WorldWideScience

Sample records for vesicle fusion extracellular

  1. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  2. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  3. Preeclampsia and Extracellular Vesicles.

    Science.gov (United States)

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers.

  4. RNA in extracellular vesicles.

    Science.gov (United States)

    Kim, Kyoung Mi; Abdelmohsen, Kotb; Mustapic, Maja; Kapogiannis, Dimitrios; Gorospe, Myriam

    2017-07-01

    Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  6. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  7. Extracellular Vesicles in Cardiovascular Theranostics

    OpenAIRE

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro,Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells pla...

  8. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  9. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  10. Mechanics of post-fusion exocytotic vesicle.

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-05-23

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  11. Mechanics of post-fusion exocytotic vesicle

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-06-01

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  12. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-02-19

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  13. Role of extracellular vesicles in autoimmune diseases.

    Science.gov (United States)

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  15. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    Science.gov (United States)

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Extracellular vesicles and blood diseases.

    Science.gov (United States)

    Nomura, Shosaku

    2017-04-01

    Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.

  17. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  18. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  19. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  20. Urinary extracellular vesicles: biomarkers and beyond

    NARCIS (Netherlands)

    M. Salih (Mahdi)

    2017-01-01

    markdownabstractExtracellular vesicles have been isolated in various body fluids including urine. The cargo of urinary extracellular vesicles (uEVs) is composed of proteins and nucleic acids reflecting the physiological and possibly the pathophysiological state of cells lining the nephron. Because

  1. Extracellular Vesicles in Cardiovascular Theranostics.

    Science.gov (United States)

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.

  2. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  3. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  5. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  6. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  7. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  8. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

    Science.gov (United States)

    Abels, Erik R; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.

  9. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  10. Extracellular Vesicles in Metabolic Syndrome.

    Science.gov (United States)

    Martínez, M Carmen; Andriantsitohaina, Ramaroson

    2017-05-12

    Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches. © 2017 American Heart Association, Inc.

  11. Apoptotic Bodies: Selective Detection in Extracellular Vesicles.

    Science.gov (United States)

    Hauser, Paul; Wang, Sha; Didenko, Vladimir V

    2017-01-01

    Normal and dying cells release various types of membrane-bound vesicles including microvesicles, exosomes, and apoptotic bodies. These vesicles play important roles in intercellular communication and signal transduction. However, their diverse forms and subtypes fluctuate in size and other properties. In result current purification approaches do not fully discriminate between different categories of extracellular vesicles. Here, we present a fluorescence technique that specifically identifies apoptotic bodies in preparations of microvesicles, exosomes, and other extracellular vesicles.The approach exclusively labels the vesicles that contain DNA with 5'PO 4 blunt-ended DNA breaks, such as those produced by the apoptotic CAD nuclease during apoptotic DNA degradation. The technique can be useful in studies of apoptosis involving microvesicles and exosomes.

  12. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  13. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry

    OpenAIRE

    Aizea Morales-Kastresana; Bill Telford; Musich, Thomas A.; Katherine McKinnon; Cassandra Clayborne; Zach Braig; Ari Rosner; Thorsten Demberg; Watson, Dionysios C.; Karpova, Tatiana S.; Freeman, Gordon J.; DeKruyff, Rosemarie H.; Pavlakis, George N.; Masaki Terabe; Marjorie Robert-Guroff

    2017-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles, are 30?800?nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be brig...

  14. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  15. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  16. Towards traceable size determination of extracellular vesicles

    NARCIS (Netherlands)

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. In this manuscript, the size distribution of an

  17. Characterization of Extracellular Vesicles using Raman Spectroscopy

    NARCIS (Netherlands)

    Lee, Wooje; Nanou, Afroditi; Terstappen, Leonardus Wendelinus Mathias Marie; Rho, Hoon Suk; le Gac, Severine; Offerhaus, Herman L.

    2017-01-01

    In this research, we aim to characterize extracellular vesicles(EVs) with Confocal Raman spectroscopy to reveal relevant spectral lines that signify differences between EVs derived from different cell lines. In the first stage we performed confocal Raman measurements on various EV samples. For these

  18. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  19. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    Science.gov (United States)

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (inflammation in immune cells. © 2017 American Heart Association, Inc.

  20. The role of extracellular vesicles in malaria biology and pathogenesis.

    Science.gov (United States)

    Sampaio, Natalia Guimaraes; Cheng, Lesley; Eriksson, Emily M

    2017-06-09

    In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted.

  1. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M; Guo, Bin; Evers, B Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  2. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  3. Why the need and how to approach the functional diversity of extracellular vesicles

    OpenAIRE

    Tkach, Mercedes; Kowal, Joanna; Théry, Clotilde

    2017-01-01

    In the past decade, cell-to-cell communication mediated by exosomes has attracted growing attention from biomedical scientists and physicians, leading to several recent publications in top-tier journals. Exosomes are generally defined as secreted membrane vesicles, or extracellular vesicles (EVs), corresponding to the intraluminal vesicles of late endosomal compartments, which are secreted upon fusion of multi-vesicular endosomes with the cell's plasma membrane. Cells, however, were shown to ...

  4. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  5. Signaling by Extracellular Vesicles Advances Cancer Hallmarks.

    Science.gov (United States)

    Kanada, Masamitsu; Bachmann, Michael H; Contag, Christopher H

    2016-02-01

    Mammalian cells secrete various extracellular vesicles (EVs; exosomes, microvesicles, and apoptotic bodies) that differ in biogenesis, composition, and function. Each vesicle type can originate from normal or cancerous cells, transfer molecular cargo to both neighboring and distant cells, and modulate cellular behaviors involved in eubiology and pathology, such as tumor development. Here, we review evidence for the role of EVs in the establishment and maintenance of cancer hallmarks, including sustaining proliferative signaling, evading growth suppression, resisting cell death, reprogramming energy metabolism, acquiring genomic instability, and remodeling the tumor microenvironment. We also discuss how EVs are implicated in the induction of angiogenesis, control of cellular invasion, initiation of premetastatic niches, maintenance of inflammation, and evasion of immune surveillance. The deeper understanding of the biology of EVs and their contribution to the development and progression of tumors is leading to new opportunities in the diagnosis and treatment of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Bioinformatics Tools for Extracellular Vesicles Research.

    Science.gov (United States)

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Gho, Yong Song; Mathivanan, Suresh

    2017-01-01

    Extracellular vesicles (EVs) are a class of membranous vesicles that are released by multiple cell types into the extracellular environment. This unique class of extracellular organelles which play pivotal role in intercellular communication are conserved across prokaryotes and eukaryotes. Depending upon the cell origin and the functional state, the molecular cargo including proteins, lipids, and RNA within the EVs are modulated. Owing to this, EVs are considered as a subrepertoire of the host cell and are rich reservoirs of disease biomarkers. In addition, the availability of EVs in multiple bodily fluids including blood has created significant interest in biomarker and signaling research. With the advancement in high-throughput techniques, multiple EV studies have embarked on profiling the molecular cargo. To benefit the scientific community, existing free Web-based resources including ExoCarta, EVpedia, and Vesiclepedia catalog multiple datasets. These resources aid in elucidating molecular mechanism and pathophysiology underlying different disease conditions from which EVs are isolated. Here, the existing bioinformatics tools to perform integrated analysis to identify key functional components in the EV datasets are discussed.

  7. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith?

    Science.gov (United States)

    Osteikoetxea, Xabier; Németh, Andrea; Sódar, Barbara W; Vukman, Krisztina V; Buzás, Edit Irén

    2016-06-01

    In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Role of extracellular vesicles in rheumatoid arthritis.

    Science.gov (United States)

    Fu, Haitao; Hu, Die; Zhang, Licheng; Tang, Peifu

    2018-01-01

    Cell-derived extracellular vesicles (EVs) are involved in the pathogenesis of rheumatoid arthritis (RA), playing important roles in antigen presentation, inflammation, angiogenesis, cell-cell signal communication, thrombosis, and articular cartilage extracellular matrix degradation. Understanding the pathogenic mechanism of RA is important for developing therapies. The pathogenic indicators of RA, such as submicron-sized EVs, represent promising biomarkers for evaluating RA activity. This review summarizes the recent advances in understanding the pathogenesis of RA, and sheds light on the pathogenic as well as anti-inflammatory or immunosuppressive roles of EVs. We suggest that EVs could be harnessed as tools for drug delivery or targets for RA therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  10. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  11. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  12. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  13. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers?

    Science.gov (United States)

    Erdbrügger, Uta; Le, Thu H

    2016-01-01

    Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles. Copyright © 2016 by the American Society of Nephrology.

  14. Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations

    OpenAIRE

    Quesenberry, Peter J.; Goldberg, Laura R.; Aliotta, Jason M.; Mark S Dooner; Pereira, Mandy G.; Wen, Sicheng; Camussi, Giovanni

    2014-01-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung o...

  15. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  16. Gram-negative and Gram-positive bacterial extracellular vesicles.

    Science.gov (United States)

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  18. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lee, Jaewook; Kim, Si-Hyun; Choi, Dong-Sic; Lee, Jong Seok; Kim, Dae-Kyum; Go, Gyeongyun; Park, Seon-Min; Kim, Si Hyun; Shin, Jeong Hwan; Chang, Chulhun L; Gho, Yong Song

    2015-10-01

    The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC-MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 (http://proteomecentral.proteomexchange.org/dataset/PXD001160). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Perspective on Extracellular Vesicles Proteomics

    Directory of Open Access Journals (Sweden)

    Livia Rosa-Fernandes

    2017-11-01

    Full Text Available Increasing attention has been given to secreted extracellular vesicles (EVs in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  20. Versatile roles of extracellular vesicles in cancer

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  1. Isolation of Platelet-Derived Extracellular Vesicles.

    Science.gov (United States)

    Aatonen, Maria; Valkonen, Sami; Böing, Anita; Yuana, Yuana; Nieuwland, Rienk; Siljander, Pia

    2017-01-01

    Platelets participate in several physiological functions, including hemostasis, immunity, and development. Additionally, platelets play key roles in arterial thrombosis and cancer progression. Given this plethora of functions, there is a strong interest of the role of platelet-derived (extracellular) vesicles (PDEVs) as functional mediators and biomarkers. Moreover, the majority of the blood-borne EVs are thought to originate from either platelets or directly from the platelet precursor cells, the megakaryocytes, which reside in the bone marrow. To circumvent confusion, we use the term PDEVs for both platelet-derived and/or megakaryocyte-derived EVs. PDEVs can be isolated from blood or from isolated platelets after activation. In this chapter, we describe all commonly used PDEV isolation methods from blood and prepurified platelets.

  2. A Perspective on Extracellular Vesicles Proteomics.

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  3. In vitro toxicology studies of extracellular vesicles.

    Science.gov (United States)

    Maji, Sayantan; Yan, Irene K; Parasramka, Mansi; Mohankumar, Swathi; Matsuda, Akiko; Patel, Tushar

    2017-03-01

    Extracellular vesicles (EVs) are membrane-bound vesicles released from cells into the extracellular environment. There is emerging interest in the use of EVs as potential therapeutic interventions. We sought to evaluate the safety of EVs that may be therapeutically used by performing in vitro toxicological assessments. EVs were obtained from mesenchymal stem cells (MSC-EV) or from bovine milk (BM-EV) by differential ultracentrifugation, and quantitated using nanoparticle tracking analysis. Genotoxic effects, hematological effects, immunological effects and endotoxin production were evaluated at two dose levels. Neither MSC-EVs nor BM-EVs elicited detectable genotoxic effects using either the alkaline comet assay or micronucleus assay. Hemolysis was observed with BM-EVs but not with MSC-EVs. MSC-EVs did not have any significant effect on either spontaneous or collagen-induced platelet aggregation. In contrast, BM-EVs were noted to increase collagen-induced platelet aggregation, even though no spontaneous increase in platelet aggregation was noted. Both types of EVs induced leukocyte proliferation, which was greater with BM-EV. Neither MSC-EVs nor BM-EVs induced HL-60 phagocytosis, although BM-EVs decreased zymosan-induced phagocytosis. Furthermore, neither MSC-EVs nor BM-EVs induced nitric oxide production. Unlike MSC-EVs, BM-EVs tested positive for endotoxin and induced complement activation. There are significant differences in toxicological profiles between MSC-EVs and BM-EVs that may reflect variations in techniques for EV isolation, EV content or cross-species differences. The safety of MSC-EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM-EVs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    Science.gov (United States)

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles ? about microvesicles, exosomes, ectosomes and other extracellular vesicles

    OpenAIRE

    L?tvall, Jan; Rajendran, Lawrence; Gho, Yong-Song; Thery, Clotilde; Wauben, Marca; Raposo, Graca; Sj?strand, Margareta; Taylor, Douglas; Telemo, Esbj?rn; Breakefield, Xandra O.

    2012-01-01

    In 2011, researchers around the world interested in extracellular vesicles (EV) joined forces and founded the International Society for Extracellular Vesicles (ISEV). Membership has grown to approximately 750 in eight months, and the Society’s first meeting will take place in Gothenburg, Sweden, on 18-21 April 2012. Already approximately 500 participants have been attracted to this event. These are signs of rapid expansion in global research in the field of EV.(Published: 16 April 2012)Citati...

  6. Placental Extracellular Vesicles and Feto-Maternal Communication

    Science.gov (United States)

    Tong, M.; Chamley, L.W.

    2015-01-01

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. PMID:25635060

  7. Biological reference materials for extracellular vesicle studies.

    Science.gov (United States)

    Valkonen, S; van der Pol, E; Böing, A; Yuana, Y; Yliperttula, M; Nieuwland, R; Laitinen, S; Siljander, P R M

    2017-02-15

    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Extracellular vesicles in obesity and diabetes mellitus.

    Science.gov (United States)

    Pardo, Fabián; Villalobos-Labra, Roberto; Sobrevia, Bastián; Toledo, Fernando; Sobrevia, Luis

    2017-11-24

    Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer

    OpenAIRE

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz

    2016-01-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data in...

  10. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  11. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. Published by Elsevier Ltd.

  12. Placenta-derived extracellular vesicles: their cargo and possible functions.

    Science.gov (United States)

    Familari, Mary; Cronqvist, Tina; Masoumi, Zahra; Hansson, Stefan R

    2017-03-01

    The literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions. A meta-analysis of available trophoblast-derived extracellular vesicle proteomic datasets revealed only three proteins in common: albumin, fibronectin-1 and plasminogen activator inhibitor-1, suggesting some variability in vesicle cargo, most likely reflecting stage and cell type of origin. We discuss the possible sources of variability that may have led to the low number of common markers, which has led us to speculate that markers and density in common use may not be strict criteria for identifying and isolating placenta-derived exosomes.

  13. Extracellular vesicles in physiological and pathological conditions

    NARCIS (Netherlands)

    Yuana, Yuana; Sturk, Auguste; Nieuwland, Rienk

    2013-01-01

    Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation.

  14. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus

    Science.gov (United States)

    Burns, Gregory; Brooks, Kelsey; Wildung, Mark; Navakanitworakul, Raphatphorn; Christenson, Lane K.; Spencer, Thomas E.

    2014-01-01

    Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy. PMID:24614226

  15. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  16. Extracellular Vesicles and Autophagy in Osteoarthritis

    Science.gov (United States)

    Guo, Weimin; Chen, Mingxue; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Li, Penghao; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Zhang, Li; Xu, Wenjing; Lu, Shibi

    2016-01-01

    Osteoarthritis (OA) is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs) are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies. PMID:28078284

  17. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  18. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  19. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  20. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  1. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  2. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates.

    Science.gov (United States)

    Sotillo, Javier; Pearson, Mark; Potriquet, Jeremy; Becker, Luke; Pickering, Darren; Mulvenna, Jason; Loukas, Alex

    2016-01-01

    Herein we show for the first time that Schistosoma mansoni adult worms secrete exosome-like extracellular vesicles ranging from 50 to 130nm in size. Extracellular vesicles were collected from the excretory/secretory products of cultured adult flukes and purified by Optiprep density gradient, resulting in highly pure extracellular vesicle preparations as confirmed by transmission electron microscopy and Nanosight tracking analysis. Extracellular vesicle proteomic analysis showed numerous known vaccine candidates, potential virulence factors and molecules implicated in feeding. These findings provide new avenues for the exploration of host-schistosome interactions and offer a potential mechanism by which some vaccine antigens exert their protective efficacy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain...... obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...... regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation...

  4. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  5. Extracellular vesicles in human follicular fluid do not promote coagulation.

