WorldWideScience

Sample records for vesicle marker synaptophysin

  1. A Fine Balance of Synaptophysin Levels Underlies Efficient Retrieval of Synaptobrevin II to Synaptic Vesicles.

    Directory of Open Access Journals (Sweden)

    Sarah L Gordon

    Full Text Available Synaptobrevin II (sybII is a vesicular soluble NSF attachment protein receptor (SNARE protein that is essential for neurotransmitter release, and thus its correct trafficking to synaptic vesicles (SVs is critical to render them fusion competent. The SV protein synaptophysin binds to sybII and facilitates its retrieval to SVs during endocytosis. Synaptophysin and sybII are the two most abundant proteins on SVs, being present in a 1:2 ratio. Synaptophysin and sybII are proposed to form a large multimeric complex, and the copy number of the proteins in this complex is also in a 1:2 ratio. We investigated the importance of this ratio between these proteins for the localisation and trafficking of sybII in central neurons. SybII was overexpressed in mouse hippocampal neurons at either 1.6 or 2.15-2.35-fold over endogenous protein levels, in the absence or presence of varying levels of synaptophysin. In the absence of exogenous synaptophysin, exogenous sybII was dispersed along the axon, trapped on the plasma membrane and retrieved slowly during endocytosis. Co-expression of exogenous synaptophysin rescued all of these defects. Importantly, the expression of synaptophysin at nerve terminals in a 1:2 ratio with sybII was sufficient to fully rescue normal sybII trafficking. These results demonstrate that the balance between synaptophysin and sybII levels is critical for the correct targeting of sybII to SVs and suggests that small alterations in synaptophysin levels might affect the localisation of sybII and subsequent presynaptic performance.

  2. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.

    Science.gov (United States)

    Arthur, Christopher P; Stowell, Michael H B

    2007-06-01

    Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.

  3. Nerve Growth Factor Regulates Synaptophysin Expression In Developing Trigeminal Ganglion Neurons In Vitro

    OpenAIRE

    Tarsa, L.; Balkowiec, A.

    2008-01-01

    The role of neuronal growth factors in synaptic maturation of sensory neurons, including trigeminal ganglion (TG) neurons, remains poorly understood. Here, we show that nerve growth factor (NGF) regulates the intracellular distribution of the synaptic vesicle protein synaptophysin (Syp) in newborn rat TG neurons in vitro. While reducing the number of Syp-positive cell bodies, NGF dramatically increases Syp immunoreactivity in both proximal and distal segments of the neurite. Intriguingly, the...

  4. Comparative marker analysis of extracellular vesicles in different human cancer types

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshioka

    2013-06-01

    Full Text Available Several cell types, including tumour cells, secrete extracellular vesicles (EVs, and tumour-derived EVs play a role in cancer initiation and progression. These vesicles include both a common set of membrane and cytosolic proteins and origin-specific subsets of proteins that likely correlated to cell type–associated functions. To confirm the presence of EVs in the preparations, researchers have identified so-called EV marker proteins, including the tetraspanin family proteins and such cytosolic proteins as heat shock 70 kDa protein 4 (HSP70 and tumour susceptibility gene 101 (TSG101. However, studies have shown that some EV markers are not always present in all EVs, which not only complicates the identification of EVs but also precludes the quantitative evaluation of EV proteins. Thus, it is strongly required to explore well-conserved EV marker proteins that are present at similar levels, regardless of their tissue or cellular origin. In this study, we compared the presence of 11 well-known EV marker proteins by immunoblotting using EVs isolated from 4 human prostate cell lines and 5 human breast cell lines, including cancer cells with different phenotypes. We found that all the tested EVs were positive for CD9 and CD81, with similar abundance that was irrespective of the EV origin. In contrast, other EV marker proteins, such as TSG101, Rab-5b and CD63, were detected in an inconsistent manner, depending on the origin of the EVs. Thus, we propose that the detection of CD9 and/or CD81 should ensure the presence of EVs.

  5. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes

    Science.gov (United States)

    Kowal, Joanna; Arras, Guillaume; Colombo, Marina; Jouve, Mabel; Morath, Jakob Paul; Primdal-Bengtson, Bjarke; Dingli, Florent; Tkach, Mercedes; Théry, Clotilde

    2016-01-01

    Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies. PMID:26858453

  6. Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Sherwood, Chet C; Duka, Tetyana; Stimpson, Cheryl D

    2010-01-01

    there is a relationship between hand preference on a coordinated bimanual task and the interhemispheric distribution of synaptophysin as measured by both stereologic counts of immunoreactive puncta and by Western blotting. Our results demonstrated that synaptophysin-immunoreactive puncta density is not asymmetric...

  7. Two distinct populations of synaptic-like vesicles from rat brain

    Science.gov (United States)

    Thoidis, Galini; Chen, Peng; Pushkin, Alexander V.; Vallega, Gino; Leeman, Susan E.; Fine, Richard E.; Kandror, Konstantin V.

    1998-01-01

    In nonneuronal cells, several plasma membrane proteins such as exofacial enzymes, receptors, and ion channels recycle between their intracellular compartment(s) and the cell surface via an endosomal pathway. In neurons, however, this pathway has not been extensively characterized. In particular, it remains unclear whether or not it is related to the recycling of small synaptic vesicles, the major pathway of membrane traffic in nerve terminals. To approach this problem, we purified and studied a vesicular fraction from rat brain synaptosomes. Two distinct populations of vesicles with different buoyant densities and sedimentation coefficients were detected in this fraction by sucrose gradient centrifugation and Western blot analysis of the individual proteins. Both populations contain proteins that are markers of synaptic vesicles, namely, SV2, synaptotagmin, synaptophysin, secretory carrier membrane proteins (SCAMPs), synaptobrevin, and rab3a. A striking difference between the two populations is the presence of arginine aminopeptidase activity (a previously suggested marker for the regulated endosomal recycling pathway) exclusively in the lighter less-dense vesicles. The same two vesicular populations were also detected in the preparation of clathrin-coated vesicles isolated from whole rat brain or purified synaptosomes after removal of their clathrin coats by incubation at pH 8.5. We conclude, therefore, that both types of vesicles recycle in synaptosomes via a clathrin-mediated pathway. These data present experimental evidence for biochemical heterogeneity of synaptic-like vesicles in rat brain. PMID:9419350

  8. Extracellular Vesicles in Bile as Markers of Malignant Biliary Stenoses

    DEFF Research Database (Denmark)

    Severino, Valeria; Dumonceau, Jean Marc; Delhaye, Myriam

    2017-01-01

    Background & Aims Algorithms for diagnosis of malignant common bile duct (CBD) stenoses are complex and lack accuracy. Malignant tumors secrete large numbers of extracellular vesicles (EVs) into surrounding fluids; EVs might therefore serve as biomarkers for diagnosis. We investigated whether...

  9. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes

    OpenAIRE

    Kowal, Joanna; Arras, Guillaume; Colombo, Marina; Jouve, Mabel; Morath, Jakob Paul; Primdal-Bengtson, Bjarke; Dingli, Florent; Loew, Damarys; Tkach, Mercedes; Théry, Clotilde

    2016-01-01

    The last decade has seen a rapid expansion of interest in extracellular vesicles (EVs), proposed to mediate cell–cell communication in patho/physiological conditions. Although heterogeneity of EVs has become obvious, as highlighted recently by the International Society for Extracellular Vesicles, the field is lacking specific tools to distinguish EVs of different intracellular origins, and thus probably different functions. Here, thanks to a comprehensive comparison of different types of EVs ...

  10. Residual seminal vesicle displacement in marker-based image-guided radiotherapy for prostate cancer and the impact on margin design

    NARCIS (Netherlands)

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Catton, Charles N.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2011-01-01

    The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the

  11. Differential expression of syntaxin-1 and synaptophysin in the ...

    Indian Academy of Sciences (India)

    Their expression in both plexiform layers followed a centre-to-periphery gradient. The immunoreactivities for both proteins were found in the immature photoreceptor, amacrine and ganglion cells; however, synaptophysin was differentially localized in bipolar cells and their axons, and syntaxin was present in some horizontal ...

  12. Synaptophysin 1 Clears Synaptobrevin 2 from the Presynaptic Active Zone to Prevent Short-Term Depression

    Directory of Open Access Journals (Sweden)

    Rajit Rajappa

    2016-02-01

    Full Text Available Release site clearance is an important process during synaptic vesicle (SV recycling. However, little is known about its molecular mechanism. Here we identify self-assembly of exocytosed Synaptobrevin 2 (Syb2 and Synaptophysin 1 (Syp1 by homo- and hetero-oligomerization into clusters as key mechanisms mediating release site clearance for preventing cis-SNARE complex formation at the active zone (AZ. In hippocampal neurons from Syp1 knockout mice, neurons expressing a monomeric Syb2 mutant, or after acute block of the ATPase N-ethylmaleimide-sensitive factor (NSF, responsible for cis-SNARE complex disassembly, we found strong frequency-dependent short-term depression (STD, whereas retrieval of Syb2 by compensatory endocytosis was only affected weakly. Defects in Syb2 endocytosis were stimulus- and frequency-dependent, indicating that Syp1 is not essential for Syb2 retrieval, but for its efficient clearance upstream of endocytosis. Our findings identify an SV protein as a release site clearance factor.

  13. The immunohistochemical localization of synaptophysin protein (p38) in the gastro-entero-pancreatic (GEP) system of reptiles.

    Science.gov (United States)

    Trandaburu, Tiberiu; Trandaburu, Ioana

    2009-01-01

    The gastro-entero-pancreatic (GEP) system of four reptilian species: turtle (Emys orbicularis), lizards (Lacerta viridis and Lacerta agilis) and snake (Natrix natrix) has been investigated immunohistochemically for the presence and topographic distribution of synaptophysin. Among the studied reptiles, only in turtles were neural, glial and neuroendocrine elements labelled for this marker protein. Semi-quantitative evaluation of the immunolabelled neural structures distributed throughout the gastroenteric wall revealed, with two exceptions, highly significant mean differences between the successive gut segments. Significant mean differences were noted also between myenteric and submucosal neurons immunolabelled in the various gastroenteric regions. Moreover, the comparison of ganglionic perikarya groups showed, at least in the stomach, significant mean differences. The amounts of immunopositive glial cells seemed to vary similarly to those of nerve fibers along the entire gastrointestinal tract. Finally, every "closed" and "open" population of immunopositive epithelial cells showed typical fluctuations along the gut. In addition to the distribution of synaptophysin in the GEP system of turtles, the above findings furnish evidence that this marker protein, which is widespread in mammals, is only occasionally expressed in reptiles and probably in most poikilothermic vertebrates.

  14. Vesicle Photonics

    Science.gov (United States)

    Vasdekis, A. E.; Scott, E. A.; Roke, S.; Hubbell, J. A.; Psaltis, D.

    2013-07-01

    Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transport molecular payloads. Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane. Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy). We conclude with emerging vesicle applications in biology and photochemical microreactors.

  15. Amyloid precursor protein knockout diminishes synaptic vesicle proteins at the presynaptic active zone in mouse brain.

    Science.gov (United States)

    Laßek, Melanie; Weingarten, Jens; Acker-Palmer, Amparo; Bajjalieh, Sandra M; Muller, Ulrike; Volknandt, Walter

    2014-01-01

    The amyloid precursor protein (APP) has previously been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a presynaptic active zone-localized pool. By analyzing homozygous APP knockout mice we evaluated the impact of APP on synaptic vesicle protein abundance at synaptic release sites. Following immunopurification of synaptic vesicles and the attached presynaptic plasma membrane, individual proteins were subjected to quantitative Western blot analysis. We demonstrate that APP deletion in knockout animals reduces the abundance of the synaptic vesicle proteins synaptophysin, synaptotagmin-1, and SV2A at the presynaptic active zone. Conversely, deletion of the additional APP family members, APLP1 and APLP2 resulted in an increase in synaptophysin, synaptogamin-1, and SV2A abundance. When transmembrane APP is lacking in APPsα-KI/APLP2-KO mice synaptic vesicle protein abundance corresponds to that in APP -KO mice. Deletion of the synaptic vesicle protein 2 (SV2) A and B had no effect on APP and synaptophysin abundance but decreased synaptotagmin-1. Our data suggest that APP controls the abundance of synaptic vesicle proteins at the presynaptic release sites and thus impacts synaptic transmission.

  16. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Haiyan eLi

    2011-11-01

    Full Text Available Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2, and a presynaptically-localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3 with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Re-acidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real-time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.

  17. Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons

    DEFF Research Database (Denmark)

    Ehrhart-Bornstein, M; Treiman, M; Hansen, Gert Helge

    1991-01-01

    and neurotransmitter release were measured in each of the culture types as a function of development for up to 8 days in vitro, using the same batch of cells for both sets of measurements to obtain optimal comparisons. The content and the distribution of synaptophysin in the developing cells were assessed...... by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons....... The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase...

  18. Effectiveness of computer-aided diagnosis (CADx) of breast pathology using immunohistochemistry results of core needle biopsy samples for synaptophysin, oestrogen receptor and CK14/p63 for classification of epithelial proliferative lesions of the breast.

    Science.gov (United States)

    Maeda, Ichiro; Kubota, Manabu; Ohta, Jiro; Shinno, Kimika; Tajima, Shinya; Ariizumi, Yasushi; Doi, Masatomo; Oana, Yoshiyasu; Kanemaki, Yoshihide; Tsugawa, Koichiro; Ueno, Takahiko; Takagi, Masayuki

    2017-12-01

    The aim of this study was to develop a computer-aided diagnosis (CADx) system for identifying breast pathology. Two sets of 100 consecutive core needle biopsy (CNB) specimens were collected for test and validation studies. All 200 CNB specimens were stained with antibodies targeting oestrogen receptor (ER), synaptophysin and CK14/p63. All stained slides were scanned in a whole-slide imaging system and photographed. The photographs were analysed using software to identify the proportions of tumour cells that were positive and negative for each marker. In the test study, the cut-off values for synaptophysin (negative and positive) and CK14/p63 (negative and positive) were decided using receiver operating characteristic (ROC) analysis. For ER analysis, samples were divided into groups with 10% positive cells and decided using receiver operating characteristic (ROC) analysis. Finally, these two groups categorised as ER-low, ER-intermediate (non-low and non-high) and ER-high groups. In the validation study, the second set of immunohistochemical slides were analysed using these cut-off values. The cut-off values for synaptophysin, 10% ER positive and CK14/p63 were 0.14%, 2.17%, 77.93% and 18.66%, respectively. The positive predictive value for malignancy (PPV) was 100% for synaptophysin-positive/ER-high/(CK14/p63)-any or synaptophysin-positive/ER-low/(CK14/p63)-any. The PPV was 25% for synaptophysin-positive/ER-intermediate/(CK14/p63)-positive. For synaptophysin-negative/(CK14/p63)-negative, the PPVs for ER-low, ER-intermediate and ER-high were 100%, 80.0% and 95.8%, respectively. The PPV was 4.5% for synaptophysin-negative/ER-intermediate/(CK14/p63)-positive. The CADx system was able to analyse sufficient data for all types of epithelial proliferative lesions of the breast including invasive breast cancer. This system may be useful for pathological diagnosis of breast CNB in routine investigations. © Article author(s) (or their employer(s) unless otherwise stated

  19. Hippocampal synaptophysin immunoreactivity is reduced during natural hypothermia in ground squirrels

    NARCIS (Netherlands)

    Strijkstra, AM; Hut, RA; de Wilde, MC; Stieler, J; Van der Zee, EA; Wilde, Martijn C. de

    2003-01-01

    Natural hypothermia during hibernation results in physiological and behavioral deficits. These changes may be traced at the level of hippocampal signal transduction. We investigated synaptophysin immunoreactivity (SYN-ir) in the hippocampus after short and long periods of hypothermia and short and

  20. Effects of duration and timing of prenatal stress on hippocampal myelination and synaptophysin expression.

    Science.gov (United States)

    Xu, Jian; Yang, Bo; Yan, Chonghuai; Hu, Howard; Cai, Shizhong; Liu, Junxia; Wu, Meiqin; Ouyang, Fengxiu; Shen, Xiaoming

    2013-08-21

    The relationship between prenatal stress (PS) exposure and neurodevelopmental deficits remains inconclusive, especially when assessing the role of PS duration and timing and sex-dependent effects. This study explored a sex-specific association between the duration and timing of exposure and the outcomes of PS-induced neurotoxicity in hippocampal microstructure, synaptophysin expression, and neurobehavioral performance in rats. Pregnant rats were randomly assigned to control, PS-ML (exposed to prenatal restraint stress in the mid-to-late period of pregnancy), or PS-L (exposed in the late period of pregnancy) groups, and offspring in each group were divided into two subgroups by sex. Surface-righting reflex test, cliff avoidance test and Morris water maze test showed that neurodevelopmental levels were reduced in PS-treated pups but without significant sex differences. On postnatal day 22, hippocampal microstructure was examined by electron microscopy, and the expression of hippocampal synaptophysin was assessed by western blot. Abnormal ultrastructural appearance of hippocampal neurons and myelin sheaths, more degenerating neurons and higher G-ratios were found in young PS-ML and PS-L rats as well as reduced expression of hippocampal synaptophysin, although PS-ML pups were more greatly affected than PS-L, with males showing slightly greater impairments than females. These findings suggest that hippocampal hypo-myelination and decreased synaptophysin expression in neurodevelopment may be a duration and time-dependent effect of prenatal stress exposure, modified slightly by sex. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Dendrite-derived supernumerary axons on adult axotomized motor neurons possess proteins that are essential for the initiation and propagation of action potentials and synaptic vesicle release

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; MacDermid, Victoria E; Montague, Steven J

    2011-01-01

    on these processes matches the arrangement of these channels that is necessary for the initiation and conduction of action potentials. At terminal bouton-like structures they possess key proteins necessary for the release of synaptic vesicles (SV2 and synaptophysin). Thus, axon-like processes emanating from the tips...

  2. The reciprocal links between synaptophysin serum levels and the prevalence of metabolic syndrome according to selected low-grade inflammation indices and age-related androgen serum level changes in men.

    Science.gov (United States)

    Herman, Waldemar Adam; Wójcicka, Marlena; Kołodziejczak, Barbara; Losy, Jacek; Łącka, Katarzyna

    2016-01-01

    The correlations between synaptophysin (SYP) plasma levels and the brain neurotransmission activity are still not strictly identified. However, the efficiency of neurotransmission depends, inter alia, on the age, hormonal status, and coexistence of a low-grade systemic inflammation (LGSI) which is regarded as a pathogenic link with obesity and insulin resistance, atherogenesis and aging per se. The aim of this study was to investigate the associations between synaptophysin serum levels and age, LGSI indices, homocysteine and selected hormonal parameters (dehydroepiandrosterone and its sulfate, free-testosterone, SHBG) and the prevalence of metabolic syndrome (MS) in men over the age of 40. After randomization, 157 male volunteers aged 40-80 years were included in a retrospective study. MS was diagnosed according to the International Diabetes Federation criteria. For the diagnosis of late-onset hypogonadism (LOH) we adopted the criteria proposed by the European Male Aging Study (EMAS). Synaptophysin plasma concentrations in respondents decreased with age, but only between the ages of 40 to 70 years. There were no differences in SYP plasma concentrations in men suffering from MS compared to healthy subjects (p=0.845). Men suffering from MS demonstrated while higher hs-CRP (high sensitive C - reactive protein) levels than healthy (p=0.019), contrary to the α1-antichymotrypsin and transferrin. A positive monotonic correlation between synaptophysin and hs-CRP was demonstrated (r=0.235; p=0.003). No statistically significant relationships between SYP and homocysteine plasma levels were presented (r=0.047; p=0.562), although in men diagnosed with MS higher homocysteine levels compared to healthy subjects were demonstrated. No correlations between synaptophysin and free testosterone (r=-0.036; p=0.651), DHEA (r=-0.122; p=0.128) and its sulphate (r=-0.024; p=0.764) as well as SHBG (r=-0.088; p=0.288) were demonstrated. Although the correlations between synaptophysin plasma

  3. Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.

    Science.gov (United States)

    Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang

    2017-09-04

    During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.

  4. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  5. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain

    DEFF Research Database (Denmark)

    Malkiewicz, Katarzyna; Mohammed, Roma; Folkesson, Ronnie

    2006-01-01

    did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha......-synuclein was accompanied by a transient increase in parkin and synaptophysin levels. Interestingly, in the hypothalamus the levels of alpha-synuclein remained decreased after 21 days post treatment perhaps due to regional differences in the PCBs elimination or perhaps a more specific interaction with the dopaminergic...... cells that are present in the hypothalamus that needs to be investigated further....

  6. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures.

    Science.gov (United States)

    Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L; Pait, Morgan C; Almeida, Michael F; Ghukasyan, Vladimir V; Bahr, Ben A

    2016-12-01

    Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without

  7. INSM1 Demonstrates Superior Performance to the Individual and Combined Use of Synaptophysin, Chromogranin and CD56 for Diagnosing Neuroendocrine Tumors of the Thoracic Cavity.

    Science.gov (United States)

    Rooper, Lisa M; Sharma, Rajni; Li, Qing Kay; Illei, Peter B; Westra, William H

    2017-11-01

    Despite the importance of recognizing neuroendocrine differentiation when diagnosing tumors of the thoracic cavity, the sensitivity of traditional neuroendocrine markers is suboptimal, particularly for high-grade neuroendocrine carcinomas such as small cell lung carcinoma and large cell neuroendocrine carcinoma. To increase sensitivity, neuroendocrine markers are routinely ordered as panels of multiple immunostains where any single positive marker is regarded as sufficient evidence of neuroendocrine differentiation. Insulinoma-associated protein 1 (INSM1) is a well-validated transcription factor of neuroendocrine differentiation that has only recently been evaluated for diagnostic use. We performed INSM1 immunohistochemistry on a large series of thoracic neuroendocrine and non-neuroendocrine tumors and compared its performance to synaptophysin, chromogranin, and CD56. INSM1 was positive in 94.9% of small cell lung carcinomas and 91.3% of large cell neuroendocrine carcinomas, compared with 74.4% and 78.3% with the combined panel of traditional markers. INSM1 also stained all (100%) of the atypical carcinoids, typical carcinoids and mediastinal paragangliomas, but only 3.3% of adenocarcinomas and 4.2% of squamous cell carcinomas. Overall, INSM1 demonstrated a sensitivity of 96.4% across all grades of thoracic neuroendocrine tumors, significantly more than the 87.4% using the panel of traditional markers (P=0.02). INSM1 is sufficiently sensitive and specific to serve as a standalone first-line marker of neuroendocrine differentiation. A more restrained approach to immunohistochemical analysis of small thoracic biopsies is appropriate given the expanding demand on this limited material for therapeutic biomarker analysis.

  8. Elevated Abundance, Size, and MicroRNA Content of Plasma Extracellular Vesicles in Viremic HIV-1+ Patients: Correlations With Known Markers of Disease Progression.

    Science.gov (United States)

    Hubert, Audrey; Subra, Caroline; Jenabian, Mohammad-Ali; Tremblay Labrecque, Pierre-François; Tremblay, Cécile; Laffont, Benoit; Provost, Patrick; Routy, Jean-Pierre; Gilbert, Caroline

    2015-11-01

    Because of factors only partly understood, the generalized elevated immune activation and inflammation characterizing HIV-1-infected patients are corrected incompletely with antiretroviral therapy (ART). Extracellular vesicles (EVs) including exosomes and microvesicles released by several cell types may contribute to immune activation and dysfunction. EV size, abundance, and content appear to differ according to infection phase, disease progression, and ART. We examined whether the size of EVs and the abundance of exosomes in plasma are associated with cell and tissue activation as well as with viral production. Acetylcholinesterase-bearing (AChE+) exosomes in plasma were quantified using an AChE assay. EV size was analyzed using dynamic light scattering. Proteins and microRNAs present in EVs were detected by Western blot and real-time polymerase chain reaction, respectively. Exosomes were found more abundant in the plasma of ART-naive patients. EV size was larger in ART-naive than in ART-suppressed patients, elite controllers, or healthy control subjects. Both exosome abundance and EV sizes were inversely correlated with CD4/CD8 T-cell ratio and neutrophil, platelet, and CD4 T-cell counts and positively correlated with CD8 T-cell counts. A negative correlation was found between CD4 T-cell nadir and exosome abundance, but not EV size. Levels of miR-155 and miR-223 but not miR-92 were strongly correlated negatively with EV abundance and size in ART-naive patients. Monitoring of circulating EVs and EV-borne microRNA is possible and may provide new insight into HIV-1 pathogenesis, disease progression, and the associated inflammatory state, as well as the efficacy of ART and the treatments intended to reduce immune activation.

  9. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  10. Melanoma affects the composition of blood cell-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-07-01

    Full Text Available Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer cells, monocytes, monocyte-derived dendritic cells and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on extracellular vesicles. Hierarchal clustering of protein intensity patterns grouped extracellular vesicles according to their originating cell type. The analysis of extracellular vesicles from stimulated B cells and monocyte-derived dendritic cells revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of extracellular vesicles from platelets, antigen presenting cells and natural cells as shown by platelet markers, costimulatory proteins, and a natural killer cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers indicating a changed vesicle secretion or protein loading of extracellular vesicles by platelets and a lower CD8 signal that might be associated with a diminished activity of natural killer cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of extracellular vesicles in melanoma plasma, but rather argue

  11. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers?

    Science.gov (United States)

    Erdbrügger, Uta; Le, Thu H

    2016-01-01

    Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles. Copyright © 2016 by the American Society of Nephrology.

  12. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    Science.gov (United States)

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  13. Synaptic Vesicle Endocytosis

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  14. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  15. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment.

    Science.gov (United States)

    Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping

    2014-09-01

    This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.

  16. The iTRAPs: guardians of synaptic vesicle cargo retrieval during endocytosis

    Directory of Open Access Journals (Sweden)

    Sarah Louise Gordon

    2016-02-01

    Full Text Available The reformation of synaptic vesicles during endocytosis is essential for the maintenance of neurotransmission in central nerve terminals. Newly formed synaptic vesicles must be generated with the correct protein cargo in the correct stoichiometry to be functional for exocytosis. Classical clathrin adaptor protein complexes play a key role in sorting and clustering synaptic vesicle cargo in this regard. However it is becoming increasingly apparent that additional fail-safe mechanisms exist to ensure the accurate retrieval of essential cargo molecules. For example, the monomeric adaptor proteins AP180/CALM and stonin-2 are required for the efficient retrieval of synaptobrevin II and synaptotagmin-1 respectively. Furthermore, recent studies have revealed that synaptobrevin II and synaptotagmin-1 interact with other synaptic vesicle cargoes to ensure a high fidelity of retrieval. These cargoes are synaptophysin (for synaptobrevin II and SV2A (for synaptotagmin-1. In this review we summarise current knowledge regarding the retrieval mechanisms for both synaptobrevin II and synaptotagmin-1 during endocytosis. We also define and set criteria for a new functional group of synaptic vesicle molecules that facilitate the retrieval of their interaction partners. We have termed these molecules intrinsic trafficking partners (iTRAPs and we discuss how the function of this group impacts on presynaptic performance in both health and disease.

  17. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  18. a7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    (10 mg/kg/day for 10 days) is able to mitigate the reduction of synaptophysin mRNA expression induced by PCP in two prefrontal cortical regions, the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (VLO). This effect is accompanied by a normalization of the PCP......Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the a7 nicotinic acetylcholine receptor (n...... of synaptophysin and/or Arc levels in the frontal cortex. These data lend support to the potential for development of a7 nAChR agonists for the treatment of cognitive deficits in schizophrenia....

  19. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    (10 mg/kg/day for 10 days) is able to mitigate the reduction of synaptophysin mRNA expression induced by PCP in two prefrontal cortical regions, the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (VLO). This effect is accompanied by a normalization of the PCP......Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the α7 nicotinic acetylcholine receptor (n...... of synaptophysin and/or Arc levels in the frontal cortex. These data lend support to the potential for development of α7 nAChR agonists for the treatment of cognitive deficits in schizophrenia....

  20. Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis.

    Science.gov (United States)

    Baldan-Martin, Montserrat; de la Cuesta, Fernando; Alvarez-Llamas, Gloria; Ruiz-Hurtado, Gema; Ruilope, Luis M; Barderas, Maria G

    2017-01-01

    Extracellular vesicles are membrane vesicles related to cell communication. These vesicles consist of proteins, RNA, and microRNA and are an interesting and important tool to understand the processes taking place in the secreting cell, especially in diseases in which its release is often enhanced. The used of blood extracellular vesicles in cardiovascular disease as a low invasive, easily accessible source of circulating markers could give us important information related to pathological process even more with the use of proteomic analysis. In this chapter, we describe a protocol to isolate and proteomic analyze extracellular vesicles from blood associated with cardiovascular disease.

  1. Placenta-derived extracellular vesicles: their cargo and possible functions.

    Science.gov (United States)

    Familari, Mary; Cronqvist, Tina; Masoumi, Zahra; Hansson, Stefan R

    2017-03-01

    The literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions. A meta-analysis of available trophoblast-derived extracellular vesicle proteomic datasets revealed only three proteins in common: albumin, fibronectin-1 and plasminogen activator inhibitor-1, suggesting some variability in vesicle cargo, most likely reflecting stage and cell type of origin. We discuss the possible sources of variability that may have led to the low number of common markers, which has led us to speculate that markers and density in common use may not be strict criteria for identifying and isolating placenta-derived exosomes.

  2. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  3. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  4. Secretagogin is a new neuroendocrine marker in the human prostate

    DEFF Research Database (Denmark)

    Adolf, Katja; Wagner, Ludwig; Bergh, Anders

    2007-01-01

    marker in carcinoid tumors of the lung and the gastrointestinal tract. The present study analyzes the expression of secretagogin in normal and malign prostate tissue. METHODS: We analyzed immunoreactivity for secretagogin, chromogranin A (CgA), neuron specific enolase (NSE), and synaptophysin (SYN...... and co-localized with the NE markers CgA and NSE. The expression of secretagogin is significantly correlated to CgA (P marker in the prostate with more extended...... immunoreactivity compared to the NE markers CgA, SYN, and NSE. Secretagogin is widely expressed in prostatic adenocarcinoma as opposed to adenocarcinomas in other organs....

  5. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    OpenAIRE

    Wild, Stefan; Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Ian C. D. Johnston; Bosio, Andreas; Schauss, Astrid

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the an...

  6. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons

    Science.gov (United States)

    Ratnayaka, Arjuna; Marra, Vincenzo; Bush, Daniel; Burden, Jemima J; Branco, Tiago; Staras, Kevin

    2012-01-01

    Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy. PMID:22271866

  7. Visualization of peptide secretory vesicles in living nerve cells.

    Science.gov (United States)

    Park, Joshua J; Loh, Y Peng

    2011-01-01

    Analysis of real-time movements of peptidergic vesicles in live neurons provides insight into molecular mechanism(s) supporting the activity-dependent secretion of neurotrophins and neuropeptides. We examined the effect of overexpression of exogenous peptides comprising of the cytoplasmic tail sequence of vesicular carboxypeptidase E (CPE), proposed to be involved in the mechanism of trafficking of peptidergic secretory vesicles, in live hippocampal neurons. E16 rat hippocampal neurons were transfected with the peptidergic vesicle markers, CPE C-terminally tagged with red or green fluorescent protein, or brain-derived neurotrophic factor (BDNF) tagged with green fluorescent protein, and grown on dishes specialized for real-time live cell visualization. Movements of peptidergic vesicles were imaged in a temperature-controlled chamber on a confocal inverted microscope and analyzed with respect to their velocity, displacement distance, and processivity.

  8. Yeast Membrane Vesicles: Isolation and General Characteristics1

    Science.gov (United States)

    Christensen, Michael S.; Cirillo, Vincent P.

    1972-01-01

    Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848

  9. How pure are your vesicles?

    Science.gov (United States)

    Webber, Jason; Clayton, Aled

    2013-01-01

    We propose a straightforward method to estimate the purity of vesicle preparations by comparing the ratio of nano-vesicle counts to protein concentration, using tools such as the increasingly available NanoSight platform and a colorimetric protein assay such as the BCA-assay. Such an approach is simple enough to apply to every vesicle preparation within a given laboratory, assisting researchers as a routine quality control step. Also, the approach may aid in comparing/standardising vesicle purity across diverse studies, and may be of particular importance in evaluating vesicular biomarkers. We herein propose some criteria to aid in the definition of pure vesicles. PMID:24009896

  10. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus

    Science.gov (United States)

    Burns, Gregory; Brooks, Kelsey; Wildung, Mark; Navakanitworakul, Raphatphorn; Christenson, Lane K.; Spencer, Thomas E.

    2014-01-01

    Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy. PMID:24614226

  11. Evaluation of neuroendocrine markers in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Kauppila Saila

    2010-05-01

    Full Text Available Abstract Background The purpose of the study was to examine serotonin, CD56, neurone-specific enolase (NSE, chromogranin A and synaptophysin by immunohistochemistry in renal cell carcinomas (RCCs with special emphasis on patient outcome. Methods We studied 152 patients with primary RCCs who underwent surgery for the removal of kidney tumours between 1990 and 1999. The mean follow-up was 90 months. The expression of neuroendocrine (NE markers was determined by immunohistochemical staining using commercially available monoclonal antibodies. Results were correlated with patient age, clinical stage, Fuhrman grade and patient outcome. Results Eight percent of tumours were positive for serotonin, 18% for CD56 and 48% for NSE. Chromogranin A immunostaining was negative and only 1% of the tumours were synaptophysin immunopositive. The NSE immunopositivity was more common in clear cell RCCs than in other subtypes (p = 0.01. The other NE markers did not show any association with the histological subtype. Tumours with an immunopositivity for serotonin had a longer RCC-specific survival and tumours with an immunopositivity for CD56 and NSE had a shorter RCC-specific survival but the difference was not significant. There was no relationship between stage or Fuhrman grade and immunoreactivity for serotonin, CD56 and NSE. Conclusions Serotonin, CD56 and NSE but not synaptophysin and chromogranin A are expressed in RCCs. However, the prognostic potential of these markers remains obscure.

