellular senescence and aging.

    Science.gov (United States)

    Takasugi, Masaki

    2018-02-01

    Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Perez-Hernandez, Javier; Redon, Josep; Cortes, Raquel

    2017-03-28

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell types, carry nucleic acids, proteins and lipids and play a crucial role in cell-to-cell communication. EVs can stimulate or suppress the immune responses depending on the context. In SLE, EVs can work as autoadjuvants, enhance immune complex formation and maintaining inflammation state. Over the last years, EVs derived from mesenchymal stem cells and antigen presenting cells have emerged as cell-free therapeutic agents to treat autoimmune and inflammatory diseases. In this review, we summarize the current therapeutic applications of extracellular vesicles to regulate immune responses and to ameliorate disease activity in SLE and other autoimmune disorders.

  16. Understanding the biosynthesis of platelets-derived extracellular vesicles.

    Science.gov (United States)

    Antwi-Baffour, Samuel; Adjei, Jonathan; Aryeh, Claudia; Kyeremeh, Ransford; Kyei, Foster; Seidu, Mahmood A

    2015-09-01

    Platelet-derived extracellular vesicles (PEVs) are described as sub-cellular vesicles released into circulation upon platelets shear stress, activation, injury, or apoptosis. They are considered as universal biomarkers in a wide range of physiological and pathological processes. They are of tremendous significance for the prediction, diagnosis, and observation of the therapeutic success of many diseases. Understanding their biosynthesis and therefore functional properties would contribute to a better understanding of the pathological mechanisms leading to various diseases in which their levels are raised and they are implicated. The review takes a critical look at the historical background of PEVs, their structural components, the mechanism of their formation, physiological, and exogenous stimuli inducing their release and their detection. It concludes by highlighting on the importance of undertaking in-depth studies into PEVs biosynthesis and subsequently gaining a better understanding of their biological role in general.

  17. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  18. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.

    Science.gov (United States)

    Bahrami, Amir Houshang; Weikl, Thomas R

    2018-01-08

    Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

  19. Extracellular vesicles: small bricks for tissue repair/regeneration.

    Science.gov (United States)

    Taverna, Simona; Pucci, Marzia; Alessandro, Riccardo

    2017-02-01

    Extracellular vesicles (EVs) are nano-sized membrane vesicles involved in intercellular communication. EVs have pleiotropic actions in physiological and pathological conditions. The ability of EVs to transports proteins, drugs and nucleic acid, to target specific cells and to increase the stability of therapeutic cargo, make EVs interesting as new devices for the treatment of human disease. In a recently published issue of European journal of pharmaceutical sciences, Silva and colleagues reviewed the ability of EVs to modulate tissue repair and regeneration, focusing on their roles and therapeutic potential as immunomodulatory messengers. In this perspective, we discussed the open questions regarding the dual role of EVs in immune system, as well as the technical limitation of the procedure for EVs isolation and administration in clinical practices. EV-based therapies require further studies to consider EVs as promising candidate for a novel cell-free therapy in the context of regeneration medicine.

  20. Morphological and topological transformations of lipid bilayer vesicles

    Science.gov (United States)

    Nomura, Fumimasa; Honda, Makoto; Takeda, Shuichi; Umeda, Tamiki; Takiguchi, Kingo; Hotani, Hirokazu

    2000-06-01

    Liposomes are the micro compartments made of lipid bilayer membrane of which characteristics are quite similar to those of biological membrane. To form artificial cell-like structure, we made liposomes that contained subunit of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shape by mechanical force generated by the polymerization of encapsulated subunits of microtubules. Disk or dumbbell shape was generated by the polymerization of encapsulated action. Dynamic processes of morphological transformations of liposomes were visualized by the high intensity dark-field light microscopy. Topological changes such as fusion and division of membrane vesicles also play an essential role in cellular activities. We investigated the mechanism of these topological transformations by visualizing their real-time processes. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles. .