    Science.gov (United States)

    Franz, Cordula; Böing, Anita N; Montag, Markus; Strowitzki, Thomas; Markert, Udo R; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-11-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an observational study, follicular fluid from women undergoing IVF/intracytoplasmic sperm injection (ICSI) was analysed by fluorescence-activated cell sorting (FACS), electron microscopy, resistive pulse sensing (RPS), nanoparticle-tracking analysis (NTA) and fibrin generation tests (FGT). The presence of extracellular vesicles, especially CD9-positive extracellular vesicles in follicular fluid, was proven. However, clotting tests revealed no procoagulant properties of the detected extracellular vesicles. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  7. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These

  8. An immunoassay for urinary extracellular vesicles.

    Science.gov (United States)

    Salih, Mahdi; Fenton, Robert A; Knipscheer, Jeroen; Janssen, Joost W; Vredenbregt-van den Berg, Mirella S; Jenster, Guido; Zietse, Robert; Hoorn, Ewout J

    2016-04-15

    Although nanosized urinary extracellular vesicles (uEVs) are increasingly used for biomarker discovery, their isolation currently relies on time-consuming techniques hindering high-throughput application. To navigate this problem, we designed an immunoassay to isolate, quantify, and normalize uEV proteins. The uEV immunoassay consists of a biotinylated CD9 antibody to isolate uEVs, an antibody against the protein of interest, and two conjugated antibodies to quantify the protein of interest and CD9. As a proof of principle, the immunoassay was developed to analyze the water channel aquaporin-2 (AQP2) and the sodium-chloride cotransporter (NCC). CD9 was used as a capture antibody because immunoprecipitation showed that anti-CD9 antibody, but not anti-CD63 antibody, isolated AQP2 and NCC. CD9 correlated strongly with urine creatinine, allowing CD9 to be used for normalization of spot urines. The uEV immunoassay detected AQP2 and NCC with high sensitivity, low coefficients of variance, and stability in dilution series. After water loading in healthy subjects, the uEV immunoassay detected decreases in AQP2 and NCC equally well as the traditional method using ultracentrifugation and immunoblot. The uEV immunoassay also reliably detected lower and higher AQP2 or NCC levels in uEVs from patients with pathological water or salt reabsorption, respectively. In summary, we report a novel approach to analyze uEVs that circumvents existing isolation and normalization issues, requires small volumes of urine, and detects anticipated changes in physiological responses and clinical disorders. Copyright © 2016 the American Physiological Society.

  9. Procoagulant extracellular vesicles in amniotic fluid.

    Science.gov (United States)

    Hell, Lena; Wisgrill, Lukas; Ay, Cihan; Spittler, Andreas; Schwameis, Michael; Jilma, Bernd; Pabinger, Ingrid; Altevogt, Peter; Thaler, Johannes

    2017-06-01

    Embolization of amniotic fluid (AF) into the blood circulation leads to disseminated intravascular coagulation (DIC). Procoagulant phosphatidylserine (PS)- and tissue factor (TF)-exposing extracellular vesicles (EVs) might play an important role in AF embolism-induced DIC. It was the aim of the present study to perform analyses of the procoagulant properties of AF with a panel of functional coagulation assays and flow cytometry. We applied a prothrombinase assay (that quantifies PS exposure on EVs), an EV-associated TF activity assay, a fibrin generation assay, a thrombin generation assay, a whole blood clotting model, and flow cytometry in AF and control plasma. We found that PS exposure on EVs was 21-fold increased in AF compared with plasma. Also, EV-associated TF activity was highly increased in AF compared with plasma. AF-derived EVs activated the blood coagulation cascade via PS and TF in the fibrin and thrombin generation assays. In a whole blood clotting model, AF-derived EVs significantly shortened the clotting time from 734 ± 139 seconds in the presence to 232 ± 139 seconds in the absence of an anti-TF antibody. The contact activation pathway via factor XII (FXII) was not affected. Applying flow cytometry, a subpopulation of PS+ and TF+ EVs was identified in AF but not in control plasma. In conclusion, we investigated the effect of AF on blood coagulation and found that PS+ and TF+ EVs determine their procoagulant potential. Taken together, our data further delineate the pathomechanisms underlying AF-induced coagulopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  11. Biogenesis and function of ESCRT-dependent extracellular vesicles.

    Science.gov (United States)

    Juan, Thomas; Fürthauer, Maximilian

    2018-02-01

    From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Melanoma affects the composition of blood cell-derived extracellular vesicles

    OpenAIRE

    Nina Koliha; Ute Heider; Tobias Ozimkowski; Martin Wiemann; Andreas Bosio; Stefan Wild

    2016-01-01

    Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of...

  13. Cellular phenotype and extracellular vesicles: basic and clinical considerations.

    Science.gov (United States)

    Quesenberry, Peter J; Goldberg, Laura R; Aliotta, Jason M; Dooner, Mark S; Pereira, Mandy G; Wen, Sicheng; Camussi, Giovanni

    2014-07-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.

  14. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  15. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles.

    Science.gov (United States)

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-02-06

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  16. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  17. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    Science.gov (United States)

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tang, Hongting; Song, Meihui; He, Yao; Wang, Jiajing; Wang, Shenghuan; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2017-01-01

    Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera β-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the

  19. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    OpenAIRE

    Yuana, Yuana; Koning, Roman I.; Maxim E. Kuil; Rensen, Patrick C.N.; Koster, Abraham J.; Bertina, Rogier M.; Osanto, Susanne

    2013-01-01

    Introduction: Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.Objectives: To image EV and determine the morphology, ...

  20. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative...... vesicles. Pulse-chase and intravital imaging experiments suggested EVs liberated by exercise have a propensity to localize in the liver and can transfer their protein cargo. Moreover, by employing arteriovenous balance studies across the contracting human limb, we identified several novel candidate...

  1. TNF-? promotes extracellular vesicle release in mouse astrocytes through glutaminase

    OpenAIRE

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C.

    2017-01-01

    Background Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-? promotes glutaminase expression in neurons. However, the expressio...

  2. [EXTRACELLULAR VESICLES: INTERCELLULAR INFORMATION FLOW AND MEDICAL APPLICATIONS].

    Science.gov (United States)

    Pupyshev, A B

    2015-01-01

    The major features of extracellular vesicles secreted by mammalian cells are considered. Cell activation caused by formation of pathology stimulates the secretion acutely. The vesicles (exosomes, microvesicles) are enriched with annexin V, tetraspanin, miRNA. Exosomes are enriched especially by integrins, heat shock proteins. Microvesicles contain elevated amounts of tissue factors, phosphatidylserine, mRNA. The vesicles carry information about the pathological process, and microvesicles contain more proteins characteristic of inflammation and death than exosomes. They are important mediators of inflammation and infection in the body, have different effects on the immune system and the processes of carcinogenesis and neurodegeneration. However, antigenic profiles of extracellular vesicles differ not profoundly in various pathologies and so far they help diagnostics limitedly. The vesicles carry signals of genetic reprogramming of the cells and epigenetic stimulation, connected with both protein factors and mRNA and miRNA. Profiles of miRNA vesicles produced by the various pathological sources are studied actively and are useful as indicators of source and stage of cancer. Some ways of therapeutic use of the vesicles are also considered.

  3. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced...... by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non...

  4. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.

    Science.gov (United States)

    Chiasserini, Davide; van Weering, Jan R T; Piersma, Sander R; Pham, Thang V; Malekzadeh, Arjan; Teunissen, Charlotte E; de Wit, Heidi; Jiménez, Connie R

    2014-06-25

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in conjunction with bioinformatics. We report an extensive catalog of 1315 proteins identified in EVs isolated from two different CSF pools by ultracentrifugation, including 230 novel EV proteins. Out of 1315 proteins, 760 were identified in both CSF pools and about 30% of those were also quantitatively enriched in the EV fraction versus the soluble CSF fraction. The proteome of CSF EVs was enriched in exosomal markers such as alix and syntenin-1, heat shock proteins and tetraspanins and contained a high proportion of brain-derived proteins (n=373). Interestingly, several known biomarkers for neurodegenerative diseases such as the amyloid precursor protein, the prion protein and DJ-1 were identified in the EV fractions. Our dataset represents the first comprehensive inventory of the EV proteome in CSF, underscoring the biomarker potential of this organelle. Further comparative studies on CSF EVs isolated from patients diagnosed with neurological disorders are warranted. Data are available via ProteomeXchange with identifier PXD000608. Biological significance In this study we analyzed the protein composition of extracellular vesicles isolated from pooled samples of human cerebrospinal fluid (CSF). CSF is a colorless fluid surrounding the brain and the spinal cord, important for the physiology of the central nervous system, ensuing mechanical protection, regulation of brain blood flow and elimination of byproducts of the brain. Since brain (patho)physiology is reflected in CSF, this biological fluid represents an ideal source of soluble and vesicle-based biomarkers for neurological diseases. Here we confirm the presence of exosome-like extracellular vesicles in CSF, underscoring

  5. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  6. Dimensional characterization of extracellular vesicles using atomic force microscopy

    NARCIS (Netherlands)

    Sebaihi, N.; de Boeck, B.; Yuana, Y.; Nieuwland, R.; Petry, J.

    2017-01-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from

  7. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset

    NARCIS (Netherlands)

    Chiasserini, D.; van Weering, J.R.T.; Piersma, S.R.; Pham, T.V.; Malekzadeh, A.; Teunissen, C.E.; de Wit, H.; Jimenez, C.R.

    2014-01-01

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in

  8. Extracellular vesicles in human follicular fluid do not promote coagulation

    NARCIS (Netherlands)

    Franz, Cordula; Böing, Anita N.; Montag, Markus; Strowitzki, Thomas; Markert, Udo R.; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-01-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an

  9. Exosomes and other extracellular vesicles in host–pathogen interactions

    Science.gov (United States)

    Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L

    2015-01-01

    An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940

  10. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta

    NARCIS (Netherlands)

    Pieters, B.C.; Arntz, O.J.; Bennink, M.B.; Broeren, M.G.; Caam, A.P.M. van; Koenders, M.I.; Lent, P.L. van; Berg, W.B. van den; Vries, M. de; Kraan, P.M. van der; Loo, F.A.J. van de

    2015-01-01

    SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in

  11. Minimal experimental requirements for definition of extracellular vesicles and their functions : a position statement from the International Society for Extracellular Vesicles

    NARCIS (Netherlands)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently

  12. Tension-induced fusion of bilayer membranes and vesicles

    Science.gov (United States)

    Shillcock, Julian C.; Lipowsky, Reinhard

    2005-03-01

    Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 × 50 nm2 planar membrane patches over 2 μs. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.

  13. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    Science.gov (United States)

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  14. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  15. Potentials and capabilities of the Extracellular Vesicle (EV Array

    Directory of Open Access Journals (Sweden)

    Malene Møller Jørgensen

    2015-04-01

    Full Text Available Extracellular vesicles (EVs and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10 has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes for up to 60 antigens without any enrichment or purification prior to analysis.

  16. Melanoma affects the composition of blood cell-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-07-01

    Full Text Available Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer cells, monocytes, monocyte-derived dendritic cells and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on extracellular vesicles. Hierarchal clustering of protein intensity patterns grouped extracellular vesicles according to their originating cell type. The analysis of extracellular vesicles from stimulated B cells and monocyte-derived dendritic cells revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of extracellular vesicles from platelets, antigen presenting cells and natural cells as shown by platelet markers, costimulatory proteins, and a natural killer cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers indicating a changed vesicle secretion or protein loading of extracellular vesicles by platelets and a lower CD8 signal that might be associated with a diminished activity of natural killer cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of extracellular vesicles in melanoma plasma, but rather argue

  17. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma

    OpenAIRE

    Matsuzaki, Kyosuke; Fujita, Kazutoshi; Jingushi, Kentaro; Kawashima, Atsunari; Ujike, Takeshi; Nagahara, Akira; Ueda, Yuko; Tanigawa, Go; Yoshioka, Iwao; Ueda, Koji; Hanayama, Rikinari; Uemura, Motohide; Miyagawa, Yasushi; Tsujikawa, Kazutake; Nonomura, Norio

    2017-01-01

    Background Extracellular vesicles are lipid bilayer vesicles containing protein, messengerRNA and microRNA. Cancer cell-derived extracellular vesicles may be diagnostic and therapeutic targets. We extracted extracellular vesicles from urine of urothelial carcinoma patients and the control group to identify cancer-specific microRNAs in urinary extracellular vesicles as new biomarkers. Materials and methods microRNA from urinary extracellular vesicles extracted from 6 urothelial carcinoma patie...

  18. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  19. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  20. Emerging roles of extracellular vesicles in cellular senescence and aging.

    Science.gov (United States)

    Takasugi, Masaki

    2018-02-01

    Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Perez-Hernandez, Javier; Redon, Josep; Cortes, Raquel

    2017-03-28

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell types, carry nucleic acids, proteins and lipids and play a crucial role in cell-to-cell communication. EVs can stimulate or suppress the immune responses depending on the context. In SLE, EVs can work as autoadjuvants, enhance immune complex formation and maintaining inflammation state. Over the last years, EVs derived from mesenchymal stem cells and antigen presenting cells have emerged as cell-free therapeutic agents to treat autoimmune and inflammatory diseases. In this review, we summarize the current therapeutic applications of extracellular vesicles to regulate immune responses and to ameliorate disease activity in SLE and other autoimmune disorders.

  2. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature of v...

  3. The role of extracellular vesicles in neurodegenerative diseases.

    Science.gov (United States)

    Quek, Camelia; Hill, Andrew F

    2017-02-19

    Extracellular vesicles, including exosomes, are small membranous vesicles released from many biotypes, contributing to the disease progression and spreading. These extracellular vesicles provide an important mode of cell-to-cell communication by delivering proteins, lipids and RNA to target cells. Exosomes are found associated with neurodegenerative diseases, which are characterised by progressive degeneration of neurons and often associated with misfolded protein. The common diseases include Parkinson's disease (PD), Alzheimer's diseases (AD), amyotrophic lateral sclerosis (ALS), and the prion diseases. Of all neurodegenerative diseases, prion diseases are classified as the distinctive group owing to its transmissible and infectious nature of misfolded prion protein. The infectious prion particles have been demonstrated to be present in exosomes to spread prion infectivity within cells. Similarly, misfolded proteins involved in other neurodegenerative diseases such as Amyloid-β and tau in AD, α-synuclein in PD, and superoxide dismutase 1 in ALS have been demonstrated to exploit exosomes for induced spreading of misfolded proteins in a prion-like mechanism. Furthermore, RNA molecules can be taken up by the recipient cells as cargo in exosomes. These RNAs can module the expression of the target genes by repressing or inhibiting protein translation. Here we review the role of exosomes in prion diseases and other common neurodegenerative diseases, and discuss the potential of these vesicles for disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation

    OpenAIRE

    Wahlund, Casper J. E.; Eklund, Anders; Grunewald, Johan; Gabrielsson, Susanne

    2017-01-01

    Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs), including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory...

  5. Isolation and characterization of platelet-derived extracellular vesicles

    OpenAIRE

    Aatonen, Maria T.; Öhman, Tiina; Nyman, Tuula A.; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R.-M.

    2014-01-01

    Background: Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs indu...

  6. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies......, fusion pathway I, which does not involve any stalk formation, has not been described previously to the best of our knowledge. A statistical analysis of the various processes shows that fusion is the dominant pathway for releasing the tension of the vesicles. The functional dependence of the observed...

  7. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification.

    Science.gov (United States)

    New, Sophie E P; Aikawa, Elena

    2013-08-01

    Extracellular vesicles are membrane micro/nanovesicles secreted by many cell types into the circulation and the extracellular milieu in physiological and pathological conditions. Evidence suggests that extracellular vesicles, known as matrix vesicles, play a role in the mineralization of skeletal tissue, but emerging ultrastructural and in vitro studies have demonstrated their contribution to cardiovascular calcification as well. Cells involved in the progression of cardiovascular calcification release active vesicles capable of nucleating hydroxyapatite on their membranes. This review discusses the role of extracellular vesicles in cardiovascular calcification and elaborates on this additional mechanism of calcification as an alternative pathway to the currently accepted mechanism of biomineralization via osteogenic differentiation.

  8. Cryo-electron microscopy of extracellular vesicles in fresh plasma.

    Science.gov (United States)

    Yuana, Yuana; Koning, Roman I; Kuil, Maxim E; Rensen, Patrick C N; Koster, Abraham J; Bertina, Rogier M; Osanto, Susanne

    2013-12-31

    Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25-260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  9. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2013-12-01

    Full Text Available Introduction: Extracellular vesicles (EV are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives: To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM. Methods: Fresh citrate- and ethylenediaminetetraacetic acid (EDTA-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results: EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles. In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm. The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET was employed to determine the 3D structure of platelet secretory granules. Conclusions: Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  10. The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment.

    Science.gov (United States)

    Qian, Zhongrun; Shen, Qi; Yang, Xi; Qiu, Yongming; Zhang, Wenbin

    2015-01-01

    Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer.

  11. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  12. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients.

    Science.gov (United States)

    Bryzgunova, Olga E; Zaripov, Marat M; Skvortsova, Tatyana E; Lekchnov, Evgeny A; Grigor'eva, Alina E; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Ryabchikova, Elena I; Yurchenko, Yuri B; Voitsitskiy, Vladimir E; Laktionov, Pavel P

    2016-01-01

    Recent studies suggest that extracellular vesicles may be the key to timely diagnosis and monitoring of genito-urological malignancies. In this study we investigated the composition and content of extracellular vesicles found in the urine of healthy donors and prostate cancer patients. Urine of 14 PCa patients and 20 healthy volunteers was clarified by low-speed centrifugation and total extracellular vesicles fraction was obtain by high-speed centrifugation. The exosome-enriched fraction was obtained by filtration of total extracellular vesicles through a 0.1 μm pore filter. Transmission electron microscopy showed that cell-free urine in both groups contained vesicles from 20 to 230 nm. Immunogold staining after ultrafiltration demonstrated that 95% and 90% of extracellular vesicles in healthy individuals and cancer patients, respectively, were exosomes. Protein, DNA and RNA concentrations as well as size distribution of extracellular vesicles in both fractions were analyzed. Only 75% of the total protein content of extracellular vesicles was associated with exosomes which amounted to 90-95% of all vesicles. Median DNA concentrations in total extracellular vesicles and exosome-enriched fractions were 18 pg/ml and 2.6 pg/ml urine, correspondingly. Urine extracellular vesicles carried a population of RNA molecules 25 nt to 200 nt in concentration of no more than 290 pg/ml of urine. Additionally, concentrations of miR-19b, miR-25, miR-125b, and miR-205 were quantified by qRT-PCR. MiRNAs were shown to be differently distributed between different fractions of extracellular vesicles. Detection of miR-19b versus miR-16 in total vesicles and exosome-enriched fractions achieved 100%/93% and 95%/79% specificity/sensitivity in distinguishing cancer patients from healthy individuals, respectively, demonstrating the diagnostic value of urine extracellular vesicles.