  12. Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus.

    Science.gov (United States)

    Williams, Sarah; Chen, Li; Savignac, Helene M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-03-01

    Compelling data suggest that perturbations in microbial colonization of the gut in early-life, influences neurodevelopment and adult brain function. If this is the case, then ensuring the growth of beneficial bacteria at an early age will lead to optimal brain development and maturation. We have tested whether feeding neonatal rats daily (from post-natal days 3-21) with a galacto-oligosaccharide prebiotic (Bimuno®, BGOS) or a control solution, alters the levels of hippocampal N-Methyl-D-Aspartate receptor (NMDAR) subunits (GluN1, GluN2A, GluN2B), synaptic proteins (synaptophysin, MAP2, and GAP43) and brain-derived-neurotrophic factor (BDNF), at post-natal days 22 and 56. The administration of BGOS significantly elevated GluN2A subunits, synaptophysin and BDNF in the hippocampus of 22 day old rats. The effect was also observed on day 56 (26 days after the feeding ceased). The levels of all other proteins (GluN1, GluN2B, MAP2, GAP43) remained unaltered. Increased GluN2A, synaptophysin, BDNF, but not MAP2, may suggest that neonatal BGOS feeding alters neurotransmission rather than synaptic architecture. Although the functional consequences of our findings require further investigation, the current study confirms that the manipulation of gut bacteria in early-life, has central effects that persist until at least young adulthood. © 2016 Wiley Periodicals, Inc.

  13. Reduction of AP180 and CALM produces defects in synaptic vesicle size and density.

    Science.gov (United States)

    Petralia, Ronald S; Wang, Ya-Xian; Indig, Fred E; Bushlin, Ittai; Wu, Fangbai; Mattson, Mark P; Yao, Pamela J

    2013-03-01

    Clathrin assembly proteins AP180 and CALM regulate the assembly of clathrin-coated vesicles (CCVs), which mediate diverse intracellular trafficking processes, including synaptic vesicle (SV) recycling at the synapse. Although studies using several invertebrate model systems have indicated a role for AP180 in SV recycling, less is known about AP180's or CALM's function in the synapse of mammalian neurons. In this study, we examined synapses of rat hippocampal neurons in which the level of AP180 or CALM had been reduced by RNA interference (RNAi). Using light microscopy, we visualized synaptic puncta in these AP180- or CALM-reduced neurons by co-expressing Synaptophysin::EGFP (Syp::EGFP). We found that neurons with reduced AP180 or reduced CALM had smaller Syp::EGFP-illuminated puncta. Using electron microscopy, we further examined the ultrastructure of the AP180- or CALM-reduced presynaptic terminals. We found that SVs became variably enlarged in both the AP180-reduced and CALM-reduced presynaptic terminals. Lower AP180 and CALM also reduced the density of SVs and the size of SV clusters. Our findings demonstrate that in the presynaptic terminals of hippocampal neurons, AP180 and CALM have a similar role in regulating synaptic vesicles. This overlapping activity may be necessary for high-precision and high-efficacy SV formation during endocytosis.

  14. The toolbox of vesicle sidedness determination

    NARCIS (Netherlands)

    Meszaros, Peter; Hoekstra, Dick; Kok, Jan Willem

    2012-01-01

    Vesicles prepared from cellular plasma membranes are widely used in science for different purposes. The outer membrane leaflet differs from the inner membrane leaflet of the vesicle, and during vesicle preparation procedures two types of vesicles will be generated: right-side-out vesicles, of which

  15. Vesicles and vesicle gels - structure and dynamics of formation

    CERN Document Server

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and ...

  16. Preeclampsia and Extracellular Vesicles.

    Science.gov (United States)

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers.

  17. Potentials and capabilities of the Extracellular Vesicle (EV Array

    Directory of Open Access Journals (Sweden)

    Malene Møller Jørgensen

    2015-04-01

    Full Text Available Extracellular vesicles (EVs and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10 has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes for up to 60 antigens without any enrichment or purification prior to analysis.

  18. Extracellular Vesicles in Metabolic Syndrome.

    Science.gov (United States)

    Martínez, M Carmen; Andriantsitohaina, Ramaroson

    2017-05-12

    Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches. © 2017 American Heart Association, Inc.

  19. Extracellular Vesicles in Cardiovascular Theranostics

    OpenAIRE

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro,Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells pla...

  20. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  1. RNA in extracellular vesicles.

    Science.gov (United States)

    Kim, Kyoung Mi; Abdelmohsen, Kotb; Mustapic, Maja; Kapogiannis, Dimitrios; Gorospe, Myriam

    2017-07-01

    Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  3. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles.

    Science.gov (United States)

    Koliha, Nina; Heider, Ute; Ozimkowski, Tobias; Wiemann, Martin; Bosio, Andreas; Wild, Stefan

    2016-01-01

    Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient's plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient's plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells.

  4. Purification of a vesicle-vacuole fraction functionally linked to aflatoxin synthesis in Aspergillus parasiticus.

    Science.gov (United States)

    Chanda, Anindya; Roze, Ludmila V; Pastor, Alicia; Frame, Melinda K; Linz, John E

    2009-07-01

    Current studies in our laboratory demonstrate a functional link between vesicles, vacuoles and aflatoxin biosynthesis in the filamentous fungus, Aspergillus parasiticus. Under aflatoxin inducing conditions in liquid yeast-extract sucrose medium, A. parasiticus undergoes a shift from vacuole biogenesis to accumulation of an enhanced number of vesicles which exhibit significant heterogeneity in size and density. As a first step in conducting a detailed analysis of the role of these organelles in aflatoxin synthesis, we developed a novel method to purify the vesicle and vacuole fraction using protoplasts prepared from cells harvested during aflatoxin synthesis. The method includes the following steps: 1] preparation of protoplasts from mycelia grown for 36 h under aflatoxin inducing conditions; 2] release of vesicles and vacuoles from purified protoplasts in the presence of Triton X-100; and 3] fractionation of the vesicles and vacuoles using a "one-step high density cushion". The vesicle-vacuole fraction showed a 35 fold enrichment in alpha-mannosidase activity (vacuole marker) and non-detectable succinate dehydrogenase and lactate dehydrogenase activities (mitochondrial and cytoplasmic markers, respectively). Confocal laser scanning microscopy with the vacuole dyes MDY-64 and CMAC demonstrated that the fraction contained pure vesicles and vacuoles and was devoid of membranous debris. Transmission electron microscopy (TEM) confirmed that no mitochondria or unbroken protoplasts contaminated the purified fraction. The purified organelles exhibited significant size heterogeneity with a range of sizes similar to that observed in whole cells and protoplasts.

  5. Primary seminal vesicle carcinoma. The usefulness of PAX8 immunohistochemical expression for the differential diagnosis.

    Science.gov (United States)

    Posenato, Ilaria; Caliò, Anna; Segala, Diego; Sgroi, Salvatore; Polara, Andrea; Brunelli, Matteo; Martignoni, Guido

    2017-11-01

    Primary seminal vesicle carcinoma is a rare entity whose diagnosis can be achieved by ruling out the main carcinomas that commonly invade the seminal vesicles. Although a panel of immunohistochemical markers (cancer antigen 125, cytokeratin [CK] 7, CK20, prostate-specific antigen, and prostate-specific acid phosphatase) has been proposed as unique for primary seminal vesicle carcinoma, a reliable positive marker is lacking. In this article, we report a case of primary seminal vesicle carcinoma in a 57-year-old man. The tumor was localized to the left seminal vesicle and histologically characterized by papillae lined by broad eosinophilic cells with pleomorphic nuclei. The neoplastic cells expressed cancer antigen 125 and CK7, whereas CK20, prostate-specific antigen, and prostate-specific acid phosphatase were negative. A strong and diffuse nuclear labeling for PAX8 was detected. Because carcinomas of the colon, bladder, and prostate, the main differential diagnosis in this setting, have been reported consistently to be PAX8 negative, this marker may be very useful for a prompt diagnosis of seminal vesicle carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Extracellular vesicles in obesity and diabetes mellitus.

    Science.gov (United States)

    Pardo, Fabián; Villalobos-Labra, Roberto; Sobrevia, Bastián; Toledo, Fernando; Sobrevia, Luis

    2017-11-24

    Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  8. Cystadenoma of the seminal vesicle

    Directory of Open Access Journals (Sweden)

    Gil Antônio O.

    2003-01-01

    Full Text Available Primary tumors of the seminal vesicle are extremely rare. Among them, there is a spectrum of tumors derived from both epithelium and stroma and so classified as epithelial-stromal tumors. Herein, we report a case of a cystadenoma in a 49-year-old asymptomatic man, detected in a routine ultrasonography for liver disease follow-up. The digital rectal examination detected a large mass anterior to rectum and posterior to bladder. Computed tomography scan and magnetic resonance imaging showed a normal prostate and a 9.0 cm cystic tumor, replacing the left seminal vesicle. The gross appearance and microscopic aspect was compatible with cystadenoma of seminal vesicle. Patient's postoperative recovery was uneventful. He is currently alive, 3 years after the diagnosis, with no signs of recurrence.

  9. When to biopsy seminal vesicles.

    Science.gov (United States)

    Panach-Navarrete, J; García-Morata, F; Hernández-Medina, J A; Martínez-Jabaloyas, J M

    2015-05-01

    The involvement of seminal vesicles in prostate cancer can affect the prognosis and determine the treatment. The objective of this study was to determine whether we could predict its infiltration at the time of the prostate biopsy to know when to indicate the biopsy of the seminal vesicles. observational retrospective study of 466 patients who underwent seminal vesicle biopsy. The indication for this biopsy was a prostate-specific antigen (PSA) level greater than 10 ng/ml or an asymmetric or obliterated prostatoseminal angle. The following variables were included in the analysis: PSA level, PSA density, prostate volume, number of cores biopsied, suspicious rectal examination, and preservation of the prostatoseminal angle, studying its relationship with the involvement of the seminal vesicles. Forty-one patients (8.8%) had infiltrated seminal vesicles and 425 (91.2%) had no involvement. In the univariate analysis, the cases with infiltration had a higher mean PSA level (P 19.60 ng/dL (P < .01) and 2.95 times higher if there is a suspicious rectal examination (P = .014). Furthermore, this probability increases by 1.04 times for each unit of prostate volume lower (P < .01). The ROC curves showed maximum sensitivity and specificity at 19.6 ng/mL for PSA and 0.39 for PSA density. In this series, greater involvement of seminal vesicles was associated with a PSA level ≥20 ng/ml, a suspicious rectal examination and a lack of prostatoseminal angle preservation. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. SMALL VESICLES, BIG VEHICLES: EXOSOMES.

    Directory of Open Access Journals (Sweden)

    Saiz-Lopez P

    2016-09-01

    Full Text Available Exosomes are small membranous vesicles released by different cell types. Since their discovery, they have evolved from being considered simple vehicles for the liberation of cellular wastes, to become one of the most promising fields in the area of biomedical research, and more specifically in oncology, since the different malignant tumors release exosomes to all biological fluids, being involved in various functions of the neoplastic process. At present, it is possible to study these vesicles by minimally invasive techniques in patients, which approach us to obtain a more detailed diagnosis and prognosis, as well as to the discovery of new antitumoral therapies

  11. Transmembrane topology of the acetylcholine receptor examined in reconstituted vesicles

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, P.D.

    1987-01-01

    Each of the five acetylcholine receptor (AChR) subunits, ..cap alpha../sub 2/..beta..-..gamma..delta, is believed to have the same number of transmembrane crossing and to share the same general folding pattern. AChR isolated from the electric organ of electric fish is predominantly dimeric. We have used this bridge as a marker for the C-terminus of the delta subunit, and presumably that of the other subunits in addition. The disulfide's accessibility to hydrophilic reductants, principally glutathione (GSH), was tested in a reconstituted vesicle system. The reduction of the delta-delta desulfide, as evidenced by the transition of AChrR dimers to monomers, was quantitatively monitored on velocity sedimentation sucrose gradients. Alternatively, the reduction of delta/sub 2/ to delta was followed by employing non-reducing SDS-PAGE. Reductants such as GSH were able to access the bridge in intact right-side-out vesicles. No acceleration of this process was evident when the vesicles were disrupted by freeze-thaw or by detergents. Control experiments which determined the rate of reduction of entrapped diphtheria toxin, or that of /sup 3/H-GSH efflux, demonstrated that intact reconstituted vesicles provide an adequate permeability barrier to GSH access of their intravesicular space.

  12. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile.

    Science.gov (United States)

    Vermassen, Tijl; D'Herde, Katharina; Jacobus, Dominique; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Callewaert, Nico; Decaestecker, Karel; Villeirs, Geert; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2017-10-01

    Nowadays, extracellular vesicles are of great interest in prostate cancer (PCa) research. Asparagine (N)-linked glycosylation could play a significant role in the pathological mechanism of these vesicles. We investigated if prostatic protein N-glycosylation profiles were related to urinary vesicle-associated prostate-specific antigen (PSA) extractability and if this parameter showed diagnostic potential for PCa. Urinary extracellular vesicles were visualised using transmission electron microscopy. Urinary extracellular vesicles extraction by means of n -butanol allowed determination of urinary vesicle-associated PSA extractability. Diagnostic value was assessed between benign prostate hyperplasia (BPH; n=122) and patients with PCa (n=85). Additionally, correlation with urine N-glycosylation was assessed. Urinary extracellular vesicles with a diameter of approximately 100 nm were more abundantly present in urine of patients with PCa versus patients with BPH resulting in a higher vesicle-associated PSA extraction ratio (pvesicle-associated PSA extraction ratio was correlated to biantennary core-fucosylation (p=0.003). Finally, vesicle-associated PSA extraction ratio proved beneficial in PCa diagnosis, next to serum PSA and the urinary glycosylation marker (p=0.021). The urinary vesicle-associated PSA extraction ratio is increased in PCa which is a direct result of the abundant presence of extracellular vesicles in urine of patients with PCa. The urinary vesicle-associated PSA extraction ratio was associated with changes in N-glycoforms and showed diagnostic potential. Further research is warranted to unravel the pathological link between N-glycosylation and extracellular vesicles in cancer, as well as to assess the prognostic value of this biomarker. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature of v...

  14. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.

    Science.gov (United States)

    Chiasserini, Davide; van Weering, Jan R T; Piersma, Sander R; Pham, Thang V; Malekzadeh, Arjan; Teunissen, Charlotte E; de Wit, Heidi; Jiménez, Connie R

    2014-06-25

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in conjunction with bioinformatics. We report an extensive catalog of 1315 proteins identified in EVs isolated from two different CSF pools by ultracentrifugation, including 230 novel EV proteins. Out of 1315 proteins, 760 were identified in both CSF pools and about 30% of those were also quantitatively enriched in the EV fraction versus the soluble CSF fraction. The proteome of CSF EVs was enriched in exosomal markers such as alix and syntenin-1, heat shock proteins and tetraspanins and contained a high proportion of brain-derived proteins (n=373). Interestingly, several known biomarkers for neurodegenerative diseases such as the amyloid precursor protein, the prion protein and DJ-1 were identified in the EV fractions. Our dataset represents the first comprehensive inventory of the EV proteome in CSF, underscoring the biomarker potential of this organelle. Further comparative studies on CSF EVs isolated from patients diagnosed with neurological disorders are warranted. Data are available via ProteomeXchange with identifier PXD000608. Biological significance In this study we analyzed the protein composition of extracellular vesicles isolated from pooled samples of human cerebrospinal fluid (CSF). CSF is a colorless fluid surrounding the brain and the spinal cord, important for the physiology of the central nervous system, ensuing mechanical protection, regulation of brain blood flow and elimination of byproducts of the brain. Since brain (patho)physiology is reflected in CSF, this biological fluid represents an ideal source of soluble and vesicle-based biomarkers for neurological diseases. Here we confirm the presence of exosome-like extracellular vesicles in CSF, underscoring

  15. Ca2+ Dependence of Synaptic Vesicle Endocytosis.

    Science.gov (United States)

    Leitz, Jeremy; Kavalali, Ege T

    2016-10-01

    Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.

  16. Extracellular vesicles in physiological and pathological conditions

    NARCIS (Netherlands)

    Yuana, Yuana; Sturk, Auguste; Nieuwland, Rienk

    2013-01-01

    Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation.

  17. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  18. AFM/TIRF force clamp measurements of neurosecretory vesicle tethers reveal characteristic unfolding steps.

    Directory of Open Access Journals (Sweden)

    Mark C Harris

    Full Text Available Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link.

  19. AFM/TIRF force clamp measurements of neurosecretory vesicle tethers reveal characteristic unfolding steps.

    Science.gov (United States)

    Harris, Mark C; Cislo, Dillon; Lenz, Joan S; Umbach, Christopher; Lindau, Manfred

    2017-01-01

    Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link.

  20. Expression of diagnostic neuronal markers and outcome in glioblastoma.

    Science.gov (United States)

    Donev, K; Scheithauer, B W; Rodriguez, F J; Jenkins, S

    2010-08-01

    High-grade gliomas featuring giant cells, often demonstrate immunoreactivity for neuronal markers, a finding prognostically significant according to some studies. We investigated this event in glioblastomas (GBM). Immunoexpression for synaptophysin, neurofilament protein, neuronal nuclear antigen, chromogranin and glial fibrillary acidic protein was analysed in 82 GBM including 11 fibrillary, 8 gemistocytic, 40 giant cell and 23 small cell examples. Survival was compared between tumours exhibiting (GBMpos) or lacking (GBMneg) neuronal markers and also between tumours expressing only one vs. two or more neuronal markers. Forty-five of the 82 tumours (54.8%) including 5 fibrillary, 5 gemistocytic, 30 giant cell and 5 small cell GBMs expressed at least one neuronal marker, synaptophysin being the most frequent (96%). There was no statistically significant difference in survival between GBMpos and GBMneg tumours, all cytologic subtypes combined (P = 0.22). The same was true when cytologic categories were compared. When only GBMpos tumours were analysed, there was a marginally significant difference in outcome between tumours positive for one vs. multiple markers (P = 0.05). This difference was influenced primarily by giant cell GBMs among which the survival time was significantly shorter in the multiple vs. single marker category (median 123 vs. 295 days, P = 0.014). This difference was not observed in the other GBM cell types. Ultrastructurally, rare neurosecretory granules in glial filament-rich cells were identified in one of four tumours studied. Neuronal marker expression is a frequent feature of GBM. Its prognostic significance is limited to the giant cell GBMs expressing two or more neuronal markers, these being associated with shorter survival.

  1. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion

    DEFF Research Database (Denmark)

    Duguez, S.; Duddy, W.; Johnston, H.

    2013-01-01

    Duchenne muscular dystrophy results from loss of the protein dystrophin, which links the intracellular cytoskeletal network with the extracellular matrix, but deficiency in this function does not fully explain the onset or progression of the disease. While some intracellular events involved...... (SILAC), finding marked enrichment of vesicular markers in the mdx secretome. These included the lysosomal-associated membrane protein, LAMP1, that co-localized in vesicles with an over-secreted cytoskeletal protein, myosin light chain 1. These LAMP1/MLC1-3-positive vesicles accumulated in the cytosol...... of dystrophin leads to a general dysregulation of vesicle trafficking. We hypothesize that disturbance of the export of proteins through vesicles occurs before, and then concurrently with, the myonecrotic cascade and contributes chronically to the pathophysiology of DMD, thereby presenting us with a range...

  2. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; Jansen, Anna M; de Wit, Heidi

    2014-01-01

    Protein Interacting with C Kinase 1 (PICK1) is a Bin/Amphiphysin/Rvs (BAR) domain protein involved in AMPA receptor trafficking. Here, we identify a selective role for PICK1 in the biogenesis of large, dense core vesicles (LDCVs) in mouse chromaffin cells. PICK1 colocalized with syntaxin-6......, a marker for immature granules. In chromaffin cells isolated from a PICK1 knockout (KO) mouse the amount of exocytosis was reduced, while release kinetics and Ca(2+) sensitivity were unaffected. Vesicle-fusion events had a reduced frequency and released lower amounts of transmitter per vesicle (i.......e., reduced quantal size). This was paralleled by a reduction in the mean single-vesicle capacitance, estimated by averaging time-locked capacitance traces. EM confirmed that LDCVs were fewer and of markedly reduced size in the PICK1 KO, demonstrating that all phenotypes can be explained by reductions...

  3. The readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Kaeser, Pascal S; Regehr, Wade G

    2017-04-01

    Each presynaptic bouton is densely packed with many vesicles, only a small fraction of which are available for immediate release. These vesicles constitute the readily releasable pool (RRP). The RRP size, and the probability of release of each vesicle within the RRP, together determine synaptic strength. Here, we discuss complications and recent advances in determining the size of the physiologically relevant RRP. We consider molecular mechanisms to generate and regulate the RRP, and discuss the relationship between vesicle docking and the RRP. We conclude that many RRP vesicles are docked, that some docked vesicles may not be part of the RRP, and that undocked vesicles can contribute to the RRP by rapid recruitment to unoccupied, molecularly activated ready-to-release sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Squamous cell carcinoma of the seminal vesicle. Review of the related literature and case report

    Directory of Open Access Journals (Sweden)

    V. B. Matveev

    2015-01-01

    Full Text Available Seminal vesicle tumors are very rare malignancies which are not diagnosed in daily clinical oncology practice. Primary malignant tumors in seminal vesicle are difficult to define due to the lack of specific symptoms in the early stages of the disease. Another obstacle of proper diagnosis is the frequent invasion of tumors of the surrounding organs, especially the prostate, rectum and bladder which is difficult to differentiate. Very often seminal vesicle tumors are difficult to detect. Digital rectal examination as well as transrectal ultrasound scan (US could reveal a bulky mass in the retrovesical space. Computed tomography and magnetic resonance imaging (MRI are the main diagnostic methods which could help to reveal pathologic masses in the region of seminal vesicles. Levels of prostate-specific antigen, carcinoembryonic antigen and tumor markers specific for colorectal cancer are negative in seminal vesicle tumors.The world experience of treating seminal vesicle tumors is very limited. There is paucity of data regarding appropriate choice of surgical approach and further treatment strategy and most of the time the treatment is individualized and based on very scarce information. At the same time surgical approach may vary significantly from vesiculectomy to pelvic exenteration. Possibility of using any regimens of adjuvant radiation therapy, chemotherapy or hormone therapy is highly debatable. However, aggressive surgical approach with radical tumor removal followed by extended lymphodissection shows the most favorable results in survival of patients suffering from seminal vesicle cancer.Squamous cell carcinoma of the seminal vesicles is presumed to be an extremely rare disease as there are only 3 reports of it in the world literature. We report a case of patient B. suffering from squamous cell carcinoma of the right seminal vesicle whom we conducted an aggressive surgical approach – prostatovesiculectomy followed by resection of the

  5. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire.

    Science.gov (United States)

    Kalamvoki, Maria; Deschamps, Thibaut

    2016-04-05

    Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell organisms such as bacteria generate extracellular vesicles. In addition, several viruses have evolved strategies to hijack the extracellular vesicles for egress or to alter the surrounding environment. The thesis of this article is that: a) during HSV-1 infection vesicles are delivered from infected to uninfected cells that influence the infection; b) the cargo of these vesicles consists of viral and host transcripts (mRNAs, miRNAs and non-coding RNAs) and proteins including innate immune components, such as STING; and c) the viral vesicles carry the tetraspanins CD9, CD63 and CD81, which are considered as markers of exosomes. Therefore, we assume that the STING-carrying vesicles, produced during HSV-1 infection, are reminiscent to exosomes. The presumed functions of the exosomes released from HSV-1 infected cells include priming the recipient cells and accelerating antiviral responses to control the dissemination of the virus. This may be one strategy used by the virus to prevent the elimination by the host and establish persistent infection. In conclusion, the modification of the cargo of exosomes appears to be part of the strategy that HSV-1 has evolved to establish lifelong persistent infections into the human body to ensure successful dissemination between individuals.

  6. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  7. Dynamics of endocytic vesicle creation.

    Science.gov (United States)

    Perrais, David; Merrifield, Christien J

    2005-11-01

    Clathrin-mediated endocytosis is the main path for receptor internalization in metazoans and is essential for controlling cell integrity and signaling. It is driven by a large array of protein and lipid interactions that have been deciphered mainly by biochemical and genetic means. To place these interactions into context, and ultimately build a fully operative model of endocytosis at the molecular level, it is necessary to know the kinetic details of the role of each protein in this process. In this review, we describe the recent efforts made, by using live cell imaging, to define clear steps in the formation of endocytic vesicles and to observe the recruitment of key proteins during membrane invagination, the scission of a newly formed vesicle, and its movement away from the plasma membrane.

  8. Extracellular vesicles and blood diseases.

    Science.gov (United States)

    Nomura, Shosaku

    2017-04-01

    Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.

  9. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  10. Chronic N-acetylcysteine treatment alleviates acute lipopolysaccharide-induced working memory deficit through upregulating caveolin-1 and synaptophysin in mice.

    Science.gov (United States)

    Shen, Xianzhi; Sun, Yanyun; Wang, Mengwei; Shu, Hui; Zhu, Li-Juan; Yan, Pei-Yun; Zhang, Jun-Fang; Jin, Xinchun

    2017-10-23

    Working memory (WM) is a dynamic encoding process and an active representation of information over a short time. The ability to guide forthcoming behavior would be disrupted if WM was impaired by various factors including inflammation, stress, free radicals, and disease states such as schizophrenia. However, the mechanism underlying acute working memory impairment remains to be defined. In this study, we tested the hypothesis that decreased caveolin-1 (Cav-1) and synaptophysin (SYP) accounted for the WM impairment challenged with acute intraperitoneally lipopolysaccharide (LPS), which mimicked neuroinflammation. Delayed alternation T-maze task (DAT) was used to assess working memory of adult male C57BL/6 mice, and western blot and immunostaining were used to detect protein expression and distribution in medial prefrontal cortex (mPFC) and hippocampus. Our results showed that LPS dose-dependently induced working memory deficit accompanied by the decrease of Cav-1 and SYP in mPFC but not hippocampus. In addition, LPS significantly decreased protein level of Cav-1 and SYP in neurons by activating microglia cells. More important, 2-week N-acetylcysteine (NAC) treatment dose-dependently inhibited LPS-induced working memory deficit by improving the ability to use Lose-shift but not Win-shift strategy and significantly inhibited LPS-induced downregulation of Cav-1 and SYP in mPFC. Taken together, our findings demonstrate that chronic NAC treatment alleviates acute LPS-induced working memory deficit through upregulating Cav-1 and SYP in mice.

  11. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  12. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles

    NARCIS (Netherlands)

    Farsi, Z.; Preobraschenski, J.; Bogaart, G. van den; Riedel, D.; Jahn, R.; Woehler, A.

    2016-01-01

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided

  13. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  14. Exosomes: secreted vesicles and intercellular communications

    OpenAIRE

    Théry, Clotilde

    2011-01-01

    Exosomes are small membrane vesicles of endocytic origin secreted by most cell types, and are thought to play important roles in intercellular communications. Although exosomes were originally described in 1983, interest in these vesicles has really increased dramatically in the last 3 years, after the finding that they contain mRNA and microRNA. This discovery sparked renewed interest for the general field of membrane vesicles involved in intercellular communications, and research on these s...

  15. Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Cruz, Lilian; Arevalo Romero, Jenny Andrea; Brandão Prado, Mariana; Santos, Tiago G; Hohmuth Lopes, Marilene

    2017-10-14

    Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.

  16. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  17. Reversibly formed bilayer vesicles: Energetics and polydispersity

    DEFF Research Database (Denmark)

    Bergstöm, M.

    1997-01-01

    orders of magnitude larger than where the local free energy minima of the equilibrium vesicle actually occur. Moreover, according to our analysis, the relative width of a vesicle size distribution, sigma(R)/R-max, is generally at full equilibrium equal to 0.283, independently of the energetic vesicle....... and a statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work...

  18. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-02-19

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  19. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  20. Cdc42 interaction with N-WASP and Toca-1 regulates membrane tubulation, vesicle formation and vesicle motility: implications for endocytosis.

    Directory of Open Access Journals (Sweden)

    Wenyu Bu

    Full Text Available Transducer of Cdc42-dependent actin assembly (Toca-1 consists of an F-BAR domain, a Cdc42 binding site and an SH3 domain. Toca-1 interacts with N-WASP, an activator of actin nucleation that binds Cdc42. Cdc42 may play an important role in regulating Toca-1 and N-WASP functions. We report here that the cellular expression of Toca-1 and N-WASP induces membrane tubulation and the formation of motile vesicles. Marker and uptake analysis suggests that the tubules and vesicles are associated with clathrin-mediated endocytosis. Forster resonance energy transfer (FRET and Fluorescence Lifetime Imaging Microscopy (FLIM analysis shows that Cdc42, N-WASP and Toca-1 form a trimer complex on the membrane tubules and vesicles and that Cdc42 interaction with N-WASP is critical for complex formation. Modulation of Cdc42 interaction with Toca-1 and/or N-WASP affects membrane tubulation, vesicle formation and vesicle motility. Thus Cdc42 may influence endocytic membrane trafficking by regulating the formation and activity of the Toca-1/N-WASP complex.

  1. Bacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages.

    Science.gov (United States)

    Athman, Jaffre J; Wang, Ying; McDonald, David J; Boom, W Henry; Harding, Clifford V; Wearsch, Pamela A

    2015-08-01

    Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected

  2. Extracellular Vesicles in Cardiovascular Theranostics.

    Science.gov (United States)

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.

  3. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  4. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  5. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  6. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  7. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Urinary extracellular vesicles: biomarkers and beyond

    NARCIS (Netherlands)

    M. Salih (Mahdi)

    2017-01-01

    markdownabstractExtracellular vesicles have been isolated in various body fluids including urine. The cargo of urinary extracellular vesicles (uEVs) is composed of proteins and nucleic acids reflecting the physiological and possibly the pathophysiological state of cells lining the nephron. Because

  9. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  10. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    Science.gov (United States)

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  12. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    Science.gov (United States)

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case.

  14. Pushing synaptic vesicles over the RIM.

    Science.gov (United States)

    Kaeser, Pascal S

    2011-05-01

    In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.

  15. Apoptotic Bodies: Selective Detection in Extracellular Vesicles.

    Science.gov (United States)

    Hauser, Paul; Wang, Sha; Didenko, Vladimir V

    2017-01-01

    Normal and dying cells release various types of membrane-bound vesicles including microvesicles, exosomes, and apoptotic bodies. These vesicles play important roles in intercellular communication and signal transduction. However, their diverse forms and subtypes fluctuate in size and other properties. In result current purification approaches do not fully discriminate between different categories of extracellular vesicles. Here, we present a fluorescence technique that specifically identifies apoptotic bodies in preparations of microvesicles, exosomes, and other extracellular vesicles.The approach exclusively labels the vesicles that contain DNA with 5'PO 4 blunt-ended DNA breaks, such as those produced by the apoptotic CAD nuclease during apoptotic DNA degradation. The technique can be useful in studies of apoptosis involving microvesicles and exosomes.

  16. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes

    National Research Council Canada - National Science Library

    M A Zoccoli; G E Lienhard

    1977-01-01

    .... Based on comparisons between erythrocytes and vesicles with regard to specificity, temparture dependence, and effects of inhibitors, we conclude that sorbose uptake into the vesicles occurs by way...

  17. The class V myosin motor, myosin 5c, localizes to mature secretory vesicles and facilitates exocytosis in lacrimal acini.

    Science.gov (United States)

    Marchelletta, Ronald R; Jacobs, Damon T; Schechter, Joel E; Cheney, Richard E; Hamm-Alvarez, Sarah F

    2008-07-01

    We investigated the role of the actin-based myosin motor, myosin 5c (Myo5c) in vesicle transport in exocrine secretion. Lacrimal gland acinar cells (LGAC) are the major source for the regulated secretion of proteins from the lacrimal gland into the tear film. Confocal fluorescence and immunogold electron microscopy revealed that Myo5c was associated with secretory vesicles in primary rabbit LGAC. Upon stimulation of secretion with the muscarinic agonist, carbachol, Myo5c was also detected in association with actin-coated fusion intermediates. Adenovirus-mediated expression of green fluorescent protein (GFP) fused to the tail domain of Myo5c (Ad-GFP-Myo5c-tail) showed that this protein was localized to secretory vesicles. Furthermore, its expression induced a significant (P < or = 0.05) decrease in carbachol-stimulated release of two secretory vesicle content markers, secretory component and syncollin-GFP. Adenovirus-mediated expression of GFP appended to the full-length Myo5c (Ad-GFP-Myo5c-full) was used in parallel with adenovirus-mediated expression of GFP-Myo5c-tail in LGAC to compare various parameters of secretory vesicles labeled with either GFP-labeled protein in resting and stimulated LGAC. These studies revealed that the carbachol-stimulated increase in secretory vesicle diameter associated with compound fusion of secretory vesicles that was also exhibited by vesicles labeled with GFP-Myo5c-full was impaired in vesicles labeled with GFP-Myo5c-tail. A significant decrease in GFP labeling of actin-coated fusion intermediates was also seen in carbachol-stimulated LGAC transduced with GFP-Myo5c-tail relative to LGAC transduced with GFP-Myo5c-full. These results suggest that Myo5c participates in apical exocytosis of secretory vesicles.

  18. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles.