  13. SNAP-25 gene family members differentially support secretory vesicle fusion.

    Science.gov (United States)

    Arora, Swati; Saarloos, Ingrid; Kooistra, Robbelien; van de Bospoort, Rhea; Verhage, Matthijs; Toonen, Ruud F

    2017-06-01

    Neuronal dense-core vesicles (DCVs) transport and secrete neuropeptides necessary for development, plasticity and survival, but little is known about their fusion mechanism. We show that Snap-25 -null mutant (SNAP-25 KO) neurons, previously shown to degenerate after 4 days in vitro (DIV), contain fewer DCVs and have reduced DCV fusion probability in surviving neurons at DIV14. At DIV3, before degeneration, SNAP-25 KO neurons show normal DCV fusion, but one day later fusion is significantly reduced. To test if other SNAP homologs support DCV fusion, we expressed SNAP-23, SNAP-29 or SNAP-47 in SNAP-25 KO neurons. SNAP-23 and SNAP-29 rescued viability and supported DCV fusion in SNAP-25 KO neurons, but SNAP-23 did so more efficiently. SNAP-23 also rescued synaptic vesicle (SV) fusion while SNAP-29 did not. SNAP-47 failed to rescue viability and did not support DCV or SV fusion. These data demonstrate a developmental switch, in hippocampal neurons between DIV3 and DIV4, where DCV fusion becomes SNAP-25 dependent. Furthermore, SNAP-25 homologs support DCV and SV fusion and neuronal viability to variable extents - SNAP-23 most effectively, SNAP-29 less so and SNAP-47 ineffectively. © 2017. Published by The Company of Biologists Ltd.

  14. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Kosaka

    2016-02-01

    Full Text Available One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs. EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs, are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer.

  15. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Science.gov (United States)

    Kosaka, Nobuyoshi

    2016-01-01

    One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408

  16. Significance of Extracellular Vesicles: Pathobiological Roles in Disease.

    Science.gov (United States)

    Yamamoto, Seiji; Azuma, Erika; Muramatsu, Masashi; Hamashima, Takeru; Ishii, Yoko; Sasahara, Masakiyo

    2016-11-25

    Over the past decade, many studies have been conducted on extracellular vesicles (EVs) in the fields of basic and clinical research. EVs are small sized membranous vesicles generated from many type of cells upon activation by environmental stresses such as heat, hypoxia, and irradiation. EVs theoretically consist of microparticles/microvesicles, exosomes, and apoptotic bodies by different productive mechanisms. Clinically, EVs are observed in the blood stream of patients suffering from acute and chronic inflammation evoked by various diseases, and number of EVs in blood flow is often dependent on the inflammatory status and severity of the diseases. To date, it has been reported that small molecules such as RNAs and proteins are encapsulated in EVs; however, the functions of EVs are still unclear in the biological, pathological, and clinical aspects. In this review, we summarize and discuss the biogenesis-based classification, expected function, and pathobiological activities of EVs.

  17. Understanding the biosynthesis of platelets-derived extracellular vesicles.

    Science.gov (United States)

    Antwi-Baffour, Samuel; Adjei, Jonathan; Aryeh, Claudia; Kyeremeh, Ransford; Kyei, Foster; Seidu, Mahmood A

    2015-09-01

    Platelet-derived extracellular vesicles (PEVs) are described as sub-cellular vesicles released into circulation upon platelets shear stress, activation, injury, or apoptosis. They are considered as universal biomarkers in a wide range of physiological and pathological processes. They are of tremendous significance for the prediction, diagnosis, and observation of the therapeutic success of many diseases. Understanding their biosynthesis and therefore functional properties would contribute to a better understanding of the pathological mechanisms leading to various diseases in which their levels are raised and they are implicated. The review takes a critical look at the historical background of PEVs, their structural components, the mechanism of their formation, physiological, and exogenous stimuli inducing their release and their detection. It concludes by highlighting on the importance of undertaking in-depth studies into PEVs biosynthesis and subsequently gaining a better understanding of their biological role in general.

  18. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  19. Extracellular vesicles: small bricks for tissue repair/regeneration.

    Science.gov (United States)

    Taverna, Simona; Pucci, Marzia; Alessandro, Riccardo

    2017-02-01

    Extracellular vesicles (EVs) are nano-sized membrane vesicles involved in intercellular communication. EVs have pleiotropic actions in physiological and pathological conditions. The ability of EVs to transports proteins, drugs and nucleic acid, to target specific cells and to increase the stability of therapeutic cargo, make EVs interesting as new devices for the treatment of human disease. In a recently published issue of European journal of pharmaceutical sciences, Silva and colleagues reviewed the ability of EVs to modulate tissue repair and regeneration, focusing on their roles and therapeutic potential as immunomodulatory messengers. In this perspective, we discussed the open questions regarding the dual role of EVs in immune system, as well as the technical limitation of the procedure for EVs isolation and administration in clinical practices. EV-based therapies require further studies to consider EVs as promising candidate for a novel cell-free therapy in the context of regeneration medicine.

  20. Production and Characterization of Extracellular Vesicles in Malaria.

    Science.gov (United States)

    Mbagwu, Smart; Walch, Michael; Filgueira, Luis; Mantel, Pierre-Yves

    2017-01-01

    Growing attention is drawn toward the role of extracellular vesicles (EVs) in infectious diseases. EVs, which are small vesicles released by cells, are involved in cellular communication, immune regulation, and pathogenesis. EVs act as messenger carrying functional cargoes, including RNA, DNA, lipids and proteins from a donor cell to regulate the function of a recipient cell. In malaria, EVs play a key role in regulating the progression from the blood to the transmission stage by promoting the switch between asexual and sexual stages that are taken up by mosquitoes. In addition to their role in parasite communication, EVs modulate the immune system and regulate endothelial cell function.In this chapter, we describe protocols to isolate, purify and characterize EVs derived from Plasmodium falciparum infected red blood cell culture.

  1. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis.

    Science.gov (United States)

    Withrow, Joseph; Murphy, Cameron; Liu, Yutao; Hunter, Monte; Fulzele, Sadanand; Hamrick, Mark W

    2016-12-01

    Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA. Some of the processes by which these membrane-bound vesicles can alter joint tissue include extracellular matrix degradation, cell-to-cell communication, modulation of inflammation, angiogenesis, and antigen presentation. For example, EVs from IL-1β-stimulated fibroblast-like synoviocytes have been shown to induce osteoarthritic changes in chondrocytes. RA models have shown that EVs stimulated with inflammatory cytokines are capable of inducing apoptosis resistance in T cells, presenting antigen to T cells, and causing extracellular damage with matrix-degrading enzymes. EVs derived from rheumatoid models have also been shown to induce secretion of COX-2 and stimulate angiogenesis. Additionally, there is evidence that synovium-derived EVs may be promising biomarkers of disease in both OA and RA. The characterization of EVs in the joint space has also opened up the possibility for delivery of small molecules. This article reviews current knowledge on the role of EVs in both RA and OA, and their potential role as therapeutic targets for modulation of these debilitating diseases.

  2. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Uyen Thi Trang Than

    2017-05-01

    Full Text Available Extracellular vesicles (EVs are membrane-enclosed vesicles that are released into the extracellular environment by various cell types, which can be classified as apoptotic bodies, microvesicles and exosomes. EVs have been shown to carry DNA, small RNAs, proteins and membrane lipids which are derived from the parental cells. Recently, several studies have demonstrated that EVs can regulate many biological processes, such as cancer progression, the immune response, cell proliferation, cell migration and blood vessel tube formation. This regulation is achieved through the release and transport of EVs and the transfer of their parental cell-derived molecular cargo to recipient cells. This thereby influences various physiological and sometimes pathological functions within the target cells. While intensive investigation of EVs has focused on pathological processes, the involvement of EVs in normal wound healing is less clear; however, recent preliminarily investigations have produced some initial insights. This review will provide an overview of EVs and discuss the current literature regarding the role of EVs in wound healing, especially, their influence on coagulation, cell proliferation, migration, angiogenesis, collagen production and extracellular matrix remodelling.

  3. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Time-resolved SERS for characterizing extracellular vesicles

    Science.gov (United States)

    Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo

    2017-02-01

    The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.

  5. Extracellular Vesicles in Heart Disease: Excitement for the Future?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Danielson

    2014-01-01

    Full Text Available Extracellular vesicles (EV, including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is an emerging field that has produced intriguing findings in recent years. This review will outline what is currently known about EVs in the cardiovascular system, including cellular origins, functional roles and utility as biomarkers and potential therapeutics.

  6. Potential Roles of Fungal Extracellular Vesicles during Infection

    Science.gov (United States)

    Joffe, Luna S.; Nimrichter, Leonardo

    2016-01-01

    ABSTRACT Extracellular vesicles (EVs) are produced by virtually all cell types. Within the past few years, work in this field has revealed more information about fungal EVs. Fungal EVs have been shown to carry proteins, lipids, pigments, polysaccharides, and RNA; these components are known virulence factors, a fact which supports the hypothesis that fungal EVs concentrate pathogenic determinants. Additionally, recent studies have demonstrated that fungal EVs stimulate the host immune system. In this review, putative roles of fungal EVs are discussed, including their potential as vaccination tools and their possible contribution to pathogenesis in invasive fungal diseases. PMID:27390779

  7. Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis.

    Science.gov (United States)

    Baldan-Martin, Montserrat; de la Cuesta, Fernando; Alvarez-Llamas, Gloria; Ruiz-Hurtado, Gema; Ruilope, Luis M; Barderas, Maria G

    2017-01-01

    Extracellular vesicles are membrane vesicles related to cell communication. These vesicles consist of proteins, RNA, and microRNA and are an interesting and important tool to understand the processes taking place in the secreting cell, especially in diseases in which its release is often enhanced. The used of blood extracellular vesicles in cardiovascular disease as a low invasive, easily accessible source of circulating markers could give us important information related to pathological process even more with the use of proteomic analysis. In this chapter, we describe a protocol to isolate and proteomic analyze extracellular vesicles from blood associated with cardiovascular disease.

  8. A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.

    Science.gov (United States)

    Pérez-González, Rocío; Gauthier, Sebastien A; Kumar, Asok; Saito, Mitsuo; Saito, Mariko; Levy, Efrat

    2017-01-01

    Extracellular vesicles (EV), including exosomes, secreted vesicles of endocytic origin, and microvesicles derived from the plasma membrane, have been widely isolated and characterized from conditioned culture media and bodily fluids. The difficulty in isolating EV from tissues, however, has hindered their study in vivo. Here, we describe a novel method designed to isolate EV and characterize exosomes from the extracellular space of brain tissues. The purification of EV is achieved by gentle dissociation of the tissue to free the brain extracellular space, followed by sequential low-speed centrifugations, filtration, and ultracentrifugations. To further purify EV from other extracellular components, they are separated on a sucrose step gradient. Characterization of the sucrose step gradient fractions by electron microscopy demonstrates that this method yields pure EV preparations free of large vesicles, subcellular organelles, or debris. The level of EV secretion and content are determined by assays for acetylcholinesterase activity and total protein estimation, and exosomal identification and protein content are analyzed by Western blot and immuno-electron microscopy. Additionally, we present here a method to delipidate EV in order to improve the resolution of downstream electrophoretic analysis of EV proteins.

  9. Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks.

    Science.gov (United States)

    Gho, Yong Song; Lee, Changjin

    2017-06-27

    Shedding of nano-sized bilayered extracellular vesicles and extracellular vesicle-mediated intercellular communication are evolutionarily conserved biological processes. Communication between cells and the environment is an essential process in living organisms and dysregulation of intercellular communication leads to various diseases. Thus, systematic studies on extracellular vesicles, also known as exosomes, microvesicles, and outer membrane vesicles, are critical for a deeper understanding of intercellular communication networks that are crucial for decoding the exact causes of various difficult-to-cure diseases. Recent progress in this emerging field reveals that extracellular vesicles are endogenous carriers of specific subsets of proteins, mRNAs, miRNAs, and other bioactive materials, as well as play diverse pathophysiological roles. However, certain issues regarding diverse subtypes and the complex pathophysiological roles of extracellular vesicles are not yet clearly elucidated. In this review, we first briefly introduce the complexity of extracellular vesicles in terms of their vesicular cargos and protein-protein interaction networks, their diverse subtypes, and multifaceted pathophysiological functions. Then, we introduce the limitation of reductionist approaches in understanding the complexity of extracellular vesicles. We finally suggest that molecular systems biology approaches based on the concept of emergent properties are essential for a comprehensive understanding of the complex pathophysiological functions of heterogeneous extracellular vesicles, either at the single vesicle level or at a systems level as a whole.

  10. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Science.gov (United States)

    Hill, Andrew F.; Hochberg, Fred; Buzás, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs. PMID:25536934

  11. Syncytiotrophoblast Extracellular Vesicles from Pre-Eclampsia Placentas Differentially Affect Platelet Function

    National Research Council Canada - National Science Library

    Tannetta, Dionne S; Hunt, Kathryn; Jones, Chris I; Davidson, Naomi; Coxon, Carmen H; Ferguson, David; Redman, Christopher W; Gibbins, Jonathan M; Sargent, Ian L; Tucker, Katherine L

    2015-01-01

    .... In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV...

  12. Identification of EDIL3 on extracellular vesicles involved in breast cancer cell invasion.

    Science.gov (United States)

    Lee, Jeong-Eun; Moon, Pyong-Gon; Cho, Young-Eun; Kim, Young-Bum; Kim, In-San; Park, Hoyong; Baek, Moon-Chang

    2016-01-10

    Cancer cell-derived extracellular vesicles have been linked to the pathogenesis of various cancers; however, the role of extracellular vesicles in tumorigenesis remains unclear. To identify extracellular vesicle proteins involved in cancer metastasis, quantitative proteomic analyses were performed on extracellular vesicles derived from two representative breast cancer cell lines: the less invasive MCF-7 and the invasive MDA-MB-231. Proteomic analysis allowed for the identification of 270 proteins in the extracellular vesicles. Here we report a new function of EDIL3 on extracellular vesicles, which are sufficient for enhancement of cell invasion and for acceleration of lung metastasis in vivo. This invasion is most likely mediated via the integrin-FAK signaling cascade in breast cancer cells. However, these effects are suppressed when EDIL3 is inactivated, providing evidence for a critical role of EDIL3 in development of cancer. Consistently, in human patients with metastatic breast cancer, the levels of EDIL3 on circulating extracellular vesicles are significantly elevated. This information is a remarkable breakthrough in understanding of the molecular mechanism underlying metastasis of breast cancer as well as in the research for cancer biomarkers using circulating extracellular vesicles. Furthermore, targeting EDIL3 on extracellular vesicles may lead to a new therapeutic option for treatment of breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles.

    Science.gov (United States)

    Durcin, Maëva; Fleury, Audrey; Taillebois, Emiliane; Hilairet, Grégory; Krupova, Zuzana; Henry, Céline; Truchet, Sandrine; Trötzmüller, Martin; Köfeler, Harald; Mabilleau, Guillaume; Hue, Olivier; Andriantsitohaina, Ramaroson; Martin, Patrice; Le Lay, Soazig

    2017-01-01

    Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells by conveying signalling proteins and genomic material. The level of EVs in plasma is significantly increased in cardiometabolic diseases associated with obesity, suggesting their possible participation in the development of metabolic dysfunction. With regard to the poor definition of adipocyte-derived EVs, the purpose of this study was to characterise both qualitatively and quantitatively EVs subpopulations secreted by fat cells. Adipocyte-derived EVs were isolated by differential centrifugation of conditioned media collected from 3T3-L1 adipocytes cultured for 24 h in serum-free conditions. Based on morphological and biochemical properties, as well as quantification of secreted EVs, we distinguished two subpopulations of adipocyte-derived EVs, namely small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs). Proteomic analyses revealed that lEVs and sEVs exhibit specific protein signatures, allowing us not only to define novel markers of each population, but also to predict their biological functions. Despite similar phospholipid patterns, the comparative lipidomic analysis performed on these EV subclasses revealed a specific cholesterol enrichment of the sEV population, whereas lEVs were characterised by high amounts of externalised phosphatidylserine. Enhanced secretion of lEVs and sEVs is achievable following exposure to different biological stimuli related to the chronic low-grade inflammation state associated with obesity. Finally, we demonstrate the ability of primary murine adipocytes to secrete sEVs and lEVs, which display physical and biological characteristics similar to those described for 3T3-L1. Our study provides additional information and elements to define EV subtypes based on the characterisation of adipocyte-derived EV populations. It also underscores the need to distinguish EV subpopulations, through a combination of multiple

  14. Extracellular Vesicles and Their Convergence with Viral Pathways

    Directory of Open Access Journals (Sweden)

    Thomas Wurdinger

    2012-01-01

    Full Text Available Extracellular vesicles (microvesicles, such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.

  15. Isolation and characterization of platelet-derived extracellular vesicles.

    Science.gov (United States)

    Aatonen, Maria T; Ohman, Tiina; Nyman, Tuula A; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R-M

    2014-01-01

    Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS) or Ca(2+) ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA) and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. The main EV populations were 100-250 nm and over 90% were vesicle subpopulations. Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100-250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As the EV subpopulations could not be distinguished and large vesicle populations may be lost by differential centrifugation, novel methods are required for the isolation and the differentiation of all EVs.

  16. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    Science.gov (United States)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  17. Extracellular Vesicles and Their Role in Urologic Malignancies.

    Science.gov (United States)

    Junker, Kerstin; Heinzelmann, Joana; Beckham, Carla; Ochiya, Takahiro; Jenster, Guido

    2016-08-01

    Research has increased significantly on small vesicles secreted by healthy and diseased cells. Recent discoveries have revealed their functional and biomarker roles in urologic diseases. Whether and how this knowledge of extracellular vesicles (EVs) affects translational research and clinical practices have become pertinent questions. To provide an overview of the currently available literature on the rising field of EVs, focusing on function and pathogenesis in urologic cancers and the usefulness of EVs as biomarkers. A systematic literature search was conducted using PubMed to identify original articles, review articles, and editorials regarding EVs in different types of urologic tumor diseases. Articles published between 2005 and 2015 were reviewed and selected with the consensus of all authors. Besides soluble factors, different types of EVs are involved in the complex cross talk between different cell types. EVs regulate normal physiologic processes like spermatogenesis and renal function, as well as disease-specific processes including bladder, kidney, and prostate cancer. The content of EVs is derived from the cytoplasm of the donor cell. The proteins and RNAs within these EVs can be isolated from body fluids (eg, urine and blood) and represent potential diagnostic and prognostic biomarkers. EVs are also candidate therapeutic targets and potentially useful as therapeutic vehicles. The current data suggest that EVs are important regulators of cell-cell communication. The growing knowledge about their roles in urologic malignancies provides the basis for novel therapeutic strategies. In addition, nucleic acid and the protein content of EVs holds promise for the discovery of urine- or serum-based biomarkers for kidney, bladder, and prostate cancer. Normal and cancer cells secrete small vesicles that contain proteins and RNAs from the cell of origin. Changes in the diseased cells can be detected by examining the altered content of these vesicles when secreted in

  18. Facile preparation of salivary extracellular vesicles for cancer proteomics

    Science.gov (United States)

    Sun, Yan; Xia, Zhijun; Shang, Zhi; Sun, Kaibo; Niu, Xiaomin; Qian, Liqiang; Fan, Liu-Yin; Cao, Cheng-Xi; Xiao, Hua

    2016-04-01

    Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

  19. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  20. The biology and function of extracellular vesicles in nasopharyngeal carcinoma (Review).

    Science.gov (United States)

    You, Bo; Shan, Ying; Bao, Lili; Chen, Jing; Yang, Liu; Zhang, Qicheng; Zhang, Wei; Zhang, Zhenxin; Zhang, Jie; Shi, Si; You, Yiwen

    2018-01-01

    Extracellular vesicles are a heterogeneous group of membrane-enclosed vesicles, which play an important role in intercellular communication. Increasing number of studies have shown that tumor-derived extracellular vesicles might be involved in the transfer of oncogenic cargo (proteins, lipids, messenger RNA, microRNA, non-coding RNAs and DNA) through which cancer cells could shape the tumor microenvironment and influence tumor progression. Nasopharyngeal carcinoma-derived extracellular vesicles have also reported to facilitate tumor proliferation, metastasis and immune escape. Moreover, nasopharyngeal carcinoma-derived extracellular vesicles might serve as biomarkers for early diagnosis and therapeutic targets. The present review provides information on the biological and clinical significance of extracellular vesicles in tumors, especially in nasopharyngeal carcinoma.

  1. Dimensional characterization of extracellular vesicles using atomic force microscopy

    Science.gov (United States)

    Sebaihi, N.; De Boeck, B.; Yuana, Y.; Nieuwland, R.; Pétry, J.

    2017-03-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ~30 nm high and ~90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement.

  2. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    NARCIS (Netherlands)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M; Wauben, Marca|info:eu-repo/dai/nl/112675735; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information

  3. Transferring intercellular signals and traits between cancer cells: extracellular vesicles as "homing pigeons".

    Science.gov (United States)

    Cesi, Giulia; Walbrecq, Geoffroy; Margue, Christiane; Kreis, Stephanie

    2016-06-10

    Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed.

  4. Extracellular vesicles: An overview of biogenesis, function, and role in breast cancer.

    Science.gov (United States)

    Zha, Quan Bin; Yao, Yu Feng; Ren, Zhao Jun; Li, Xiu Juan; Tang, Jin Hai

    2017-02-01

    Extracellular vesicles have emerged as important mediators of intercellular communication and play an active role in cancer, including breast cancer. Despite limited studies, initial observations suggest that these vesicles are important in breast physiology and pathophysiology. We here, in brief, describe their potential use as future biomarkers and therapeutic agents in breast cancer. Extracellular vesicles in blood and breast fluid may have a great potential to detect and predict the presence of breast cancer, and extracellular vesicles modulation may emerge as a therapeutic approach in cancer therapy.

  5. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery

    NARCIS (Netherlands)

    Merchant, M.L.; Rood, I.M.; Deegens, J.K.J.; Klein, J.B.

    2017-01-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies.

  6. Mesenchymal stem cell-derived extracellular vesicles for renal repair

    Science.gov (United States)

    Nargesi, Arash Aghajani; Lerman, Lilach O.; Eirin, Alfonso

    2017-01-01

    Transplantation of autologous mesenchymal stem cells (MSCs) has been shown to attenuate renal injury and dysfunction in several animal models, and its efficacy is currently being tested in clinical trials for patients with renal disease. Accumulating evidence indicates that MSCs release extracellular vesicles (EVs) that deliver genes, microRNAs and proteins to recipient cells, acting as mediators of MSC paracrine actions. In this context, it is critical to characterize the MSC-derived EV cargo to elucidate their potential contribution to renal repair. In recent years, researchers have performed high-throughput sequencing and proteomic analysis to detect and identify genes, microRNAs, and proteins enriched in MSC-derived EVs. The present review summarizes the current knowledge of the MSC-derived EV secretome to shed light into the mechanisms mediating MSC renal repair, and discusses preclinical and clinical studies testing the efficacy of MSC-derived EVs for treating renal disease. PMID:28403795

  7. Extracellular vesicles: A new therapeutic strategy for joint conditions.

    Science.gov (United States)

    Tofiño-Vian, Miguel; Guillén, Maria Isabel; Alcaraz, Maria José

    2018-02-07

    Extracellular vesicles (EVs) are attracting increasing interest since they might represent a more convenient therapeutic tool with respect to their cells of origin. In the last years much time and effort have been expended to determine the biological properties of EVs from mesenchymal stem cells (MSCs) and other sources. The immunoregulatory, anti-inflammatory and regenerative properties of MSC EVs have been demonstrated in in vitro studies and animal models of rheumatoid arthritis or osteoarthritis. This cell-free approach has been proposed as a possible better alternative to MSC therapy in autoimmune conditions and tissue regeneration. In addition, EVs show great potential as biomarkers of disease or delivery systems for active molecules. The standardization of isolation and characterization methods is a key step for the development of EV research. A better understanding of EV mechanisms of action and efficacy is required to establish the potential therapeutic applications of this new approach in joint conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation.

    Science.gov (United States)

    Wahlund, Casper J E; Eklund, Anders; Grunewald, Johan; Gabrielsson, Susanne

    2017-01-01

    Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs), including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory effects including antigen presentation, cellular migration, apoptosis induction, and inflammatory cytokine release. Cells of the airways release EVs, which can be found in bronchoalveolar lavage fluid. EVs of the airways can support inflammation in the lung, but may also exit into the circulation and carry a cocktail of pro-inflammatory molecules to recipient cells in distant organs. In this review, we discuss the possibility that EVs originating from the airways contribute to dissemination of inflammation in both lung disorders and systemic inflammatory conditions.

  9. Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation

    Directory of Open Access Journals (Sweden)

    Susanne Gabrielsson

    2017-04-01

    Full Text Available Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs, including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory effects including antigen presentation, cellular migration, apoptosis induction, and inflammatory cytokine release. Cells of the airways release EVs, which can be found in bronchoalveolar lavage fluid. EVs of the airways can support inflammation in the lung, but may also exit into the circulation and carry a cocktail of pro-inflammatory molecules to recipient cells in distant organs. In this review, we discuss the possibility that EVs originating from the airways contribute to dissemination of inflammation in both lung disorders and systemic inflammatory conditions.

  10. Platelet-derived Extracellular Vesicles: An Emerging Therapeutic Approach.

    Science.gov (United States)

    Tao, Shi-Cong; Guo, Shang-Chun; Zhang, Chang-Qing

    2017-01-01

    Extracellular vesicles (EVs) are a newly-discovered way by which cells communicate with their neighbors, as well as transporting cargos which once were considered to be limited by membrane barriers, including membrane proteins, cytosolic proteins and RNA. The discovery of platelet-derived EVs (P-EVs), the most abundant EVs in human blood, has been a very tortuous process. At first, P-EVs were identified as nothing but 'platelet dust', and subsequent research did not progress smoothly because of the limited research techniques to study EVs. Following leaps and bounds of technical progress in studying EVs, more and more attractive features of P-EVs were revealed and they began to be further researched. The aim of this review is to present the latest knowledge about the role of P-EVs in tissue repair and tumor progression. The potential mechanism of P-EVs is emphasized. Then the limitations of the present study and future research directions are discussed.

  11. Platelet extracellular vesicles as biomarkers for arterial thrombosis.

    Science.gov (United States)

    Gasecka, Aleksandra; Böing, Anita N; Filipiak, Krzysztof J; Nieuwland, Rienk

    2017-05-01

    Arterial thrombosis is a major and global cause of human death and disability. Considering the socioeconomic costs of arterial thrombosis, identification of biomarkers to predict and detect arterial thrombosis at an early stage is an important public health goal. Platelet extracellular vesicles (PEV) are a new candidate biomarker of arterial thrombosis. PEV can be measured in biorepositories, thereby offering the possibility to validate PEV in multicenter clinical trials. PEV analysis has been hitherto hampered by lack of standardized methodology, but substantial technological improvements of PEV detection techniques have been achieved recently. However, before PEV emerge from research tools to clinical applications, a number of issues should be clarified. To facilitate validation of PEV as biomarkers of thrombosis, we discuss (i) whether PEV are useful as biomarkers of thrombosis, (ii) why previous conclusions on PEV concentrations, composition and functions require re-evaluation, and (iii) which questions have to be answered before PEV become clinically useful.

  12. Ion-exchange chromatography purification of extracellular vesicles.

    Science.gov (United States)

    Kosanović, Maja; Milutinović, Bojana; Goč, Sanja; Mitić, Ninoslav; Janković, Miroslava

    2017-08-01

    Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential centrifugation followed by IEC or sucrose density gradient separation. The purity of the isolated EVs was evaluated by electrophoresis and lectin blotting/immuno blotting to monitor the distribution of total proteins, different EVs markers, and selected N-glycans. Our data showed efficient separation of negatively charged EVs from other differently charged molecules, while comparative profiling of EVs using SDG centrifugation confirmed anion-exchange chromatography is advantageous for EV purification. Finally, although this IEC-based method was validated using AF, the approach should be readily applicable to isolation of EVs from other sources as well.

  13. Extracellular vesicles in multiple sclerosis: what are they telling us?

    Directory of Open Access Journals (Sweden)

    Matías eSáenz-Cuesta

    2014-03-01

    Full Text Available Extracellular vesicles (EVs are membrane-bound particles secreted by almost all cell types. They are classified depending on their biogenesis and size into exosomes and microvesicles or according to their cell origin. EVs play a role in cell-to-cell communication, including contact-free cell synapsis, carrying active membrane proteins, lipids, and genetic material both inside the particle and on their surface. They have been related to several physiological and pathological conditions. In particular, increasing concentrations of EVs have been found in many autoimmune diseases including multiple sclerosis (MS. MS is a central nervous system demyelinating disease characterized by relapsing of symptoms followed by periods of remission. Close interaction between endothelial cells, leukocytes, monocytes and cells from central nervous system is crucial for the development of MS. This review summarizes the pathological role of EVs in MS and the relationship of EVs with clinical characteristics, therapy and biomarkers of the disease.

  14. Isolation and characterization of platelet-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Maria T. Aatonen

    2014-08-01

    Full Text Available Background: Platelet-derived extracellular vesicles (EVs participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Methods: Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS or Ca2+ ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. Results: The main EV populations were 100–250 nm and over 90% were <500 nm irrespective of the activation. However, activation pathways differentially regulated the quantity and the quality of EVs, which also formed constitutively. Thrombogenic activation was the most potent physiological EV-generator. LPS was a weak inducer of EVs, which had a selective protein content from the thrombogenic EVs. Ca2+ ionophore generated a large population of protein-poor and unselectively packed EVs. By proteomic analysis, EVs were highly heterogeneous after the different activations and between the vesicle subpopulations. Conclusions: Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100–250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As

  15. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2016-01-01

    Full Text Available Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.

  16. Extracellular vesicles as therapeutic tools in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Audrey eFleury

    2014-08-01

    Full Text Available Extracellular vesicles (EVs, including microvesicles (MVs and exosomes, are small vesicles secreted from a wide variety of cells. Whereas MVs are particles released by the outward budding of the plasma membrane, exosomes are derived from endocytic compartments. Secretion of EVs can be enhanced by specific stimuli, and increased plasma circulating levels of EVs have been correlated with pathophysiological situations.MVs, already present in the blood of healthy individuals, are considerably elevated in several cardiovascular diseases associated with inflammation, suggesting that they can mediate deleterious effects such as endothelial dysfunction or thrombosis. Nonetheless, very recent studies also demonstrate that MVs may act as biological information vectors transferring proteins or genetic material to maintain cell homeostasis, favor cell repair or even promote angiogenesis. Additionally, exosomes have also been shown to have proangiogenic and cardioprotective properties. These beneficial effects therefore reveal the potential therapeutical use of EVs in the field of cardiovascular medicine and regenerative therapy.In this review, we will provide an update of cellular processes modulated by EVs of specific interest in the treatment of cardiovascular pathologies. A special focus will be made on the morphogen sonic hedgehog (Shh associated with EVs (EVsShh+, which have been shown to mediate many pro-angiogenic effects. In addition to offer a potential source of cardiovascular markers, therapeutical potential of EVs reveal exciting opportunities to deliver specific agents by non-immunogenic means to cardiovascular system.

  17. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Science.gov (United States)

    Nawaz, Muhammad; Fatima, Farah; Vallabhaneni, Krishna C.; Penfornis, Patrice; Valadi, Hadi; Ekström, Karin; Kholia, Sharad; Whitt, Jason D.; Fernandes, Joseph D.; Pochampally, Radhika; Squire, Jeremy A.; Camussi, Giovanni

    2016-01-01

    Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies. PMID:26649044

  18. Functions of Cancer-Derived Extracellular Vesicles in Immunosuppression.

    Science.gov (United States)

    Czernek, Liliana; Düchler, Markus

    2017-08-01

    Extracellular vesicles, including exosomes, constitute an important element of intercellular communication by carrying a variety of molecules from producer to target cells. The transport of mRNA and miRNA can directly modulate gene expression in the target cells. The miRNA content in exosomes is characteristic for the cell from which the vesicles were derived enabling the usage of exosomes as biomarkers for the diagnosis various diseases, including cancer. Cancer-derived exosomes support the survival and progression of tumors in many ways and also contribute to the neutralization of the anti-cancer immune response. Exosomes participate in all known mechanisms by which cancer evades the immune system. They influence the differentiation and activation of immune suppressor cells, they modulate antigen presentation, and are able to induce T-cell apoptosis. Although cancer-derived exosomes mainly suppress the immune system and facilitate tumor progression, they are also important sources of tumor antigens with potential clinical application in stimulating immune responses. This review summarizes how exosomes assist cancer to escape immune recognition and to acquire control over the immune system.

  19. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    Science.gov (United States)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field. PMID:23271954

  20. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation.

    Directory of Open Access Journals (Sweden)

    Hina Kalra

    Full Text Available Extracellular vesicles (EVs are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.