    Science.gov (United States)

    Durcin, Maëva; Fleury, Audrey; Taillebois, Emiliane; Hilairet, Grégory; Krupova, Zuzana; Henry, Céline; Truchet, Sandrine; Trötzmüller, Martin; Köfeler, Harald; Mabilleau, Guillaume; Hue, Olivier; Andriantsitohaina, Ramaroson; Martin, Patrice; Le Lay, Soazig

    2017-01-01

    Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells by conveying signalling proteins and genomic material. The level of EVs in plasma is significantly increased in cardiometabolic diseases associated with obesity, suggesting their possible participation in the development of metabolic dysfunction. With regard to the poor definition of adipocyte-derived EVs, the purpose of this study was to characterise both qualitatively and quantitatively EVs subpopulations secreted by fat cells. Adipocyte-derived EVs were isolated by differential centrifugation of conditioned media collected from 3T3-L1 adipocytes cultured for 24 h in serum-free conditions. Based on morphological and biochemical properties, as well as quantification of secreted EVs, we distinguished two subpopulations of adipocyte-derived EVs, namely small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs). Proteomic analyses revealed that lEVs and sEVs exhibit specific protein signatures, allowing us not only to define novel markers of each population, but also to predict their biological functions. Despite similar phospholipid patterns, the comparative lipidomic analysis performed on these EV subclasses revealed a specific cholesterol enrichment of the sEV population, whereas lEVs were characterised by high amounts of externalised phosphatidylserine. Enhanced secretion of lEVs and sEVs is achievable following exposure to different biological stimuli related to the chronic low-grade inflammation state associated with obesity. Finally, we demonstrate the ability of primary murine adipocytes to secrete sEVs and lEVs, which display physical and biological characteristics similar to those described for 3T3-L1. Our study provides additional information and elements to define EV subtypes based on the characterisation of adipocyte-derived EV populations. It also underscores the need to distinguish EV subpopulations, through a combination of multiple

  19. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array

    Directory of Open Access Journals (Sweden)

    Joanne Louise Welton

    2016-06-01

    Full Text Available Proteomics analysis of biofluid-derived vesicles holds enormous potential for discovering non-invasive disease markers. Obtaining vesicles of sufficient quality and quantity for profiling studies has, however, been a major problem, as samples are often replete with co-isolated material that can interfere with the identification of genuine low abundance, vesicle components. Here, we used a combination of ultracentrifugation and size-exclusion chromatography to isolate and analyse vesicles of plasma or urine origin. We describe a sample-handling workflow that gives reproducible, quality vesicle isolations sufficient for subsequent protein profiling. Using a semi-quantitative aptamer-based protein array, we identified around 1,000 proteins, of which almost 400 were present at comparable quantities in plasma versus urine vesicles. Significant differences were, however, apparent with elements like HSP90, integrin αVβ5 and Contactin-1 more prevalent in urinary vesicles, while hepatocyte growth factor activator, prostate-specific antigen–antichymotrypsin complex and many others were more abundant in plasma vesicles. This was also applied to a small set of specimens collected from men with metastatic prostate cancer, highlighting several proteins with the potential to indicate treatment refractory disease. The study provides a practical platform for furthering protein profiling of vesicles in prostate cancer, and, hopefully, many other disease scenarios.

  20. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  1. Structure of Amphiphilic Terpolymer Raspberry Vesicles

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2017-07-01

    Full Text Available Terpolymer raspberry vesicles contain domains of different chemical affinities. They are potential candidates as multi-compartment cargo carriers. Their efficacy depends on their stability and load capacity. Using a model star terpolymer system in an aqueous solution, a dissipative particle dynamic (DPD simulation is employed to investigate how equilibrium aggregate structures are affected by polymer concentration and pairwise interaction energy in a solution. It is shown that a critical mass of polymer is necessary for vesicle formation. The free energy of the equilibrium aggregates are calculated and the results show that the transition from micelles to vesicles is governed by the interactions between the longest solvophobic block and the solvent. In addition, the ability of vesicles to encapsulate solvent is assessed. It is found that reducing the interaction energy favours solvent encapsulation, although solvent molecules can permeate through the vesicle’s shell when repulsive interactions among monomers are low. Thus, one can optimize the loading capacity and the release rate of the vesicles by turning pairwise interaction energies of the polymer and the solvent. The ability to predict and control these aspects of the vesicles is an essential step towards designing vesicles for specific purposes.

  2. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  3. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  4. Classification, Functions, and Clinical Relevance of Extracellular Vesicles

    NARCIS (Netherlands)

    van der Pol, Edwin; Böing, Anita N.; Harrison, Paul; Sturk, Augueste; Nieuwland, Rienk

    2012-01-01

    Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the

  5. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer

    OpenAIRE

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz

    2016-01-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data in...

  6. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation

    Science.gov (United States)

    Bobrie, Angélique; Colombo, Marina; Krumeich, Sophie; Raposo, Graça; Théry, Clotilde

    2012-01-01

    Exosomes are extracellular vesicles of 50 to 100 nm in diameter, released by many cell types. Exosomes are formed inside the cell in intracellular endosomal compartments and are secreted upon fusion of these compartments with the plasma membrane. Cells also secrete other types of membrane vesicles, for instance, by outward budding from the plasma membrane, and although some of them clearly differ from exosomes by their structural features (larger size), others are possibly more difficult to separate. Here, using Rab27a inhibition to modulate exosome secretion, we show the existence of at least 2 distinct populations of vesicles after purification by classical ultracentrifugation from mouse tumor cell conditioned medium. Rab27a inhibition lead to decreased vesicular secretion of some conventional markers of exosomes (CD63, Tsg101, Alix and Hsc70) but did not affect secretion of others (CD9 and Mfge8). By electron microscopy, CD9 was observed on vesicles of various sizes, ranging from 30 nm to more than 150 nm in diameter. Flotation onto sucrose gradients showed different proportions of CD63, CD9 and Mfge8 not only in fractions of densities classically described for exosomes (around 1.15 g/ml) but also in fractions of densities over 1.20 g/ml, indicating the presence of heterogenous vesicle populations. CD9 and Mfge8 were also found in large vesicles pelleted at low speed and can thus not be considered as specific components of endosome-derived vesicles. We propose that the most commonly used protocols for exosome preparations co-purify vesicles from endosomal and other origins, possibly the plasma membrane. Future work will be required to improve techniques for accurate purification and characterization of the different populations of extracellular vesicles. PMID:24009879

  7. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  8. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  9. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  10. Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling

    OpenAIRE

    Harris, Todd W.; Hartwieg, Erika; Horvitz, H. Robert; Jorgensen, Erik M.

    2000-01-01

    Synaptojanin is a polyphosphoinositide phosphatase that is found at synapses and binds to proteins implicated in endocytosis. For these reasons, it has been proposed that synaptojanin is involved in the recycling of synaptic vesicles. Here, we demonstrate that the unc-26 gene encodes the Caenorhabditis elegans ortholog of synaptojanin. unc-26 mutants exhibit defects in vesicle trafficking in several tissues, but most defects are found at synaptic termini. Specifically, we observed defects in ...

  11. Concentration-Independent Spontaneously Forming Biomimetric Vesicles

    Science.gov (United States)

    Nieh, M.-P.; Harroun, T. A.; Raghunathan, V. A.; Glinka, C. J.; Katsaras, J.

    2003-10-01

    In this Letter we present small-angle neutron scattering data from a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC-DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+), leads to the spontaneous formation of energetically stabilized monodisperse unilamellar vesicles whose radii are concentration independent and in contrast with previous experimental observations.

  12. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry

    OpenAIRE

    Aizea Morales-Kastresana; Bill Telford; Musich, Thomas A.; Katherine McKinnon; Cassandra Clayborne; Zach Braig; Ari Rosner; Thorsten Demberg; Watson, Dionysios C.; Karpova, Tatiana S.; Freeman, Gordon J.; DeKruyff, Rosemarie H.; Pavlakis, George N.; Masaki Terabe; Marjorie Robert-Guroff

    2017-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles, are 30?800?nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be brig...

  13. Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations

    OpenAIRE

    Quesenberry, Peter J.; Goldberg, Laura R.; Aliotta, Jason M.; Mark S Dooner; Pereira, Mandy G.; Wen, Sicheng; Camussi, Giovanni

    2014-01-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung o...

  14. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  15. Elastic energy of polyhedral bilayer vesicles.

    Science.gov (United States)

    Haselwandter, Christoph A; Phillips, Rob

    2011-06-01

    In recent experiments [M. Dubois, B. Demé, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. Désert, E. Perez, and T. Zemb, Nature (London) 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. USA 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron.

  16. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  17. Extracellular vesicles as therapeutic tools in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Audrey eFleury

    2014-08-01

    Full Text Available Extracellular vesicles (EVs, including microvesicles (MVs and exosomes, are small vesicles secreted from a wide variety of cells. Whereas MVs are particles released by the outward budding of the plasma membrane, exosomes are derived from endocytic compartments. Secretion of EVs can be enhanced by specific stimuli, and increased plasma circulating levels of EVs have been correlated with pathophysiological situations.MVs, already present in the blood of healthy individuals, are considerably elevated in several cardiovascular diseases associated with inflammation, suggesting that they can mediate deleterious effects such as endothelial dysfunction or thrombosis. Nonetheless, very recent studies also demonstrate that MVs may act as biological information vectors transferring proteins or genetic material to maintain cell homeostasis, favor cell repair or even promote angiogenesis. Additionally, exosomes have also been shown to have proangiogenic and cardioprotective properties. These beneficial effects therefore reveal the potential therapeutical use of EVs in the field of cardiovascular medicine and regenerative therapy.In this review, we will provide an update of cellular processes modulated by EVs of specific interest in the treatment of cardiovascular pathologies. A special focus will be made on the morphogen sonic hedgehog (Shh associated with EVs (EVsShh+, which have been shown to mediate many pro-angiogenic effects. In addition to offer a potential source of cardiovascular markers, therapeutical potential of EVs reveal exciting opportunities to deliver specific agents by non-immunogenic means to cardiovascular system.

  18. Marker chromosomes.

    Science.gov (United States)

    Rao, Kiran Prabhaker; Belogolovkin, Victoria

    2013-04-01

    Marker chromosomes are a morphologically heterogeneous group of structurally abnormal chromosomes that pose a significant challenge in prenatal diagnosis. Phenotypes associated with marker chromosomes are highly variable and range from normal to severely abnormal. Clinical outcomes are very difficult to predict when marker chromosomes are detected prenatally. In this review, we outline the classification, etiology, cytogenetic characterization, and clinical consequences of marker chromosomes, as well as practical approaches to prenatal diagnosis and genetic counseling.

  19. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-02-01

    Full Text Available The surface protein composition of extracellular vesicles (EVs is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  20. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles.

    Science.gov (United States)

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C D; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell-derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  1. Effects of "nourishing liver and kidney" acupuncture therapy on expression of brain derived neurotrophic factor and synaptophysin after cerebral ischemia reperfusion in rats.

    Science.gov (United States)

    Xia, Wen-Guang; Zheng, Chan-Juan; Zhang, Xuan; Wang, Juan

    2017-04-01

    The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits, and the underlying mechanism following cerebral ischemia-reperfusion (I/R) via increasing the expression of brain derived neurotrophic factor (BDNF) and synaptophysin (SYN) in the hippocampus. Healthy adult male SD rats were randomly divided into sham operation group (n=51), model group (n=51), acupuncture group (n=51) and acupuncture control group (n=51). The middle cerebral I/R model was established. Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi (K103), Taichong (ST09) of both sides, for 30 min once daily every morning. The animals in the sham operation group and model group were conventionally fed in the cage, without any intervention therapy. The rats of each group were assessed with modified neurological severity scores (mNSS). The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd, 7th and 14th day. The Morris water Maze (MWM) test was used to evaluate the rats' learning and memory abilities on the 15th day after acupuncture. The animals in the acupuncture control group and sham operation group presented no neurological deficit. In the acupuncture group, the nerve functional recovery was significantly better than that in the model group at the 7th and 14th day after modeling. The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd, 4th and 5th day. The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group. At the each time point, the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture

  2. Ion-exchange chromatography purification of extracellular vesicles.

    Science.gov (United States)

    Kosanović, Maja; Milutinović, Bojana; Goč, Sanja; Mitić, Ninoslav; Janković, Miroslava

    2017-08-01

    Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential centrifugation followed by IEC or sucrose density gradient separation. The purity of the isolated EVs was evaluated by electrophoresis and lectin blotting/immuno blotting to monitor the distribution of total proteins, different EVs markers, and selected N-glycans. Our data showed efficient separation of negatively charged EVs from other differently charged molecules, while comparative profiling of EVs using SDG centrifugation confirmed anion-exchange chromatography is advantageous for EV purification. Finally, although this IEC-based method was validated using AF, the approach should be readily applicable to isolation of EVs from other sources as well.

  3. A two phase field model for tracking vesicle-vesicle adhesion.

    Science.gov (United States)

    Gu, Rui; Wang, Xiaoqiang; Gunzburger, Max

    2016-11-01

    A multi-phase-field model for simulating the adhesion between two vesicles is constructed. Two phase field functions are introduced to simulate each of the two vesicles. An energy model is defined which accounts for the elastic bending energy of each vesicle and the contact potential energy between the two vesicles; the vesicle volume and surface area constraints are imposed using a penalty method. Numerical results are provided to verify the efficacy of our model and to provide visual illustrations of the different types of contact. The method can be adjusted to solve endocytosis problems by modifying the bending rigidity coefficients of the two elastic bending energies. The method can also be extended to simulate multi-cell adhesions, one example of which is erythrocyte rouleaux. A comparison with laboratory observations demonstrates the effectiveness of the multi-phase field approach.

  4. Insights into the self-reproduction of oleate vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P [' Enrico Fermi' Centre, Compendio Viminale, 00184 Rome (Italy); Wehrli, E [Electron Microscopy Centre (EMEZ), Applied Physics Institute, ETH Hoenggerberg, 8093 Zurich (Switzerland); Luisi, P L [Biology Department, University of RomaTre, Viale Marconi 446, 00146 Rome (Italy)

    2006-08-23

    In view of the importance of vesicles as models for early cells, several groups have started work looking for conditions under which vesicles can undergo growth and division. Evidence for growth and division has been obtained with the help of ferritin-labelled vesicles; furthermore, it has been shown that in such processes the vesicle size distribution is largely conserved. In both cases, the data suggest that the process under study is mainly characterized by vesicle growth and eventually division into daughter vesicles. However, direct evidence for vesicle division has not been obtained. In this paper, mostly based on freeze-fracture electron microscopy, we describe conditions under which for the first time division intermediates can be trapped in the form of twin vesicles. This finding, together with supporting dynamic light scattering and fluorescence investigations, permits us to establish some additional points in the mechanism of vesicle self-reproduction.

  5. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells.

    Science.gov (United States)

    Akopova, Irina; Tatur, Sabina; Grygorczyk, Mariusz; Luchowski, Rafał; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian; Grygorczyk, Ryszard

    2012-03-01

    Nucleotide release constitutes the first step of the purinergic signaling cascade, but its underlying mechanisms remain incompletely understood. In alveolar A549 cells much of the experimental data is consistent with Ca(2+)-regulated vesicular exocytosis, but definitive evidence for such a release mechanism is missing, and alternative pathways have been proposed. In this study, we examined ATP secretion from A549 cells by total internal reflection fluorescence microscopy to directly visualize ATP-loaded vesicles and their fusion with the plasma membrane. A549 cells were labeled with quinacrine or Bodipy-ATP, fluorescent markers of intracellular ATP storage sites, and time-lapse imaging of vesicles present in the evanescent field was undertaken. Under basal conditions, individual vesicles showed occasional quasi-instantaneous loss of fluorescence, as expected from spontaneous vesicle fusion with the plasma membrane and dispersal of its fluorescent cargo. Hypo-osmotic stress stimulation (osmolality reduction from 316 to 160 mOsm) resulted in a transient, several-fold increment of exocytotic event frequency. Lowering the temperature from 37°C to 20°C dramatically diminished the fraction of vesicles that underwent exocytosis during the 2-min stimulation, from ~40% to ≤1%, respectively. Parallel ATP efflux experiments with luciferase bioluminescence assay revealed that pharmacological interference with vesicular transport (brefeldin, monensin), or disruption of the cytoskeleton (nocodazole, cytochalasin), significantly suppressed ATP release (by up to ~80%), whereas it was completely blocked by N-ethylmaleimide. Collectively, our data demonstrate that regulated exocytosis of ATP-loaded vesicles likely constitutes a major pathway of hypotonic stress-induced ATP secretion from A549 cells.

  6. Mechanics of post-fusion exocytotic vesicle.

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-05-23

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  7. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  8. Mechanics of post-fusion exocytotic vesicle

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-06-01

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  9. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  10. Functionally polymerized surfactant vesicles: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Kippenberger, D.J.; Klahn, P.L.; Prieto, N.E.; Fendler, J.H.

    1982-01-27

    Bis(2-(10-undecenoyloxycarbony bromide, bis(2-(10-undecenoyloxycarbony (2-hydroxyethyl)methylammonium bromide, bis(2-(10-undecenoyloxycarbony acid, bis(2-(10-undecenoyloxycarbony allylbis(2-dodecanoyloxycarbon bromide, and dimethyl-n-hexadecyl (10-(p-vin decyl)ammonium bromide have been synthesized. The predominantly single compartment bilayer vesicles formed from these surfactants could be polymerized either by exposure to ultraviolet irradiation or by the use of azoisobutyronitrile as an initiator. The presence of vesicles (unpolymerized and polymeric) has been demonstrated by electron micrography, H/sup 1/ NMR, gel filtration, phase transition, turbidity changes, substrate entrapment, and permeability. Polymerized vesicles are considerably more stable and less permeable and have reduced rates of turbidity changes compared to their unpolymerized counterparts. 19 references.

  11. Directed vesicle transport by diffusio-osmosis

    Science.gov (United States)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  12. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  13. Electrohydrodynamics of a compound vesicle under an AC electric field.

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M

    2017-07-12

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius [Formula: see text], is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  14. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  15. [-Na(+)-K+ ATPase activity in vesicles of plasmatic membrane of breast cancer].

    Science.gov (United States)

    Salazar Esquivel, Edith Lucía; Calzada Sánchez, Leobardo

    2005-03-01

    -Na(+)-K+ ATPase is a useful marker which determines the origin of breast cancer cells. -Na(+)-K+ ATPase activity, as well as viability of plasma membrane vesicles isolated from breast carcinoma tissues were demonstrated by histochemical detection. Breast carcinoma tissue samples of patients who attended consultation in the oncology service at Hospital de Ginecoobstetricia Núm. 4 Dr. Luis Castelazo Ayala, IMSS were examined. Tissue samples from adenocarcinoma were homogenized in 4 volumes of TED solution at 4 degrees C (Tris-HCI 0.01 M, EDTA 0.0015 M, dithiothreitol 0.001 M, pH 7.4) and subsequently centrifuged. The collected sample was homogenized and stratified in a discontinuous sucrose gradient (20 to 50%) and then centrifuged for 60 min at 30,000 xg. In order to determine -Na(+)-K+ ATPase activity in plasma membrane vesicles, suspension was incubated at Tris-maleate 0.04 M, adenosine triphosphate (ATP) 0.004 M, Mgcl 20.004 M, NaCI 0.1 M y Pb (NO3) 20.005 M, pH 7.0. Reactions were carried out for 15 min at 37 degrees C in prefixed vesicles in 3% glutaraldehyde in 0.1 M, cacodylate buffer stock, pH7.4 for 60 min. Histochemical detection demonstrated membrane vesicles from breast carcinoma tissues and proved their viability after tumoral progression.

  16. A novel method for the isolation of extracellular vesicles and RNA from urine.

    Science.gov (United States)

    Markowska, Anna; Pendergrast, R Scott; Pendergrast, J Stephen; Pendergrast, P Shannon

    2017-01-01

    The discovery of urinary extracellular biomarkers has been impeded by the lack of efficient methods for the isolation of extracellular vesicles (EVs: exosomes and microvesicles) and extracellular nucleic acid (RNA and DNA) from urine. Ultracentrifugation (UC), considered the gold standard for vesicle isolation from many biofluids, is efficacious but laborious, and, like most commercially available methods, is unable to isolate enough material from small volumes for protein or RNA-based biomarker discovery. We have developed a novel precipitation method for the isolation of EVs and nucleic acids from urine. The method, which is now commercially available, takes less than 30 min and does not require polyethylene glycol. Transmission electron microscopy and Nanosight particle analysis confirm that the method isolates intact vesicles with a similar size, shape, and number to UC. Immunoblot analysis of preparations made from a variety of urine samples demonstrates that the method isolates multiple vesicle protein markers more efficiently than other commercial kits, especially from more diluted samples. Bioanalyzer, quantitative reverse transcription polymerase chain reaction, and array analysis show that the method is extremely efficient at the isolation of extracellular miRNAs. The Ymir Genomics EV and Extracellular RNA Isolation Kits offer an efficient and rapid alternative to UC and other commercial kits.

  17. A novel method for the isolation of extracellular vesicles and RNA from urine

    Directory of Open Access Journals (Sweden)

    Anna Markowska

    2017-06-01

    Full Text Available The discovery of urinary extracellular biomarkers has been impeded by the lack of efficient methods for the isolation of extracellular vesicles (EVs: exosomes and microvesicles and extracellular nucleic acid (RNA and DNA from urine. Ultracentrifugation (UC, considered the gold standard for vesicle isolation from many biofluids, is efficacious but laborious, and, like most commercially available methods, is unable to isolate enough material from small volumes for protein or RNA-based biomarker discovery. We have developed a novel precipitation method for the isolation of EVs and nucleic acids from urine. The method, which is now commercially available, takes less than 30 min and does not require polyethylene glycol. Transmission electron microscopy and Nanosight particle analysis confirm that the method isolates intact vesicles with a similar size, shape, and number to UC. Immunoblot analysis of preparations made from a variety of urine samples demonstrates that the method isolates multiple vesicle protein markers more efficiently than other commercial kits, especially from more diluted samples. Bioanalyzer, quantitative reverse transcription polymerase chain reaction, and array analysis show that the method is extremely efficient at the isolation of extracellular miRNAs. The Ymir Genomics EV and Extracellular RNA Isolation Kits offer an efficient and rapid alternative to UC and other commercial kits.

  18. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    Science.gov (United States)

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The role of extracellular vesicles in malaria biology and pathogenesis.

    Science.gov (United States)

    Sampaio, Natalia Guimaraes; Cheng, Lesley; Eriksson, Emily M

    2017-06-09

    In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted.

  20. Adsorption of DOPC vesicles on hydrophobic substrates in the ...

    Indian Academy of Sciences (India)

    Administrator

    In the present study, the interaction between an intact DOPC vesicle and the hydropho- bic surface is mainly through van der Waals interac- tion. In presence of increasing concentrations of electrolytes, counter ions are present in the vicinity of the DOPC vesicle. As the vesicle approaches the solid substrate, the counter ions ...

  1. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  2. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Role of Outer Membrance Vesicles of Bacteria. M V Jagannadham M K Chattopadhyay. General Article Volume 20 Issue 8 ... Keywords. Outer membrane ves ic les (OMVs); secretion; communication; virulence; antibiotic resistance; vaccines.

  3. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    Directory of Open Access Journals (Sweden)

    David R Stevens

    2011-02-01

    Full Text Available The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP and a slowly releasable (SRP pool are followed by sustained release, due to maturation and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.

  4. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  5. Towards traceable size determination of extracellular vesicles

    NARCIS (Netherlands)

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. In this manuscript, the size distribution of an

  6. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  7. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  8. Characterization of Extracellular Vesicles using Raman Spectroscopy

    NARCIS (Netherlands)

    Lee, Wooje; Nanou, Afroditi; Terstappen, Leonardus Wendelinus Mathias Marie; Rho, Hoon Suk; le Gac, Severine; Offerhaus, Herman L.

    2017-01-01

    In this research, we aim to characterize extracellular vesicles(EVs) with Confocal Raman spectroscopy to reveal relevant spectral lines that signify differences between EVs derived from different cell lines. In the first stage we performed confocal Raman measurements on various EV samples. For these

  9. Association between microtubules and Golgi vesicles isolated from rat parotid glands.

    Science.gov (United States)

    Coffe, G; Raymond, M N

    1990-01-01

    We report an isolation procedure of trans-Golgi vesicles (GVs) from rat parotid glands. Various organelle markers were used, particularly galactosyl transferase as a trans-Golgi marker, to test the purity of the GV fraction. A quantitative in vitro binding assay between microtubules and GVs is described. The vesicles were incubated with taxol-induced microtubules, layered between 50% and 43% sucrose cushions and subjected to centrifugation. Unlike free microtubules which were sedimented, the GV-bound microtubules co-migrated upward with GVs. Quantification of these bound microtubules was carried out by densitometric scanning of Coomassie blue-stained gels. The association between microtubules and GVs followed a saturation curve, with a plateau value of 20 micrograms of microtubule protein bound to 500 micrograms of GV fraction. The half-saturation of the GV sites was obtained with a microtubule concentration of 20 micrograms/ml. Electron microscopy of negatively stained re-floated material showed numerous microtubule-vesicle complexes. Coating of microtubules with an excess of brain microtubule-associated proteins (MAPs) abolished binding. In the absence of exogenous microtubules, we showed that the GV fraction was already interacting with a class of endogenous rat parotid microtubules. This class of colcemid and cold-stable microtubules represents 10-20% of the total tubulin content of the parotid cell.

  10. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  11. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis.

    Science.gov (United States)

    Erne, Petra M; van Bezouwen, Laura S; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Boekema, Egbert J; Feringa, Ben L

    2015-12-07

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based flexible bilayers. When a hyperosmotic gradient is applied to these vesicle-capped nanotubes, the closed system loses water and the more flexible vesicle bilayer is pulled inwards. This leads to inclusion of vesicles inside the nanotubes without affecting the tube structure, showing controlled reorganization of the self-assembled multicomponent system upon a simple osmotic stimulus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Coated vesicles as protein release mechanism in myeloma cells.

    Science.gov (United States)

    Trombetta, L D; Lazarus, S S

    An electron microscopic study was undertaken of the protein release mechanism within myeloma cells showing a very high degree of protein production. Smooth surfaced vesicles (50 millimicrons) were seen to originate from the outer margin of the perinuclear cistern. Similar vesicles were also associated with distended Golgi sacs. Possible function of these vesicles could not be determined. Coated vesicles (60 millimicrons) originated as evaginations from endoplasmic reticulum in the transitional region. They were present throughout the cytoplasm and were seen to fuse with the cell membrane discharging an electron dense material. These vesicles are, therefore, thought to transport protein from the rough endoplasmic reticulum and discharge it at the cell surface.

  13. Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Rengasamy, A.; Feinberg, H.

    1988-02-15

    A platelet membrane preparation, enriched in plasma membrane markers, took up /sup 45/Ca/sup 2 +/ in exchange for intravesicular Na+ and released it after the addition of inositol 1,4,5-trisphosphate (IP3). The possibility that contaminating dense tubular membrane (DTS) vesicles contributed the Ca/sup 2 +/ released by IP3 was eliminated by the addition of vanadate to inhibit Ca/sup +/-ATPase-mediated DTS Ca/sup 2 +/ sequestration and by the finding that only plasma membrane vesicles exhibit Na/sup +/-dependent Ca/sup 2 +/ uptake. Ca/sup 2 +/ released by IP3 was dependent on low extravesicular Ca/sup 2 +/ concentrations. IP3-induced Ca/sup 2 +/ release was additive to that released by Na/sup +/ addition while GTP or polyethylene glycol (PEG) had no effect. These results strongly suggest that IP3 facilitates extracellular Ca/sup 2 +/ influx in addition to release from DTS membranes.

  14. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis.

    Science.gov (United States)

    Reiner, Agnes T; Ferrer, Nicolas-Guillermo; Venugopalan, Priyamvada; Lai, Ruenn Chai; Lim, Sai Kiang; Dostálek, Jakub

    2017-10-09

    The sensitive analysis of small lipid extracellular vesicles (EVs) by using a grating-coupled surface plasmon resonance (GC-SPR) biosensor has been reported. In order to enable the analysis of trace amounts of EVs present in complex liquid samples, the target analyte is pre-concentrated on the sensor surface by using magnetic nanoparticles and its affinity binding is probed by wavelength interrogation of SPR. The GC-SPR has been demonstrated to allow for the implementation of efficient pulling of EVs to the sensor surface by using magnetic nanoparticles and an external magnetic field gradient applied through the sensor chip. This approach overcomes slow diffusion-limited mass transfer and greatly enhances the measured sensor response. The specific detection of different EV populations secreted from mesenchymal stem cells is achieved with a SPR sensor chip modified with antibodies against the surface marker CD81 and magnetic nanoparticles binding the vesicles via annexin V and cholera toxin B chain.

  15. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form

    Directory of Open Access Journals (Sweden)

    Oscarsson Jan

    2008-01-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S and in its spontaneous laboratory variant (D7SS resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm, AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.

  16. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    Science.gov (United States)

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  17. Monocyte activation drives preservation of membrane thiols by promoting release of oxidised membrane moieties via extracellular vesicles.

    Science.gov (United States)

    Szabó-Taylor, K É; Tóth, E Á; Balogh, A M; Sódar, B W; Kádár, L; Pálóczi, K; Fekete, N; Németh, A; Osteikoetxea, X; Vukman, K V; Holub, M; Pállinger, É; Nagy, Gy; Winyard, P G; Buzás, E I

    2017-07-01

    The redox state of cellular exofacial molecules is reflected by the amount of available thiols. Furthermore, surface thiols can be considered as indicators of immune cell activation. One group of thiol containing proteins, peroxiredoxins, in particular, have been associated with inflammation. In this study, we assessed surface thiols of the U937 and Thp1 monocyte cell lines and primary monocytes in vitro upon inflammatory stimulation by irreversibly labelling the cells with a fluorescent derivative of maleimide. We also investigated exofacial thiols on circulating blood mononuclear cells in patients with rheumatoid arthritis and healthy controls. When analysing extracellular vesicles, we combined thiol labelling with the use of antibodies to specific CD markers to exclude extracellular vesicle mimicking signals from thiol containing protein aggregates. Furthermore, differential detergent lysis was applied to confirm the vesicular nature of the detected extracellular events in blood plasma. We found an increase in exofacial thiols on monocytes upon in vitro stimulation by LPS or TNF, both in primary monocytes and monocytic cell lines (pextracellular vesicles showed a decrease in their exofacial thiols compared with those from unstimulated cells (pextracellular vesicles of isolated CD14 + cells from rheumatoid arthritis patients had decreased thiol levels compared with healthy subjects (pextracellular vesicles was increased in rheumatoid arthritis blood plasma (pextracellular vesicle-enriched preparations from blood plasma. Our data show that cell surface thiols play a protective role and reflect oxidative stress resistance state in activated immune cells. Furthermore, they support a role of extracellular vesicles in the redox regulation of human monocytes, possibly representing an antioxidant mechanism. Copyright © 2017. Published by Elsevier Inc.

  18. (SSR) markers

    African Journals Online (AJOL)

    uwerhiavwe

    Variability was observed for six ... rapid increase in climate change, so there is need to develop high yielding ... the past decade including assessment of genetic diversity in maize ... The SSR gel images and marker data were processed using.

  19. Interaction of insulin with SDS/CTAB catanionic Vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Tah, Bidisha; Pal, Prabir; Talapatra, G.B., E-mail: spgbt@iacs.res.in

    2014-01-15

    In the present study, a novel method was used for entrapping the protein, insulin into the catanionic SDS/CTAB vesicle membrane. The anionic SDS and cationic CTAB formed catanionic vesicles at particular concentration (35:65 by volume). In this study, vesicle membrane can be considered as model membrane. The vesicle formation and entrapment efficiency depend on the pH of the aqueous solution. The insulin molecules have attached with the vesicular membrane at pH 7.0. However, at acidic pH, the vesicles were ruptured and the insulin did not entrap into the vesicle membrane, whereas at alkaline pH insulin became fibriller. The scanning electron microscope (SEM), Dynamic light scattering (DLS), and Zeta potential studies established the self-assembled structure formation of insulin and catanionic vesicles. To know the protein confirmations, Circular dichroism (CD) was also employed. The temperature dependent steady state and time resolved emission spectroscopy show that at room temperature (25 °C), apart from the 305 nm tyrosine fluorescence, a new emission peak at 450 nm was observed only in case of insulin-vesicle system, and was assigned as the tyrosine phosphorescence. This phosphorescence peak is the signature of the entrapment of insulin into the vesicle membrane. Highlights: • SDS-CTAB based catanionic vesicle has been fabricated. • Insulin has been successfully immobilized on these vesicles. • Immobilized insulin shows room temperature phosphorescence.

  20. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells.

    Science.gov (United States)

    Jong, Ambrose Y; Wu, Chun-Hua; Li, Jingbo; Sun, Jianping; Fabbri, Muller; Wayne, Alan S; Seeger, Robert C

    2017-01-01

    Extracellular vesicles (EVs) have been the focus of great interest, as they appear to be involved in numerous important cellular processes. They deliver bioactive macromolecules such as proteins, lipids, and nucleic acids, allowing intercellular communication in multicellular organisms. EVs are secreted by all cell types, including immune cells such as natural killer cells (NK), and they may play important roles in the immune system. Currently, a large-scale procedure to obtain functional NK EVs is lacking, limiting their use clinically. In this report, we present a simple, robust, and cost-effective method to isolate a large quantity of NK EVs. After propagating and activating NK cells ex vivo and then incubating them in exosome-free medium for 48 h, EVs were isolated using a polymer precipitation method. The isolated vesicles contain the tetraspanin CD63, an EV marker, and associated proteins (fibronectin), but are devoid of cytochrome C, a cytoplasmic marker. Nanoparticle tracking analysis showed a size distribution between 100 and 200 nm while transmission electron microscopy imaging displayed vesicles with an oval shape and comparable sizes, fulfilling the definition of EV. Importantly, isolated EV fractions were cytotoxic against cancer cells. Furthermore, our results demonstrate for the first time that isolated activated NK (aNK) cell EVs contain the cytotoxic proteins perforin, granulysin, and granzymes A and B, incorporated from the aNK cells. Activation of caspase -3, -7 and -9 was detected in cancer cells incubated with aNK EVs, and caspase inhibitors blocked aNK EV-induced cytotoxicity, suggesting that aNK EVs activate caspase pathways in target cells. The ability to isolate functional aNK EVs on a large scale may lead to new clinical applications. Abbreviations: NK: natural killer cells; activated NK (aNK) cells; EVs: extracellular vesicles; ALL: acute lymphoblastic leukaemia; aAPC: artificial antigen-presenting cell; TEM: transmission electron

  1. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation.