  1. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids

    Science.gov (United States)

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2013-01-01

    We have previously demonstrated that tumor cells release membranous structures into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. These cell-derived vesicles can exhibit an array of proteins, lipids and nucleic acids derived from the originating tumor. This review focuses of the transcriptome (RNA) of these extracellular vesicles. Based on current data, these vesicular components play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with cancer development, progression and therapeutic failures. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, signal pathway activation through growth factor/receptor transfer, chemoresistance, and genetic exchange. These tumor-derived extracellular vesicles not only to represent a central mediator of the tumor microenvironment, but their presence in the peripheral circulation may serve as a surrogate for tumor biopsies, enabling real-time diagnosis and disease monitoring. PMID:23908664

  2. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    OpenAIRE

    Böing, Anita N.; van der Pol, Edwin; Anita E. Grootemaat; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively.Aim: To develop a single-step protocol to isolate vesicles from human body fluids.Methods: Platelet-free supernatant, derived from platelet...

  3. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Dae-Kyum Kim

    2013-03-01

    Full Text Available Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.

  4. Classification, Functions, and Clinical Relevance of Extracellular Vesicles

    NARCIS (Netherlands)

    van der Pol, Edwin; Böing, Anita N.; Harrison, Paul; Sturk, Augueste; Nieuwland, Rienk

    2012-01-01

    Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the

  5. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells.

    Science.gov (United States)

    Kaur, Sukhbir; Singh, Satya P; Elkahloun, Abdel G; Wu, Weiwei; Abu-Asab, Mones S; Roberts, David D

    2014-07-01

    Intercellular communication is critical for integrating complex signals in multicellular eukaryotes. Vascular endothelial cells and T lymphocytes closely interact during the recirculation and trans-endothelial migration of T cells. In addition to direct cell-cell contact, we show that T cell derived extracellular vesicles can interact with endothelial cells and modulate their cellular functions. Thrombospondin-1 and its receptor CD47 are expressed on exosomes/ectosomes derived from T cells, and these extracellular vesicles are internalized and modulate signaling in both T cells and endothelial cells. Extracellular vesicles released from cells expressing or lacking CD47 differentially regulate activation of T cells induced by engaging the T cell receptor. Similarly, T cell-derived extracellular vesicles modulate endothelial cell responses to vascular endothelial growth factor and tube formation in a CD47-dependent manner. Uptake of T cell derived extracellular vesicles by recipient endothelial cells globally alters gene expression in a CD47-dependent manner. CD47 also regulates the mRNA content of extracellular vesicles in a manner consistent with some of the resulting alterations in target endothelial cell gene expression. Therefore, the thrombospondin-1 receptor CD47 directly or indirectly regulates intercellular communication mediated by the transfer of extracellular vesicles between vascular cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Best practice of identification and proteomic analysis of extracellular vesicles in human health and disease.

    Science.gov (United States)

    Sódar, Barbara W; Kovács, Árpád; Visnovitz, Tamás; Pállinger, Éva; Vékey, Károly; Pocsfalvi, Gabriella; Turiák, Lilla; Buzás, Edit I

    2017-12-01

    Extracellular vesicles are emerging sources of biomarkers for modern preventive and precision medicine. Extracellular vesicles in body fluids offer a unique opportunity for integrative biomarker approaches due to their complex biocargo that includes proteins, lipids, nucleic acids and metabolites. Mass spectrometry-based proteomics data suggest that a significant portion of human proteins are sorted into extracellular vesicles and amenable for biomarker discovery schemes. Areas covered: this review focuses on key aspects of isolation, quality control and subsequent analysis of blood plasma- and conditioned medium-derived extracellular vesicle proteins, and summarizes the current state-of-the-art in the field. Furthermore, it provides introduction and guidelines for mass spectrometry-based proteomic analysis of extracellular vesicles. Expert commentary: Comparison of newly developed isolation and purification techniques with classical ultracentrifugation-based approaches are highly recommended. It is also essential to use multiple analytical approaches to characterize the isolated extracellular vesicles prior to characterization of their biocargo. Rigor in data reproducibility, critical data analysis, awareness of potential pitfalls, standardization and benchmarking are required for extracellular vesicle research to fulfil the current expectation that these subcellular structures can become a valid source of next generation biomarkers.

  7. Malignant cell-derived extracellular vesicles express different chromogranin epitopes compared to prostasomes.

    Science.gov (United States)

    Dubois, Louise; Stridsberg, Mats; Kharaziha, Pedram; Chioureas, Dimitris; Meersman, Niels; Panaretakis, Theocharis; Ronquist, K Göran

    2015-07-01

    Prostasomes are nanosized extracellular vesicles exocytosed by prostate epithelial cells. They have been assigned many roles propitious to sperm in favor of fertilization. Prostatic cancer cells can also produce and secrete extracellular vesicles. We assessed using ELISA, the surface expression of chromogranin proproteins on prostasomes and malignant extracellular vesicles of four different prostate cancer cell-lines, two hormone sensitive and two hormone refractory. We used a panel of chromogranin A and chromogranin B antibodies against peptides in-between hypothetical cleavage sites along the proproteins. A diverging pattern of chromogranin peptides was apparent when comparing prostasomes and malignant extracellular vesicles indicating a phenotypical change. We also compared western blot patterns (prostasomes and malignant extracellular vesicles) for selected antibodies that displayed high absorbances in the ELISA. Western blot analyses revealed various cleavage patterns of those proproteins that were analyzed in prostasomes and extracellular vesicles. Chromogranins are constituents of not only prostasomes but also of malignant prostate cell-derived extracellular vesicles with different amino acid sequences exposed at the membrane surface giving rise to a mosaic pattern. These findings may be of relevance for designing new assays for detection or even possible treatment of prostate cancers. © 2015 Wiley Periodicals, Inc.

  8. Fibronectin-Containing Extracellular Vesicles Protect Melanocytes against Ultraviolet Radiation-Induced Cytotoxicity.

    Science.gov (United States)

    Bin, Bum-Ho; Kim, Dae-Kyum; Kim, Nan-Hyung; Choi, Eun-Jeong; Bhin, Jinhyuk; Kim, Sung Tae; Gho, Yong Song; Lee, Ai-Young; Lee, Tae Ryong; Cho, Eun-Gyung

    2016-05-01

    Skin melanocytes are activated by exposure to UV radiation to secrete melanin-containing melanosomes to protect the skin from UV-induced damage. Despite the continuous renewal of the epidermis, the turnover rate of melanocytes is very slow, and they survive for long periods. However, the mechanisms underlying the survival of melanocytes exposed to UV radiation are not known. Here, we investigated the role of melanocyte-derived extracellular vesicles in melanocyte survival. Network analysis of the melanocyte extracellular vesicle proteome identified the extracellular matrix component fibronectin at a central node, and the release of fibronectin-containing extracellular vesicles was increased after exposure of melanocytes to UVB radiation. Using an anti-fibronectin neutralizing antibody and specific inhibitors of extracellular vesicle secretion, we demonstrated that extracellular vesicles enriched in fibronectin were involved in melanocyte survival after UVB radiation. Furthermore, we observed that in the hyperpigmented lesions of patients with melasma, the extracellular space around melanocytes contained more fibronectin compared with normal skin, suggesting that fibronectin is involved in maintaining melanocytes in pathological conditions. Collectively, our findings suggest that melanocytes secrete fibronectin-containing extracellular vesicles to increase their survival after UVB radiation. These data provide important insight into how constantly stimulated melanocytes can be maintained in pathological conditions such as melasma. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Lysozyme association with circulating RNA, extracellular vesicles, and chronic stress.

    Science.gov (United States)

    Abey, Sarah K; Yuana, Yuana; Joseph, Paule V; Kenea, Natnael D; Fourie, Nicolaas H; Sherwin, LeeAnne B; Gonye, Gregory E; Smyser, Paul A; Stempinski, Erin S; Boulineaux, Christina M; Weaver, Kristen R; Bleck, Christopher K E; Henderson, Wendy A

    2017-06-01

    Stress has demonstrated effects on inflammation though underlying cell-cell communication mechanisms remain unclear. We hypothesize that circulating RNAs and extracellular vesicles (EVs) in patients with chronic stress contain signals with functional roles in cell repair. Blood transcriptome from patients with Irritable Bowel Syndrome versus controls were compared to identify signaling pathways and effectors. Plasma EVs were isolated (size-exclusion chromatography) and characterized for effectors' presence (immunogold labelling-electron microscopy). Based on transcriptome pathways and EV-labelling, lysozyme's effects on cell migration were tested in human colon epithelial CRL-1790 cells and compared to the effects of CXCL12, a migration inducer (wound assay). The effect of lysozyme on immune-linked mRNA and protein levels in cells which survived following serum starvation and scratch wound were investigated (NanoString). Blood transcriptomes revealed pyridoxal 5'phosphate salvage, pyrimidine ribonucleotides salvage pathways, atherosclerosis, and cell movement signaling with membrane CD9 and extracellular lysozyme as effectors. Plasma EVs showed labelling with CD9, mucins, and lysozyme. This is the first identification of lysozyme on plasma EVs. In CRL-1790 cells, lysozyme induced migration and repaired scratch wound as well as CXCL12. Immune mRNA and protein expressions were altered in cells which survived following serum starvation and scratch wound, with or without lysozyme in serum-free media post-wounding: CD9, IL8, IL6 mRNAs and CD9, NT5E, PD-L1 proteins. Repair and inflammatory signals are identified in plasma EVs and circulating RNAs in chronic stress. Registered clinicaltrials.gov #NCT00824941. This study highlights the role of circulating RNAs and EVs in stress.

  10. Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles.

    Science.gov (United States)

    Arasu, Uma Thanigai; Kärnä, Riikka; Härkönen, Kai; Oikari, Sanna; Koistinen, Arto; Kröger, Heikki; Qu, Chengjuan; Lammi, Mikko J; Rilla, Kirsi

    2017-12-01

    Extracellular vesicles (EVs) secreted by stem cells are potential factors mediating tissue regeneration. They travel from bone marrow stem cells into damaged tissues, suggesting that they can repair tissue injuries without directly replacing parenchymal cells. We have discovered that hyaluronan (HA) synthesis is associated with the shedding of HA-coated EVs. The aim of this study was to test whether bone marrow-derived hMSCs secrete HA-coated EVs. The EVs secreted by MSCs were isolated by differential centrifugation and characterized by nanoparticle tracking analysis. Their morphology and budding mechanisms were inspected by confocal microscopy and correlative light and electron microscopy. Hyaluronan synthesis of hMSCs was induced by lipopolysaccharide and inhibited by RNA interference and 4-methylumbelliferone. It was found that the MSCs have extremely long apical and lateral HA-coated filopodia, typical for cells with an active HA secretion. Additionally, they secreted HA-coated EVs carrying mRNAs for CD44 and all HAS isoforms. The results show that stem cells have a strong intrinsic potential for HA synthesis and EV secretion, and the amount of HA carried on EVs reflects the HA content of the original cells. These results show that the secretion of HA-coated EVs by hMSCs is a general process, that may contribute to many of the mechanisms of HA-mediated tissue regeneration. Additionally, an HA coat on EVs may regulate their interactions with target cells and participate in extracellular matrix remodeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    Science.gov (United States)

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics

    Science.gov (United States)

    Dhara, Madhurima; Yarzagaray, Antonio; Schwarz, Yvonne; Dutta, Soumyajit; Grabner, Chad; Moghadam, Paanteha K.; Bost, Anneka; Schirra, Claudia; Rettig, Jens; Reim, Kerstin; Brose, Nils; Mohrmann, Ralf

    2014-01-01

    ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus. PMID:24687280

  14. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Jan Lötvall

    2014-12-01

    Full Text Available Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs, which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  15. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma.

    Science.gov (United States)

    Matsuzaki, Kyosuke; Fujita, Kazutoshi; Jingushi, Kentaro; Kawashima, Atsunari; Ujike, Takeshi; Nagahara, Akira; Ueda, Yuko; Tanigawa, Go; Yoshioka, Iwao; Ueda, Koji; Hanayama, Rikinari; Uemura, Motohide; Miyagawa, Yasushi; Tsujikawa, Kazutake; Nonomura, Norio

    2017-04-11

    Extracellular vesicles are lipid bilayer vesicles containing protein, messengerRNA and microRNA. Cancer cell-derived extracellular vesicles may be diagnostic and therapeutic targets. We extracted extracellular vesicles from urine of urothelial carcinoma patients and the control group to identify cancer-specific microRNAs in urinary extracellular vesicles as new biomarkers. microRNA from urinary extracellular vesicles extracted from 6 urothelial carcinoma patients and 3 healthy volunteers was analyzed. We verified candidate microRNAs in an independent cohort of 60 urinary extracellular vesicles samples. To normalize the microRNA expression level in extracellular vesicles, we examined the following in extracellular vesicles: protein concentration, CD9 intensity, amounts of whole miRNAs, RNA U6B small nuclear expression and the creatinine concentration of original urine correlating with the counts of extracted extracellular vesicles measured by the NanoSight™ system. From the microarray results 5 microRNAs overexpressed in urinary extracellular vesicles of urothelial carcinoma patients were identified. Creatinine concentration of original urine correlated most with particle counts of extracellular vesicles, indicating that creatinine could be a new tool for normalizing microRNA expression. MiR-21-5p was the most potent biomarker in urinary extracellular vesicles (sensitivity, 75.0%; specificity, 95.8%) and was also overexpressed in urinary extracellular vesicles from urothelial carcinoma patients with negative urine cytology. For the subgroup with negative urine cytology, the sensitivity was 75.0% and specificity was 95.8%. MiR-21-5p in urinary extracellular vesicles could be a new biomarker of urothelial carcinoma, especially for urothelial carcinoma patients with negative urine cytology.

  16. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  17. Cardiac Extracellular Vesicles in Normal and Infarcted Heart

    Directory of Open Access Journals (Sweden)

    Dimitry A. Chistiakov

    2016-01-01

    Full Text Available Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs, such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, such as hypoxia, inflammation or injury, cardiomyocytes increase secretion of EVs. In hypoxic conditions, cardiac EVs are enriched with angiogenic and prosurvival factors. In acute myocardial infarction (AMI, damaged cardiac muscle cells produce EVs with increased content of angiogenic, anti-apoptotic, mitogenic and growth factors in order to induce repair and healing of the infarcted myocardium. Exosomal microRNAs play a central role in cardiac regeneration. In AMI, circulating cardiac EVs abundantly contain cardiac-specific miRNAs that serve as indicators of cardiac damage and have a big diagnostic potential as AMI biomarkers. Cardioprotective and regenerative properties of exosomes derived from cardiac and non-cardiac stem/progenitor cells are very helpful to be used in cell-free cardiotherapy and regeneration of post-infarct myocardium.

  18. Cardiac Extracellular Vesicles in Normal and Infarcted Heart.

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-01-05

    Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs), such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, such as hypoxia, inflammation or injury, cardiomyocytes increase secretion of EVs. In hypoxic conditions, cardiac EVs are enriched with angiogenic and prosurvival factors. In acute myocardial infarction (AMI), damaged cardiac muscle cells produce EVs with increased content of angiogenic, anti-apoptotic, mitogenic and growth factors in order to induce repair and healing of the infarcted myocardium. Exosomal microRNAs play a central role in cardiac regeneration. In AMI, circulating cardiac EVs abundantly contain cardiac-specific miRNAs that serve as indicators of cardiac damage and have a big diagnostic potential as AMI biomarkers. Cardioprotective and regenerative properties of exosomes derived from cardiac and non-cardiac stem/progenitor cells are very helpful to be used in cell-free cardiotherapy and regeneration of post-infarct myocardium.

  19. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  20. Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2017-07-01

    Full Text Available Microbubbles-assisted ultrasound (USMB has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment. Based on this rationale, we investigated whether USMB triggers exocytosis resulting in the release of extracellular vesicles (EVs. USMB was performed on a monolayer of head-and-neck cancer cells (FaDu with clinically approved microbubbles and commonly used ultrasound parameters. At 2, 4, and 24 h, cells and EV-containing conditioned media from USMB and control conditions (untreated cells, cells treated with microbubbles and ultrasound only were harvested. EVs were measured using flow cytometric immuno-magnetic bead capture assay, immunogold electron microscopy, and western blotting. After USMB, levels of CD9 exposing-EVs significantly increased at 2 and 4 h, whereas levels of CD63 exposing-EVs increased at 2 h. At 24 h, EV levels were comparable to control levels. EVs released after USMB displayed a heterogeneous size distribution profile (30–1200 nm. Typical EV markers CD9, CD63, and alix were enriched in EVs released from USMB-treated FaDu cells. In conclusion, USMB treatment triggers exocytosis leading to the release of EVs from FaDu cells.

  1. Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications.

    Science.gov (United States)

    Jeyaram, Anjana; Jay, Steven M

    2017-11-27

    Recently, extracellular vesicles (EVs)-including exosomes, microvesicles, and others-have attracted interest as cell-derived biotherapeutics and drug delivery vehicles for a variety of applications. This interest stems from favorable properties of EVs, including their status as mediators of cell-cell communication via transfer of biological cargo and their reported ability to cross biological barriers that impede many delivery systems. However, there are many challenges to translation and widespread application of EV-based therapeutics. One such challenge that has yet to be extensively studied involves EV preservation and storage, which must be addressed to enable use of therapeutic EVs beyond resource-intensive settings. Studies to date suggest that the most promising mode of storage is - 80°C; however, understanding of storage-mediated effects is still limited. Additionally, the effects of storage appear to vary with sample source. The lack of knowledge about and standardization of EV storage may ultimately hinder widespread clinical translation. This mini-review reports current knowledge in the field of EV preservation and storage stability and highlights future directions in the area that could be critical to eventual development of EV therapies.

  2. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  3. EVpedia: a community web portal for extracellular vesicles research

    Science.gov (United States)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. Availability and implementation: The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info. Contact: ysgho@postech.ac.kr PMID:25388151

  4. Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy

    Science.gov (United States)

    Caivano, Antonella; La Rocca, Francesco; Laurenzana, Ilaria; Trino, Stefania; De Luca, Luciana; Lamorte, Daniela; Del Vecchio, Luigi; Musto, Pellegrino

    2017-01-01

    Extracellular vesicles (EVs) are a heterogeneous group of particles, between 15 nanometers and 10 microns in diameter, released by almost all cell types in physiological and pathological conditions, including tumors. EVs have recently emerged as particularly interesting informative vehicles, so that they could be considered a true “cell biopsy”. Indeed, EV cargo, including proteins, lipids, and nucleic acids, generally reflects the nature and status of the origin cells. In some cases, EVs are enriched of peculiar molecular cargo, thus suggesting at least a degree of specific cellular packaging. EVs are identified as important and critical players in intercellular communications in short and long distance interplays. Here, we examine the physiological role of EVs and their activity in cross-talk between bone marrow microenvironment and neoplastic cells in hematological malignancies (HMs). In these diseases, HM EVs can modify tumor and bone marrow microenvironment, making the latter “stronger” in supporting malignancy, inducing drug resistance, and suppressing the immune system. Moreover, EVs are abundant in biologic fluids and protect their molecular cargo against degradation. For these and other “natural” characteristics, EVs could be potential biomarkers in a context of HM liquid biopsy and therapeutic tools. These aspects will be also analyzed in this review. PMID:28574430

  5. Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation.

    Science.gov (United States)

    Maus, Rachel L G; Jakub, James W; Nevala, Wendy K; Christensen, Trace A; Noble-Orcutt, Klara; Sachs, Zohar; Hieken, Tina J; Markovic, Svetomir N

    2017-01-01

    Evolution of melanoma from a primary tumor to widespread metastasis is crucially dependent on lymphatic spread. The mechanisms regulating the initial step in metastatic dissemination via regional lymph nodes remain largely unknown; however, evidence supporting the establishment of a pre-metastatic niche is evolving. We have previously described a dysfunctional immune profile including reduced expression of dendritic cell (DC) maturation markers in the first node draining from the primary tumor, the sentinel lymph node (SLN). Importantly, this phenotype is present prior to evidence of nodal metastasis. Herein, we evaluate melanoma-derived extracellular vesicles (EVs) as potential mediators of the premetastatic niche through cargo-specific polarization of DCs. DCs matured in vitro in the presence of melanoma EVs demonstrated significantly impaired expression of CD83 and CD86 as well as decreased expression of Th1 polarizing chemokines Flt3L and IL15 and migration chemokines MIP-1α and MIP-1β compared to liposome-treated DCs. Profiling of melanoma EV cargo identified shared proteomic and RNA signatures including S100A8 and S100A9 protein cargo, which in vitro compromised DC maturation similar to melanoma EVs. Early evidence demonstrates that similar EVs can be isolated from human afferent lymphatic fluid ex vivo. Taken together, here, we propose melanoma EV cargo as a mechanism by which DC maturation is compromised warranting further study to consider this as a potential mechanism enabled by the primary tumor to establish the premetastatic niche in tumor-draining SLNs of patients.

  6. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation.

    Science.gov (United States)

    Machtinger, Ronit; Laurent, Louise C; Baccarelli, Andrea A

    2016-01-01

    Extracellular vesicles (EVs) are membrane-bound vesicles, found in biofluids, that carry and transfer regulatory molecules, such as microRNAs (miRNAs) and proteins, and may mediate intercellular communication between cells and tissues. EVs have been isolated from a wide variety of biofluids, including plasma, urine, and, relevant to this review, seminal, follicular and uterine luminal fluid. We conducted a systematic search of the literature to review and present the currently available evidence on the possible roles of EVs in follicular growth, resumption of oocyte development and maturation (meiosis), sperm maturation, fertilization and embryo implantation. MEDLINE, Embase and Web of Science databases were searched using keywords pertaining to EVs, including 'extracellular vesicles', 'microvesicles', 'microparticles' and 'exosomes', combined with a range of terms associated with the period of development between fertilization and implantation, including 'oocyte', 'sperm', 'semen', 'fertilization', 'implantation', 'embryo', 'follicular fluid', 'epididymal fluid' and 'seminal fluid'. Relevant research articles published in English (both animal and human studies) were reviewed with no restrictions on publication date (i.e. from earliest database dates to July 2015). References from these articles were used to obtain additional articles. A total of 1556 records were retrieved from the three databases. After removing duplicates and irrelevant titles, we reviewed the abstracts of 201 articles, which included 92 relevant articles. Both animal and human studies unequivocally identified various types of EVs in seminal, follicular and ULFs. Several studies provided evidence for the roles of EVs in these biofluids. In men, EVs in seminal fluid were linked with post-testicular sperm maturation, including sperm motility acquisition and reduction of oxidative stress. In women, EVs in follicular fluid were shown to contain miRNAs with potential roles in follicular growth

  7. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    OpenAIRE

    L?tvall, Jan; Hill, Andrew F.; Hochberg, Fred; Buz?s, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Th?ry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesic...

  8. Proteomic profiling of extracellular vesicles released from vascular smooth muscle cells during initiation of phosphate-induced mineralization.

    Science.gov (United States)

    Chaudhary, Sandeep C; Khalid, Sana; Smethurst, Victoria; Monier, Daisy; Mobley, James; Huet, Alexis; Conway, James F; Napierala, Dobrawa

    2018-02-22

    Elevated serum phosphate is one of the major factors contributing to vascular calcification. Studies suggested that extracellular vesicles released from vascular smooth muscle cells significantly contribute to the initiation and progression of this pathology. Recently, we have demonstrated that elevated phosphate stimulates release of extracellular vesicles from osteogenic cells at the initiation of the mineralization process. Here, we used MOVAS cell line as an in vitro model of vascular calcification to examine whether vascular smooth muscle cells respond to high phosphate levels in a similar way and increase formation of extracellular vesicles. Vesicles residing in extracellular matrix as well as vesicles released to culture medium were evaluated by nanoparticle tracking analyses. In addition, using mass spectrometry and protein profiling, protein composition of extracellular vesicles released by MOVAS cells under standard growth conditions and upon exposure to high phosphate was compared. Significant increase of the number of extracellular vesicles was detected after 72 hours of exposure of cells to high phosphate. Elevated phosphate levels also affected protein composition of extracellular vesicles released from MOVAS cells. Finally, the comparative analyses of proteins in extracellular vesicles isolated from extracellular matrix and from conditioned medium identified significant differences in protein composition in these two groups of extracellular vesicles. In conclusion, results of this study demonstrate that exposure of MOVAS cells to high phosphate levels stimulates the release of extracellular vesicles and changes their protein composition.

  9. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum.

    Science.gov (United States)

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S; Sobreira, Tiago J P; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D

    2016-01-01

    Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has

  10. T-2: PRO-COAGULANT POTENTIAL OF PLATELET-DERIVED EXTRACELLULAR VESICLES

    National Research Council Canada - National Science Library

    Tripisciano, C; Weiss, R; Eichhorn, T; Linsberger, I; Fischer, M.B; Weber, V

    2015-01-01

    INTRODUCTION:Extracellular vesicles (EVs) released from blood cells in response to injury or inflammation are broadly classified into exosomes (EX; 30–150 nm) and microvesicles (MV; 100–1000 nm...

  11. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    Science.gov (United States)

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis

    NARCIS (Netherlands)

    Costa Verdera, Helena; Francois, Jerney J. J. M.|info:eu-repo/dai/nl/34175000X; Schiffelers, Raymond M.|info:eu-repo/dai/nl/212909509; Vader, Pieter|info:eu-repo/dai/nl/311486266

    2017-01-01

    Recent evidence has established that extracellular vesicles (EVs), including exosomes and microvesicles, form an endogenous transport system through which biomolecules, including proteins and RNA, are exchanged between cells. This endows EVs with immense potential for drug delivery and regenerative

  13. Extracellular Vesicles in Bile as Markers of Malignant Biliary Stenoses

    DEFF Research Database (Denmark)

    Severino, Valeria; Dumonceau, Jean Marc; Delhaye, Myriam

    2017-01-01

    Background & Aims Algorithms for diagnosis of malignant common bile duct (CBD) stenoses are complex and lack accuracy. Malignant tumors secrete large numbers of extracellular vesicles (EVs) into surrounding fluids; EVs might therefore serve as biomarkers for diagnosis. We investigated whether...

  14. Role and Function of MicroRNAs in Extracellular Vesicles in Cardiovascular Biology

    Directory of Open Access Journals (Sweden)

    Philipp Pfeifer

    2015-01-01

    Full Text Available Intercellular communication mediated by extracellular vesicles is crucial for preserving vascular integrity and in the development of cardiovascular disease. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes that can be found in almost every fluid compartment of the body like blood, saliva, and urine. In the recent years, a lot of reports came up suggesting that major cardiovascular and metabolic pathologies like atherogenesis, heart failure, or diabetes are highly influenced by transfer of microRNAs via extracellular vesicles leading to altered protein expression and phenotypes of recipient cells. The following review will summarize the fast developing field of intercellular signaling in cardiovascular biology by microRNA-containing extracellular vesicles.

  15. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    OpenAIRE

    Wild, Stefan; Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Ian C. D. Johnston; Bosio, Andreas; Schauss, Astrid

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the an...

  16. Extracellular vesicles are integral and functional components of the extracellular matrix.

    Science.gov (United States)

    Rilla, Kirsi; Mustonen, Anne-Mari; Arasu, Uma Thanigai; Härkönen, Kai; Matilainen, Johanna; Nieminen, Petteri

    2017-10-21

    Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  17. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    NARCIS (Netherlands)

    Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete

  19. AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs

    OpenAIRE

    Collino, Federica; Bruno, Stefania; Incarnato, Danny; Dettori, Daniela; Neri, Francesco; Provero, Paolo; Pomatto, Margherita; Oliviero, Salvatore; Tetta, Ciro; Quesenberry, Peter J.; Camussi, Giovanni

    2015-01-01

    Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell–promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stroma...

  20. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes

    OpenAIRE

    Kowal, Joanna; Arras, Guillaume; Colombo, Marina; Jouve, Mabel; Morath, Jakob Paul; Primdal-Bengtson, Bjarke; Dingli, Florent; Loew, Damarys; Tkach, Mercedes; Théry, Clotilde

    2016-01-01

    The last decade has seen a rapid expansion of interest in extracellular vesicles (EVs), proposed to mediate cell–cell communication in patho/physiological conditions. Although heterogeneity of EVs has become obvious, as highlighted recently by the International Society for Extracellular Vesicles, the field is lacking specific tools to distinguish EVs of different intracellular origins, and thus probably different functions. Here, thanks to a comprehensive comparison of different types of EVs ...

  1. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases

    Directory of Open Access Journals (Sweden)

    F.T. Borges

    2013-10-01

    Full Text Available Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.

  2. Exacerbation of Acute Traumatic Brain Injury by Circulating Extracellular Vesicles.

    Science.gov (United States)

    Hazelton, Isla; Yates, Abi; Dale, Ashley; Roodselaar, Jay; Akbar, Naveed; Ruitenberg, Marc J; Anthony, Daniel C; Couch, Yvonne

    2018-02-15

    Inflammatory lesions in the brain activate a systemic acute-phase response (APR), which is dependent on the release of extracellular vesicles (EVs) into the circulation. The resulting APR is responsible for regulating leukocyte mobilization and subsequent recruitment to the brain. Factors that either exacerbate or inhibit the APR will also exacerbate or inhibit central nervous system (CNS) inflammation as a consequence and have the potential to influence ongoing secondary damage. Here, we were interested to discover how the circulating EV population changes after traumatic brain injury (TBI) and how manipulation of the circulating EV pool impacts on the outcome of TBI. We found the number of circulating EVs increased rapidly post-TBI, and this was accompanied by an increase in CNS and hepatic leukocyte recruitment. In an adoptive transfer study, we then evaluated the outcomes of TBI after administering EVs derived from either in vitro macrophage or endothelial cell lines stimulated with lipopolysaccharide (LPS), or from murine plasma from an LPS challenge using the air-pouch model. By manipulating the circulating EV population, we were able to demonstrate that each population of transferred EVs increased the APR. However, the characteristics of the response were dependent on the nature of the EVs; specifically, it was significantly increased when animals were challenged with macrophage-derived EVs, suggesting that the cellular origins of EVs may determine their function. Selectively targeting EVs from macrophage/monocyte populations is likely to be of value in reducing the impact of the systemic inflammatory response on the outcome of traumatic CNS injury.

  3. Extracellular vesicles as mediators of vascular inflammation in kidney disease.

    Science.gov (United States)

    Helmke, Alexandra; von Vietinghoff, Sibylle

    2016-03-06

    Vascular inflammation is a common cause of renal impairment and a major cause of morbidity and mortality of patients with kidney disease. Current studies consistently show an increase of extracellular vesicles (EVs) in acute vasculitis and in patients with atherosclerosis. Recent research has elucidated mechanisms that mediate vascular wall leukocyte accumulation and differentiation. This review addresses the role of EVs in this process. Part one of this review addresses functional roles of EVs in renal vasculitis. Most published data address anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis and indicate that the number of EVs, mostly of platelet origin, is increased in active disease. EVs generated from neutrophils by activation by ANCA can contribute to vessel damage. While EVs are also elevated in other types of autoimmune vasculitis with renal involvement such as systemic lupus erythematodes, functional consequences beyond intravascular thrombosis remain to be established. In typical hemolytic uremic syndrome secondary to infection with shiga toxin producing Escherichia coli, EV numbers are elevated and contribute to toxin distribution into the vascular wall. Part two addresses mechanisms how EVs modulate vascular inflammation in atherosclerosis, a process that is aggravated in uremia. Elevated numbers of circulating endothelial EVs were associated with atherosclerotic complications in a number of studies in patients with and without kidney disease. Uremic endothelial EVs are defective in induction of vascular relaxation. Neutrophil adhesion and transmigration and intravascular thrombus formation are critically modulated by EVs, a process that is amenable to therapeutic interventions. EVs can enhance monocyte adhesion to the endothelium and modulate macrophage differentiation and cytokine production with major influence on the local inflammatory milieu in the plaque. They significantly influence lipid phagocytosis and antigen presentation by

  4. Extracellular Vesicles as Drug Delivery Vehicles for Rheumatoid Arthritis.

    Science.gov (United States)

    Kim, Il-Kwon; Kim, Sun-Hyun; Choi, Seong-Mi; Youn, Byung-Soo; Kim, Han-Soo

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic, systemic and progressive autoimmune disease of connective tissues common in middle age. Dysregulation of the tissue homeostasis involving inflammation is the hallmark of disease pathogenesis, inducing autoimmune insults that frequently lead to permanent disability. Although the advent of immunosuppressive and anti-inflammatory drugs and, more recently, pathogenic TNF-TNF-R axis-targeting biologics significantly delayed progressive joint destruction with significant reduction of disability and physical improvement, a large proportion of RA patients failed to respond to the treatment. In this regard, mesenchymal stem/stromal cells (MSC) are particularly attractive to the refractory patients to the pharmacologic intervention for their immunosuppressive/anti-inflammatory capacity as well as tissue reparative and/or regenerative potential. Local or systemic delivery of MSCs led to promising results in preclinical as well as in clinical studies of RA and thus proposing that these cells can be further exploited for their therapeutic application in RA and other degenerative connective tissue diseases. Mechanistically, paracrine factors appear to be the main contributors of MSC-mediated tissue regeneration in a number of preclinical and clinical studies rather than direct tissue cell replacement. More recently, extracellular vesicles (EVs) released from MSCs emerged as key paracrine messengers that can also participate in the healing process through influencing the local microenvironment with anti-inflammatory effects. It is highly likely that the use of these EVs becomes beneficial in the treatment of RA. Yet, identification of key components involved in the regenerative process needs to be assessed for developing efficient MSC-based strategy of RA treatment.

  5. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    Science.gov (United States)

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.

  6. STEM CELL-DERIVED EXTRACELLULAR VESICLES AND IMMUNE-MODULATION

    Directory of Open Access Journals (Sweden)

    Jacopo Burrello

    2016-08-01

    Full Text Available Extra-cellular vesicles (EVs are bilayer membrane structures enriched with proteins, nucleic acids and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag-presenting cells for instance, have been involved in both innate and acquired (or adaptive immune responses, as Ag carriers or presenters, or as vehicles for delivering active signalling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response. Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review we will discuss how stem cell-derived EVs may contribute towards the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.