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Barone

    Full Text Available BACKGROUND: Celiac Disease (CD is both a frequent disease (1:100 and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS: Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS: P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs

  2. Soft vesicles in the synthesis of hard materials.

    Science.gov (United States)

    Dong, Renhao; Liu, Weimin; Hao, Jingcheng

    2012-04-17

    Vesicles of surfactants in aqueous solution have received considerable attention because of their use as simple model systems for biological membranes and their applications in various fields including colloids, pharmaceuticals, and materials. Because of their architecture, vesicles could prove useful as "soft" templates for the synthesis of "hard materials". The vesicle phase, however, has been challenging and difficult to work with in the construction of hard materials. In the solution-phase synthesis of various inorganic or macromolecular materials, templating methods provide a powerful strategy to control the size, morphology, and composition of the resulting micro- and nanostructures. In comparison with hard templates, soft templates are generally constructed using amphiphilic molecules, especially surfactants and amphiphilic polymers. These types of compounds offer advantages including the wide variety of available templates, simple fabrication processes under mild conditions, and easy removal of the templates with less damage to the final structures. Researchers have used many ordered molecular aggregates such as vesicles, micelles, liquid crystals, emulsion droplets, and lipid nanotubes as templates or structure-directing agents to control the synthesis or assembly hard micro- and nanomaterials composed from inorganic compounds or polymers. In addition to their range of sizes and morphologies, vesicles present unique structures that can simultaneously supply different microenvironments for the growth and assembly of hard materials: the inner chamber of vesicles, the outer surface of the vesicles, and the space between bilayers. Two main approaches for applying vesicles in the field of hard materials have been explored: (i) in situ synthesis of micro- or nanomaterials within a specific microenvironment by vesicle templating and (ii) the assembly or incorporation of guest materials during the formation of vesicles. This Account provides an in-depth look at

  3. Flow analysis of individual blood extracellular vesicles in acute coronary syndrome.

    Science.gov (United States)

    Vagida, Murad; Arakelyan, Anush; Lebedeva, Anna; Grivel, Jean-Charles; Shpektor, Alexander; Vasilieva, Elena; Margolis, Leonid

    2017-03-01

    A diverse population of small extracellular vesicles (EVs) that are released by various cells has been characterized predominantly in bulk, a procedure whereby the individual characteristics of EVs are lost. Here, we used a new nanotechnology-based flow cytometric analysis to characterize the antigenic composition of individual EVs in patients with acute coronary syndrome (ACS). Plasma EVs were captured with 15-nm magnetic nanoparticles coupled to antibodies against CD31 (predominantly an endothelial marker), CD41a (a marker for platelets), and CD63 or MHC class I (common EV markers). The total amounts of EVs were higher in the ACS patients than in the controls, predominantly due to the contribution of patients with acute myocardial infarction. For all captured fractions, the differences in the EV amounts were restricted to CD41a+ EVs. The increase in the numbers of EVs in the ACS patients, predominantly of platelet origin, probably reflects platelet activation and may indicate disease progression.

  4. Signaling by Extracellular Vesicles Advances Cancer Hallmarks.

    Science.gov (United States)

    Kanada, Masamitsu; Bachmann, Michael H; Contag, Christopher H

    2016-02-01

    Mammalian cells secrete various extracellular vesicles (EVs; exosomes, microvesicles, and apoptotic bodies) that differ in biogenesis, composition, and function. Each vesicle type can originate from normal or cancerous cells, transfer molecular cargo to both neighboring and distant cells, and modulate cellular behaviors involved in eubiology and pathology, such as tumor development. Here, we review evidence for the role of EVs in the establishment and maintenance of cancer hallmarks, including sustaining proliferative signaling, evading growth suppression, resisting cell death, reprogramming energy metabolism, acquiring genomic instability, and remodeling the tumor microenvironment. We also discuss how EVs are implicated in the induction of angiogenesis, control of cellular invasion, initiation of premetastatic niches, maintenance of inflammation, and evasion of immune surveillance. The deeper understanding of the biology of EVs and their contribution to the development and progression of tumors is leading to new opportunities in the diagnosis and treatment of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Seminal vesicle cystadenoma: a rare clinical perspective.

    Science.gov (United States)

    Lorber, Gideon; Pizov, Galina; Gofrit, Ofer N; Pode, Dov

    2011-08-01

    A 52-yr-old man presented with severe obstructive urinary symptoms. Ten years earlier, a digital rectal examination disclosed a small mass above the prostate, and a computed tomography (CT) scan showed a 3.5-cm cystic tumor of the right seminal vesicle. He had been followed conservatively elsewhere. Reevaluation of the mass with a CT scan and magnetic resonance imaging showed that the mass had grown to a maximal diameter of 14 cm. A transabdominal needle biopsy revealed benign fibromuscular tissue. The tumor was then resected by an open transvesical approach. Pathology was consistent with a benign seminal vesicle cystadenoma. The natural history, pathology, and surgical approach are described. Copyright © 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Docking of secretory vesicles is syntaxin dependent.

    Directory of Open Access Journals (Sweden)

    Heidi de Wit

    Full Text Available Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.

  7. Vitrification of Germinal Vesicle Stage Oocytes

    OpenAIRE

    ABE, Yasuyuki; AONO, Nobuya; Hara, Kenshiro; Matsumoto, Hiromichi; BAKHTIYARI, Mehrdad; Sasada, Hiroshi; Sato, Eimei

    2004-01-01

    In order to cryopreserve germinal vesicle (GV) stage oocytes, we first need to develop a novel container for keeping large quantities of GV oocytes, because of collecting them as cumulus oocytes complexes (COCs) that have bigger size and larger volume than oocytes themselves, and second modify a protocol for optimizing vitrification of them. In this mini-review, we describe our recent progress for attaining these objectives. When 65 bovine COCs having GV oocytes could be placed on a sheet of ...

  8. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    Science.gov (United States)

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (inflammation in immune cells. © 2017 American Heart Association, Inc.

  9. A readily retrievable pool of synaptic vesicles

    OpenAIRE

    Hua, Y; Sinha, R.; Thiel, C.; Schmidt, R.; Hueve, J.; Martens, H.; Hell, S.; Egner, A.; Klingauf, J.

    2011-01-01

    Abstract Although clathrin-mediated endocytosis (CME) is thought to be the predominant mechanism of synaptic vesicle (SV) recycling, it seems to be too slow for fast recycling. Therefore, it was suggested that a pre-sorted and pre-assembled pool of SV proteins on the presynaptic membrane might support a first wave of fast CME. In this study we monitored the temporal dynamics of such a 'readily retrievable pool' of SV proteins in rat hippocampal neurons using a novel probe. Applying...

  10. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  11. ATP: The crucial component of secretory vesicles.

    Science.gov (United States)

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  12. Detection of platelet vesicles by flow cytometry.

    Science.gov (United States)

    Nolan, John P; Jones, Jennifer C

    2017-05-01

    The composition and function of platelet-derived extracellular vesicles (EVs) in health and in disease are a major topic of investigation in biomedical research. However, efforts to delineate specific molecular repertoires and roles for different types of EVs in the circulation are limited not only by the lack of flow cytometers capable of analyzing submicron- and nano-materials across the full size spectrum of plasma EVs, but also by the lack of standardized methods and reference materials that would permit inter-laboratory reproducibility for these analyses. In this review, we summarize the flow cytometry of EVs, with a focus on platelet vesicles in plasma. In addition to delineating the basic principles that govern what precautions must be considered when using flow cytometry for the analysis of platelet vesicles, we provide an overview for how to standardize, control, annotate, and report EV flow cytometry data reproducibly, while looking forward to a next generation of high sensitivity instruments for the analysis of EVs and other submicron biomaterials in the circulation.

  13. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  14. Usefulness of GATA-3 as a marker of seminal epithelium in prostate biopsies.

    Science.gov (United States)

    Ortiz-Rey, J A; Chantada-de la Fuente, D; Peteiro-Cancelo, M Á; Gómez-de María, C; San Miguel-Fraile, M P

    2017-11-01

    The incidental presence of seminal vesicle epithelium in prostate needle biopsies is generally recognisable through routine microscopy. However, the biopsy can sometimes be erroneously interpreted as malignant due to its architectural and cytological characteristics, and immunohistochemistry can be useful for correctly identifying the biopsy. Our objective was to analyse the potential usefulness of GATA-3 as a marker of seminal epithelium. Through immunohistochemistry with a monoclonal anti-GATA-3 antibody (clone L50-823), we studied seminal vesicle sections from 20 prostatectomy specimens, 12 prostate needle biopsies that contained seminal vesicle tissue and 68 prostate biopsies without seminal vesicle epithelium, 36 of which showed adenocarcinoma. Staining for GATA-3 was intense in the 20 seminal vesicles of the prostatectomy specimens and in the 12 prostate needle biopsies that contained seminal epithelium. In the 60 biopsies without a seminal vesicle, GATA-3 was positive in the prostate basal cells and even in the secretory cells (57 cases), although with less intensity in 55 of the cases. One of the 36 prostatic adenocarcinomas tested positive for GATA-3. The intense immunohistochemical expression of GATA-3 in the seminal vesicle epithelium can help identify the epithelium in prostate biopsies. This marker is also positive in the basal cells of healthy prostates and, with less intensity, in the secretory cells. Positivity, weak or moderate, is observed on rare occasions in prostatic adenocarcinomas. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith?

    Science.gov (United States)

    Osteikoetxea, Xabier; Németh, Andrea; Sódar, Barbara W; Vukman, Krisztina V; Buzás, Edit Irén

    2016-06-01

    In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles.

    Directory of Open Access Journals (Sweden)

    Nathan M Merrill

    Full Text Available Phosphoinositide 3-kinase (PI3K family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoforms in autophagy, we knock down each gene individually and measure autophagy. We find a significant decrease in autophagy following siRNA-mediated PIK3C2A (encoding the Class 2 PI3K, PI3K-C2α knockdown. This defective autophagy is rescued by exogenous PI3K-C2α, but not kinase-dead PI3K-C2α. Using confocal microscopy, we probe for markers of endocytosis and autophagy, revealing that PI3K-C2α colocalizes with markers of endocytosis. Though endocytic uptake is intact, as demonstrated by transferrin labeling, PIK3C2A knockdown results in vesicle accumulation at the recycling endosome. We isolate distinct membrane sources and observe that PI3K-C2α interacts with markers of endocytosis and autophagy, notably ATG9. Knockdown of either PIK3C2A or ATG9A/B, but not PI3KC3, results in an accumulation of transferrin-positive clathrin coated vesicles and RAB11-positive vesicles at the recycling endosome. Taken together, these results support a role for PI3K-C2α in the proper maturation of endosomes, and suggest that PI3K-C2α may be a critical node connecting the endocytic and autophagic pathways.

  17. (SSR) markers

    African Journals Online (AJOL)

    HP-PROBOOK

    2016-10-05

    Oct 5, 2016 ... Cluster analysis was constructed using DARwin program version 6.0. Forty eight (48) coconut individuals were clustered into three groups. Key words: Coconut palm (Cocos nucifera ... markers, cluster analysis, diversity. INTRODUCTION ... industry in Kenya (Muhammed et al., 2013). Furthermore, the slow ...

  18. (SRAP) markers

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... are a very powerful tool for characterization and genetic diversity estimation. Many molecular marker techniques have been successfully used in identification and genetic diversity analysis in mulberry, such as RAPD (Xiang et al., 1995; Feng et al., 1996; Zhao and Pan, 2004),. AFLP (Sharma and Sharma, ...

  19. (SSR) markers

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... and attempt crosses for genetic improvement of the crop. Key words: Capsicum, genetic diversity, molecular characterization, simple sequence repeats (SSR) markers. INTRODUCTION. Chilli pepper (Capsicum annuum L.) (Solanaceae) has a chromosome number 2n=2x=24. It is indigenous to South.

  20. (SSR) markers

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... Oilseed rape (Brassica napus L.) is an important oilseed crop worldwide. The objective of this research was to study the genetic diversity and relationships of B. napus accessions using simple sequence repeat (SSR). A set of 217 genotypes was characterized using 37 SSR markers of mapping on the B.

  1. (RAPD) markers

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... Biotechnol. Biotechnol. Equip.14: 16-18. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I. (2003). Comparative study of the discriminating capacity of RAPD,. AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor. Appl. Genet. 107: 736-744 ...

  2. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics......CAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood...

  3. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Gram-negative and Gram-positive bacterial extracellular vesicles.

    Science.gov (United States)

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lee, Jaewook; Kim, Si-Hyun; Choi, Dong-Sic; Lee, Jong Seok; Kim, Dae-Kyum; Go, Gyeongyun; Park, Seon-Min; Kim, Si Hyun; Shin, Jeong Hwan; Chang, Chulhun L; Gho, Yong Song

    2015-10-01

    The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC-MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 (http://proteomecentral.proteomexchange.org/dataset/PXD001160). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DNA-mediated self-assembly of artificial vesicles.

    Science.gov (United States)

    Hadorn, Maik; Eggenberger Hotz, Peter

    2010-03-26

    Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and

  7. Cellular phenotype and extracellular vesicles: basic and clinical considerations.

    Science.gov (United States)

    Quesenberry, Peter J; Goldberg, Laura R; Aliotta, Jason M; Dooner, Mark S; Pereira, Mandy G; Wen, Sicheng; Camussi, Giovanni

    2014-07-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.

  8. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  9. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  10. [Seminal vesicle cystadenoma as the cause of a retrovesical tumor].

    Science.gov (United States)

    Kaminsky, A; Kania, U; Ortloff, P; Sperling, H

    2014-04-01

    Tumors of the seminal vesicle are rare. Malignant tumors are more common than benign tumors. A seminal vesicle cystadenoma is a rarity. We report on a 41-year-old man with the incidental finding of an asymptomatic retrovesical tumor. The tumor, the seminal vesicle, and the abdominal part of the ductus deferens were surgically removed. The operative access is variable and surgical treatment is the method of choice. The patient's prognosis is good and there are no signs of recurrence.

  11. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus.

    Science.gov (United States)

    Sanchez-Varo, Raquel; Trujillo-Estrada, Laura; Sanchez-Mejias, Elisabeth; Torres, Manuel; Baglietto-Vargas, David; Moreno-Gonzalez, Ines; De Castro, Vanessa; Jimenez, Sebastian; Ruano, Diego; Vizuete, Marisa; Davila, Jose Carlos; Garcia-Verdugo, Jose Manuel; Jimenez, Antonio Jesus; Vitorica, Javier; Gutierrez, Antonia

    2012-01-01

    Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer's disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1(M146L)/APP(751SL) mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin-cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages.

  12. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Akihiro Yamashita

    Full Text Available Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs, while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles. Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN. The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.

  13. Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer.

    Science.gov (United States)

    Wang, Yayu; Chen, Xiaojia; Tian, Baoqing; Liu, Jiafan; Yang, Li; Zeng, Lilan; Chen, Tianfen; Hong, An; Wang, Xiaogang

    2017-01-01

    Small interfering RNAs (siRNA)/microRNAs (miRNA) have promising therapeutic potential, yet their clinical application has been hampered by the lack of appropriate delivery systems. Herein, we employed extracellular vesicles (EVs) as a targeted delivery system for small RNAs. EVs are cell-derived small vesicles that participate in cell-to-cell communication for protein and RNA delivery. We used the aptamer AS1411-modified EVs for targeted delivery of siRNA/microRNA to breast cancer tissues. Tumor targeting was facilitated via AS1411 binding to nucleolin, which is highly expressed on the surface membrane of breast cancer cells. This delivery vesicle targeted let-7 miRNA delivery to MDA-MB-231 cells in vitro as confirmed with fluorescent microscopic imaging and flow cytometry. Also, intravenously delivered AS1411-EVs loaded with miRNA let-7 labeled with the fluorescent marker, Cy5, selectively targeted tumor tissues in tumor-bearing mice and inhibited tumor growth. Importantly, the modified EVs were well tolerated and showed no evidence of nonspecific side effects or immune response. Thus, the RNAi nanoplatform is versatile and can deliver siRNA or miRNA to breast cancer cells both in vitro and in vivo. Our results suggest that the AS1411-EVs have a great potential as drug delivery vehicles to treat cancers.

  14. Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2017-07-01

    Full Text Available Microbubbles-assisted ultrasound (USMB has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment. Based on this rationale, we investigated whether USMB triggers exocytosis resulting in the release of extracellular vesicles (EVs. USMB was performed on a monolayer of head-and-neck cancer cells (FaDu with clinically approved microbubbles and commonly used ultrasound parameters. At 2, 4, and 24 h, cells and EV-containing conditioned media from USMB and control conditions (untreated cells, cells treated with microbubbles and ultrasound only were harvested. EVs were measured using flow cytometric immuno-magnetic bead capture assay, immunogold electron microscopy, and western blotting. After USMB, levels of CD9 exposing-EVs significantly increased at 2 and 4 h, whereas levels of CD63 exposing-EVs increased at 2 h. At 24 h, EV levels were comparable to control levels. EVs released after USMB displayed a heterogeneous size distribution profile (30–1200 nm. Typical EV markers CD9, CD63, and alix were enriched in EVs released from USMB-treated FaDu cells. In conclusion, USMB treatment triggers exocytosis leading to the release of EVs from FaDu cells.

  15. Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation.

    Science.gov (United States)

    Maus, Rachel L G; Jakub, James W; Nevala, Wendy K; Christensen, Trace A; Noble-Orcutt, Klara; Sachs, Zohar; Hieken, Tina J; Markovic, Svetomir N

    2017-01-01

    Evolution of melanoma from a primary tumor to widespread metastasis is crucially dependent on lymphatic spread. The mechanisms regulating the initial step in metastatic dissemination via regional lymph nodes remain largely unknown; however, evidence supporting the establishment of a pre-metastatic niche is evolving. We have previously described a dysfunctional immune profile including reduced expression of dendritic cell (DC) maturation markers in the first node draining from the primary tumor, the sentinel lymph node (SLN). Importantly, this phenotype is present prior to evidence of nodal metastasis. Herein, we evaluate melanoma-derived extracellular vesicles (EVs) as potential mediators of the premetastatic niche through cargo-specific polarization of DCs. DCs matured in vitro in the presence of melanoma EVs demonstrated significantly impaired expression of CD83 and CD86 as well as decreased expression of Th1 polarizing chemokines Flt3L and IL15 and migration chemokines MIP-1α and MIP-1β compared to liposome-treated DCs. Profiling of melanoma EV cargo identified shared proteomic and RNA signatures including S100A8 and S100A9 protein cargo, which in vitro compromised DC maturation similar to melanoma EVs. Early evidence demonstrates that similar EVs can be isolated from human afferent lymphatic fluid ex vivo. Taken together, here, we propose melanoma EV cargo as a mechanism by which DC maturation is compromised warranting further study to consider this as a potential mechanism enabled by the primary tumor to establish the premetastatic niche in tumor-draining SLNs of patients.

  16. Methods for extracellular vesicles isolation in a hospital setting

    Directory of Open Access Journals (Sweden)

    Matías eSáenz-Cuesta

    2015-02-01

    Full Text Available The research in extracellular vesicles (EVs has been rising during the last decade. However, there is no clear consensus on the most accurate protocol to isolate and analyze them. Besides, most of the current protocols are difficult to implement in a hospital setting due to being very time consuming or to requirements of specific infrastructure. Thus, our aim is to compare five different protocols (comprising two different medium-speed differential centrifugation protocols; commercially polymeric precipitation -exoquick-; acid precipitation; and ultracentrifugation for blood and urine samples to determine the most suitable one for the isolation of EVs. Nanoparticle tracking analysis, flow cytometry, western blot, electronic microscopy and spectrophotometry were used to characterize basic aspects of EVs such us concentration, size distribution, cell-origin and transmembrane markers and RNA concentration. The highest EV concentrations were obtained using the exoquick protocol, followed by both differential centrifugation protocols, while the ultracentrifugation and acid-precipitation protocols yielded considerably lower EV concentrations. The five protocols isolated EVs of similar characteristics regarding markers and RNA concentration however standard protocol recovered only small EVs. EV isolated with exoquick presented difficult to be analyzed with western blot. The RNA concentrations obtained from urine-derived EVs were similar to those obtained from blood-derived ones, despite the urine EV concentration being 10 to 20 times lower. We consider that a medium-speed differential centrifugation could be suitable to be applied in a hospital setting due to require the simplest infrastructure and recover higher concentration of EV than standard protocol. A workflow from sampling to characterization of EVs is proposed.

  17. Dynamic properties of the alkaline vesicle population at hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Mareike Röther

    Full Text Available In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.

  18. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    Science.gov (United States)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  19. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  20. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  1. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  2. Role of extracellular vesicles in autoimmune diseases.

    Science.gov (United States)

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kellom Matthew

    2012-05-01

    Full Text Available Abstract Background Neuroinflammation, caused by six days of intracerebroventricular infusion of bacterial lipopolysaccharide (LPS, stimulates rat brain arachidonic acid (AA metabolism. The molecular changes associated with increased AA metabolism are not clear. We examined effects of a six-day infusion of a low-dose (0.5 ng/h and a high-dose (250 ng/h of LPS on neuroinflammatory, AA cascade, and pre- and post-synaptic markers in rat brain. We used artificial cerebrospinal fluid-infused brains as controls. Results Infusion of low- or high-dose LPS increased brain protein levels of TNFα, and iNOS, without significantly changing GFAP. High-dose LPS infusion upregulated brain protein and mRNA levels of AA cascade markers (cytosolic cPLA2-IVA, secretory sPLA2-V, cyclooxygenase-2 and 5-lipoxygenase, and of transcription factor NF-κB p50 DNA binding activity. Both LPS doses increased cPLA2 and p38 mitogen-activated protein kinase levels, while reducing protein levels of the pre-synaptic marker, synaptophysin. Post-synaptic markers drebrin and PSD95 protein levels were decreased with high- but not low-dose LPS. Conclusions Chronic LPS infusion has differential effects, depending on dose, on inflammatory, AA and synaptic markers in rat brain. Neuroinflammation associated with upregulated brain AA metabolism can lead to synaptic dysfunction.

  4. Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa

    Directory of Open Access Journals (Sweden)

    Marcianò Vito

    2008-01-01

    Full Text Available Abstract Background The presence of small membranous particles characterizes the male genital fluids of different mammalian species. The influence of semen vesicles, denominated prostasomes, on sperm functional properties has been well documented in humans, but their biological activity is scarcely known in other species. The present work investigated prostasome-like vesicles in pig semen for their ability to interact with spermatozoa and to affect acrosome reaction. Methods Prostasome-like vesicles have been isolated from pig seminal plasma by high-speed centrifugation and Sephadex G-200 gel chromatography. Morphology of purified vesicles has been checked by scanning electron microscopy while their protein pattern has been investigated by SDS-PAGE. Then prostasome- like vesicles have been incubated with pig spermatozoa and their ability to interact with sperm has been tested by the aminopeptidase assay. In addition, the efficiency of vesicles to influence the acrosome reaction has been investigated by assessing the sperm acrosomal status by the PI/FITC-PNA (propidium iodide/fluorescein isothiocyanate-labeled peanut agglutinin stainings. Results Purified vesicles revealed a complex protein pattern with the occurrence of bands in the high, medium and low molecular weight range. However, the two major bands were observed at ~90 kDa and ~60 kDa. A vesicle-mediated transfer of aminopeptidase to sperm cells has been also detected. Furthermore, a significant increase of acrosome reaction extent has been revealed in spermatozoa incubated with prostasome-like vesicles in comparison to control sperm. Conclusion This is the first report demonstrating that pig prostasome-like vesicles are able, in vitro, to interact with spermatozoa and to stimulate the acrosome reaction. These findings lead to hypothesize a transfer of molecules from vesicles to sperm membrane, thus sensitizing male gametes to undergo the acrosome reaction

  5. Bioinformatics Tools for Extracellular Vesicles Research.

    Science.gov (United States)

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Gho, Yong Song; Mathivanan, Suresh

    2017-01-01

    Extracellular vesicles (EVs) are a class of membranous vesicles that are released by multiple cell types into the extracellular environment. This unique class of extracellular organelles which play pivotal role in intercellular communication are conserved across prokaryotes and eukaryotes. Depending upon the cell origin and the functional state, the molecular cargo including proteins, lipids, and RNA within the EVs are modulated. Owing to this, EVs are considered as a subrepertoire of the host cell and are rich reservoirs of disease biomarkers. In addition, the availability of EVs in multiple bodily fluids including blood has created significant interest in biomarker and signaling research. With the advancement in high-throughput techniques, multiple EV studies have embarked on profiling the molecular cargo. To benefit the scientific community, existing free Web-based resources including ExoCarta, EVpedia, and Vesiclepedia catalog multiple datasets. These resources aid in elucidating molecular mechanism and pathophysiology underlying different disease conditions from which EVs are isolated. Here, the existing bioinformatics tools to perform integrated analysis to identify key functional components in the EV datasets are discussed.

  6. Extracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic Applications.

    Science.gov (United States)

    Giusti, Ilaria; Di Francesco, Marianna; Dolo, Vincenza

    2017-01-01

    Glioblastoma is the most common and malignant form of primary brain cancer; it is characterized by one of the highest mortality among human cancers. Maximal and aggressive surgical resection is the first approach treatment even if not usually definitive, being the tumor characterized by a high proliferative rate and extensive invasion. Early diagnosis, associated to careful monitoring, is pivotal in glioblastoma treatment; Magnetic Resonance Imaging is used for monitoring purpose, but it's not sensitive enough to detect very small tumors; a valid alternative could be a repeated biopsy, but it is associated to a significant morbidity: less invasive options for diagnosis and therapeutic monitoring are unfailingly researched. A careful search was performed on PubMed, mainly considering papers in the last 10 years. In recent years it has begun to take hold the knowledge that glioblastoma cells secrete extracellular vesicles (microvesicles and exosomes), which mirror the molecular features of parental cells and are able to escape from tumor microenvironment, reaching cerebrospinal fluid and systemic blood circulation. Such information led to consider the possibility to use extracellular vesicles in biological fluids as markers of glioblastoma pathology and to use them as a more feasible "liquid-biopsy" to gain diagnostic information, follow the disease progression and the response to clinical treatment, just through a blood test or cerebrospinal fluid collection. The most interesting extracellular vesiclesassociated molecules studied as glioblastoma markers are taken into account, as well as approaches aiming to use extracellular vesicles as cell-free vaccines or vehicle of therapeutic molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion...

  8. IN-VITRO FUSION OF RETICULOCYTE ENDOCYTIC VESICLES WITH LIPOSOMES

    NARCIS (Netherlands)

    VIDAL, M; HOEKSTRA, D

    1995-01-01

    Since reticulocytes have a high demand for iron, which is required for heme biosynthesis, these cells are highly specialized in the endocytosis of the iron carrier transferrin (Tf). From the resulting endocytic vesicles (EVs), iron is released and the vesicles rapidly return to the cell membrane

  9. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  10. Vesicle transport and photoreceptor death: fishing for molecular links.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2013-06-10

    Intracellular vesicle transport defects can induce retinal degeneration and photoreceptor cell death, but the molecular connections between these processes remains poorly understood. Reporting in Developmental Cell, Nishiwaki et al. (2013) suggest that a vesicle fusion cis-SNARE complex component translates vesicular transport defects into photoreceptor cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Formation and structural properties of multi-block copolymer vesicles

    Science.gov (United States)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  12. Slow Sedimentation and Deformability of Charged Lipid Vesicles

    Science.gov (United States)

    Rey Suárez, Iván; Leidy, Chad; Téllez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity. PMID:23874582

  13. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...... and partly removed from between the surfaces under high loads. These layers offer very low friction coefficient (

  14. Block-Copolymer Vesicles as Nanoreactors for Enzymatic Reactions

    NARCIS (Netherlands)

    Chen, Qi; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    The impact of the spatial confinement of polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer (BCP) vesicles on the reactivity of encapsulated bovine pancreas trypsin is studied. Enzymes, as well as small molecules, are encapsulated with loading efficiencies up to 30% in BCP vesicles with

  15. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These

  16. The freezing process of small lipid vesicles at molecular resolution

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    At present very little is known about the kinetic barriers which a small vesicle will face during the transformation from the liquid-crystalline to the gel phase, and what the structure of frozen vesicles looks like at the molecular level. The formation of gel domains in the strongly curved bilayer

  17. Time-dependent uptake and trafficking of vesicles capturing extracellular S100B in cultured rat astrocytes.

    Science.gov (United States)

    Lasič, Eva; Galland, Fabiana; Vardjan, Nina; Šribar, Jernej; Križaj, Igor; Leite, Marina Concli; Zorec, Robert; Stenovec, Matjaž

    2016-10-01

    Astrocytes, the most heterogeneous glial cells in the central nervous system, contribute to brain homeostasis, by regulating a myriad of functions, including the clearance of extracellular debris. When cells are damaged, cytoplasmic proteins may exit into the extracellular space. One such protein is S100B, which may exert toxic effects on neighboring cells unless it is removed from the extracellular space, but the mechanisms of this clearance are poorly understood. By using time-lapse confocal microscopy and fluorescently labeled S100B (S100B-Alexa 488 ) and fluorescent dextran (Dextran 546 ), a fluid phase uptake marker, we examined the uptake of fluorescently labeled S100B-Alexa 488 from extracellular space and monitored trafficking of vesicles that internalized S100B-Alexa 488 . Initially, S100B-Alexa 488 and Dextran 546 internalized with distinct rates into different endocytotic vesicles; S100B-Alexa 488 internalized into smaller vesicles than Dextran 546 . At a later stage, S100B-Alexa 488 -positive vesicles substantially co-localized with Dextran 546 -positive endolysosomes and with acidic LysoTracker-positive vesicles. Cell treatment with anti-receptor for advanced glycation end products (RAGE) antibody, which binds to RAGE, a 'scavenger receptor', partially inhibited uptake of S100B-Alexa 488 , but not of Dextran 546 . The dynamin inhibitor dynole 34-2 inhibited internalization of both fluorescent probes. Directional mobility of S100B-Alexa 488 -positive vesicles increased over time and was inhibited by ATP stimulation, an agent that increases cytosolic free calcium concentration ([Ca 2+ ] i ). We conclude that astrocytes exhibit RAGE- and dynamin-dependent vesicular mechanism to efficiently remove S100B from the extracellular space. If a similar process occurs in vivo, astroglia may mitigate the toxic effects of extracellular S100B by this process under pathophysiologic conditions. This study reveals the vesicular clearance mechanism of extracellular S100

  18. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity.

    Science.gov (United States)

    Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Herrup, Karl; Plummer, Mark R

    2016-07-01

    Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. Copyright © 2016 the American Physiological Society.

  19. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    Artificial vesicles have been used for decades as model systems of biological cells to investigate scientific questions in simulacra. In recent years, the significance of artificial vesicles further increased because they represent ideal candidates to become the building block of a de novo...... construction of a cell in a bottom-up manner. Numerous efforts to build an artificial cell that bridge the living and non-living world will most presumably represent one of the main goals of science in the 21st century. It was shown that artificial genetic programs and the required cellular machinery can...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  20. Recognition and tethering of transport vesicles at the Golgi apparatus.

    Science.gov (United States)

    Witkos, Tomasz M; Lowe, Martin

    2017-08-01

    The Golgi apparatus occupies a central position within the secretory pathway where it is a hub for vesicle trafficking. Distinct classes of transport vesicles traffic diverse cargoes into and out of this organelle, as well as between the different Golgi subcompartments. A key feature of Golgi trafficking is the specific recognition of transport vesicles at the different regions of the Golgi apparatus, required for the correct cargo delivery. Specificity is ensured by coiled-coil golgins and multi-subunit tethering complexes (MTCs), which act together to capture vesicles and promote their subsequent fusion with the Golgi membrane. In this review we discuss our current understanding of how golgins and MTCs function together to mediate the specific recognition of vesicles at the Golgi apparatus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  2. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  3. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    Science.gov (United States)

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Placental Extracellular Vesicles and Feto-Maternal Communication

    Science.gov (United States)

    Tong, M.; Chamley, L.W.

    2015-01-01

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. PMID:25635060

  5. Aceclofenac encapsulated ethanolic nano-vesicles for effective treatment of osteoarthritis

    National Research Council Canada - National Science Library

    Kaur, Arvinder; Jain, Sunil K; Pandey, Ravi S

    2012-01-01

    .... Ethanolic nano-vesicles were prepared by solvent dispersion method. Vesicles were characterized for vesicular size, surface morphology, size and size distribution, zeta potential, entrapment efficiency...

  6. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  7. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    Science.gov (United States)

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles ? about microvesicles, exosomes, ectosomes and other extracellular vesicles

    OpenAIRE

    L?tvall, Jan; Rajendran, Lawrence; Gho, Yong-Song; Thery, Clotilde; Wauben, Marca; Raposo, Graca; Sj?strand, Margareta; Taylor, Douglas; Telemo, Esbj?rn; Breakefield, Xandra O.

    2012-01-01

    In 2011, researchers around the world interested in extracellular vesicles (EV) joined forces and founded the International Society for Extracellular Vesicles (ISEV). Membership has grown to approximately 750 in eight months, and the Society’s first meeting will take place in Gothenburg, Sweden, on 18-21 April 2012. Already approximately 500 participants have been attracted to this event. These are signs of rapid expansion in global research in the field of EV.(Published: 16 April 2012)Citati...

  9. A Perspective on Extracellular Vesicles Proteomics

    Directory of Open Access Journals (Sweden)

    Livia Rosa-Fernandes

    2017-11-01

    Full Text Available Increasing attention has been given to secreted extracellular vesicles (EVs in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  10. Versatile roles of extracellular vesicles in cancer

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  11. Role of extracellular vesicles in rheumatoid arthritis.

    Science.gov (United States)

    Fu, Haitao; Hu, Die; Zhang, Licheng; Tang, Peifu

    2018-01-01

    Cell-derived extracellular vesicles (EVs) are involved in the pathogenesis of rheumatoid arthritis (RA), playing important roles in antigen presentation, inflammation, angiogenesis, cell-cell signal communication, thrombosis, and articular cartilage extracellular matrix degradation. Understanding the pathogenic mechanism of RA is important for developing therapies. The pathogenic indicators of RA, such as submicron-sized EVs, represent promising biomarkers for evaluating RA activity. This review summarizes the recent advances in understanding the pathogenesis of RA, and sheds light on the pathogenic as well as anti-inflammatory or immunosuppressive roles of EVs. We suggest that EVs could be harnessed as tools for drug delivery or targets for RA therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Isolation of Platelet-Derived Extracellular Vesicles.