  7. Methods for extracellular vesicles isolation in a hospital setting

    Directory of Open Access Journals (Sweden)

    Matías eSáenz-Cuesta

    2015-02-01

    Full Text Available The research in extracellular vesicles (EVs has been rising during the last decade. However, there is no clear consensus on the most accurate protocol to isolate and analyze them. Besides, most of the current protocols are difficult to implement in a hospital setting due to being very time consuming or to requirements of specific infrastructure. Thus, our aim is to compare five different protocols (comprising two different medium-speed differential centrifugation protocols; commercially polymeric precipitation -exoquick-; acid precipitation; and ultracentrifugation for blood and urine samples to determine the most suitable one for the isolation of EVs. Nanoparticle tracking analysis, flow cytometry, western blot, electronic microscopy and spectrophotometry were used to characterize basic aspects of EVs such us concentration, size distribution, cell-origin and transmembrane markers and RNA concentration. The highest EV concentrations were obtained using the exoquick protocol, followed by both differential centrifugation protocols, while the ultracentrifugation and acid-precipitation protocols yielded considerably lower EV concentrations. The five protocols isolated EVs of similar characteristics regarding markers and RNA concentration however standard protocol recovered only small EVs. EV isolated with exoquick presented difficult to be analyzed with western blot. The RNA concentrations obtained from urine-derived EVs were similar to those obtained from blood-derived ones, despite the urine EV concentration being 10 to 20 times lower. We consider that a medium-speed differential centrifugation could be suitable to be applied in a hospital setting due to require the simplest infrastructure and recover higher concentration of EV than standard protocol. A workflow from sampling to characterization of EVs is proposed.

  8. PML-RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells.

    Science.gov (United States)

    Fang, Yi; Garnier, Delphine; Lee, Tae Hoon; D'Asti, Esterina; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2016-01-01

    Oncogenic transformation is believed to impact the vascular phenotype and microenvironment in cancer, at least in part, through mechanisms involving extracellular vesicles (EVs). We explored these questions in the context of acute promyelocytic leukemia cells (NB4) expressing oncogenic fusion protein, PML-RARa and exquisitely sensitive to its clinically used antagonist, the all-trans retinoic acid (ATRA). We report that NB4 cells produce considerable numbers of EVs, which are readily taken up by cultured endothelial cells triggering their increased survival. NB4 EVs contain PML-RARa transcript, but no detectable protein, which is also absent in endothelial cells upon the vesicle uptake, thereby precluding an active intercellular trafficking of this oncogene in this setting. ATRA treatment changes the emission profile of NB4-related EVs resulting in preponderance of smaller vesicles, an effect that occurs in parallel with the onset of cellular differentiation. ATRA also increases IL-8 mRNA and protein content in NB4 cells and their EVs, while decreasing the levels of VEGF and tissue factor (TF). Endothelial cell uptake of NB4-derived EVs renders these cells more TF-positive and procoagulant, and this effect is diminished by pre-treatment of EV donor cells with ATRA. Profiling angiogenesis-related transcripts in intact and ATRA-treated APL cells and their EVs reveals multiple differences attributable to cellular responses and EV molecular packaging. These observations point to the potential significance of changes in the angiogenic signature and activity associated with EVs released from tumor cells subjected to targeted therapy.

  9. Enhanced Detection of Cancer Biomarkers in Blood-Borne Extracellular Vesicles Using Nanodroplets and Focused Ultrasound.

    Science.gov (United States)

    Paproski, Robert J; Jovel, Juan; Wong, Gane Ka-Shu; Lewis, John D; Zemp, Roger J

    2017-01-01

    The feasibility of personalized medicine approaches will be greatly improved by the development of noninvasive methods to interrogate tumor biology. Extracellular vesicles shed by solid tumors into the bloodstream have been under recent investigation as a source of tumor-derived biomarkers such as proteins and nucleic acids. We report here an approach using submicrometer perfluorobutane nanodroplets and focused ultrasound to enhance the release of extracellular vesicles from specific locations in tumors into the blood. The released extracellular vesicles were enumerated and characterized using micro flow cytometry. Only in the presence of nanodroplets could ultrasound release appreciable levels of tumor-derived vesicles into the blood. Sonication of HT1080-GFP tumors did not increase the number of circulating tumor cells or the metastatic burden in the tumor-bearing embryos. A variety of biological molecules were successfully detected in tumor-derived extracellular vesicles, including cancer-associated proteins, mRNAs, and miRNAs. Sonication of xenograft HT1080 fibrosarcoma tumors released extracellular vesicles that contained detectable RAC1 mRNA with the highly tumorigenic N92I mutation known to exist in HT1080 cells. Deep sequencing serum samples of embryos with sonicated tumors allowed the identification of an additional 13 known heterozygous mutations in HT1080 cells. Applying ultrasound to HT1080 tumors increased tumor-derived DNA in the serum by two orders of magnitude. This work is the first demonstration of enhanced extracellular vesicle release by ultrasound stimulation and suggests that nanodroplets/ultrasound offers promise for genetic profiling of tumor phenotype and aggressiveness by stimulating the release of extracellular vesicles. Cancer Res; 77(1); 3-13. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Extracellular vesicles and a novel form of communication in the brain

    Directory of Open Access Journals (Sweden)

    Manuela eBasso

    2016-03-01

    Full Text Available In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.

  11. Extracellular Vesicles in Cardiovascular Disease: Potential Applications in Diagnosis, Prognosis, and Epidemiology.

    Science.gov (United States)

    Jansen, Felix; Nickenig, Georg; Werner, Nikos

    2017-05-12

    Extracellular vesicles originate from diverse subcellular compartments and are released in the extracellular space. By transferring their cargoes into target cells and tissues, they now emerge as novel regulators of intercellular communication between adjacent and remote cells. Because vesicle composition and biological content are specific signatures of cellular activation and injury, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Characterization of circulating vesicles- or nonvesicles-bound nucleic acids represents a valuable tool for diagnosing and monitoring cardiovascular diseases, recently referred to as a liquid biopsy. Circulating extracellular vesicles offer a noninvasive and almost continuous access to circulating information on the disease state in epidemiological investigations. Finally, genetic engineering and cell-specific application of extracellular vesicles could display a novel therapeutic option for the treatment of cardiovascular diseases. In this review, we summarize the current knowledge about extracellular vesicles as diagnostic and prognostic biomarkers, as well as their potential applications for longitudinal epidemiological studies in cardiovascular diseases. © 2017 American Heart Association, Inc.

  12. Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes.

    Science.gov (United States)

    McBride, Jeffrey D; Rodriguez-Menocal, Luis; Badiavas, Evangelos V

    2017-08-01

    Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) are ubiquitous in human tissues, circulation, and body fluids. Of these vesicles, exosomes are of growing interest among investigators across multiple fields, including dermatology. The characteristics of exosomes, their associated cargo (nucleic acids, proteins, and lipids), and downstream functions are vastly different, depending on the cell origin. Here, we review concepts in extracellular vesicle biology, with a focus on exosomes, highlighting recent studies in the field of dermatology. Furthermore, we highlight emerging technical issues associated with isolating and measuring exosomes. Extracellular vesicles, including exosomes, have immediate potential for serving as biomarkers and therapeutics in dermatology over the next decade. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. α-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers.

    Science.gov (United States)

    DeWitt, David C; Rhoades, Elizabeth

    2013-04-09

    The native function of α-synuclein is thought to involve regulation of synaptic vesicle trafficking. Recent work has also implicated a role in neurotransmission, possibly through interactions with the proteins involved in synaptic vesicle fusion. Here, we demonstrate that α-synuclein inhibits SNARE-mediated vesicle fusion through binding the membrane, without a direct interaction between α-synuclein and any of the SNARE proteins. This work supports a model in which α-synuclein plays a role in the regulation of vesicle fusion by modulating properties of the lipid bilayer.

  14. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    OpenAIRE

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A.; del Portillo, Hernando A.; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M.; Felderhoff-Mueser, Ursula; Fraile, Lorenzo

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs ...

  15. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper

    NARCIS (Netherlands)

    Mateescu, Bogdan; Kowal, Emma J K; van Balkom, Bas W M; Bartel, Sabine; Bhattacharyya, Suvendra N; Buzás, Edit I; Buck, Amy H; de Candia, Paola; Chow, Franklin W N; Das, Saumya; Driedonks, Tom A P; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F; Jones, Jennifer C; Van Keuren-Jensen, Kendall R; Lai, Charles P; Lässer, Cecilia; Liegro, Italia di; Lunavat, Taral R; Lorenowicz, Magdalena J; Maas, Sybren L N; Mäger, Imre; Mittelbrunn, Maria; Momma, Stefan; Mukherjee, Kamalika; Nawaz, Muhammed; Pegtel, D Michiel; Pfaffl, Michael W; Schiffelers, Raymond M|info:eu-repo/dai/nl/212909509; Tahara, Hidetoshi; Théry, Clotilde; Tosar, Juan Pablo; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Nolte-'t Hoen, Esther N M

    2017-01-01

    The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to

  16. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - An ISEV position paper

    NARCIS (Netherlands)

    Mateescu, Bogdan; Kowal, Emma J K; van Balkom, Bas W M|info:eu-repo/dai/nl/256594783; Bartel, Sabine; Bhattacharyya, Suvendra N.; Buzás, Edit I.; Buck, Amy H.; de Candia, Paola; Chow, Franklin W N; Das, Saumya; Driedonks, Tom A P; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F.; Jones, Jennifer C.; Van Keuren-Jensen, Kendall R.; Lai, Charles P.; Lässer, Cecilia; di Liegro, Italia; Lunavat, Taral R.; Lorenowicz, Magdalena J.; Maas, Sybren L N; Mäger, Imre; Mittelbrunn, Maria; Momma, Stefan; Mukherjee, Kamalika; Nawaz, Muhammed; Pegtel, D. Michiel; Pfaffl, Michael W.; Schiffelers, Raymond M.|info:eu-repo/dai/nl/212909509; Tahara, Hidetoshi; Théry, Clotilde; Tosar, Juan Pablo; Wauben, Marca H M; Witwer, Kenneth W.; Nolte-'t Hoen, Esther N M

    2017-01-01

    The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to

  17. AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs.

    Science.gov (United States)

    Collino, Federica; Bruno, Stefania; Incarnato, Danny; Dettori, Daniela; Neri, Francesco; Provero, Paolo; Pomatto, Margherita; Oliviero, Salvatore; Tetta, Ciro; Quesenberry, Peter J; Camussi, Giovanni

    2015-10-01

    Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell-promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stromal cells depleted of Drosha to alter microRNA expression. Drosha-knockdown cells produced extracellular vesicles that did not differ from those of wild-type cells in quantity, surface molecule expression, and internalization within renal tubular epithelial cells. However, these vesicles showed global downregulation of microRNAs. Whereas wild-type mesenchymal stromal cells and derived vesicles administered intravenously induced morphologic and functional recovery in AKI, the Drosha-knockdown counterparts were ineffective. RNA sequencing analysis showed that kidney genes deregulated after injury were restored by treatment with mesenchymal stromal cells and derived vesicles but not with Drosha-knockdown cells and vesicles. Gene ontology analysis showed in AKI an association of downregulated genes with fatty acid metabolism and upregulated genes with inflammation, matrix-receptor interaction, and cell adhesion molecules. These alterations reverted after treatment with wild-type mesenchymal stromal cells and extracellular vesicles but not after treatment with the Drosha-knockdown counterparts. In conclusion, microRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI. Copyright © 2015 by the American Society of Nephrology.

  18. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta.

    Science.gov (United States)

    Tzelos, Thomas; Matthews, Jacqueline B; Buck, Amy H; Simbari, Fabio; Frew, David; Inglis, Neil F; McLean, Kevin; Nisbet, Alasdair J; Whitelaw, C Bruce A; Knox, David P; McNeilly, Tom N

    2016-05-15

    Teladorsagia circumcincta is a major cause of ovine parasitic gastroenteritis in temperate climatic regions. The development of high levels of anthelmintic resistance in this nematode species challenges its future control. Recent research indicates that many parasite species release extracellular vesicles into their environment, many of which have been classified as endocytic in origin, termed exosomes. These vesicles are considered to play important roles in the intercellular communication between parasites and their hosts, and thus represent potentially useful targets for novel control strategies. Here, we demonstrate that exosome-like extracellular vesicles can be isolated from excretory-secretory (ES) products released by T. circumcincta fourth stage larvae (Tci-L4ES). Furthermore, we perform a comparative proteomic analysis of vesicle-enriched and vesicle-free Tci-L4ES. Approximately 73% of the proteins identified in the vesicle-enriched fraction were unique to this fraction, whilst the remaining 27% were present in both vesicle-enriched and vesicle-free fraction. These unique proteins included structural proteins, nuclear proteins, metabolic proteins, proteolytic enzymes and activation-associated secreted proteins. Finally, we demonstrate that molecules present within the vesicles-enriched material are targets of the IgA and IgG response in T. circumcincta infected sheep, and could potentially represent useful targets for future vaccine intervention studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Transcriptomic profiling of platelet senescence and platelet extracellular vesicles.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Konovalova, Tatiana; Musri, Melina M; Sigruener, Alexander; Boettcher, Alfred; Meister, Gunter; Schmitz, Gerd

    2017-01-01

    Platelets (PLTs) are derived from megakaryocytes during PLT shedding. Senescent or activated PLTs are expanded in vascular and neurological diseases and release PLT extracellular vesicles (PL-EVs). A systematic analysis of regular messenger RNA (mRNA) and small RNA composition in PLTs and PL-EVs during in vitro PLT senescence has not yet been published. We isolated PLTs, total PL-EVs, and PL-EV subsets on Days 0 and 5 from human stored donor platelet concentrates. Isolated mRNA species and microRNA (miRNA) species were analyzed by microarrays and deep sequencing. Correlation of mRNA and miRNA species (miR) and miRNA target analyses were performed using bioinformatics. During in vitro PLT senescence, residual PLT mRNA species were decreased and partially converted to miRNA species. Residual mRNAs included encoded genes relevant for atherosclerosis, inflammation (matrix metallopeptidase 14 [MMP-14], granulin [GRN], angiopoietin like 2 [ANGPTL2]), and neurotransmission (dopamine receptor 2 [DRD2], γ-aminobutyric acid type A receptor ρ3 [GABRR3]). Compared with senescent PLTs, PL-EVs have up-regulated their miRNA species involved in "diabesity" and in vascular and metabolic disease (miR-144-3p, miR-486-5p, miR-142-5p, miR-451a, miR-25-3p, miR-145-5p, and let-7f-5p). The 100 highest expressed PL-EV miRNA species determined by microarrays were compared with the 100 highest expressed PL-EV miRNA species detected by deep sequencing. This approach resulted in 66 overlaps. The regulated miRNAs (assessed by both methods) were related to neurological disorders, including targets for Alzheimer's disease (e.g., β-site amyloid precursor protein APP-cleaving enzyme 1 [BACE1], translocase of outer mitochondrial membrane 40 homolog [TOMM40], neuron navigator 3 [NAV3]). During in vitro senescence, PLTs degrade large RNA species. Concomitantly, they up-regulate a distinct set of known small RNA species involved in atherosclerosis, inflammation, and neurodegeneration. PL-EVs enrich

  20. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  1. Oral swirl samples - a robust source of microRNA protected by extracellular vesicles.

    Science.gov (United States)

    Yap, T; Vella, L J; Seers, C; Nastri, A; Reynolds, E; Cirillo, N; McCullough, M

    2017-04-01

    MicroRNAs are small non-coding RNAs which are dysregulated in disease states, such as oral cancer. Extracellular vesicles, a potential source of microRNA, are found in saliva. To demonstrate that a quantifiable amount of microRNA can be isolated from oral swirl samples. Additionally, we hypothesized that extracellular vesicles may protect contained microRNA from degradation in these samples. A polyethylene glycol-based precipitation was used for extracellular vesicle enrichment of oral swirl samples. Comparison was made between samples treated with and without RNase. Further, samples from three subjects were exposed to a range of conditions over 7 days and assessed for presence of microRNA by reverse-transcription quantitative PCR. Extracellular vesicles from samples were identified under transmission electron microscopy. An adequate quantity of microRNA for qPCR analysis was extractable from samples despite exposure to conditions under which degradation of RNA would be expected. A technique was developed to isolate an adequate quantity of microRNA for analysis from oral swirl samples. Extracellular vesicle-associated microRNA may be protected from degradation. This technique moves towards chairside application of translational microRNA research in the field of oral cancer prognostics. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity.

    Science.gov (United States)

    Milbank, Edward; Martinez, M Carmen; Andriantsitohaina, Ramaroson

    2016-01-01

    Obesity and its metabolic resultant dysfunctions such as insulin resistance, hyperglycemia, dyslipidemia and hypertension, grouped as the "metabolic syndrome", are chronic inflammatory disorders that represent one of the most severe epidemic health problems. The imbalance between energy intake and expenditure, leading to an excess of body fat and an increase of cardiovascular and diabetes risks, is regulated by the interaction between central nervous system (CNS) and peripheral signals in order to regulate behavior and finally, the metabolism of peripheral organs. At present, pharmacological treatment of obesity comprises actions in both CNS and peripheral organs. In the last decades, the extracellular vesicles have emerged as participants in many pathophysiological regulation processes. Whether used as biomarkers, targets or even tools, extracellular vesicles provided some promising effects in the treatment of a large variety of diseases. Extracellular vesicles are released by cells from the plasma membrane (microvesicles) or from multivesicular bodies (exosomes) and contain lipids, proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Owing to their composition, extracellular vesicles can (i) activate receptors at the target cell and then, the subsequent intracellular pathway associated to the specific receptor; (ii) transfer molecules to the target cells and thereby change their phenotype and (iii) be used as shuttle of drugs and, thus, to carry specific molecules towards specific cells. Herein, we review the impact of extracellular vesicles in modulating the central and peripheral signals governing obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and preeclampsia.