    Science.gov (United States)

    Aatonen, Maria; Valkonen, Sami; Böing, Anita; Yuana, Yuana; Nieuwland, Rienk; Siljander, Pia

    2017-01-01

    Platelets participate in several physiological functions, including hemostasis, immunity, and development. Additionally, platelets play key roles in arterial thrombosis and cancer progression. Given this plethora of functions, there is a strong interest of the role of platelet-derived (extracellular) vesicles (PDEVs) as functional mediators and biomarkers. Moreover, the majority of the blood-borne EVs are thought to originate from either platelets or directly from the platelet precursor cells, the megakaryocytes, which reside in the bone marrow. To circumvent confusion, we use the term PDEVs for both platelet-derived and/or megakaryocyte-derived EVs. PDEVs can be isolated from blood or from isolated platelets after activation. In this chapter, we describe all commonly used PDEV isolation methods from blood and prepurified platelets.

  13. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  14. A Perspective on Extracellular Vesicles Proteomics.

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  15. Biological reference materials for extracellular vesicle studies.

    Science.gov (United States)

    Valkonen, S; van der Pol, E; Böing, A; Yuana, Y; Yliperttula, M; Nieuwland, R; Laitinen, S; Siljander, P R M

    2017-02-15

    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. In vitro toxicology studies of extracellular vesicles.

    Science.gov (United States)

    Maji, Sayantan; Yan, Irene K; Parasramka, Mansi; Mohankumar, Swathi; Matsuda, Akiko; Patel, Tushar

    2017-03-01

    Extracellular vesicles (EVs) are membrane-bound vesicles released from cells into the extracellular environment. There is emerging interest in the use of EVs as potential therapeutic interventions. We sought to evaluate the safety of EVs that may be therapeutically used by performing in vitro toxicological assessments. EVs were obtained from mesenchymal stem cells (MSC-EV) or from bovine milk (BM-EV) by differential ultracentrifugation, and quantitated using nanoparticle tracking analysis. Genotoxic effects, hematological effects, immunological effects and endotoxin production were evaluated at two dose levels. Neither MSC-EVs nor BM-EVs elicited detectable genotoxic effects using either the alkaline comet assay or micronucleus assay. Hemolysis was observed with BM-EVs but not with MSC-EVs. MSC-EVs did not have any significant effect on either spontaneous or collagen-induced platelet aggregation. In contrast, BM-EVs were noted to increase collagen-induced platelet aggregation, even though no spontaneous increase in platelet aggregation was noted. Both types of EVs induced leukocyte proliferation, which was greater with BM-EV. Neither MSC-EVs nor BM-EVs induced HL-60 phagocytosis, although BM-EVs decreased zymosan-induced phagocytosis. Furthermore, neither MSC-EVs nor BM-EVs induced nitric oxide production. Unlike MSC-EVs, BM-EVs tested positive for endotoxin and induced complement activation. There are significant differences in toxicological profiles between MSC-EVs and BM-EVs that may reflect variations in techniques for EV isolation, EV content or cross-species differences. The safety of MSC-EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM-EVs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro.

    Science.gov (United States)

    Mellisho, Edwin A; Velásquez, Alejandra E; Nuñez, María J; Cabezas, Joel G; Cueto, Juan A; Fader, Claudio; Castro, Fidel O; Rodríguez-Álvarez, Lleretny

    2017-01-01

    Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture

  18. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  19. Removal of Vesicle Structures From Transmission Electron Microscope Images

    Science.gov (United States)

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  20. [EXTRACELLULAR VESICLES: INTERCELLULAR INFORMATION FLOW AND MEDICAL APPLICATIONS].

    Science.gov (United States)

    Pupyshev, A B

    2015-01-01

    The major features of extracellular vesicles secreted by mammalian cells are considered. Cell activation caused by formation of pathology stimulates the secretion acutely. The vesicles (exosomes, microvesicles) are enriched with annexin V, tetraspanin, miRNA. Exosomes are enriched especially by integrins, heat shock proteins. Microvesicles contain elevated amounts of tissue factors, phosphatidylserine, mRNA. The vesicles carry information about the pathological process, and microvesicles contain more proteins characteristic of inflammation and death than exosomes. They are important mediators of inflammation and infection in the body, have different effects on the immune system and the processes of carcinogenesis and neurodegeneration. However, antigenic profiles of extracellular vesicles differ not profoundly in various pathologies and so far they help diagnostics limitedly. The vesicles carry signals of genetic reprogramming of the cells and epigenetic stimulation, connected with both protein factors and mRNA and miRNA. Profiles of miRNA vesicles produced by the various pathological sources are studied actively and are useful as indicators of source and stage of cancer. Some ways of therapeutic use of the vesicles are also considered.

  1. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    Science.gov (United States)

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  2. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2006-07-01

    Full Text Available Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.

  3. Leukocytospermia and function of the seminal vesicles on seminal quality.

    Science.gov (United States)

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1992-05-01

    To determine possible relationships between number of leukocytes, function of seminal vesicles, and seminal quality. The study was carried out on men who consecutively attended an infertility clinic between June 1989 to June 1991. This study was conducted in a private immunological center for infertility, a tertiary care center, The Centro Immunológico-Sección Esterilidad y Reproducción. Semen samples from 280 infertility patients attending an Immunological Center for Infertility were analyzed. We evaluated the effect of leukocytospermia in the presence of normal or abnormal function of seminal vesicles on seminal quality. Sperm count, percent of motile sperm, and percent of sperm vitality were significantly reduced when both leukocytospermia and hypofunction of seminal vesicles were present (P less than 0.01). Leukocytospermic subjects with normal function of seminal vesicles showed similar seminal parameters to those nonleukocytspermics. The incidence of subjects with antisperm antibodies measured by direct immunobeads was significantly higher in leukocytospermic men with hypofunction of seminal vesicles. No differences in the incidence of antisperm antibodies with nonleukocytospermic samples were observed in those with both leukocytospermia and normal function of seminal vesicles. These data provide evidence that white blood cells were deleterious for seminal quality when seminal vesicles were also affected.

  4. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  5. Dynamics of multicomponent vesicles in a viscous fluid

    Science.gov (United States)

    Sohn, Jin Sun; Tseng, Yu-Hau; Li, Shuwang; Voigt, Axel; Lowengrub, John S.

    2010-01-01

    We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small. PMID:20808718

  6. GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    There is little consensus on the nature of the storage compartment of the glucose transporter GLUT4, in non-stimulated cells of muscle and fat. More specifically, it is not known whether GLUT4 is localized to unique, specialized intracellular storage vesicles, or to vesicles that are part...... of the constitutive endosomal-lysosomal pathway. To address this question, we have investigated the localization of the endogenous GLUT4 in non-stimulated skeletal myotubes from the cell line C2, by immunofluorescence and immunoelectron microscopy. We have used a panel of antibodies to markers of the Golgi complex...... (alpha mannosidase II and giantin), of the trans-Golgi network (TGN38), of lysosomes (lgp110), and of early and late endosomes (transferrin receptor and mannose-6-phosphate receptor, respectively), to define the position of their subcellular compartments. By immunofluorescence, GLUT4 appears concentrated...

  7. Saccharomyces cerevisiae cells lacking Pex3 contain membrane vesicles that harbor a subset of peroxisomal membrane proteins.

    Science.gov (United States)

    Wróblewska, Justyna P; Cruz-Zaragoza, Luis Daniel; Yuan, Wei; Schummer, Andreas; Chuartzman, Silvia G; de Boer, Rinse; Oeljeklaus, Silke; Schuldiner, Maya; Zalckvar, Einat; Warscheid, Bettina; Erdmann, Ralf; van der Klei, Ida J

    2017-10-01

    Pex3 has been proposed to be important for the exit of peroxisomal membrane proteins (PMPs) from the ER, based on the observation that PMPs accumulate at the ER in Saccharomyces cerevisiae pex3 mutant cells. Using a combination of microscopy and biochemical approaches, we show that a subset of the PMPs, including the receptor docking protein Pex14, localizes to membrane vesicles in S. cerevisiae pex3 cells. These vesicles are morphologically distinct from the ER and do not co-sediment with ER markers in cell fractionation experiments. At the vesicles, Pex14 assembles with other peroxins (Pex13, Pex17, and Pex5) to form a complex with a composition similar to the PTS1 import pore in wild-type cells. Fluorescence microscopy studies revealed that also the PTS2 receptor Pex7, the importomer organizing peroxin Pex8, the ubiquitin conjugating enzyme Pex4 with its recruiting PMP Pex22, as well as Pex15 and Pex25 co-localize with Pex14. Other peroxins (including the RING finger complex and Pex27) did not accumulate at these structures, of which Pex11 localized to mitochondria. In line with these observations, proteomic analysis showed that in addition to the docking proteins and Pex5, also Pex7, Pex4/Pex22 and Pex25 were present in Pex14 complexes isolated from pex3 cells. However, formation of the entire importomer was not observed, most likely because Pex8 and the RING proteins were absent in the Pex14 protein complexes. Our data suggest that peroxisomal membrane vesicles can form in the absence of Pex3 and that several PMPs can insert in these vesicles in a Pex3 independent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  9. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. Published by Elsevier Ltd.

  10. Mating-reactive membrane vesicles from cilia of Paramecium caudatum

    Science.gov (United States)

    1976-01-01

    Membrane vesicles with a high mating reactivity were obtained from cilia of Paramecium caudatum by treatment with a solution containing 2 M urea and 0.1 mM Na2-EDTA. All processes of conjugation were induced in cells of the complementary mating type by approximately 10 mug/ml proteins of the vesicles. Electron microscope observation showed that the membrane vesicles have a diameter of 100-150 nm. Electrophoretic analysis on SDS polyacrylamide gel revealed no significant difference in polypeptide patterns of the particles from the two complementary mating types. PMID:818093

  11. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  12. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis.

    Science.gov (United States)

    Petrie, Matt; Esquibel, Joseph; Kabachinski, Greg; Maciuba, Stephanie; Takahashi, Hirohide; Edwardson, J Michael; Martin, Thomas F J

    2016-09-30

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca 2+ -triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P 2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P 2 -triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced...... by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non...

  14. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  15. Tension-induced fusion of bilayer membranes and vesicles

    Science.gov (United States)

    Shillcock, Julian C.; Lipowsky, Reinhard

    2005-03-01

    Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 × 50 nm2 planar membrane patches over 2 μs. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.

  16. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  17. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  18. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  19. Theory of dielectric response of charged-bilayer-vesicle solutions

    Science.gov (United States)

    Lu, C.-Y. D.

    1996-10-01

    The dielectric response is calculated for a solution containing charged bilayer vesicles and simple electrolyte. The solution is assumed to contain a high salt concentration so that the Debye screening length is small compared to the size of the vesicles. The presence of two (electric) double layers, one on each side of the bilayer, gives low-frequency salt relaxations (kHz for 1 μm vesicles) that explain the experimentally observed α relaxations which are known to appear only for charged vesicles. The double layers also modify the high-frequency β relaxations which have been previously modeled by using the Maxwell-Wagner theory. The calculation method can be easily extended to other bilayer geometries.

  20. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  1. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates.

    Science.gov (United States)

    Sotillo, Javier; Pearson, Mark; Potriquet, Jeremy; Becker, Luke; Pickering, Darren; Mulvenna, Jason; Loukas, Alex

    2016-01-01

    Herein we show for the first time that Schistosoma mansoni adult worms secrete exosome-like extracellular vesicles ranging from 50 to 130nm in size. Extracellular vesicles were collected from the excretory/secretory products of cultured adult flukes and purified by Optiprep density gradient, resulting in highly pure extracellular vesicle preparations as confirmed by transmission electron microscopy and Nanosight tracking analysis. Extracellular vesicle proteomic analysis showed numerous known vaccine candidates, potential virulence factors and molecules implicated in feeding. These findings provide new avenues for the exploration of host-schistosome interactions and offer a potential mechanism by which some vaccine antigens exert their protective efficacy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Large Deformation Mechanics of Plasma Membrane Chained Vesicles in Cells

    Science.gov (United States)

    Kosawada, Tadashi; Sanada, Kouichi; Takano, Tetsuo

    The clathrin-coated pits, vesicles and chained vesicles on the inner surface of the plasma membrane facilitate the cell to transport specific extracellular macromolecules. This cellular process is strongly involved with large mechanical deformations of the plasma membrane accompanied by changes in membrane curvature. The assembly of the clathrin coat is thought to provide curvature into the membrane. Hence, effects of in-plane shear elasticity due to these coat structure may be significant on the vesicular mechanics. In this study, large deformation mechanics of plasma membrane chained vesicles in cells have been formulated based on minimization of bending and in-plane shear strain energy of the membrane. Effects of outer surrounding cytoplasmic flat membrane upon mechanically stable shapes of the vesicles were revealed, while effects of in-plane shear elasticity were partly discussed.

  3. Assembly of cells and vesicles for organ engineering

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tetsushi, E-mail: taguchi.tetsushi@nims.go.jp [Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-12-15

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  4. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain...... obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...... regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation...

  5. Assembly of cells and vesicles for organ engineering

    Science.gov (United States)

    Taguchi, Tetsushi

    2011-12-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.

  6. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  7. Extracellular vesicles in human follicular fluid do not promote coagulation.

    Science.gov (United States)

    Franz, Cordula; Böing, Anita N; Montag, Markus; Strowitzki, Thomas; Markert, Udo R; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-11-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an observational study, follicular fluid from women undergoing IVF/intracytoplasmic sperm injection (ICSI) was analysed by fluorescence-activated cell sorting (FACS), electron microscopy, resistive pulse sensing (RPS), nanoparticle-tracking analysis (NTA) and fibrin generation tests (FGT). The presence of extracellular vesicles, especially CD9-positive extracellular vesicles in follicular fluid, was proven. However, clotting tests revealed no procoagulant properties of the detected extracellular vesicles. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Unilamellar Vesicle Formation and Encapsulation by Microfluidic Jetting

    National Research Council Canada - National Science Library

    Jeanne C. Stachowiak; David L. Richmond; Thomas H. Li; Allen P. Liu; Sapun H. Parekh; Daniel A. Fletcher

    2008-01-01

    ...) using a pulsed microfluidic jet. Akin to blowing a bubble, the microfluidic jet deforms a planar lipid bilayer into a vesicle that is filled with solution from the jet and separates from the planar bilayer...

  9. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  10. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    OpenAIRE

    Yuana, Yuana; Koning, Roman I.; Maxim E. Kuil; Rensen, Patrick C.N.; Koster, Abraham J.; Bertina, Rogier M.; Osanto, Susanne

    2013-01-01

    Introduction: Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.Objectives: To image EV and determine the morphology, ...

  11. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  12. Luminescent functionalized vesicles: synthesis, characterization and analytical applications

    OpenAIRE

    Balk, Stefan

    2014-01-01

    This work describes the membrane functionalization of small unilamellar phospholipid vesicles by incorporation of artificial amphiphiles. The presented investigations demonstrate a fast and simple approach for sensing molecular recognition events at the membrane-water interface. Chapter 1 describes the dynamic recognition of multivalent ligands by receptor recruiting in fluid vesicle membranes. Two amphiphilic metal-complexes with attached FRET-pair labels were prepared and embedded into D...

  13. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative...... vesicles. Pulse-chase and intravital imaging experiments suggested EVs liberated by exercise have a propensity to localize in the liver and can transfer their protein cargo. Moreover, by employing arteriovenous balance studies across the contracting human limb, we identified several novel candidate...

  14. TNF-? promotes extracellular vesicle release in mouse astrocytes through glutaminase

    OpenAIRE

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C.

    2017-01-01

    Background Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-? promotes glutaminase expression in neurons. However, the expressio...

  15. Adsorption and encapsulation of flexible polyelectrolytes in charged spherical vesicles

    Science.gov (United States)

    Shojaei, H. R.; Muthukumar, M.

    2017-06-01

    We present a theory of adsorption of flexible polyelectrolytes on the interior and exterior surfaces of a charged vesicle in an electrolyte solution. The criteria for adsorption and the density profiles of the adsorbed polymer chain are derived in terms of various characteristics of the polymer, vesicle, and medium, such as the charge density and length of the polymer, charge density and size of the vesicle, electrolyte concentration and dielectric constant of the medium. For adsorption inside the vesicle, the competition between the loss of conformational entropy and gain in adsorption energy results in two kinds of encapsulated states, depending on the strength of the polymer-vesicle interaction. By considering also the adsorption from outside the vesicle, we derive the entropic and energy contributions to the free energy change to transfer an adsorbed chain in the interior to an adsorbed chain on the exterior. In this paper, we have used the Wentzel-Kramers-Brillouin (WKB) method to solve the equation for the probability distribution function of the chain. The present WKB results are compared with the previous results based on variational methods. The WKB and variational results are in good agreement for both the interior and exterior states of adsorption, except in the zero-salt limit for adsorption in the exterior region. The adsorption criteria and density profiles for both the interior and exterior states are presented in terms of various experimentally controllable variables. Calculation of the dependencies of free energy change to transfer an adsorbed chain from the interior to the exterior surface on salt concentration and vesicle radius shows that the free energy penalty to expel a chain from a vesicle is only of the order of thermal energy.

  16. Melanoma affects the composition of blood cell-derived extracellular vesicles

    OpenAIRE

    Nina Koliha; Ute Heider; Tobias Ozimkowski; Martin Wiemann; Andreas Bosio; Stefan Wild

    2016-01-01

    Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of...

  17. Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision

    OpenAIRE

    Jernej Zupanc; Barbara Drašler; Sabina Boljte; Veronika Kralj-Iglič; Aleš Iglič; Deniz Erdogmus; Damjana Drobne

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their ...

  18. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  19. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    Science.gov (United States)

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.

  20. Extracellular Vesicles and Autophagy in Osteoarthritis

    Science.gov (United States)

    Guo, Weimin; Chen, Mingxue; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Li, Penghao; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Zhang, Li; Xu, Wenjing; Lu, Shibi

    2016-01-01

    Osteoarthritis (OA) is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs) are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies. PMID:28078284

  1. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  2. Asymmetric osmotic water permeation through a vesicle membrane

    Science.gov (United States)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  3. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  4. Formation of asymmetric vesicles via phospholipase D-mediated transphosphatidylation.

    Science.gov (United States)

    Takaoka, Rina; Kurosaki, Haruko; Nakao, Hiroyuki; Ikeda, Keisuke; Nakano, Minoru

    2018-02-01

    Most biomembranes have an asymmetric structure with regard to phospholipid distribution between the inner and outer leaflets of the lipid bilayers. Control of the asymmetric distribution plays a pivotal role in several cellular functions such as intracellular membrane fusion and cell division. The mechanism by which membrane asymmetry and its alteration function in these transformation processes is not yet clear. To understand the significance of membrane asymmetry on trafficking and metabolism of intracellular vesicular components, a system that experimentally reproduces the asymmetric nature of biomembranes is essential. Here, we succeeded in obtaining asymmetric vesicles by means of transphosphatidylation reactions with phospholipase D (PLD), which acts exclusively on phosphatidylcholine (PC) present in the outer leaflet of vesicles. By treating PC vesicles with PLD in the presence of 1.7M serine and 0.3M ethanolamine, we obtained asymmetric vesicles that are topologically similar to intracellular vesicles containing phosphatidylserine and phosphatidylethanolamine in the cytosolic leaflet. PLD and other unwanted compounds could be removed by trypsin digestion followed by dialysis. Our established technique has a great advantage over conventional methods in that asymmetric vesicles can be provided at high yield and high efficiency, which is requisite for most physicochemical assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  6. Biogenesis and function of ESCRT-dependent extracellular vesicles.

    Science.gov (United States)

    Juan, Thomas; Fürthauer, Maximilian

    2018-02-01

    From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure.

    Science.gov (United States)

    Peters, K R; Carley, W W; Palade, G E

    1985-12-01

    Capillary endothelial cells have a large population of small (65-80 nm diameter in transmission electron microscopy) vesicles of which a large fraction is associated with the plasmalemma of the luminal and abluminal side. We studied the fine structure and distribution of these plasmalemmal vesicles by high resolution scanning electron microscopy in cultured endothelial cells obtained from bovine adrenal cortical capillaries. Cell monolayers were covered with polylysine-coated silicon chips, split in high potassium buffer, fixed in aldehyde mixtures, and then treated with OsO4 and thiocarbohydrazide. After critical point drying, the specimens were coated with a thin (less than 2 nm) continuous film of chromium. On the cytoplasmic aspect of the dorsal plasmalemmal fragments seen in such specimens, plasmalemmal vesicles appear as uniform vesicular protrusions approximately 70-90 nm in diameter, preferentially concentrated in distinct large fields in which they occur primarily as single units. Individual plasmalemmal vesicles exhibit a striped surface fine structure which consists of ridges approximately 10 nm in diameter, separated by furrows and oriented as meridians, often ending at two poles on opposite sides of the vesicles in a plane parallel to the plasmalemma. This striped surface structure is clearly distinct from the cage structure of coated pits found, at low surface density, on the same specimens. The cytoplasmic aspect of the plasmalemma proper is covered by a fibrillar infrastructure which does not extend over plasmalemmal vesicles but on which the latter appear to be anchored by fine filaments.

  8. Minimal experimental requirements for definition of extracellular vesicles and their functions : a position statement from the International Society for Extracellular Vesicles

    NARCIS (Netherlands)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently

  9. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  10. Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii.

    Science.gov (United States)

    Knitsch, Regine; Schneefeld, Marie; Weitzel, Kerstin; Pfeifer, Felicitas

    2017-09-12

    Gas vesicles are proteinaceous, gas-filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in-silico 3D-model of GvpA of the predicted coil-α1-β1-β2-α2-coil structure is available and implies that the two β-chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac(+) phenotype). In most cases, an alanine substitution of a non-polar residue did not abolish gas vesicle formation, but the replacement of single non-polar by charged residues in β1 or β2 resulted in Vac(-) transformants. A replacement of residues near the β-turn altered the spindle-shape to a cylindrical morphology of the gas vesicles. Vac(-) transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt-bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac(-) transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid-state NMR. © 2017 John Wiley & Sons Ltd.

  11. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  12. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles.

    Science.gov (United States)

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-02-06

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  13. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  14. An immunoassay for urinary extracellular vesicles.

    Science.gov (United States)

    Salih, Mahdi; Fenton, Robert A; Knipscheer, Jeroen; Janssen, Joost W; Vredenbregt-van den Berg, Mirella S; Jenster, Guido; Zietse, Robert; Hoorn, Ewout J

    2016-04-15

    Although nanosized urinary extracellular vesicles (uEVs) are increasingly used for biomarker discovery, their isolation currently relies on time-consuming techniques hindering high-throughput application. To navigate this problem, we designed an immunoassay to isolate, quantify, and normalize uEV proteins. The uEV immunoassay consists of a biotinylated CD9 antibody to isolate uEVs, an antibody against the protein of interest, and two conjugated antibodies to quantify the protein of interest and CD9. As a proof of principle, the immunoassay was developed to analyze the water channel aquaporin-2 (AQP2) and the sodium-chloride cotransporter (NCC). CD9 was used as a capture antibody because immunoprecipitation showed that anti-CD9 antibody, but not anti-CD63 antibody, isolated AQP2 and NCC. CD9 correlated strongly with urine creatinine, allowing CD9 to be used for normalization of spot urines. The uEV immunoassay detected AQP2 and NCC with high sensitivity, low coefficients of variance, and stability in dilution series. After water loading in healthy subjects, the uEV immunoassay detected decreases in AQP2 and NCC equally well as the traditional method using ultracentrifugation and immunoblot. The uEV immunoassay also reliably detected lower and higher AQP2 or NCC levels in uEVs from patients with pathological water or salt reabsorption, respectively. In summary, we report a novel approach to analyze uEVs that circumvents existing isolation and normalization issues, requires small volumes of urine, and detects anticipated changes in physiological responses and clinical disorders. Copyright © 2016 the American Physiological Society.

  15. Procoagulant extracellular vesicles in amniotic fluid.

    Science.gov (United States)

    Hell, Lena; Wisgrill, Lukas; Ay, Cihan; Spittler, Andreas; Schwameis, Michael; Jilma, Bernd; Pabinger, Ingrid; Altevogt, Peter; Thaler, Johannes

    2017-06-01

    Embolization of amniotic fluid (AF) into the blood circulation leads to disseminated intravascular coagulation (DIC). Procoagulant phosphatidylserine (PS)- and tissue factor (TF)-exposing extracellular vesicles (EVs) might play an important role in AF embolism-induced DIC. It was the aim of the present study to perform analyses of the procoagulant properties of AF with a panel of functional coagulation assays and flow cytometry. We applied a prothrombinase assay (that quantifies PS exposure on EVs), an EV-associated TF activity assay, a fibrin generation assay, a thrombin generation assay, a whole blood clotting model, and flow cytometry in AF and control plasma. We found that PS exposure on EVs was 21-fold increased in AF compared with plasma. Also, EV-associated TF activity was highly increased in AF compared with plasma. AF-derived EVs activated the blood coagulation cascade via PS and TF in the fibrin and thrombin generation assays. In a whole blood clotting model, AF-derived EVs significantly shortened the clotting time from 734 ± 139 seconds in the presence to 232 ± 139 seconds in the absence of an anti-TF antibody. The contact activation pathway via factor XII (FXII) was not affected. Applying flow cytometry, a subpopulation of PS+ and TF+ EVs was identified in AF but not in control plasma. In conclusion, we investigated the effect of AF on blood coagulation and found that PS+ and TF+ EVs determine their procoagulant potential. Taken together, our data further delineate the pathomechanisms underlying AF-induced coagulopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  17. Addition of thrombin reduces the recovery of extracellular vesicles from blood plasma

    Science.gov (United States)

    Arakelyan, Anush; Fitzgerald, Wendy; Vagida, Murad; Vasilieva, Elena; Grivel, Jean-Charles

    2016-01-01

    Extracellular vesicles (EVs) are widely studied as a system of intercellular communication, as markers of various diseases, as well as a vehicle for delivery of various bioactive molecules to various cells. Investigation of EVs’ structure and function requires their isolation and precise quantification. However, in the current literature, there are significant discrepancies in the estimated numbers of EVs in different body fluids. In part, this discrepancy is due to the difference in EVs isolation protocols used by different investigators. A common protocol that includes ExoQuick™ is often used to isolate EVs from body fluids and culture medium. Here, we show that in the case of isolation of EVs from blood, thrombin should be omitted from the protocol as clots formed due to the thrombin-triggered coagulation may entrap many EVs thus leading to the underestimation of their numbers. PMID:28936260

  18. Addition of thrombin reduces the recovery of extracellular vesicles from blood plasma

    Directory of Open Access Journals (Sweden)

    Anush Arakelyan

    2016-10-01

    Full Text Available Extracellular vesicles (EVs are widely studied as a system of intercellular communication, as markers of various diseases, as well as a vehicle for delivery of various bioactive molecules to various cells. Investigation of EVs’ structure and function requires their isolation and precise quantification. However, in the current literature, there are significant discrepancies in the estimated numbers of EVs in different body fluids. In part, this discrepancy is due to the difference in EVs isolation protocols used by different investigators. A common protocol that includes ExoQuick ™ is often used to isolate EVs from body fluids and culture medium. Here, we show that in the case of isolation of EVs from blood, thrombin should be omitted from the protocol as clots formed due to the thrombin-triggered coagulation may entrap many EVs thus leading to the underestimation of their numbers.

  19. Hybrid Registration of Prostate and Seminal Vesicles for Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Johan de; Herk, Marcel van; Pos, Floris J. [Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2013-05-01

    Purpose: Fiducial markers are a good surrogate for the prostate but provide little information on the position and orientation of the seminal vesicles (SVs). Therefore, a more advanced localization method is warranted if the SVs are part of the target volume. The purpose of this study was to develop a hybrid registration technique for the localization of the prostate and SVs. Methods and Materials: Twenty prostate patients implanted with 2 or 3 elongated fiducial markers had cone beam computed tomography (CBCT) scans acquired at every fraction. The first step of the hybrid registration was to localize the prostate by CBCT-to-planning-CT alignment of the fiducial markers, allowing both translations and rotations. Using this marker registration as a starting point, the SVs were registered based on gray values, allowing only rotations around the lateral axis. We analyzed the differential rotation between the prostate and SVs and compared the required SV margins for 3 correction strategies. Results: The SV registration had a precision of 2.7° (1 standard deviation) and was successful for 96% of the scans. Mean (M), systematic (Σ), and random (σ) differences between the orientation of the prostate and SV were M = −0.4°, Σ = 7.2°, and σ = 6.4°. Daily marker-based corrections required an SV margin of 11.4 mm (translations only) and 11.6 mm (translations + rotations). Rotation corrections of the SVs reduced the required margin to 8.2 mm. Conclusions: We found substantial differences between the orientation of the prostate and SVs. The hybrid registration technique can accurately detect these rotations during treatment. Rotation correction of the SVs allows for margin reduction for the SVs.

  20. The formation of endosymbiotic membrane compartments: membrane identity markers and the regulation of vesicle trafficking

    NARCIS (Netherlands)

    Ivanov, S.

    2012-01-01

    In symbiosis of plants and arbuscular mycorrhizal fungi as well as in rhizobium-legume symbiosis the microbes are hosted intracellularly, inside specialized membrane compartments of the host. These membrane compartments are morphologically different but similar in function, since they control the

  1. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  2. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Kuhlmann, Katja; Böttcher, Alfred; Konovalova, Tatiana; Black, Anne; Orsó, Evelyn; Liebisch, Gerhard; Ahrens, Maike; Eisenacher, Martin; Meyer, Helmut E; Schmitz, Gerd

    2015-03-01

    Platelets (PLTs) in stored PLT concentrates (PLCs) release PLT extracellular vesicles (PL-EVs) induced by senescence and activation, resembling the PLT storage lesion. No comprehensive classification or molecular characterization of senescence-induced PL-EVs exists to understand PL-EV heterogeneity. PL-EVs from 5-day-stored PLCs from healthy individuals were isolated and subfractionated by differential centrifugation, filtration, and density gradient ultracentrifugation into five PLT microvesicle (PL-MV) subfractions (Fraction [F]1-F5) and PLT exosomes (PL-EXs). PL-EV size, concentration, and composition were analyzed by nanoparticle tracking analysis, flow cytometry, and lipid and protein mass spectrometry. Protein data were verified by Western blot. PL-EVs showed overlapping mean particle sizes of 180 to 260 nm, but differed significantly in composition. Less dense, intermediate, and dense PL-MVs enriched specific lipidomic and proteomic markers related to the plasma membrane, intracellular membranes, PLT granules, mitochondria, and PLT activation. α-Synuclein (81% of total) accumulated in F1 and F2, amyloid-β (Aβ) precursor protein in F3 and F4 (84%), and apolipoprotein (Apo)E (88%) and ApoJ (92%) in F3 to F5. PL-EXs enriched lipid species and proteins, with high abundance of lipid raft, PLT adhesion, and immune response-related markers. Differential lipid and protein compositions of PL-EVs suggest their unique cellular origins and functions, partly overlapping with PLT granule secretion. Dense PL-MVs might represent autophagic vesicles released during PLT activation and apoptosis and PL-EXs resemble lipid rafts, with a potential role in PLT aggregation and immunity. Segregation of α-synuclein and Aβ precursor protein, ApoE, and ApoJ into less dense and dense PL-MVs, respectively, show their differential carrier role of neurologic disease-related cargo. © 2014 AABB.

  3. α-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling

    Directory of Open Access Journals (Sweden)

    Audrey T. Medeiros

    2017-12-01

    Full Text Available α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV trafficking. In Parkinson’s disease (PD and several other neurodegenerative disorders, aberrant oligomerization and aggregation of α-synuclein lead to synaptic dysfunction and neurotoxicity. Despite evidence that α-synuclein oligomers are generated within neurons under physiological conditions, and that altering the balance of monomers and oligomers contributes to disease pathogenesis, how each molecular species of α-synuclein impacts SV trafficking is currently unknown. To address this, we have taken advantage of lamprey giant reticulospinal (RS synapses, which are accessible to acute perturbations via axonal microinjection of recombinant proteins. We previously reported that acute introduction of monomeric α-synuclein inhibited SV recycling, including effects on the clathrin pathway. Here, we report the effects of α-synuclein dimers at synapses. Similar to monomeric α-synuclein, both recombinant α-synuclein dimers that were evaluated bound to small liposomes containing anionic lipids in vitro, but with reduced efficacy. When introduced to synapses, the α-synuclein dimers also induced SV recycling defects, which included a build up of clathrin-coated pits (CCPs with constricted necks that were still attached to the plasma membrane, a phenotype indicative of a vesicle fission defect. Interestingly, both α-synuclein dimers induced longer necks on CCPs as well as complex, branching membrane tubules, which were distinct from the CCPs induced by a dynamin inhibitor, Dynasore. In contrast, monomeric α-synuclein induced a buildup of free clathrin-coated vesicles (CCVs, indicating an inhibition of clathrin-mediated endocytosis at a later stage during the clathrin uncoating process. Taken together, these data further support the conclusion that excess α-synuclein impairs SV recycling. The data additionally reveal that monomeric and dimeric α-synuclein produce

  4. End-capping of amphiphilic nanotubes with phospholipid vesicles: impact of the phospholipid on the cap formation and vesicle loading under osmotic conditions.

    Science.gov (United States)

    Erne, Petra M; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Feringa, Ben L

    2016-09-22

    Soft amphiphilic nanotubes are capped with vesicles comprised of either overall neutral, zwitterionic phospholipids, or those that carry a net charge. The phase transition temperature of the zwitterionic phospholipids plays a crucial role in the phase separation that leads to the end-capped nanotubes. The cationic vesicle caps can be loaded into the nanotubes via osmosis whereas the anionic vesicle caps are stable under hyper-osmotic conditions. Furthermore, no additional salt needs to be added for the cationic vesicle caps to induce the loading of the vesicles into the nanotubes due to the presence of counterions.

  5. Discovering vesicle traffic network constraints by model checking.

    Science.gov (United States)

    Shukla, Ankit; Bhattacharyya, Arnab; Kuppusamy, Lakshmanan; Srivas, Mandayam; Thattai, Mukund

    2017-01-01

    A eukaryotic cell contains multiple membrane-bound compartments. Transport vesicles move cargo between these compartments, just as trucks move cargo between warehouses. These processes are regulated by specific molecular interactions, as summarized in the Rothman-Schekman-Sudhof model of vesicle traffic. The whole structure can be represented as a transport graph: each organelle is a node, and each vesicle route is a directed edge. What constraints must such a graph satisfy, if it is to represent a biologically realizable vesicle traffic network? Graph connectedness is an informative feature: 2-connectedness is necessary and sufficient for mass balance, but stronger conditions are required to ensure correct molecular specificity. Here we use Boolean satisfiability (SAT) and model checking as a framework to discover and verify graph constraints. The poor scalability of SAT model checkers often prevents their broad application. By exploiting the special structure of the problem, we scale our model checker to vesicle traffic systems with reasonably large numbers of molecules and compartments. This allows us to test a range of hypotheses about graph connectivity, which can later be proved in full generality by other methods.

  6. Vesicle shape, molecular tilt, and the suppression of necks

    Science.gov (United States)

    Jiang, Hongyuan; Huber, Greg; Pelcovits, Robert A.; Powers, Thomas R.

    2007-09-01

    Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of +2 are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.

  7. Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis

    Science.gov (United States)

    Riedel, Dietmar; Schomburg, Christoph; Cerdà, Joan; Vollack, Nadine; Dosch, Roland

    2014-01-01

    During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research. PMID:24967841

  8. Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis.

    Directory of Open Access Journals (Sweden)

    Palsamy Kanagaraj

    2014-06-01

    Full Text Available During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP gene SPASTIZIN (SPG15. We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.

  9. Overall energy conversion efficiency of a photosynthetic vesicle.

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  10. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods.

    Science.gov (United States)

    Song, Jibin; Pu, Lu; Zhou, Jiajing; Duan, Bo; Duan, Hongwei

    2013-11-26

    We have developed surface-initiated organocatalytic ring-opening polymerization on functional nanocrystals and synthesized amphiphilic gold nanorods carrying well-defined mixed polymer brushes of poly(ethylene glycol) and polylactide. Self-assembly of the amphiphilic gold nanorods affords biodegradable plasmonic vesicles that can be destructed by both enzymatic degradation and near-infrared photothermal heating. When tagged with Raman probes, strongly coupled gold nanorods in the self-assembled vesicles give rise to highly active SERS signals. The biodegradable plasmonic vesicles exhibit a unique combination of optical and structural properties that are of particular interest for theranostic applications. We have demonstrated that bioconjugated SERS-active plasmonic vesicles can specifically target EpCAM-positive cancer cells, leading to ultrasensitive spectroscopic detection of cancer cells. Furthermore, integration of photothermal effect of gold nanorods and large loading capacity of the vesicles provides opportunities for localized synergistic photothermal ablation and photoactivated chemotherapy, which have shown higher efficiency in killing targeted cancer cells than either single therapeutic modality. The versatile chemistry of organocatalytic ring-opening polymerization, in conjugation with recent development in synthesizing functional nanocrystals with tailored optical, electronic, and magnetic properties opens the possibilities for constructing multifunctional biodegradable platforms for clinical translation.

  11. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma

    DEFF Research Database (Denmark)

    Jakobsen, Kristine Raaby; Paulsen, Birgitte Sandfeld; Bæk, Rikke

    2015-01-01

    control subjects based on the differential display of exosomal protein markers. Methods: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa–IV) disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array......-derived vesicles displaying various proteins on their membrane surfaces. In addition, they are readily available in blood samples where they constitute potential biomarkers of human diseases, such as cancer. Here, we examine the potential of distinguishing non-small cell lung carcinoma (NSCLC) patients from...

  12. Characteristic spatial scale of vesicle pair interactions in a plane linear flow.

    Science.gov (United States)

    Levant, Michael; Deschamps, Julien; Afik, Eldad; Steinberg, Victor

    2012-05-01

    We report the experimental studies on interaction of two vesicles trapped in a microfluidic four-roll mill, where a plane linear flow is realized. We found that the dynamics of a vesicle in tank-treading motion is significantly altered by the presence of another vesicle at separation distances up to 3.2-3.7 times of the vesicle effective radius. This result is supported by measurement of a single vesicle back-reaction on the velocity field. Thus the experiment provides the upper bound for the volume fraction φ = 0.08-0.13 of noninteracting vesicle suspensions.

  13. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-09

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  15. Immobilization of stable thylakoid vesicles in conductive nanofibers by electrospinning.

    Science.gov (United States)

    Bedford, Nicholas M; Winget, G Douglas; Punnamaraju, Srikoundinya; Steckl, Andrew J

    2011-03-14

    Electrospun fibers consisting of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS) and poly(ethylene oxide) (PEO) have been used to successfully encapsulate and stabilize thylakoid membrane vesicles isolated from spinach. Light-driven electronic properties were measured. Fibers with immobilized thylakoids show higher electrical conductivity compared with fibers without thylakoids under white light conditions. This is attributed to the electron-generating photosynthetic reactions from the thylakoids. Electron and optical microscopy show the presence of thylakoid vesicles within the fibers using lipid-specific stains. After electrospinning into fibers, the thylakoid vesicles still exhibit an ability to produce a light-driven electron gradient, indicating that activity is preserved during the electrospinning process. These electrospun fibers provide an excellent example of incorporating photosynthetic function into an artificial system.

  16. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...

  17. Exosomes and other extracellular vesicles in host–pathogen interactions

    Science.gov (United States)

    Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L

    2015-01-01

    An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940

  18. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  19. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  20. A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking.

    Science.gov (United States)

    Cole, Andy A; Chen, Xiaobing; Reese, Thomas S

    2016-03-16

    Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release. Copyright © 2016 the authors 0270-6474/16/363222-09$15.00/0.

  1. Cryo-electron microscopy of extracellular vesicles in fresh plasma.

    Science.gov (United States)

    Yuana, Yuana; Koning, Roman I; Kuil, Maxim E; Rensen, Patrick C N; Koster, Abraham J; Bertina, Rogier M; Osanto, Susanne

    2013-12-31

    Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25-260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  2. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2013-12-01

    Full Text Available Introduction: Extracellular vesicles (EV are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives: To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM. Methods: Fresh citrate- and ethylenediaminetetraacetic acid (EDTA-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results: EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles. In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm. The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET was employed to determine the 3D structure of platelet secretory granules. Conclusions: Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  3. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  4. Postcoital Hemorrhage of a Recurrent Seminal Vesicle Cyst Requiring Embolization

    Directory of Open Access Journals (Sweden)

    Eric Royston

    2014-09-01

    Full Text Available Herein is a case of a 23-year-old man with recurrence of a seminal vesicle cyst after percutaneous drainage and laparoscopic excision complicated by hemorrhage requiring embolization. He presented to the emergency department for pain after ejaculation. Computed tomographic scan of his pelvis revealed extravasation of contrast near his cyst and pelvic fluid collection suspicious for a hematoma. The patient had steadily decreasing hemoglobin and hematocrit levels. An interventional radiologist performed an embolization of the left seminal vesicle cystic arteries. Hemoglobin and hematocrit values improved and he was discharged. Hemorrhage resolved with embolization procedure and pain dissipated over the course of follow up care.

  5. Erythrocyte-derived optical nano-vesicles as theranostic agents

    Science.gov (United States)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  6. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria

    Science.gov (United States)

    de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.

    2017-01-01

    Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519

  7. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma

    OpenAIRE

    Matsuzaki, Kyosuke; Fujita, Kazutoshi; Jingushi, Kentaro; Kawashima, Atsunari; Ujike, Takeshi; Nagahara, Akira; Ueda, Yuko; Tanigawa, Go; Yoshioka, Iwao; Ueda, Koji; Hanayama, Rikinari; Uemura, Motohide; Miyagawa, Yasushi; Tsujikawa, Kazutake; Nonomura, Norio

    2017-01-01

    Background Extracellular vesicles are lipid bilayer vesicles containing protein, messengerRNA and microRNA. Cancer cell-derived extracellular vesicles may be diagnostic and therapeutic targets. We extracted extracellular vesicles from urine of urothelial carcinoma patients and the control group to identify cancer-specific microRNAs in urinary extracellular vesicles as new biomarkers. Materials and methods microRNA from urinary extracellular vesicles extracted from 6 urothelial carcinoma patie...

  8. Polymer/TiO₂ hybrid vesicles for excellent UV screening and effective encapsulation of antioxidant agents.

    Science.gov (United States)

    Du, Jianzhong; Sun, Hui

    2014-08-27

    Presented in this paper is a hybrid polymer/titanium dioxide (TiO2) vesicle that has excellent UV-screening efficacy and strong capacity to encapsulate antioxidant agents. Poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-polystyrene (PEO-b-PDMAEMA-b-PS) triblock terpolymer was synthesized by atom transfer radical polymerization (ATRP) and then self-assembled into vesicles. Those vesicles showed excellent UV-screening property due to the scattering by vesicles and the absorption by PS vesicle membrane. The selective deposition of solvophobic tetrabutyl titanate in the PDMAEMA shell and the PS membrane of the vesicles led to the formation of polymer/TiO2 hybrid vesicles, resulting in an enhanced UV-screening property by further reflecting and scattering UV radiation. The vesicles can effectively encapsulate antioxidant agents such as ferulic acid (up to 57%), showing a rapid antioxidant capability (within 1 min) and a long-lasting antioxidant effect.

  9. Matrix-dependent local retention of secretory vesicle cargo in cortical neurons

    NARCIS (Netherlands)

    de Wit, J.; Toonen, R.F.G.; Verhage, M.

    2009-01-01

    Neurons secrete many diffusible signals from synaptic and other secretory vesicles. We characterized secretion of guidance cues, neuropeptides, neurotrophins, and proteases from single secretory vesicles using pHluorin-tagged cargo in cortical neurons. Stimulation triggered transient and persistent

  10. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

    Science.gov (United States)

    Abels, Erik R; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.

  12. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta

    NARCIS (Netherlands)

    Pieters, B.C.; Arntz, O.J.; Bennink, M.B.; Broeren, M.G.; Caam, A.P.M. van; Koenders, M.I.; Lent, P.L. van; Berg, W.B. van den; Vries, M. de; Kraan, P.M. van der; Loo, F.A.J. van de

    2015-01-01

    SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in

  13. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication.

    Science.gov (United States)

    Tong, Mancy; Kleffmann, Torsten; Pradhan, Shantanu; Johansson, Caroline L; DeSousa, Joana; Stone, Peter R; James, Joanna L; Chen, Qi; Chamley, Larry W

    2016-04-01

    ] and minor histocompatibility antigens [ATP-dependent RNA helicase (DDX3), ribosomal protein S4 (RPS4)] were different between different-sized EVs. This study is largely hypothesis-generating in nature. It is important to validate these findings using EVs isolated from maternal plasma and the function of the different EV fractions would need further investigation. Our results support the concept that various EV factions can interact with different maternal cells and have unique effects to mediate feto-maternal communication during early pregnancy. This study also provides a list of candidate proteins, which may inform the identification of robust markers that can be used to isolate placental vesicles from the maternal blood in the future. M.T. is a recipient of the University of Auckland Health Research Doctoral Scholarship and the Freemasons Postgraduate Scholarship. This project was supported by a School of Medicine Performance-based research fund (PBRF) grant awarded to L.W.C. No authors have any conflicts of interest to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    OpenAIRE

    Böing, Anita N.; van der Pol, Edwin; Anita E. Grootemaat; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively.Aim: To develop a single-step protocol to isolate vesicles from human body fluids.Methods: Platelet-free supernatant, derived from platelet...

  15. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca2+ + Mg2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca2+ + Mg2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca2+ mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization.

  16. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    Science.gov (United States)

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  17. Studies of matrix vesicle-induced mineralization in a gelatin gel

    Science.gov (United States)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  18. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    Science.gov (United States)

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  19. Molecular Recognition of Vesicles : Host-Guest Interactions Combined with Specific Dimerization of Zwitterions

    NARCIS (Netherlands)

    Voskuhl, Jens; Fenske, Tassilo; Stuart, Marc C. A.; Wibbeling, Birgit; Schmuck, Carsten; Ravoo, Bart Jan

    2010-01-01

    The aggregation of beta-cyclodextrin vesicles can be induced by an adamantyl-substituted zwitterionic guanidiniocarbonylpyrrole carboxylate guest molecule (1). Upon addition of 1 to the cyclodextrin vesicles at neutral pH, the vesicles aggregate (but do not fuse), as shown by using UV/Vis and

  20. The function of vesicles in the actinomycete Frankia

    NARCIS (Netherlands)

    Meesters, T.

    1988-01-01

    The actinomycete Frankia is a symbiotic nitrogen fixer, living in root nodules of many non-leguminous plants. A typical characteristic of this endophytic organism is the formation of specialized swollen cell structures, called vesicles. Frankia

  1. Ultrasound-guided seminal vesicle biopsies in prostate cancer

    NARCIS (Netherlands)

    Wymenga, LFA; Duisterwinkel, FJ; Groenier, K; Mensink, HJA

    2000-01-01

    Invasion of prostatic adenocarcinoma into the seminal vesicles (SV) is generally accepted as an index of poor prognosis. The pre-operative identification of SV invasion is an important element in staging since it may alter subsequent treatment decisions. We studied the possibility of diagnosing SV

  2. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  3. Swinging of two-domains vesicles in shear flow

    Science.gov (United States)

    Viallat, Annie; Tusch, Simon; Khelloufi, Kamel; Leonetti, Marc

    2014-11-01

    Giant lipid vesicles and red blood cells in shear flow at low shear rates tank tread (TT) at small viscosity ratio between the inner particle volume and the external fluid, and flip or tumble (T) at large viscosity ratio. The phase diagram of motion of red blood cells is however much more complex. Swinging superimposes to TT, cells wobble and roll rather than tumble with increasing shear rate and present a shear-rate driven transition between TT to T. These features are attributed to the shear elasticity and the non spherical stress-free shape of the cell membrane, which stores shear elastic energy as a function of the relative position of its elements. We have created vesicles with a phase diagram of motion comparable to that of red blood cells by preparing membranes with two lipids and cholesterol. These membranes present two domains separated by a contact line. The line has a tension energy that depends on its relative position on the vesicle. Similarly to red blood cells, two-domains vesicles swing and wobble. An analytical model where line tension energy is added to the Keller and Skalak's model fits our experimental data without any adjustable parameter. Our experiments and model shed light on the motion of deformable particles in shear flow.

  4. Dimensional characterization of extracellular vesicles using atomic force microscopy

    NARCIS (Netherlands)

    Sebaihi, N.; de Boeck, B.; Yuana, Y.; Nieuwland, R.; Petry, J.

    2017-01-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from

  5. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  6. Effect of sodium deoxycholate and sodium cholate on DPPC vesicles

    Indian Academy of Sciences (India)

    TECS

    monitor different stages of interaction of bile salts with DPPC vesicles. NaDC induced significant changes in the ... more hydrophilic NaC does not interact with the membrane efficiently. Complete solubilisation of phos- pholipids .... the temperature was controlled by circulating water through a jacketted cuvette holder from a ...

  7. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  8. Patterns of Surface Immobilized Block Copolymer Vesicle Nanoreactors

    NARCIS (Netherlands)

    Chen, Qi; de Groot, G.W.; Schönherr, Holger; Vancso, Gyula J.

    2011-01-01

    The immobilization and positioning of ultra small reaction vessels on solid supports open new pathways in applications such as lab-on-a-chip, sensors, microanalyses and microreactors. In our work block copolymer vesicles made from polystyrene-block-polyacrylic acid (PS-b-PAA) were immobilized from

  9. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  10. Response of midpiece vesicles on human sperm to osmotic stress

    DEFF Research Database (Denmark)

    Abraham-Peskir, Joanna V; Chantler, Eric; Uggerhøj, Erik

    2002-01-01

    BACKGROUND: We investigated the osmotic response of midpiece vesicles (MPV) on human sperm. METHODS: Light microscopy, transmission X-ray microscopy and computer-aided semen analysis was used to investigate sperm in normozoospermic semen from healthy donors, separated from semen and suspended...

  11. Packing states of multilamellar vesicles in a nonionic surfactant system

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2001-01-01

    under shear. Here, we focused only in the MLV region, L-alpha(*), of a temperature sensitive surfactant system (C12E4-water) to investigate the packing of multilamellar vesicles as a function of temperature under constant shear. Two sets of temperature scan experiments were performed in the L...

  12. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle

    Directory of Open Access Journals (Sweden)

    P.F. Wong

    2014-09-01

    Conclusion: The results demonstrated that the inhibitory action of IMD on NE-induced seminal vesicle contraction was mediated via the ADM receptor(s and the nitric oxide production pathway, partially by the IMD receptor, but not by the CGRP receptor and the cAMP-PKA pathway.

  13. Glucose-oxidase based self-destructing polymeric vesicles

    NARCIS (Netherlands)

    Napoli, A.; Boerakker, M.J.; Tirelli, N.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.; Hubbell, J.A.

    2004-01-01

    We have designed oxidation-responsive vesicles from synthetic amphiphilic block copolymers ("polymersomes") of ethylene glycol and propylene sulfide. Thioethers in the hydrophobic poly(propylene sulfide) block are converted into the more hydrophilic sulfoxides and sulfones upon exposure to an

  14. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset

    NARCIS (Netherlands)

    Chiasserini, D.; van Weering, J.R.T.; Piersma, S.R.; Pham, T.V.; Malekzadeh, A.; Teunissen, C.E.; de Wit, H.; Jimenez, C.R.

    2014-01-01

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in

  15. Cell-derived vesicles exposing coagulant tissue factor in saliva

    NARCIS (Netherlands)

    Berckmans, René J.; Sturk, Auguste; van Tienen, Laurens M.; Schaap, Marianne C. L.; Nieuwland, Rienk

    2011-01-01

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is non-coagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism

  16. Cell-derived vesicles exposing coagulant tissue factor in saliva.

    Science.gov (United States)

    Berckmans, René J; Sturk, Auguste; van Tienen, Laurens M; Schaap, Marianne C L; Nieuwland, Rienk

    2011-03-17

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.

  17. Extracellular vesicles in human follicular fluid do not promote coagulation

    NARCIS (Netherlands)

    Franz, Cordula; Böing, Anita N.; Montag, Markus; Strowitzki, Thomas; Markert, Udo R.; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-01-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an

  18. The role of extracellular vesicles in neurodegenerative diseases.

    Science.gov (United States)

    Quek, Camelia; Hill, Andrew F

    2017-02-19

    Extracellular vesicles, including exosomes, are small membranous vesicles released from many biotypes, contributing to the disease progression and spreading. These extracellular vesicles provide an important mode of cell-to-cell communication by delivering proteins, lipids and RNA to target cells. Exosomes are found associated with neurodegenerative diseases, which are characterised by progressive degeneration of neurons and often associated with misfolded protein. The common diseases include Parkinson's disease (PD), Alzheimer's diseases (AD), amyotrophic lateral sclerosis (ALS), and the prion diseases. Of all neurodegenerative diseases, prion diseases are classified as the distinctive group owing to its transmissible and infectious nature of misfolded prion protein. The infectious prion particles have been demonstrated to be present in exosomes to spread prion infectivity within cells. Similarly, misfolded proteins involved in other neurodegenerative diseases such as Amyloid-β and tau in AD, α-synuclein in PD, and superoxide dismutase 1 in ALS have been demonstrated to exploit exosomes for induced spreading of misfolded proteins in a prion-like mechanism. Furthermore, RNA molecules can be taken up by the recipient cells as cargo in exosomes. These RNAs can module the expression of the target genes by repressing or inhibiting protein translation. Here we review the role of exosomes in prion diseases and other common neurodegenerative diseases, and discuss the potential of these vesicles for disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.

    Science.gov (United States)

    Tanner, Pascal; Baumann, Patric; Enea, Ramona; Onaca, Ozana; Palivan, Cornelia; Meier, Wolfgang

    2011-10-18

    One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes. Polymeric vesicles--structures similar to lipid vesicles but created using synthetic block copolymers--represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to enhance their target specificity. The optimization of these properties will allow researchers to design smart compartments that can co-encapsulate sensitive molecules, such as RNA, enzymes, and proteins, and their membranes allow insertion of membrane proteins rather than simply serving as passive carriers. In this Account, we illustrate the advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles. Polymeric vesicles generated by the self-assembly of amphiphilic copolymers (polymersomes) offer the advantage of simultaneous encapsulation of hydrophilic compounds in their aqueous cavities and the insertion of fragile, hydrophobic compounds in their membranes. This strategy has permitted us and others to design and develop new systems such as nanoreactors and artificial organelles in which active compounds are simultaneously protected and allowed to

  20. Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin

    Science.gov (United States)

    1979-01-01

    A mixture of HVJ (Sendai virus) spike proteins, the nontoxic fragment A of diphtheria toxin, lecithin, and cholesterol was solubilized in sucrose solution containing a nonionic neutral detergent. The liposomal vesicles which formed on removal of the detergent by dialysis were purified by gel filtration and centrifugation on a sucrose gradient. The resulting purified vesicles had hemagglutinating activity, hemolytic activity and, after solubilization, the enzymic activity of fragment A. The vesicles had no cell fusion activity. Electron microscopy showed that both the outside and inside of membranes of the vesicles were associated with the spikes. When the vesicles were freeze- fractured, no large aggregates of particles were seen on either face. Such fragment A-containing lipid vesicles (liposomes) with HVJ spikes bound to mamalian cell membrane and released their fragment A into the cytoplasm causing cell death. Neither fragment A-containing liposomes without spikes nor empty liposomes with spikes were toxic. PMID:217880

  1. Characteristics of glutamine transport in dog jejunal brush-border membrane vesicles.

    Science.gov (United States)

    Bulus, N M; Abumrad, N N; Ghishan, F K

    1989-07-01

    The present study characterizes glutamine transport across brush-border membrane vesicles (BBMV) prepared from dog jejunum. The purity of these vesicles was demonstrated by a 20-fold enrichment of leucine aminopeptidase, a marker for BBM. Glutamine uptake was found to occur into an osmotically active space with no membrane binding and to exhibit temperature and pH dependence (optimal uptake at pH 7-7.5). Glutamine uptake was driven by an inwardly directed Na+ gradient with a distinct overshoot not observed under K+ gradient. Lithium could not substitute for Na+ as a stimulator of glutamine uptake. Na+-dependent glutamine uptake was not inhibited by methylaminoisobutyric acid, a typical substrate for system A, and was found to be electrogenic and saturable with a Km of 0.97 +/- 0.58 mM and a Vmax of 3.93 +/- 0.99 nmol.mg protein-1.10 s-1. A Na+-glutamine coupling ratio of 1:1 could be demonstrated by a plot of Hill transformation. Na+-independent glutamine uptake was found to be electroneutral and saturable with a Km of 3.70 +/- 0.66 mM and a Vmax of 2.70 +/- 1.55 nmol.mg protein-1.10 s-1. Inhibition studies confirmed the presence of a Na+-dependent as well as a Na+-independent carrier for glutamine uptake. We conclude that glutamine uptake across dog BBMV occurs via two transport systems: a Na+-dependent high-affinity system similar to the neutral brush-border system and a Na+-independent lower-affinity system similar to system L.

  2. [Bacterial outer membrane vesicles as nano carriers to study immunological activities].

    Science.gov (United States)

    Qi, Chen; Min, W U; Hongzhen, Bai; Zeling, Guo; Jun, Zhou; Qingqing, Wang; Guping, Tang

    2017-03-25

    Objective: To prepare a nano-carrier based on combining bacterial outer membrane vesicles (OMV) with three block polymer pluronic F127 (PEO 100 -PPO 65 -PEO 100 ) (OMV-F127) and to investigate its immunological activity. Methods: Attenuated salmonella (sal) was cultivated. OMV were separated by centrifugal ultrafiltration or ultrasonication, and OMV-F127 was prepared by mechanical extrudation method. The protein contents and compositions were tested with BCA and SDS-PAGE; the morphology of OMV, F127 and OMV-F127 were observed with FM and TEM; the particle sizes and their zeta potential were determined with DLS. Mouse macrophage RAW246.7 cells were treated with OMV-F127 (50 μg/mL, 100 μg/mL) in vitro, and the concentrations of IL-12, TNF-α and IFN-γ in culture supernatant were measured with ELISA kits. Results: The contents of protein in separated OMV by centrifugal ultrafiltration and ultrasonication were 2.8 mg/mL and 2.7 mg/mL, respectively. SDS-PAGE showed the marker protein OmpF/C in OMV. Under the FM and TEM, ball-like structure of F127 and OMV-F127 was observed. Size analysis revealed that the diameters of OMV, F127 and OMV-F127 were 72±2 nm, 90±3 nm and 92±2 nm, respectively. ELISA tests revealed that OMV-F127 significantly stimulated the secretion of IL-12, TNF-α and IFN-γ in RAW246.7 cells. Conclusion: A nano-carrier based on bacterial outer membrane vesicles has been prepared, which can stimulate the secretion of cytokines and may have immunomodulatory effects.

  3. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  4. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification.

    Science.gov (United States)

    New, Sophie E P; Aikawa, Elena

    2013-08-01

    Extracellular vesicles are membrane micro/nanovesicles secreted by many cell types into the circulation and the extracellular milieu in physiological and pathological conditions. Evidence suggests that extracellular vesicles, known as matrix vesicles, play a role in the mineralization of skeletal tissue, but emerging ultrastructural and in vitro studies have demonstrated their contribution to cardiovascular calcification as well. Cells involved in the progression of cardiovascular calcification release active vesicles capable of nucleating hydroxyapatite on their membranes. This review discusses the role of extracellular vesicles in cardiovascular calcification and elaborates on this additional mechanism of calcification as an alternative pathway to the currently accepted mechanism of biomineralization via osteogenic differentiation.

  5. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Science.gov (United States)

    Hill, Andrew F.; Hochberg, Fred; Buzás, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs. PMID:25536934

  6. Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking

    Science.gov (United States)

    Li, Dongdong; Hérault, Karine; Zylbersztejn, Kathleen; Lauterbach, Marcel A; Guillon, Marc; Oheim, Martin; Ropert, Nicole

    2015-01-01

    Key points Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca2+-independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. Abstract Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca2+-regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca2+-independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes. PMID:25864578

  7. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  8. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    Science.gov (United States)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  9. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  10. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients.

    Science.gov (United States)

    Bryzgunova, Olga E; Zaripov, Marat M; Skvortsova, Tatyana E; Lekchnov, Evgeny A; Grigor'eva, Alina E; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Ryabchikova, Elena I; Yurchenko, Yuri B; Voitsitskiy, Vladimir E; Laktionov, Pavel P

    2016-01-01

    Recent studies suggest that extracellular vesicles may be the key to timely diagnosis and monitoring of genito-urological malignancies. In this study we investigated the composition and content of extracellular vesicles found in the urine of healthy donors and prostate cancer patients. Urine of 14 PCa patients and 20 healthy volunteers was clarified by low-speed centrifugation and total extracellular vesicles fraction was obtain by high-speed centrifugation. The exosome-enriched fraction was obtained by filtration of total extracellular vesicles through a 0.1 μm pore filter. Transmission electron microscopy showed that cell-free urine in both groups contained vesicles from 20 to 230 nm. Immunogold staining after ultrafiltration demonstrated that 95% and 90% of extracellular vesicles in healthy individuals and cancer patients, respectively, were exosomes. Protein, DNA and RNA concentrations as well as size distribution of extracellular vesicles in both fractions were analyzed. Only 75% of the total protein content of extracellular vesicles was associated with exosomes which amounted to 90-95% of all vesicles. Median DNA concentrations in total extracellular vesicles and exosome-enriched fractions were 18 pg/ml and 2.6 pg/ml urine, correspondingly. Urine extracellular vesicles carried a population of RNA molecules 25 nt to 200 nt in concentration of no more than 290 pg/ml of urine. Additionally, concentrations of miR-19b, miR-25, miR-125b, and miR-205 were quantified by qRT-PCR. MiRNAs were shown to be differently distributed between different fractions of extracellular vesicles. Detection of miR-19b versus miR-16 in total vesicles and exosome-enriched fractions achieved 100%/93% and 95%/79% specificity/sensitivity in distinguishing cancer patients from healthy individuals, respectively, demonstrating the diagnostic value of urine extracellular vesicles.

  11. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kobæk Larsen, Morten; Tuck, Simon; Færgeman, Nils J.

    2006-01-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydro...

  12. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes.

    Science.gov (United States)

    Jin, Haibao; Zhou, Yongfeng; Huang, Wei; Zheng, Yongli; Zhu, Xinyuan; Yan, Deyue

    2014-06-11

    Large-scale and robust vesicle aggregates were obtained through molecular recognition among cell-sized polymer vesicles, carbon nanotubes and AuNPs, driven by adhesion interactions between Au and polydopamine. Vesicle fusion was effectively avoided in this three-component vesicle aggregation process.

  13. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Vad, Brian; Christiansen, Gunna

    2009-01-01

    changed to serines to emulate the reduced peptide. SerADan aggregates rapidly at pH 5.0 and 7.5 in a series of conformational transitions to form beta-sheet rich fibril-like structures, which nevertheless do not bind amyloid-specific dyes, probably due to the absence of organized beta-sheet contacts....... Aggregation is prevented at neutral/acidic pH and low ionic strength by anionic lipid vesicles. These vesicles are permeabilized by monomeric SerADan assembling on the membrane to form stable beta-sheet structures which are different from the solution aggregates. In contrast, solution ageing of SerADan first......-fibrillar aggregates can assemble in a series of steps to form a hierarchy of higher-order assemblies, where rapid formation of stable local beta-sheet structure may prevent rearrangement to amyloid proper....

  14. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Kosaka

    2016-02-01

    Full Text Available One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs. EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs, are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer.

  15. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Science.gov (United States)

    Kosaka, Nobuyoshi

    2016-01-01

    One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408

  16. Complex motions of vesicles and capsules in flow

    Science.gov (United States)

    Vlahovska, Petia; Young, Yuan-Nan; Misbah, Chaouqi

    2009-11-01

    Membrane-bound particles exhibit rich dynamics when placed in flow. For example, in simple shear flow, vesicles made of lipid bilayers tank-tread or tumble. Capsules and red blood cells also show oscillations in the tank-treading inclination angle, called swinging. This motion originates from membrane shear--elasticity and non--spherical unstressed shape. We develop an analytical theory that quantitatively describes the swinging dynamics. Our analysis takes into account that the membrane is deformable, incompressible, and resists bending and shearing. Analytical results for the shape evolution are derived by considering a nearly-spherical particle shape. The phase diagram is constructed and compared to previous models which assume fixed ellipsoidal shape. Dynamics in quadratic and time-dependent flows is also discussed. Floquet analysis is conducted to investigate the vesicle dynamics and conditions for chaotic shape and flow dynamics are established.

  17. Significance of Extracellular Vesicles: Pathobiological Roles in Disease.

    Science.gov (United States)

    Yamamoto, Seiji; Azuma, Erika; Muramatsu, Masashi; Hamashima, Takeru; Ishii, Yoko; Sasahara, Masakiyo

    2016-11-25

    Over the past decade, many studies have been conducted on extracellular vesicles (EVs) in the fields of basic and clinical research. EVs are small sized membranous vesicles generated from many type of cells upon activation by environmental stresses such as heat, hypoxia, and irradiation. EVs theoretically consist of microparticles/microvesicles, exosomes, and apoptotic bodies by different productive mechanisms. Clinically, EVs are observed in the blood stream of patients suffering from acute and chronic inflammation evoked by various diseases, and number of EVs in blood flow is often dependent on the inflammatory status and severity of the diseases. To date, it has been reported that small molecules such as RNAs and proteins are encapsulated in EVs; however, the functions of EVs are still unclear in the biological, pathological, and clinical aspects. In this review, we summarize and discuss the biogenesis-based classification, expected function, and pathobiological activities of EVs.

  18. Emerging roles of extracellular vesicles in cellular senescence and aging.

    Science.gov (United States)

    Takasugi, Masaki

    2018-02-01

    Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Perez-Hernandez, Javier; Redon, Josep; Cortes, Raquel

    2017-03-28

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell types, carry nucleic acids, proteins and lipids and play a crucial role in cell-to-cell communication. EVs can stimulate or suppress the immune responses depending on the context. In SLE, EVs can work as autoadjuvants, enhance immune complex formation and maintaining inflammation state. Over the last years, EVs derived from mesenchymal stem cells and antigen presenting cells have emerged as cell-free therapeutic agents to treat autoimmune and inflammatory diseases. In this review, we summarize the current therapeutic applications of extracellular vesicles to regulate immune responses and to ameliorate disease activity in SLE and other autoimmune disorders.

  20. Understanding the biosynthesis of platelets-derived extracellular vesicles.

    Science.gov (United States)

    Antwi-Baffour, Samuel; Adjei, Jonathan; Aryeh, Claudia; Kyeremeh, Ransford; Kyei, Foster; Seidu, Mahmood A

    2015-09-01

    Platelet-derived extracellular vesicles (PEVs) are described as sub-cellular vesicles released into circulation upon platelets shear stress, activation, injury, or apoptosis. They are considered as universal biomarkers in a wide range of physiological and pathological processes. They are of tremendous significance for the prediction, diagnosis, and observation of the therapeutic success of many diseases. Understanding their biosynthesis and therefore functional properties would contribute to a better understanding of the pathological mechanisms leading to various diseases in which their levels are raised and they are implicated. The review takes a critical look at the historical background of PEVs, their structural components, the mechanism of their formation, physiological, and exogenous stimuli inducing their release and their detection. It concludes by highlighting on the importance of undertaking in-depth studies into PEVs biosynthesis and subsequently gaining a better understanding of their biological role in general.

  1. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  2. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.

    Science.gov (United States)

    Bahrami, Amir Houshang; Weikl, Thomas R

    2018-01-08

    Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

  3. Extracellular vesicles: small bricks for tissue repair/regeneration.

    Science.gov (United States)

    Taverna, Simona; Pucci, Marzia; Alessandro, Riccardo

    2017-02-01

    Extracellular vesicles (EVs) are nano-sized membrane vesicles involved in intercellular communication. EVs have pleiotropic actions in physiological and pathological conditions. The ability of EVs to transports proteins, drugs and nucleic acid, to target specific cells and to increase the stability of therapeutic cargo, make EVs interesting as new devices for the treatment of human disease. In a recently published issue of European journal of pharmaceutical sciences, Silva and colleagues reviewed the ability of EVs to modulate tissue repair and regeneration, focusing on their roles and therapeutic potential as immunomodulatory messengers. In this perspective, we discussed the open questions regarding the dual role of EVs in immune system, as well as the technical limitation of the procedure for EVs isolation and administration in clinical practices. EV-based therapies require further studies to consider EVs as promising candidate for a novel cell-free therapy in the context of regeneration medicine.

  4. Morphological and topological transformations of lipid bilayer vesicles

    Science.gov (United States)

    Nomura, Fumimasa; Honda, Makoto; Takeda, Shuichi; Umeda, Tamiki; Takiguchi, Kingo; Hotani, Hirokazu

    2000-06-01

    Liposomes are the micro compartments made of lipid bilayer membrane of which characteristics are quite similar to those of biological membrane. To form artificial cell-like structure, we made liposomes that contained subunit of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shape by mechanical force generated by the polymerization of encapsulated subunits of microtubules. Disk or dumbbell shape was generated by the polymerization of encapsulated action. Dynamic processes of morphological transformations of liposomes were visualized by the high intensity dark-field light microscopy. Topological changes such as fusion and division of membrane vesicles also play an essential role in cellular activities. We investigated the mechanism of these topological transformations by visualizing their real-time processes. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles. .

  5. Numerical computations of the dynamics of fluidic membranes and vesicles

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2015-01-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behaviour of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier--)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier--)Stokes equations. We introduce a parametric finite element method to solve this complex free boundary problem, and present the first three dimensional numerical computations based on the full (Navier--)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosit...

  6. CAPS and Munc13: CATCHRs that SNARE vesicles

    Directory of Open Access Journals (Sweden)

    Declan J James

    2013-12-01

    Full Text Available Abstract. CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS and Munc13 (Mammalian Unc-13 proteins function to prime vesicles for Ca2+-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with CATCHR (Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes have been reported. Multi-subunit tethering complexes coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

  7. Production and Characterization of Extracellular Vesicles in Malaria.

    Science.gov (United States)

    Mbagwu, Smart; Walch, Michael; Filgueira, Luis; Mantel, Pierre-Yves

    2017-01-01

    Growing attention is drawn toward the role of extracellular vesicles (EVs) in infectious diseases. EVs, which are small vesicles released by cells, are involved in cellular communication, immune regulation, and pathogenesis. EVs act as messenger carrying functional cargoes, including RNA, DNA, lipids and proteins from a donor cell to regulate the function of a recipient cell. In malaria, EVs play a key role in regulating the progression from the blood to the transmission stage by promoting the switch between asexual and sexual stages that are taken up by mosquitoes. In addition to their role in parasite communication, EVs modulate the immune system and regulate endothelial cell function.In this chapter, we describe protocols to isolate, purify and characterize EVs derived from Plasmodium falciparum infected red blood cell culture.

  8. Shear-Induced Deformation of Surfactant Multilamellar Vesicles

    Science.gov (United States)

    Pommella, Angelo; Caserta, Sergio; Guida, Vincenzo; Guido, Stefano

    2012-03-01

    Surfactant multilamellar vesicles (SMLVs) play a key role in the formulation of many industrial products, such as detergents, foodstuff, and cosmetics. In this Letter, we present the first quantitative investigation of the flow behavior of single SMLVs in a shearing parallel plate apparatus. We found that SMLVs are deformed and oriented by the action of shear flow while keeping constant volume and exhibit complex dynamic modes (i.e., tumbling, breathing, and tank treading). This behavior can be explained in terms of an excess area (as compared to a sphere of the same volume) and of microstructural defects, which were observed by 3D shape reconstruction through confocal microscopy. Furthermore, the deformation and orientation of SMLVs scale with radius R in analogy with emulsion droplets and elastic capsules (instead of R3, such as in unilamellar vesicles). A possible application of the physical insight provided by this Letter is in the rationale design of processing methods of surfactant-based systems.

  9. Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation

    OpenAIRE

    Wahlund, Casper J. E.; Eklund, Anders; Grunewald, Johan; Gabrielsson, Susanne

    2017-01-01

    Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs), including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory...

  10. Isolation and characterization of platelet-derived extracellular vesicles

    OpenAIRE

    Aatonen, Maria T.; Öhman, Tiina; Nyman, Tuula A.; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R.-M.

    2014-01-01

    Background: Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs indu...

  11. Association of Randall's Plaques with Collagen Fibers and Membrane Vesicles

    Science.gov (United States)

    Khan, Saeed R.; Rodriguez, Douglas E.; Gower, Laurie B.; Monga, Manoj

    2013-01-01

    Background Idiopathic calcium oxalate (CaOx) kidney stones develop by deposition of CaOx crystals on Randall's plaques (RP). Mechanisms involved in RP formation are still unclear. Objective It is our hypotheses that RP formation is similar to vascular calcification involving components of extracellular matrix including membrane bound vesicles (MV) and collagen fibers. In order to verify our hypothesis we critically examined renal papillary tissue from stone patients. Methods 4 mm cold-cup biopies of renal papillae were performed on fifteen idiopathic stone patients undergoing PCNL. Tissue was immediately fixed and processed for analyses by various light and electron microscopic techniques. Results and Limitations Spherulitic CaP crystals, the hallmark of RP's, were seen in all samples examined. They were seen in interstitium as well as laminated basement membrane of tubular epithelia. Large crystalline deposits comprised of dark elongated strands mixed with spherulites. Strands showed banded patterns similar to collagen. Crystal deposits were surrounded by collagen fibers and membrane bound vesicles. Energy dispersive x-ray microanalyses (EDX) and electron diffraction identified the crystals as hydroxyapatite. The number of kidneys examined is small and urinary data was not available for all the patients. Conclusions Results presented here show that crystals in the Randall's plaques are associated with both the collagen as well as MV. Collagen fibers appeared calcified and vesicles contained crystals. We conclude that crystal deposition in renal papillae may have started with membrane vesicle induced nucleation and grew by addition of crystals on the periphery within a collagen framework. PMID:22266007

  12. Isolation and Characterization of Chick Epiphyseal Cartilage Matrix Vesicle Proteolipid

    Science.gov (United States)

    1988-01-01

    initial calcification in dentine and enamel . J. Ultrastr. Res., 41: 1-17. Bernard GW and Pease DC. 1969. An electron microscopic study of initial...characterization of matrix vesicle protease. Bone, 6: 470. ----------- -40 IT 7, T 7 69 Ketenjian AY and Arsenis C. 1975. Morphological and...J. Biol. Chem., 258: 8601-8607. Siska RF and Provenza DV. 1972. Initial dentin formation in human deciduous teeth . An electron microscopic study

  13. Dimensional characterization of extracellular vesicles using atomic force microscopy

    Science.gov (United States)

    Sebaihi, N.; De Boeck, B.; Yuana, Y.; Nieuwland, R.; Pétry, J.

    2017-03-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ~30 nm high and ~90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement.

  14. Preparation of PVP hydrogel nanoparticles using lecithin vesicles

    Directory of Open Access Journals (Sweden)

    Vânia Blasques Bueno

    2010-01-01

    Full Text Available Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.

  15. RA and FGF Signalling Are Required in the Zebrafish Otic Vesicle to Pattern and Maintain Ventral Otic Identities

    Science.gov (United States)

    Maier, Esther C.; Whitfield, Tanya T.

    2014-01-01

    During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement. PMID:25473832

  16. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics

    Science.gov (United States)

    Dhara, Madhurima; Yarzagaray, Antonio; Schwarz, Yvonne; Dutta, Soumyajit; Grabner, Chad; Moghadam, Paanteha K.; Bost, Anneka; Schirra, Claudia; Rettig, Jens; Reim, Kerstin; Brose, Nils; Mohrmann, Ralf

    2014-01-01

    ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus. PMID:24687280

  17. Extracellular Vesicles and Their Convergence with Viral Pathways

    Directory of Open Access Journals (Sweden)

    Thomas Wurdinger

    2012-01-01

    Full Text Available Extracellular vesicles (microvesicles, such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.

  18. Thin shell vesicles composed of hydrophilic plate-like nanoparticles

    Science.gov (United States)

    Subramaniam, Anand; Wan, Jiandi; Gopinath, Arvind; Stone, Howard

    2011-03-01

    Nanopowders of graphene oxide, montmorillonite and laponite spontaneously delaminate into ultrathin nanoscopic plates when dispersed in water. These plates, which are typically ~ 1 nm thick and microns in lateral dimension, have found many uses as precursors to graphene, ceramics, layer-by-layer structures, and as structural modifiers of nanocomposites. Here we show that mechanical forces due to shear in a narrow gap can assemble hydrophilic plate-like particles on air bubbles, forming stable nanoplated armored bubbles. Translucent inorganic vesicles (vesicles defined here as closed thin-shelled structures with the same liquid inside and outside) of these particles are produced when the nanoplated armored bubbles are exposed to common water-miscible organic liquids and surfactants. These inorganic vesicles are mechanically robust, have walls that are about six nanometres thick, and are perforated with pores of submicron dimensions. We characterize the phenomenon and find that a wetting transition at the scale of the nanoparticles is the primary mechanism of formation. The discovery of these novel inorganic structures raises a wealth of questions of fundamental interest in materials and surface science.

  19. Isolation and characterization of platelet-derived extracellular vesicles.

    Science.gov (United States)

    Aatonen, Maria T; Ohman, Tiina; Nyman, Tuula A; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R-M

    2014-01-01

    Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS) or Ca(2+) ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA) and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. The main EV populations were 100-250 nm and over 90% were vesicle subpopulations. Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100-250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As the EV subpopulations could not be distinguished and large vesicle populations may be lost by differential centrifugation, novel methods are required for the isolation and the differentiation of all EVs.

  20. Durable vesicles for reconstitution of membrane proteins in biotechnology.

    Science.gov (United States)

    Beales, Paul A; Khan, Sanobar; Muench, Stephen P; Jeuken, Lars J C

    2017-02-08

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. © 2017 The Author(s).

  1. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    Science.gov (United States)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  2. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  3. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Charged copolypeptide vesicles with controlled size for intracellular drug delivery

    Science.gov (United States)

    Holowka, Eric Peter

    Much focus has been given to the synthesis of polypeptidic based materials due to their unique structural features. These polypeptides commonly are amphiphilic in character that benefit from secondary structural features associated with one of the polymer blocks. These features, such as alpha-helix and beta-sheet conformations, allow for control over nanoscale ordering through self-assembly for use in biological sensors and therapeutic drug delivery. We report the preparation and characterization of charged amphiphilic block copolypeptide vesicle formers using transition metal mediated living ring-opening polymerization of N-carboxyanhydrides (NCAs). The vesicle membranes show fluidic properties suggested by dynamic physical behavior allowing for fine size adjustments using liposomal extrusion methods. This extrusion also allows for a facile mode of encapsulation of biomolecules for drug delivery. Modification of the charged residues has shown vesicle stability under osmotic and thermal stress, in pH buffers, and serum cell media, as well as the ability for lipid interaction and cellular interactions.

  5. Quantitative and qualitative analysis of nano-sized vesicles released by dendritic cells and T cells. Towards deciphering the role of extracellular vesicles in immune cell communication

    NARCIS (Netherlands)

    van der Vlist, E.J.|info:eu-repo/dai/nl/314640908

    2013-01-01

    Many cell types release nano-sized vesicles, which can be found in body fluids as well as in cell culture-conditioned medium. These extracellular vesicles (EV) have been identified as vehicles for intercellular communication and are thought to be involved in many (patho)physiological processes. They

  6. Spermatozoa as a transport system of large unilamellar lipid vesicles into the oocyte.

    Science.gov (United States)

    Geerts, N; McGrath, J; Stronk, J N; Vanderlick, T K; Huszar, G

    2014-04-01

    In addition to their role as man-made membranes, vesicles continue to be investigated as carriers for drug delivery. While most research focuses on their injectable properties, here a new delivery strategy is proposed. It is shown that spermatozoa can transport vesicles of variable composition. For human spermatozoa, the vesicles started to show binding after 20 mol% of the nonbinding vesicle backbone lipids were substituted with positive, negative, cerebroside or ganglioside lipids. Vesicle binding is a dynamic process with constant 'on' and 'off' binding. The physiological and motility attributes of the spermatozoa are not affected by the attached vesicles. Sperm swimming characteristics changed only marginally. Also, the activation status of the acrosomal membrane, tested with the fluorescent probe Pisum sativum agglutinin, was not affected by vesicle binding. Moreover, the hyaluronic acid-binding test showed that viable, fully developed spermatozoa will attach and remain bound to hyaluronic acid-coated slides regardless of vesicle binding. Therefore a new 'hybrid' delivery system was created with human spermatozoa, and tested with a mouse IVF system. Large unilamellar vesicles physisorbed to mouse spermatozoa can not only penetrate the mouse oocytes in these proof-of-principle experiments, but also deliver the cargo placed within the vesicles. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks.

    Science.gov (United States)

    Gho, Yong Song; Lee, Changjin

    2017-06-27

    Shedding of nano-sized bilayered extracellular vesicles and extracellular vesicle-mediated intercellular communication are evolutionarily conserved biological processes. Communication between cells and the environment is an essential process in living organisms and dysregulation of intercellular communication leads to various diseases. Thus, systematic studies on extracellular vesicles, also known as exosomes, microvesicles, and outer membrane vesicles, are critical for a deeper understanding of intercellular communication networks that are crucial for decoding the exact causes of various difficult-to-cure diseases. Recent progress in this emerging field reveals that extracellular vesicles are endogenous carriers of specific subsets of proteins, mRNAs, miRNAs, and other bioactive materials, as well as play diverse pathophysiological roles. However, certain issues regarding diverse subtypes and the complex pathophysiological roles of extracellular vesicles are not yet clearly elucidated. In this review, we first briefly introduce the complexity of extracellular vesicles in terms of their vesicular cargos and protein-protein interaction networks, their diverse subtypes, and multifaceted pathophysiological functions. Then, we introduce the limitation of reductionist approaches in understanding the complexity of extracellular vesicles. We finally suggest that molecular systems biology approaches based on the concept of emergent properties are essential for a comprehensive understanding of the complex pathophysiological functions of heterogeneous extracellular vesicles, either at the single vesicle level or at a systems level as a whole.

  8. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications.

    Science.gov (United States)

    Jiang, Wenfeng; Zhou, Yongfeng; Yan, Deyue

    2015-06-21

    Vesicles, including lipid vesicles, surfactant vesicles, as well as polymer vesicles, have been extensively investigated over the past fifty years. Among them, polymer vesicles have attracted more and more attention because of their low permeability, superior stability and toughness, in addition to the numerous possibilities for tailoring physical, chemical and biological properties. Polymer vesicles are generally fabricated through the self-assembly of amphiphilic polymers with a linear architecture. Recently, as representative polymers with a highly branched three-dimensional architecture, hyperbranched polymers have also exhibited great potential for preparing vesicles. The resultant hyperbranched polymer vesicles, defined as branched-polymersomes (BPs), have shown unique properties, such as giant and easily tuned vesicle sizes, facile functionalization, a special formation mechanism, and appealing solution behaviours. In this tutorial review, ten years of advances in BPs have been summarized since their first discovery in the year 2004, including the syntheses of vesicle-forming hyperbranched polymers, self-assembly methods, self-assembly mechanisms, as well as the special properties. In addition, the cytomimetic, biomedical and other initiatory applications of BPs are also included.

  9. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles

    Science.gov (United States)

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P.; Osorio-Fuentealba, Cesar; Antonescu, Costin N.; Bayer, K. Ulrich; Bilan, Philip J.; Klip, Amira

    2012-01-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding–deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  10. Effect of surfactant counterion and organic modifier on the properties of surfactant vesicles in electrokinetic chromatography.

    Science.gov (United States)

    Schuster, Stephanie A; Foley, Joe P

    2005-08-01

    Counterion and organic modifier are two parameters in EKC that can be varied in order to obtain improved solubility, selectivity, and efficiency. The effect of changing surfactant counterion and/or organic modifier on the chromatographic and electrophoretic properties of cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfate (SOS) vesicles is examined in EKC. The vesicles are prepared in a 1:3.66 cationic/ anionic mole ratio for a total surfactant concentration of 69 mM. The cationic CTAB is replaced by cetyltrimethylammonium chloride (CTAC) and the first use of CTAC/SOS vesicles is reported. The mean diameter of the CTAC/SOS vesicles is 96 nm while that of the CTAB/SOS vesicles is 85 nm. A class I modifier (2-amino-1-butanol) and a class II modifier (acetonitrile) have similar effects on the EOF, elution range, methylene selectivity, and the efficiency of the CTAB/SOS vesicles and the CTAC/SOS vesicles. Upon addition of 10% ACN, there is roughly a 10-fold increase in the efficiency of heptanophenone, a model hydrophobic compound, compared to the efficiency using unmodified vesicles. Linear free energy relationship (LFER) analysis using the Abraham solvation model is employed to characterize solute-vesicle interactions. The results suggest that organic modifier-vesicle interactions depend somewhat on the counterion.

  11. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter vesicles remains challenging. Thus far, vesicles vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (nvesicles vesicle-based clinical applications.

  12. Extracellular Vesicles and Their Role in Urologic Malignancies.

    Science.gov (United States)

    Junker, Kerstin; Heinzelmann, Joana; Beckham, Carla; Ochiya, Takahiro; Jenster, Guido

    2016-08-01

    Research has increased significantly on small vesicles secreted by healthy and diseased cells. Recent discoveries have revealed their functional and biomarker roles in urologic diseases. Whether and how this knowledge of extracellular vesicles (EVs) affects translational research and clinical practices have become pertinent questions. To provide an overview of the currently available literature on the rising field of EVs, focusing on function and pathogenesis in urologic cancers and the usefulness of EVs as biomarkers. A systematic literature search was conducted using PubMed to identify original articles, review articles, and editorials regarding EVs in different types of urologic tumor diseases. Articles published between 2005 and 2015 were reviewed and selected with the consensus of all authors. Besides soluble factors, different types of EVs are involved in the complex cross talk between different cell types. EVs regulate normal physiologic processes like spermatogenesis and renal function, as well as disease-specific processes including bladder, kidney, and prostate cancer. The content of EVs is derived from the cytoplasm of the donor cell. The proteins and RNAs within these EVs can be isolated from body fluids (eg, urine and blood) and represent potential diagnostic and prognostic biomarkers. EVs are also candidate therapeutic targets and potentially useful as therapeutic vehicles. The current data suggest that EVs are important regulators of cell-cell communication. The growing knowledge about their roles in urologic malignancies provides the basis for novel therapeutic strategies. In addition, nucleic acid and the protein content of EVs holds promise for the discovery of urine- or serum-based biomarkers for kidney, bladder, and prostate cancer. Normal and cancer cells secrete small vesicles that contain proteins and RNAs from the cell of origin. Changes in the diseased cells can be detected by examining the altered content of these vesicles when secreted in

  13. Growth and instability of a phospholipid vesicle in a bath of fatty acids

    Science.gov (United States)

    Dervaux, J.; Noireaux, V.; Libchaber, A. J.

    2017-06-01

    Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

  14. Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Soraya Taabache

    2017-07-01

    Full Text Available The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic—from the environment on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size.

  15. Salt, shake, fuse--giant hybrid polymer/lipid vesicles through mechanically activated fusion.

    Science.gov (United States)

    Henderson, Ian M; Paxton, Walter F

    2014-03-24

    Large (200 nm) poly(ethylene oxide)-b-poly(butadiene) polymer vesicles fuse into giant (>1 μm) vesicles with mild agitation in dilute aqueous NaCl solutions. This unusual effect is attributed to the salt-induced contraction of the poly(ethylene oxide) corona, reducing steric resistance between vesicles and, with agitation, increasing the probability of contact between the hydrophobic cores of adjacent membranes. In addition, NaCl and agitation facilitated the creation of giant hybrid vesicles from much smaller homogeneous polymersomes and liposomes. Whereas lipid vesicles do not readily fuse with each other under the same circumstances, they did fuse with polymersomes to produce hybrid polymer/lipid vesicles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins.

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Cho

    Full Text Available Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site.

  17. The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment.

    Science.gov (United States)

    Qian, Zhongrun; Shen, Qi; Yang, Xi; Qiu, Yongming; Zhang, Wenbin

    2015-01-01

    Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer.

  18. The biology and function of extracellular vesicles in nasopharyngeal carcinoma (Review).

    Science.gov (United States)

    You, Bo; Shan, Ying; Bao, Lili; Chen, Jing; Yang, Liu; Zhang, Qicheng; Zhang, Wei; Zhang, Zhenxin; Zhang, Jie; Shi, Si; You, Yiwen

    2018-01-01

    Extracellular vesicles are a heterogeneous group of membrane-enclosed vesicles, which play an important role in intercellular communication. Increasing number of studies have shown that tumor-derived extracellular vesicles might be involved in the transfer of oncogenic cargo (proteins, lipids, messenger RNA, microRNA, non-coding RNAs and DNA) through which cancer cells could shape the tumor microenvironment and influence tumor progression. Nasopharyngeal carcinoma-derived extracellular vesicles have also reported to facilitate tumor proliferation, metastasis and immune escape. Moreover, nasopharyngeal carcinoma-derived extracellular vesicles might serve as biomarkers for early diagnosis and therapeutic targets. The present review provides information on the biological and clinical significance of extracellular vesicles in tumors, especially in nasopharyngeal carcinoma.

  19. Agonists that increase [Ca2+]i halt the movement of cytoplasmatic vesicles in MDCK cells

    DEFF Research Database (Denmark)

    Bjælde, Randi Groslier; Árnadóttir, Sigrid Salling; Leipziger, Jens Georg

    2011-01-01

    of vesicles by 40%. Because all these perturbations increase [Ca²⁺]i, we speculated that this increase in [Ca²⁺]i was responsible for the vesicle arrest. Therefore, we tested the effect of the Ca²⁺ ionophore, ionomycin (1 μM), which in the presence of extracellular Ca²⁺ resulted in a considerable......Translocation of vesicles within the cytoplasm is essential to normal cell function. The vesicles are typically transported along the microtubules to their destination. The aim of this study was to characterize the vesicular movement in resting and stimulated renal epithelial cells. MDCK cells...... loaded with either quinacrine or acridine orange, dyes taken up by acidic vesicles, were observed at 37°C in semiopen perfusion chambers. Time-lapse series were analyzed by Imaris software. Our data revealed vigorous movement of stained vesicles in resting MDCK cells. These movements seem to require...

  20. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    Science.gov (United States)

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  1. ACECLOFENAC ENCAPSULATED ETHANOLIC NANO-VESICLES FOR EFFECTIVE TREATMENT OF OSTEOART HRITIS

    OpenAIRE

    Arvinder Kaur et al

    2012-01-01

    In the present study, ethanolic nanovesicles of Aceclofenac developed for the site specific delivery to joints for effective treatment of osteoarthritis. Ethanolic nano-vesicles were prepared by solvent dispersion method. Vesicles were characterized for vesicular size, surface morphology, size and size distribution, zeta potential, entrapment efficiency. Formulations were also evaluated for drug-vesicle (excipients) interaction, in vitro permeation, in vitro deposition. The TEM showed dark ve...

  2. Why the need and how to approach the functional diversity of extracellular vesicles

    OpenAIRE

    Tkach, Mercedes; Kowal, Joanna; Théry, Clotilde

    2017-01-01

    In the past decade, cell-to-cell communication mediated by exosomes has attracted growing attention from biomedical scientists and physicians, leading to several recent publications in top-tier journals. Exosomes are generally defined as secreted membrane vesicles, or extracellular vesicles (EVs), corresponding to the intraluminal vesicles of late endosomal compartments, which are secreted upon fusion of multi-vesicular endosomes with the cell's plasma membrane. Cells, however, were shown to ...

  3. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    Science.gov (United States)

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Transferring intercellular signals and traits between cancer cells: extracellular vesicles as "homing pigeons".

    Science.gov (United States)

    Cesi, Giulia; Walbrecq, Geoffroy; Margue, Christiane; Kreis, Stephanie

    2016-06-10

    Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed.

  5. A Pilot Study on the Potential of RNA-Associated to Urinary Vesicles as a Suitable Non-Invasive Source for Diagnostic Purposes in Bladder Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Amparo; Loizaga, Ana; Arceo, Raquel; Lacasa, Isabel; Rabade, Ainara [Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia (Spain); Zorroza, Kerman [Basque Foundation for Health Innovation and Research (BIOEF), DNA Laboratory, Basurto Hospital, Bilbao 48013, Bizkaia (Spain); Mosen-Ansorena, David [Genome Analysis Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia (Spain); Gonzalez, Esperanza [Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia (Spain); Aransay, Ana M. [Genome Analysis Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia (Spain); Falcon-Perez, Juan M. [Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Bizkaia (Spain); Unda-Urzaiz, Miguel [Urology Service, Basurto University Hospital, Bilbao 48013, Bizkaia (Spain); Royo, Felix, E-mail: froyo.ciberehd@cicbiogune.es [Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio 48160, Bizkaia (Spain)

    2014-01-22

    Bladder cancer is one of the most common cancers and, together with prostate carcinoma, accounts for the majority of the malignancies of the genitourinary tract. Since prognosis ameliorates with early detection, it will be beneficial to have a repertoire of diagnostic markers that could complement the current diagnosis protocols. Recently, cell-secreted extracellular vesicles have received great interest as a source of low invasive disease biomarkers because they are found in many body fluids, including urine. The current work describes a pilot study to generate an array-based catalogue of mRNA associated to urinary vesicles, and also a comparison with samples obtained from bladder cancer patients. After an analysis of presence/absence of transcripts in bladder cancer EVs, a list of genes was selected for further validation using PCR technique. We found four genes differentially expressed in cancer samples. LASS2 and GALNT1 were present in cancer patients, while ARHGEF39 and FOXO3 were found only in non-cancer urinary vesicles. Previous studies have pointed to the involvement of those genes in tumour progression and metastasis.

  6. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    Directory of Open Access Journals (Sweden)

    Kazuya Iwai

    2016-05-01

    Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.

  7. Paper-based Devices for Isolation and Characterization of Extracellular Vesicles

    Science.gov (United States)

    Chen, Chihchen; Lin, Bo-Ren; Hsu, Min-Yen; Cheng, Chao-Min

    2015-01-01

    Extracellular vesicles (EVs), membranous particles released from various types of cells, hold a great potential for clinical applications. They contain nucleic acid and protein cargo and are increasingly recognized as a means of intercellular communication utilized by both eukaryote and prokaryote cells. However, due to their small size, current protocols for isolation of EVs are often time consuming, cumbersome, and require large sample volumes and expensive equipment, such as an ultracentrifuge. To address these limitations, we developed a paper-based immunoaffinity platform for separating subgroups of EVs that is easy, efficient, and requires sample volumes as low as 10 μl. Biological samples can be pipetted directly onto paper test zones that have been chemically modified with capture molecules that have high affinity to specific EV surface markers. We validate the assay by using scanning electron microscopy (SEM), paper-based enzyme-linked immunosorbent assays (P-ELISA), and transcriptome analysis. These paper-based devices will enable the study of EVs in the clinic and the research setting to help advance our understanding of EV functions in health and disease. PMID:25867034

  8. Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation.

    Science.gov (United States)

    Harting, Matthew T; Srivastava, Amit K; Zhaorigetu, Siqin; Bair, Henry; Prabhakara, Karthik S; Toledano Furman, Naama E; Vykoukal, Jody V; Ruppert, Katherine A; Cox, Charles S; Olson, Scott D

    2018-01-01

    Extracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSCs) have been proposed to be a key mechanistic link in the therapeutic efficacy of cells in response to cellular injuries through paracrine effects. We hypothesize that inflammatory stimulation of MSCs results in the release of EVs that have greater anti-inflammatory effects. The present study evaluates the immunomodulatory abilities of EVs derived from inflammation-stimulated and naive MSCs (MSCEv + and MSCEv, respectively) isolated using a current Good Manufacturing Practice-compliant tangential flow filtration system. Detailed characterization of both EVs revealed differences in protein composition, cytokine profiles, and RNA content, despite similarities in size and expression of common surface markers. MSCEv + further attenuated release of pro-inflammatory cytokines in vitro when compared to MSCEv, with a distinctly different pattern of EV-uptake by activated primary leukocyte subpopulations. The efficacy of EVs was partially attributed to COX2/PGE 2 expression. The present study demonstrates that inflammatory stimulation of MSCs renders release of EVs that have enhanced anti-inflammatory properties partially due to COX2/PGE 2 pathway alteration. Stem Cells 2018;36:79-90. © 2017 AlphaMed Press.

  9. Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Catherine Lynch

    2017-09-01

    Full Text Available It is known that apoptotic cells can have diverse effects on the tumor microenvironment. Emerging evidence indicates that, despite its renowned role in tumor suppression, apoptosis may also promote oncogenic evolution or posttherapeutic relapse through multiple mechanisms. These include immunomodulatory, anti-inflammatory, and trophic environmental responses to apoptosis, which drive tumor progression. Our group has introduced the term “onco-regenerative niche (ORN” to describe a conceptual network of conserved cell death-driven tissue repair and regeneration mechanisms that are hijacked in cancer. We propose that, among the key elements of the ORN are extracellular vesicles (EVs, notably those derived from apoptotic tumor cells. EVs are membrane-delimited subcellular particles, which contain multiple classes of bioactive molecules including markers of the cell from which they are derived. EVs are implicated in an increasing number of physiological and pathological contexts as mediators of local and systemic intercellular communication and detection of specific EVs may be useful in monitoring disease progression. Here, we discuss the mechanisms by which EVs produced by apoptotic tumor cells—both constitutively and as a consequence of therapy—may mediate host responsiveness to cell death in cancer. We also consider how the monitoring of such EVs and their cargoes may in the future help to improve cancer diagnosis, staging, and therapeutic efficacy.

  10. Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Linda A. Ban

    2016-03-01

    Full Text Available In recent years, the global burden of obesity and diabetes has seen a parallel rise in other metabolic complications, such as non-alcoholic fatty liver disease (NAFLD. This condition, once thought to be a benign accumulation of hepatic fat, is now recognized as a serious and prevalent disorder that is conducive to inflammation and fibrosis. Despite the rising incidence of NAFLD, there is currently no reliable method for its diagnosis or staging besides the highly invasive tissue biopsy. This limitation has resulted in the study of novel circulating markers as potential candidates, one of the most popular being extracellular vesicles (EVs. These submicron membrane-bound structures are secreted from stressed and activated cells, or are formed during apoptosis, and are known to be involved in intercellular communication. The cargo of EVs depends upon the parent cell and has been shown to be changed in disease, as is their abundance in the circulation. The role of EVs in immunity and epigenetic regulation is widely attested, and studies showing a correlation with disease severity have made these structures a favorable target for diagnostic as well as therapeutic purposes. This review will highlight the research that is available on EVs in the context of NAFLD, the current limitations, and projections for their future utility in a clinical setting.

  11. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying miRNAs in the Bloodstream.

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    Full Text Available In the past few years, skeletal muscle has emerged as an important secretory organ producing soluble factors, called myokines, that exert either autocrine, paracrine or endocrine effects. Moreover, recent studies have shown that muscle releases microRNAs into the bloodstream in response to physical exercise. These microRNAs affect target cells, such as hormones and cytokines. The mechanisms underlying microRNA secretion are poorly characterized at present. Here, we investigated whether muscle tissue releases extracellular vesicles (EVs, which carry microRNAs in the bloodstream under physiological conditions such as physical exercise. Using density gradient separation of plasma from sedentary and physically fit young men we found EVs positive for TSG101 and alpha-sarcoglycan (SGCA, and enriched for miR-206. Cytometric analysis showed that the SGCA+ EVs account for 1-5% of the total and that 60-65% of these EVs were also positive for the exosomal marker CD81. Furthermore, the SGCA-immuno captured sub-population of EVs exhibited higher levels of the miR-206/miR16 ratio compared to total plasma EVs. Finally, a significant positive correlation was found between the aerobic fitness and muscle-specific miRNAs and EV miR-133b and -181a-5p were significantly up-regulated after acute exercise. Thus, our study proposes EVs as a novel means of muscle communication potentially involved in muscle remodeling and homeostasis.

  12. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    Science.gov (United States)

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  13. Analysis of Extracellular Vesicles Using Magnetic Nanoparticles in Blood of Patients with Acute Coronary Syndrome.

    Science.gov (United States)

    Vagida, M S; Arakelyan, A; Lebedeva, A M; Grivel, J-Ch; Shpektor, A V; Vasilieva, E Yu; Margolis, L B

    2016-04-01

    Extracellular vesicles (EVs) are released from various cell types and play an important role in intercellular interactions. In our study, we investigated abundance of individual EVs in patients with acute forms of ischemic heart disease. Previously, we developed an approach for individual analysis of EVs conjugated with magnetic nanoparticles (MNPs), which was applied in the current study for analyzing phenotypic composition of EVs (by staining for markers CD31, CD41a, and CD63). EVs were isolated using fluorescently labeled MNPs containing anti-CD31, CD41a, or CD63 antibodies and analyzed by combining fluorescently labeled anti-CD41a and CD63, CD31 and CD63, or CD41a and CD31 antibodies, respectively. EVs were analyzed in 30 individuals: 17 healthy volunteers and 13 patients with acute coronary syndrome (ACS). Six and seven ACS patients were with acute myocardial infarction and unstable angina, respectively. It was found that patients with ACS and healthy volunteers contained a dominant subset of EVs expressing surface CD41a antigen, suggesting that they originated from platelets. In addition, the total number of EVs isolated using either of the surface markers examined in our study was higher in patients with ACS compared to healthy volunteers. The subgroup of patients with acute myocardial infarction was found to contain significantly higher number of blood EVs compared to the control group. Moreover, increased number of EVs in patients with ACS is mainly due to the increased number of EVs in the subset of EVs bearing CD41a. By analyzing individual EVs, we found that plasma of patients with ACS, particularly upon developing of myocardial infarction, contained dominant platelet-derived EVs fraction, which may reflect activation of platelets in such patients.

  14. Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients.

    Science.gov (United States)

    Moyano, Ana Lis; Li, Guannan; Boullerne, Anne I; Feinstein, Douglas L; Hartman, Elizabeth; Skias, Demetrios; Balavanov, Roumen; van Breemen, Richard B; Bongarzone, Ernesto R; Månsson, Jan-Eric; Givogri, Maria I

    2016-12-01

    Extracellular vesicles (EVs) are membrane nanovesicles of diverse sizes secreted by different cell types and are involved in intercellular communication. EVs shuttle proteins, nucleic acids, and lipids that reflect their cellular origin and could mediate their biological function in recipient cells. EVs circulate in biological fluids and are considered as potential biomarkers that could be used to analyze and characterize disease development, course and response to treatment. EVs exhibit specific distribution of glycolipids and membrane organization, but little is known about the biological significance of this distribution or how it could contribute to pathological conditions such as multiple sclerosis (MS). We provide the first description of sulfatide composition in plasma-derived EVs by ultra-high-performance liquid chromatography tandem mass spectrometry. We found that EVs of different sizes showed C16:0 sulfatide but no detectable levels of C18:0, C24:0, or C24:1 sulfatide species. Small EVs isolated at 100,000 × g-enriched in exosomes-from plasma of patients with MS showed a significant increase of C16:0 sulfatide compared with healthy controls. Nanoparticle tracking analysis showed that the particle size distribution in MS plasma was significantly different compared with healthy controls. Characterization of small EVs isolated from MS plasma showed similar protein content and similar levels of exosomal markers (Alix, Rab-5B) and vesicular marker MHC class I (major histocompatibility complex class I) compared with healthy controls. Our findings indicate that C16:0 sulfatide associated with small EVs is a candidate biomarker for MS that could potentially reflect pathological changes associated with this disease and/or the effects of its treatment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Extracellular vesicles do not contribute to higher circulating levels of soluble LRP1 in idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Roura, Santiago; Gálvez-Montón, Carolina; de Gonzalo-Calvo, David; Valero, Ana Gámez; Gastelurrutia, Paloma; Revuelta-López, Elena; Prat-Vidal, Cristina; Soler-Botija, Carolina; Llucià-Valldeperas, Aida; Perea-Gil, Isaac; Iborra-Egea, Oriol; Borràs, Francesc E; Lupón, Josep; Llorente-Cortés, Vicenta; Bayes-Genis, Antoni

    2017-11-01

    Idiopathic dilated cardiomyopathy (IDCM) is a frequent cause of heart transplantation. Potentially valuable blood markers are being sought, and low-density lipoprotein receptor-related protein 1 (LRP1) has been linked to the underlying molecular basis of the disease. This study compared circulating levels of soluble LRP1 (sLRP1) in IDCM patients and healthy controls and elucidated whether sLRP1 is exported out of the myocardium through extracellular vesicles (EVs) to gain a better understanding of the pathogenesis of the disease. LRP1 α chain expression was analysed in samples collected from the left ventricles of explanted hearts using immunohistochemistry. sLRP1 concentrations were determined in platelet-free plasma by enzyme-linked immunosorbent assay. Plasma-derived EVs were extracted by size-exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis and cryo-transmission electron microscopy. The distributions of vesicular (CD9, CD81) and myocardial (caveolin-3) proteins and LRP1 α chain were assessed in SEC fractions by flow cytometry. LRP1 α chain was preferably localized to blood vessels in IDCM compared to control myocardium. Circulating sLRP1 was increased in IDCM patients. CD9- and CD81-positive fractions enriched with membrane vesicles with the expected size and morphology were isolated from both groups. The LRP1 α chain was not present in these SEC fractions, which were also positive for caveolin-3. The increase in circulating sLRP1 in IDCM patients may be clinically valuable. Although EVs do not contribute to higher sLRP1 levels in IDCM, a comprehensive analysis of EV content would provide further insights into the search for novel blood markers. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  17. Syncytiotrophoblast Extracellular Vesicles from Pre-Eclampsia Placentas Differentially Affect Platelet Function

    National Research Council Canada - National Science Library

    Tannetta, Dionne S; Hunt, Kathryn; Jones, Chris I; Davidson, Naomi; Coxon, Carmen H; Ferguson, David; Redman, Christopher W; Gibbins, Jonathan M; Sargent, Ian L; Tucker, Katherine L

    2015-01-01

    .... In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV...

  18. α-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers.

    Science.gov (United States)

    DeWitt, David C; Rhoades, Elizabeth

    2013-04-09

    The native function of α-synuclein is thought to involve regulation of synaptic vesicle trafficking. Recent work has also implicated a role in neurotransmission, possibly through interactions with the proteins involved in synaptic vesicle fusion. Here, we demonstrate that α-synuclein inhibits SNARE-mediated vesicle fusion through binding the membrane, without a direct interaction between α-synuclein and any of the SNARE proteins. This work supports a model in which α-synuclein plays a role in the regulation of vesicle fusion by modulating properties of the lipid bilayer.

  19. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools.

    Science.gov (United States)

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T

    2016-08-24

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in

  20. Quantitative analysis of vesicle recycling at the calyx of Held synapse

    Science.gov (United States)

    Qiu, Xufeng; Zhu, Qianwen; Sun, Jianyuan

    2015-01-01

    Vesicle recycling is pivotal for maintaining reliable synaptic signaling, but its basic properties remain poorly understood. Here, we developed an approach to quantitatively analyze the kinetics of vesicle recycling with exquisite signal and temporal resolution at the calyx of Held synapse. The combination of this electrophysiological approach with electron microscopy revealed that ∼80% of vesicles (∼270,000 out of ∼330,000) in the nerve terminal are involved in recycling. Under sustained stimulation, recycled vesicles start to be reused in tens of seconds when ∼47% of the preserved vesicles in the recycling pool (RP) are depleted. The heterogeneity of vesicle recycling as well as two kinetic components of RP depletion revealed the existence of a replenishable pool of vesicles before the priming stage and led to a realistic kinetic model that assesses the size of the subpools of the RP. Thus, our study quantified the kinetics of vesicle recycling and kinetically dissected the whole vesicle pool in the calyceal terminal into the readily releasable pool (∼0.6%), the readily priming pool (∼46%), the premature pool (∼33%), and the resting pool (∼20%). PMID:25825725

  1. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta.

    Science.gov (United States)

    Tzelos, Thomas; Matthews, Jacqueline B; Buck, Amy H; Simbari, Fabio; Frew, David; Inglis, Neil F; McLean, Kevin; Nisbet, Alasdair J; Whitelaw, C Bruce A; Knox, David P; McNeilly, Tom N

    2016-05-15

    Teladorsagia circumcincta is a major cause of ovine parasitic gastroenteritis in temperate climatic regions. The development of high levels of anthelmintic resistance in this nematode species challenges its future control. Recent research indicates that many parasite species release extracellular vesicles into their environment, many of which have been classified as endocytic in origin, termed exosomes. These vesicles are considered to play important roles in the intercellular communication between parasites and their hosts, and thus represent potentially useful targets for novel control strategies. Here, we demonstrate that exosome-like extracellular vesicles can be isolated from excretory-secretory (ES) products released by T. circumcincta fourth stage larvae (Tci-L4ES). Furthermore, we perform a comparative proteomic analysis of vesicle-enriched and vesicle-free Tci-L4ES. Approximately 73% of the proteins identified in the vesicle-enriched fraction were unique to this fraction, whilst the remaining 27% were present in both vesicle-enriched and vesicle-free fraction. These unique proteins included structural proteins, nuclear proteins, metabolic proteins, proteolytic enzymes and activation-associated secreted proteins. Finally, we demonstrate that molecules present within the vesicles-enriched material are targets of the IgA and IgG response in T. circumcincta infected sheep, and could potentially represent useful targets for future vaccine intervention studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Identification of EDIL3 on extracellular vesicles involved in breast cancer cell invasion.

    Science.gov (United States)

    Lee, Jeong-Eun; Moon, Pyong-Gon; Cho, Young-Eun; Kim, Young-Bum; Kim, In-San; Park, Hoyong; Baek, Moon-Chang

    2016-01-10

    Cancer cell-derived extracellular vesicles have been linked to the pathogenesis of various cancers; however, the role of extracellular vesicles in tumorigenesis remains unclear. To identify extracellular vesicle proteins involved in cancer metastasis, quantitative proteomic analyses were performed on extracellular vesicles derived from two representative breast cancer cell lines: the less invasive MCF-7 and the invasive MDA-MB-231. Proteomic analysis allowed for the identification of 270 proteins in the extracellular vesicles. Here we report a new function of EDIL3 on extracellular vesicles, which are sufficient for enhancement of cell invasion and for acceleration of lung metastasis in vivo. This invasion is most likely mediated via the integrin-FAK signaling cascade in breast cancer cells. However, these effects are suppressed when EDIL3 is inactivated, providing evidence for a critical role of EDIL3 in development of cancer. Consistently, in human patients with metastatic breast cancer, the levels of EDIL3 on circulating extracellular vesicles are significantly elevated. This information is a remarkable breakthrough in understanding of the molecular mechanism underlying metastasis of breast cancer as well as in the research for cancer biomarkers using circulating extracellular vesicles. Furthermore, targeting EDIL3 on extracellular vesicles may lead to a new therapeutic option for treatment of breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum.

    Science.gov (United States)

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S; Sobreira, Tiago J P; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D

    2016-01-01

    Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has

  4. Extracellular vesicles: An overview of biogenesis, function, and role in breast cancer.

    Science.gov (United States)

    Zha, Quan Bin; Yao, Yu Feng; Ren, Zhao Jun; Li, Xiu Juan; Tang, Jin Hai

    2017-02-01

    Extracellular vesicles have emerged as important mediators of intercellular communication and play an active role in cancer, including breast cancer. Despite limited studies, initial observations suggest that these vesicles are important in breast physiology and pathophysiology. We here, in brief, describe their potential use as future biomarkers and therapeutic agents in breast cancer. Extracellular vesicles in blood and breast fluid may have a great potential to detect and predict the presence of breast cancer, and extracellular vesicles modulation may emerge as a therapeutic approach in cancer therapy.

  5. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  6. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Qiu Xinping

    2010-03-01

    Full Text Available Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.

  7. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    Directory of Open Access Journals (Sweden)

    Roshni S. Kalkur

    2014-09-01

    Full Text Available For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3 cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport.

  8. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  9. Isolation and characterization of platelet-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Maria T. Aatonen

    2014-08-01

    Full Text Available Background: Platelet-derived extracellular vesicles (EVs participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Methods: Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS or Ca2+ ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. Results: The main EV populations were 100–250 nm and over 90% were <500 nm irrespective of the activation. However, activation pathways differentially regulated the quantity and the quality of EVs, which also formed constitutively. Thrombogenic activation was the most potent physiological EV-generator. LPS was a weak inducer of EVs, which had a selective protein content from the thrombogenic EVs. Ca2+ ionophore generated a large population of protein-poor and unselectively packed EVs. By proteomic analysis, EVs were highly heterogeneous after the different activations and between the vesicle subpopulations. Conclusions: Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100–250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As

  10. Shapes and singularities in triatic liquid-crystal vesicles

    Science.gov (United States)

    Bowick, Mark J.; Manyuhina, O. V.; Serafin, F.

    2017-01-01

    Determining the equilibrium configuration and shape of curved two-dimensional films with (generalized) liquid-crystalline order is a difficult infinite-dimensional problem of direct relevance to the study of generalized polymersomes, soft matter and the fascinating problem of understanding the origin and formation of shape (morphogenesis). The symmetry of the free energy of the LC film being considered and the topology of the surface to be determined often requires that the equilibrium configuration possesses singular structures in the form of topological defects such as disclinations for nematic films. The precise number and type of defect plays a fundamental role in restricting the space of possible equilibrium shapes. Flexible closed vesicles with spherical topology and nematic or smectic order, for example, inevitably possess four elementary strength +1/2 disclination defects positioned at the four vertices of a tetrahedral shell. Here we address the problem of determining the equilibrium shape of flexible vesicles with generalized liquid-crystalline order. The order parameter in these cases is an element of S^1/Zp , for any positive integer p. We will focus on the case p =3 , known as triatic liquid crystals (LCs). We construct the appropriate order parameter for triatics and find the associated free energy. We then describe the structure of the elementary defects of strength +1/3 in flat space. Finally, we prove that sufficiently floppy triatic vesicles with the topology of the 2-sphere equilibrate to octahedral shells with strength +1/3 defects at each of the six vertices, independently of the scale.

  11. Synaptic vesicle dynamic changes in a model of fragile X.

    Science.gov (United States)

    Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine

    2016-01-01

    Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

  12. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin

    Science.gov (United States)

    Veatch, Sarah L.; Keller, Sarah L.

    2005-04-01

    Saturated sphingomyelin (SM) lipids are implicated in lipid rafts in cell plasma membranes. Here we use fluorescence microscopy to observe coexisting liquid domains in vesicles containing SM, an unsaturated phosphatidylcholine lipid (either DOPC or POPC), and cholesterol. We note similar phase behavior in a model membrane mixture without SM (DOPC/DPPC/Chol), but find no micron-scale liquid domains in membranes of POPC/PSM/Chol. We delineate the onset of solid phases below the miscibility transition temperature, and detail indirect evidence for a three-phase coexistence of one solid and two liquid phases.

  13. Phase transitions in methyl parben doped dipalmitoyl phosphatidylethanolamine vesicles

    Science.gov (United States)

    Panicker, Lata

    2013-02-01

    Influence of the preservative, methyl paraben (MPB), on the thermal properties of dipalmitoyl phosphatidylethanolamine (DPPE) vesicles was investigated using DSC. DSC measurement of the lipid acyl chain melting transition in DPPE membrane doped with MPB, showed MPB concentration dependant modifications in the membrane thermal properties. The interesting findings are: (1) the presence of parabens increases the membrane fluidity. (2) the MPB molecules seem to be present in the aqueous bilayer interfacial region intercalated between the neighboring lipid polar headgroup (3) high concentration of MPB favored formation of crystalline and glassy phases.

  14. Time-resolved SERS for characterizing extracellular vesicles

    Science.gov (United States)

    Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo

    2017-02-01

    The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.

  15. Extracellular Vesicles in Heart Disease: Excitement for the Future?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Danielson

    2014-01-01

    Full Text Available Extracellular vesicles (EV, including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is an emerging field that has produced intriguing findings in recent years. This review will outline what is currently known about EVs in the cardiovascular system, including cellular origins, functional roles and utility as biomarkers and potential therapeutics.

  16. Potential Roles of Fungal Extracellular Vesicles during Infection

    Science.gov (United States)

    Joffe, Luna S.; Nimrichter, Leonardo

    2016-01-01

    ABSTRACT Extracellular vesicles (EVs) are produced by virtually all cell types. Within the past few years, work in this field has revealed more information about fungal EVs. Fungal EVs have been shown to carry proteins, lipids, pigments, polysaccharides, and RNA; these components are known virulence factors, a fact which supports the hypothesis that fungal EVs concentrate pathogenic determinants. Additionally, recent studies have demonstrated that fungal EVs stimulate the host immune system. In this review, putative roles of fungal EVs are discussed, including their potential as vaccination tools and their possible contribution to pathogenesis in invasive fungal diseases. PMID:27390779

  17. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies......, fusion pathway I, which does not involve any stalk formation, has not been described previously to the best of our knowledge. A statistical analysis of the various processes shows that fusion is the dominant pathway for releasing the tension of the vesicles. The functional dependence of the observed...

  18. On the growth of walled cells: From shells to vesicles.

    Science.gov (United States)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  19. Growth of Walled Cells: From Shells to Vesicles

    Science.gov (United States)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  20. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane.

    Science.gov (United States)

    Boassa, Daniela; Nguyen, Phuong; Hu, Junru; Ellisman, Mark H; Sosinsky, Gina E

    2014-01-01

    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

  1. Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis.

    Directory of Open Access Journals (Sweden)

    Nikhil R Gandasi

    Full Text Available Fluorescent proteins (FPs have proven to be valuable tools for high-resolution imaging studies of vesicle transport processes, including exo- and endocytosis. Since the pH of the vesicle lumen changes between acidic and neutral during these events, pH-sensitive FPs with near neutral pKa, such as pHluorin, are particularly useful. FPs with pKa>6 are readily available in the green spectrum, while red-emitting pH-sensitive FPs are rare and often not well characterized as reporters of exo- or endocytosis. Here we tested a panel of ten orange/red and two green FPs in fusions with neuropeptide Y (NPY for use as secreted vesicle marker and reporter of dense core granule exocytosis and release. We report relative brightness, bleaching rate, targeting accuracy, sensitivity to vesicle pH, and their performance in detecting exocytosis in live cells. Tandem dimer (td-mOrange2 was identified as well-targeted, bright, slowly bleaching and pH-sensitive FP that performed similar to EGFP. Single exocytosis events were readily observed, which allowed measurements of fusion pore lifetime and the dynamics of the exocytosis protein syntaxin at the release site during membrane fusion and cargo release.

  2. The urine marker test

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Jensen, Stine Nylandsted; Elsborg, Peter

    2016-01-01

    of this new method via two questionnaires (n = 253). Furthermore, a third study (n = 91) investigated whether ingestion of the marker can identify the urine as coming from a specific person and whether the marker interferes with the detection of prohibited substances. RESULTS AND CONCLUSIONS: The results...... indicate that this new method finds wide acceptance both from athletes who have only heard about the procedure and those who have actually tested the new method. Furthermore, the marker, which can identify urine as coming from a specific person, does not interfere with the detection of prohibited...... that athletes are actually delivering their own urine. A method that can be used to alleviate the negative impact of a supervised urination procedure and which can also identify urine as coming from a specific athlete is the urine marker test. Monodisperse low molecular weight polyethylene glycols (PEGs...

  3. VT Roadside Historic Markers

    Data.gov (United States)

    Vermont Center for Geographic Information — Roadside Historic Site Marker program has proven an effective way to commemorate Vermont’s many people, events, and places of regional, statewide, or national...

  4. Maternal separation prior to neonatal hypoxia-ischemia: Impact on emotional aspects of behavior and markers of synaptic plasticity in hippocampus.

    Science.gov (United States)

    Markostamou, Ioanna; Ioannidis, Anestis; Dandi, Evgenia; Mandyla, Maria-Aikaterini; Nousiopoulou, Evangelia; Simeonidou, Constantina; Spandou, Evangelia; Tata, Despina A

    2016-08-01

    Exposure to early-life stress is associated with long-term alterations in brain and behavior, and may aggravate the outcome of neurological insults. This study aimed at investigating the possible interaction between maternal separation, a model of early stress, and subsequent neonatal hypoxia-ischemia on emotional behavior and markers of synaptic plasticity in hippocampus. Therefore, rat pups (N=60) were maternally separated for a prolonged (MS 180min) or a brief (MS 15min) period during the first six postnatal days, while a control group was left undisturbed. Hypoxia-ischemia was applied to a subgroup of each rearing condition on postnatal day 7. Emotional behavior was examined at three months of age and included assessments of anxiety (elevated plus maze), depression-like behavior (forced swimming) and spontaneous exploration (open field). Synaptic plasticity was evaluated based on BDNF and synaptophysin expression in CA3 and dentate gyrus hippocampal regions. We found that neonatal hypoxia-ischemia caused increased levels of anxiety, depression-like behavior and locomotor activity (ambulation). Higher anxiety levels were also seen in maternally separated rats (MS180min) compared to non-maternally separated rats, but prolonged maternal separation prior to HI did not potentiate the HI-associated effect. No differences among the three rearing conditions were found regarding depression-like behavior or ambulation. Immunohistochemical evaluation of synaptophysin revealed that both prolonged maternal separation (MS180min) and neonatal hypoxia-ischemia significantly reduced its expression in the CA3 and dentate gyrus. Decreases in synaptophysin expression in these areas were not exacerbated in rats that were maternally separated for a prolonged period prior to HI. Regarding BDNF expression, we found a significant decrease in immunoreactivity only in the hypoxic-ischemic rats that were subjected to the prolonged maternal separation paradigm. The above findings suggest

  5. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  6. Characterization of an additional articular cartilage vesicle fraction that generates calcium pyrophosphate dihydrate crystals in vitro.

    Science.gov (United States)

    Derfus, B; Steinberg, M; Mandel, N; Buday, M; Daft, L; Ryan, L

    1995-08-01

    We previously identified a unique fraction of porcine articular cartilage vesicles, sedimentable at 8 x 10(6) g/min, which generate calcium pyrophosphate dihydrate crystals (CPPD) in vitro. We sought to identify and characterize other fractions of articular cartilage digest, sedimentable at lower g forces, which may also contain mineralizing vesicles. Electron microscopy and alkaline phosphatase and nucleoside triphosphate pyrophosphohydrolase (NTPPPH) assays were used to analyze each fraction. Radiometric mineralization assays, Fourier transform infrared (FTIR) spectroscopy, and compensated polarized light microscopy were used to analyze crystals formed by these fractions. Vesicles of varying sizes identical to epiphyseal cartilage matrix vesicles were seen in all sedimentable fractions examined, but were the exclusive component of fractions sedimentable at 3 x 10(6) g/min, termed the heavy vesicle fraction (HVF), and at 8 x 10(6) g/min, now termed the light vesicle fraction (LVF). All vesicle containing fractions supported ATP dependent calcium pyrophosphate precipitation. The HVF and LVF precipitated 30 x more calcium than vesicle poor supernatant (p < 0.01) and 1.5-4 x more than cell-free unfractionated digest (p < 0.01). HVF differed from LVF in that it contained 3-4 x higher NTPPPH specific activity (p < 0.05). HVF resembled LVF in that both precipitated crystals consistent with CPPD by FTIR spectroscopy and compensated polarized light microscopy. These data expand our previous estimate of the total number of vesicles available for biologic mineralization and demonstrate heterogeneity of vesicle fractions. They support a key role for vesicles in CPPD crystal formation.

  7. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  8. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature.

    Science.gov (United States)

    Barkalina, Natalia; Jones, Celine; Wood, Matthew J A; Coward, Kevin

    2015-01-01

    Currently, even the most sophisticated methods of assisted reproductive technology (ART) allow us to achieve live births in only approximately 30% of patients, indicating that our understanding of the fine mechanisms underlying reproduction is far from ideal. One of the main challenges associated with studies of gamete structure and function is that these cells are remarkably resistant towards the uptake of exogenous substances, including 'molecular research tools' such as drugs, biomolecules and intracellular markers. This phenomenon can affect not only the performance of reproductive biology research techniques, but also the outcomes of the in vitro handling of gametes, which forms the cornerstone of ART. Improvement of intra-gamete delivery in a non-aggressive fashion is vital for the investigation of gamete physiology, and the advancement of infertility treatment. In this review, we outline the current state of nanomaterial-mediated delivery into gametes and embryos in vitro, and discuss the potential of a novel exciting drug delivery technology, based upon the use of targeted 'natural' nanoparticles known as extracellular vesicles (EVs), for reproductive science and ART, given the promising emerging data from other fields. A comprehensive electronic search of PubMed and Web of Science databases was performed using the following keywords: 'nanoparticles', 'nanomaterials', 'cell-penetrating peptides', 'sperm', 'oocyte', 'egg', 'embryo', 'exosomes', 'microvesicles', 'extracellular vesicles', 'delivery', 'reproduction', to identify the relevant research and review articles, published in English up to January 2015. The reference lists of identified publication were then scanned to extract additional relevant publications. Biocompatible engineered nanomaterials with high loading capacity, stability and selective affinity represent a potential versatile tool for the minimally invasive internalization of molecular cargo into gametes and embryos. However, it is

  10. Salmonella Choleraesuis outer membrane vesicles: Proteomics and immunogenicity.

    Science.gov (United States)

    Liu, Qiong; Yi, Jie; Liang, Kang; Zhang, Xiangmin; Liu, Qing

    2017-10-01

    Salmonella enterica serotype Choleraesuis (S. Choleraesuis), Gram-negative facultative intracellular pathogen is capable of inducing the cholera in pigs whose symptoms manifest as fever, depression, septicemia, arthritis, and diarrhea. Infections with S. Choleraesuis has resulted in great economic loss for the swine breeding operations. Bacterial outer membrane vesicles (OMVs) play an important role in pathogenicity and host-pathogen interaction. In this study, we purified OMVs released by S. Choleraesuis strain χ3545 and characterized their lipopolysaccharide (LPS) profile. The OMVs contained intact LPS molecules. By using LC-MS/MS, we identified 192 proteins in the OMVs. In addition, the subcellular location and biological functions of the vesicles was predicted. The proteins were mainly derived from outer membranes and cytoplasm. Several proteins were immunoreactive and associated with the secretion pathway. Some putative multi-drug resistance-associated proteins were also identified. Furthermore, immunization experiment via intranasal or intraperitoneal route in mice demonstrated that S. Choleraesuis OMVs could elicit strong humoral and mucosal immune responses. Although OMVs as vaccine did not provide strong protection against clinical strain of wild-type S. Choleraesuis, immunization of OMVs still prolonged the survival time of vaccinated mice after high dose of S. Choleraesuis infection. Overall, this study provides valuable fundamental information toward elucidating the pathogenicity and functions of OMVs secreted from S. Choleraesuis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis.

    Science.gov (United States)

    Withrow, Joseph; Murphy, Cameron; Liu, Yutao; Hunter, Monte; Fulzele, Sadanand; Hamrick, Mark W

    2016-12-01

    Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA. Some of the processes by which these membrane-bound vesicles can alter joint tissue include extracellular matrix degradation, cell-to-cell communication, modulation of inflammation, angiogenesis, and antigen presentation. For example, EVs from IL-1β-stimulated fibroblast-like synoviocytes have been shown to induce osteoarthritic changes in chondrocytes. RA models have shown that EVs stimulated with inflammatory cytokines are capable of inducing apoptosis resistance in T cells, presenting antigen to T cells, and causing extracellular damage with matrix-degrading enzymes. EVs derived from rheumatoid models have also been shown to induce secretion of COX-2 and stimulate angiogenesis. Additionally, there is evidence that synovium-derived EVs may be promising biomarkers of disease in both OA and RA. The characterization of EVs in the joint space has also opened up the possibility for delivery of small molecules. This article reviews current knowledge on the role of EVs in both RA and OA, and their potential role as therapeutic targets for modulation of these debilitating diseases.

  12. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2016-01-01

    Full Text Available Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.

  13. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Science.gov (United States)

    Nawaz, Muhammad; Fatima, Farah; Vallabhaneni, Krishna C.; Penfornis, Patrice; Valadi, Hadi; Ekström, Karin; Kholia, Sharad; Whitt, Jason D.; Fernandes, Joseph D.; Pochampally, Radhika; Squire, Jeremy A.; Camussi, Giovanni

    2016-01-01

    Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies. PMID:26649044

  14. SNAP-25 gene family members differentially support secretory vesicle fusion.

    Science.gov (United States)

    Arora, Swati; Saarloos, Ingrid; Kooistra, Robbelien; van de Bospoort, Rhea; Verhage, Matthijs; Toonen, Ruud F

    2017-06-01

    Neuronal dense-core vesicles (DCVs) transport and secrete neuropeptides necessary for development, plasticity and survival, but little is known about their fusion mechanism. We show that Snap-25 -null mutant (SNAP-25 KO) neurons, previously shown to degenerate after 4 days in vitro (DIV), contain fewer DCVs and have reduced DCV fusion probability in surviving neurons at DIV14. At DIV3, before degeneration, SNAP-25 KO neurons show normal DCV fusion, but one day later fusion is significantly reduced. To test if other SNAP homologs support DCV fusion, we expressed SNAP-23, SNAP-29 or SNAP-47 in SNAP-25 KO neurons. SNAP-23 and SNAP-29 rescued viability and supported DCV fusion in SNAP-25 KO neurons, but SNAP-23 did so more efficiently. SNAP-23 also rescued synaptic vesicle (SV) fusion while SNAP-29 did not. SNAP-47 failed to rescue viability and did not support DCV or SV fusion. These data demonstrate a developmental switch, in hippocampal neurons between DIV3 and DIV4, where DCV fusion becomes SNAP-25 dependent. Furthermore, SNAP-25 homologs support DCV and SV fusion and neuronal viability to variable extents - SNAP-23 most effectively, SNAP-29 less so and SNAP-47 ineffectively. © 2017. Published by The Company of Biologists Ltd.

  15. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis.

    Science.gov (United States)

    Gu, Mingyu; Liu, Qiang; Watanabe, Shigeki; Sun, Lin; Hollopeter, Gunther; Grant, Barth D; Jorgensen, Erik M

    2013-03-05

    The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining μ2/β hemicomplex retains some function. Conversely, in μ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-μ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or μ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and μ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI:http://dx.doi.org/10.7554/eLife.00190.001.

  16. Functions of Cancer-Derived Extracellular Vesicles in Immunosuppression.

    Science.gov (United States)

    Czernek, Liliana; Düchler, Markus

    2017-08-01

    Extracellular vesicles, including exosomes, constitute an important element of intercellular communication by carrying a variety of molecules from producer to target cells. The transport of mRNA and miRNA can directly modulate gene expression in the target cells. The miRNA content in exosomes is characteristic for the cell from which the vesicles were derived enabling the usage of exosomes as biomarkers for the diagnosis various diseases, including cancer. Cancer-derived exosomes support the survival and progression of tumors in many ways and also contribute to the neutralization of the anti-cancer immune response. Exosomes participate in all known mechanisms by which cancer evades the immune system. They influence the differentiation and activation of immune suppressor cells, they modulate antigen presentation, and are able to induce T-cell apoptosis. Although cancer-derived exosomes mainly suppress the immune system and facilitate tumor progression, they are also important sources of tumor antigens with potential clinical application in stimulating immune responses. This review summarizes how exosomes assist cancer to escape immune recognition and to acquire control over the immune system.

  17. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Uyen Thi Trang Than

    2017-05-01

    Full Text Available Extracellular vesicles (EVs are membrane-enclosed vesicles that are released into the extracellular environment by various cell types, which can be classified as apoptotic bodies, microvesicles and exosomes. EVs have been shown to carry DNA, small RNAs, proteins and membrane lipids which are derived from the parental cells. Recently, several studies have demonstrated that EVs can regulate many biological processes, such as cancer progression, the immune response, cell proliferation, cell migration and blood vessel tube formation. This regulation is achieved through the release and transport of EVs and the transfer of their parental cell-derived molecular cargo to recipient cells. This thereby influences various physiological and sometimes pathological functions within the target cells. While intensive investigation of EVs has focused on pathological processes, the involvement of EVs in normal wound healing is less clear; however, recent preliminarily investigations have produced some initial insights. This review will provide an overview of EVs and discuss the current literature regarding the role of EVs in wound healing, especially, their influence on coagulation, cell proliferation, migration, angiogenesis, collagen production and extracellular matrix remodelling.

  18. Fatty acid vesicles acting as expanding horizon for transdermal delivery.

    Science.gov (United States)

    Kumar, Lalit; Verma, Shivani; Kumar, Sanjeev; Prasad, Deo Nandan; Jain, Amit Kumar

    2017-03-01

    The body is protected against the external environment by the skin due to its physical barrier nature. Stratum corneum composed of corneocytes surrounded by lipid region performs a major barrier function as it lies in the uppermost area of skin. Alteration in barrier function, increase in permeability, and disorganization of stratum corneum represent diseased skin. Drugs applied to the diseased skin should induce a local effect at the site of application or area close to it along with cutaneous absorption rather than percutaneous absorption. Conventional formulations like ointments, gels, and creams suffer from the drawback of limited local activity. For the enhancement of drug penetration and localization of the drug at the site of action approaches explored are liposomes, niosomes, ethosomes microparticles, and solid lipid nanoparticles. Vesicles composed of fatty acids like oleic acid and linoleic acid represent the new approach used for transdermal penetration and localization. In this review article, our major aim was to explore the applications of fatty acid vesicles for transdermal delivery of various bioactives.

  19. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I. (University Hospital, Zurich (Switzerland))

    1987-10-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven ({sup 35}S)-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4{prime}-isothiocyanostilbene-2,2{prime}-disulfonic acid, and 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (IC{sub 50}, {approximately}40 {mu}M). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation.

  20. Electroformation of Giant Vesicles on a Polymer Mesh

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-07-01

    Full Text Available Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs from egg yolk phosphatidylcholine under applied electric voltage was examined on a substrate of a polymer mesh placed between two planar indium tin oxide coated glass electrodes. Under appropriate conditions, GVs were formed in good yield on meshes of various polymer materials, namely, hydrophobic poly(propylene, poly(ethylene terephthalate, a carbon fiber/nylon composite, and relatively hydrophilic nylon. Arranging threads in a mesh structure with appropriate openings improved GV formation compared to simply increasing the number of threads. For optimal electroformation of GVs, the size and shape of a mesh opening were crucial. With a too large opening, GV formation deteriorated. When the sides of an opening were partially missing, GV formation did not occur efficiently. With an adequate opening, a deposited lipid solution could fill the opening, and a relatively uniform lipid deposit formed on the surface of threads after evaporation of the solvent. This could supply a sufficient amount of lipids to the opening and also prevent a lipid deposit from becoming too thick for electroformation. As a result, good GV formation was often observed in openings filled with swelled lipid.