    Science.gov (United States)

    Göhner, Claudia; Plösch, Torsten; Faas, Marijke M

    2017-12-01

    Unique immunologic adaptations exist to successfully establish and maintain pregnancy and to avoid an immune attack against the semi allogenic fetus. These adaptations occur both locally at the maternofetal interface and in the peripheral circulation and affect the innate as well as the adaptive immune system. Pregnancy is characterized by a general inflammatory state with activation of monocytes and granulocytes, but also with suppressive lymphocytes (regulatory T cells), and skewing towards T helper 2 immunity. The pregnancy complication preeclampsia is associated with an exaggerated inflammatory state and predominance of T helper 1 and 17 immunity. The syncytiotrophoblast has been found to secrete extracellular vesicles as communication factors into the maternal circulation. Syncytiotrophoblast extracellular vesicles from normal pregnancy have been shown to interact with monocytes, granulocytes, T cells and natural killer cells and influence the function of these cells. In doing so, they may support the inflammatory state of normal pregnancy as well as the suppressive lymphocyte phenotype. During preeclampsia, syncytiotrophoblast extracellular vesicles are not only increased in numbers but also showed an altered molecular load. Based on data from in vitro studies, it can be suggested that syncytiotrophoblast extracellular vesicles from preeclamptic pregnancies may support the exaggerated inflammatory state during preeclampsia. In this review, we discuss the immunological functions of syncytiotrophoblast extracellular vesicles and their involvement in adapting the maternal peripheral immunological adaptations to pregnancy. Copyright © 2017 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  4. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    Science.gov (United States)

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  5. Formation of supported lipid bilayers by vesicle fusion

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup; Cardenas Gomez, Marite; Wacklin, Hanna

    2014-01-01

    phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid......We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main...... bilayers formed below or above Tmby neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses...

  6. Therapeutic application of extracellular vesicles in acute and chronic renal injury

    Directory of Open Access Journals (Sweden)

    Jordi Rovira

    2017-03-01

    Full Text Available A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation.

  7. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2017-07-01

    Full Text Available The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs, can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies.

  8. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links

    Science.gov (United States)

    Nawaz, Muhammad; Fatima, Farah

    2017-01-01

    The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies. PMID:28770210

  9. New insights in the composition of extracellular vesicles from pancreatic cancer cells: implications for biomarkers and functions.

    Science.gov (United States)

    Klein-Scory, Susanne; Tehrani, Mahnaz Moradian; Eilert-Micus, Christina; Adamczyk, Kamila A; Wojtalewicz, Nathalie; Schnölzer, Martina; Hahn, Stephan A; Schmiegel, Wolff; Schwarte-Waldhoff, Irmgard

    2014-01-01

    Pancreatic cancer development is associated with characteristic alterations like desmoplastic reaction and immune escape which are mediated by the cell-cell communication mechanism and by the microenvironment of the cells. The whole of released components are important determinants in these processes. Especially the extracellular vesicles released by pancreatic cancer cells play a role in cell communication and modulate cell growth and immune responses. Here, we present the proteomic description of affinity purified extracellular vesicles from pancreatic tumour cells, compared to the secretome, defined as the whole of the proteins released by pancreatic cancer cells. The proteomic data provide comprehensive catalogues of hundreds of proteins, and the comparison reveals a special proteomic composition of pancreatic cancer cell derived extracellular vesicles. The functional analysis of the protein composition displayed that membrane proteins, glycoproteins, small GTP binding proteins and a further, heterogeneous group of proteins are enriched in vesicles, whereas proteins derived from proteasomes and ribosomes, as well as metabolic enzymes, are not components of the vesicles. Furthermore proteins playing a role in carcinogenesis and modulators of the extracellular matrix (ECM) or cell-cell interactions are components of affinity purified extracellular vesicles. The data deepen the knowledge of extracellular vesicle composition by hundreds of proteins that have not been previously described as vesicle components released by pancreatic cancer cells. Extracellular vesicles derived from pancreatic cancer cells show common proteins shared with other vesicles as well as cell type specific proteins indicating biomarker candidates and suggesting functional roles in cancer cell stroma interactions.

  10. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire.

    Science.gov (United States)

    Kalamvoki, Maria; Deschamps, Thibaut

    2016-04-05

    Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell organisms such as bacteria generate extracellular vesicles. In addition, several viruses have evolved strategies to hijack the extracellular vesicles for egress or to alter the surrounding environment. The thesis of this article is that: a) during HSV-1 infection vesicles are delivered from infected to uninfected cells that influence the infection; b) the cargo of these vesicles consists of viral and host transcripts (mRNAs, miRNAs and non-coding RNAs) and proteins including innate immune components, such as STING; and c) the viral vesicles carry the tetraspanins CD9, CD63 and CD81, which are considered as markers of exosomes. Therefore, we assume that the STING-carrying vesicles, produced during HSV-1 infection, are reminiscent to exosomes. The presumed functions of the exosomes released from HSV-1 infected cells include priming the recipient cells and accelerating antiviral responses to control the dissemination of the virus. This may be one strategy used by the virus to prevent the elimination by the host and establish persistent infection. In conclusion, the modification of the cargo of exosomes appears to be part of the strategy that HSV-1 has evolved to establish lifelong persistent infections into the human body to ensure successful dissemination between individuals.

  11. AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility.

    Science.gov (United States)

    Silva, Thaiomara A; Smuczek, Basílio; Valadão, Iuri C; Dzik, Luciana M; Iglesia, Rebeca P; Cruz, Mário C; Zelanis, André; de Siqueira, Adriane S; Serrano, Solange M T; Goldberg, Gary S; Jaeger, Ruy G; Freitas, Vanessa M

    2016-08-02

    Extracellular vesicles play important roles in tumor development. Many components of these structures, including microvesicles and exosomes, have been defined. However, mechanisms by which extracellular vesicles affect tumor progression are not fully understood. Here, we investigated vesicular communication between mammary carcinoma cells and neighboring nontransformed mammary fibroblasts. Nonbiased proteomic analysis found that over 1% of the entire proteome is represented in these vesicles, with the neuroblast differentiation associated protein AHNAK and annexin A2 being the most abundant. In particular, AHNAK was found to be the most prominent component of these vesicles based on peptide number, and appeared necessary for their formation. In addition, we report here that carcinoma cells produce vesicles that promote the migration of recipient fibroblasts. These data suggest that AHNAK enables mammary carcinoma cells to produce and release extracellular vesicles that cause disruption of the stroma by surrounding fibroblasts. This paradigm reveals fundamental mechanisms by which vesicular communication between carcinoma cells and stromal cells can promote cancer progression in the tumor microenvironment.

  12. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  13. Extracellular vesicles, tissue factor, cancer and thrombosis – discussion themes of the ISEV 2014 Educational Day

    Directory of Open Access Journals (Sweden)

    Chris Gardiner

    2015-03-01

    Full Text Available Although the association between cancer and venous thromboembolism (VTE has long been known, the mechanisms are poorly understood. Circulating tissue factor–bearing extracellular vesicles have been proposed as a possible explanation for the increased risk of VTE observed in some types of cancer. The International Society for Extracellular Vesicles (ISEV and International Society on Thrombosis and Haemostasis (ISTH held a joint Educational Day in April 2014 to discuss the latest developments in this field. This review discusses the themes of that event and the ISEV 2014 meeting that followed.

  14. Extracellular vesicles: a platform for the structure determination of membrane proteins by Cryo-EM.

    Science.gov (United States)

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Siebert, C Alistair; Whittle, Cathy; Grünewald, Kay

    2014-11-04

    Membrane protein-enriched extracellular vesicles (MPEEVs) provide a platform for studying intact membrane proteins natively anchored with the correct topology in genuine biological membranes. This approach circumvents the need to conduct tedious detergent screens for solubilization, purification, and reconstitution required in classical membrane protein studies. We have applied this method to three integral type I membrane proteins, namely the Caenorhabditis elegans cell-cell fusion proteins AFF-1 and EFF-1 and the glycoprotein B (gB) from Herpes simplex virus type 1 (HSV1). Electron cryotomography followed by subvolume averaging allowed the 3D reconstruction of EFF-1 and HSV1 gB in the membrane as well as an analysis of the spatial distribution and interprotein interactions on the membrane. MPEEVs have many applications beyond structural/functional investigations, such as facilitating the raising of antibodies, for protein-protein interaction assays or for diagnostics use, as biomarkers, and possibly therapeutics. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication.

    Science.gov (United States)

    Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M

    2014-03-03

    Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A novel method for the isolation of extracellular vesicles and RNA from urine.

    Science.gov (United States)

    Markowska, Anna; Pendergrast, R Scott; Pendergrast, J Stephen; Pendergrast, P Shannon

    2017-01-01

    The discovery of urinary extracellular biomarkers has been impeded by the lack of efficient methods for the isolation of extracellular vesicles (EVs: exosomes and microvesicles) and extracellular nucleic acid (RNA and DNA) from urine. Ultracentrifugation (UC), considered the gold standard for vesicle isolation from many biofluids, is efficacious but laborious, and, like most commercially available methods, is unable to isolate enough material from small volumes for protein or RNA-based biomarker discovery. We have developed a novel precipitation method for the isolation of EVs and nucleic acids from urine. The method, which is now commercially available, takes less than 30 min and does not require polyethylene glycol. Transmission electron microscopy and Nanosight particle analysis confirm that the method isolates intact vesicles with a similar size, shape, and number to UC. Immunoblot analysis of preparations made from a variety of urine samples demonstrates that the method isolates multiple vesicle protein markers more efficiently than other commercial kits, especially from more diluted samples. Bioanalyzer, quantitative reverse transcription polymerase chain reaction, and array analysis show that the method is extremely efficient at the isolation of extracellular miRNAs. The Ymir Genomics EV and Extracellular RNA Isolation Kits offer an efficient and rapid alternative to UC and other commercial kits.

  17. A novel method for the isolation of extracellular vesicles and RNA from urine

    Directory of Open Access Journals (Sweden)

    Anna Markowska

    2017-06-01

    Full Text Available The discovery of urinary extracellular biomarkers has been impeded by the lack of efficient methods for the isolation of extracellular vesicles (EVs: exosomes and microvesicles and extracellular nucleic acid (RNA and DNA from urine. Ultracentrifugation (UC, considered the gold standard for vesicle isolation from many biofluids, is efficacious but laborious, and, like most commercially available methods, is unable to isolate enough material from small volumes for protein or RNA-based biomarker discovery. We have developed a novel precipitation method for the isolation of EVs and nucleic acids from urine. The method, which is now commercially available, takes less than 30 min and does not require polyethylene glycol. Transmission electron microscopy and Nanosight particle analysis confirm that the method isolates intact vesicles with a similar size, shape, and number to UC. Immunoblot analysis of preparations made from a variety of urine samples demonstrates that the method isolates multiple vesicle protein markers more efficiently than other commercial kits, especially from more diluted samples. Bioanalyzer, quantitative reverse transcription polymerase chain reaction, and array analysis show that the method is extremely efficient at the isolation of extracellular miRNAs. The Ymir Genomics EV and Extracellular RNA Isolation Kits offer an efficient and rapid alternative to UC and other commercial kits.

  18. Single-step isolation of extracellular vesicles by size-exclusion chromatography.

    Science.gov (United States)

    Böing, Anita N; van der Pol, Edwin; Grootemaat, Anita E; Coumans, Frank A W; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. To develop a single-step protocol to isolate vesicles from human body fluids. Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Fractions 9-12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18-20 (32%±2 of total), and protein in fractions 19-21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9-12, with an 8-fold and 70-fold enrichment compared to HDL and protein. SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles.

  19. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    Directory of Open Access Journals (Sweden)

    Anita N. Böing

    2014-09-01

    Full Text Available Background: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim: To develop a single-step protocol to isolate vesicles from human body fluids. Methods: Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3. Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL and protein were measured in each fraction. Results: Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively, but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively. HDL was present mainly in fractions 18–20 (32%±2 of total, and protein in fractions 19–21 (36%±2 of total. Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions: SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles.

  20. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    Science.gov (United States)

    Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim To develop a single-step protocol to isolate vesicles from human body fluids. Methods Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. PMID:25279113

  1. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - An ISEV position paper

    OpenAIRE

    Mateescu, Bogdan; Kowal, Emma J K; van Balkom, Bas W. M.; Bartel, Sabine; Bhattacharyya, Suvendra N.; Buzás, Edit I.; Buck, Amy H; de Candia, Paola; Chow, Franklin W. N.; Das, Saumya; Driedonks, Tom A. P.; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F.; Jones, Jennifer C.

    2017-01-01

    ABSTRACT The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, ...

  2. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper

    OpenAIRE

    Mateescu, Bogdan; Kowal, Emma; Balkom, Bastiaan Wilhelmus Maria van; Bartel, Sabine; Bhattacharyya, Suvendra N.; Buzás, Edit I.; Buck, Amy H.; de-Candia, Paola; Chow, Franklin W. N.; Das, Saumya; Driedonks, Tom A. P.; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F.; Jones, Jennifer C.

    2017-01-01

    The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and indus...

  3. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research

    OpenAIRE

    Witwer, Kenneth W.; Buzás, Edit I.; Bemis, Lynne T.; Bora, Adriana; Lässer, Cecilia; Lötvall, Jan; Nolte-‘t Hoen, Esther N.; Piper, Melissa G.; Sivaraman, Sarada; Skog, Johan; Théry, Clotilde; Hochberg, Fred; Wauben, Marca H.

    2013-01-01

    The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techn...

  4. Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Cruz, Lilian; Arevalo Romero, Jenny Andrea; Brandão Prado, Mariana; Santos, Tiago G; Hohmuth Lopes, Marilene

    2017-10-14

    Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.

  5. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.

    NARCIS (Netherlands)

    Hoekstra, D.

    1982-01-01

    The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue

  6. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-09

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature.

    Science.gov (United States)

    Fernandez-Calero, Tamara; Garcia-Silva, Rosa; Pena, Alvaro; Robello, Carlos; Persson, Helena; Rovira, Carlos; Naya, Hugo; Cayota, Alfonso

    2015-01-01

    Over the last years, an expanding family of small regulatory RNAs (e.g. microRNAs, siRNAs and piRNAs) was recognized as key players in novel forms of post-transcriptional gene regulation in most eukaryotes. However, the machinery associated with Ago/Dicer-dependent small RNA biogenesis was thought to be either entirely lost or extensively simplified in some unicellular organisms including Trypanosoma cruzi, Saccharomyces cerevisiae, Leishmania major and Plasmodium falciparum. Although the biogenesis of small RNAs from non-coding RNAs represent a minor fraction of the normal small RNA transcriptome in eukaryotic cells, they represent the unique small RNA pathways in Trypanosoma cruzi which produce different populations of small RNAs derived from tRNAs, rRNAs, sn/snoRNAs and mRNAs. These small RNAs are secreted included in extracellular vesicles and transferred to other parasites and susceptible mammalian cells. This process represents a novel form of cross-kingdom transfer of genetic material suggesting that secreted vesicles could represent new relevant pieces in life cycle transitions, infectivity and cell-to-cell communication. Here, we provide for the first time a detailed analysis of the small RNA cargo of extracellular vesicles from T. cruzi epimastigotes under nutritional stress conditions compared to the respective intracellular compartment using deep sequencing. Compared with the intracellular compartment, shed extracellular vesicles showed a specific extracellular signature conformed by distinctive patterns of small RNAs derived from rRNA, tRNA, sno/snRNAs and protein coding sequences which evidenced specific secretory small RNA processing pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization of extracellular vesicles and their behavior : Method development and applications

    NARCIS (Netherlands)

    van Dommelen, SM|info:eu-repo/dai/nl/337396639

    2016-01-01

    Extracellular vesicles (EVs) can transfer RNA molecules from one cell to another, thereby changing the phenotype of recipient cells. EVs play a role in several (patho)physiological conditions, which makes them attractive candidates for biomarker research. Moreover, the ability of EVs to functionally

  9. A New Enzyme-linked Sorbent Assay (ELSA) to Quantify Syncytiotrophoblast Extracellular Vesicles in Biological Fluids

    NARCIS (Netherlands)

    Goehner, Claudia; Weber, Maja; Tannetta, Dionne S.; Groten, Tanja; Ploesch, Torsten; Faas, Marijke M.; Scherjon, Sicco A.; Schleussner, Ekkehard; Markert, Udo R.; Fitzgerald, Justine S.

    ProblemThe pregnancy-associated disease preeclampsia is related to the release of syncytiotrophoblast extracellular vesicles (STBEV) by the placenta. To improve functional research on STBEV, reliable and specific methods are needed to quantify them. However, only a few quantification methods are

  10. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models

    NARCIS (Netherlands)

    Arntz, O.J.; Pieters, B.C.; Oliveira, M.C.; Broeren, M.G.A.; Bennink, M.B.; Vries, M. de; Lent, P.L.E.M. van; Koenders, M.I.; Berg, W.B. van den; Kraan, P.M. van der; Loo, F.A.J. van de

    2015-01-01

    SCOPE: This study shows the effect of bovine milk derived extracellular vesicles (BMEVs) on spontaneous polyarthritis in IL-1Ra-deficient mice and collagen-induced arthritis. METHODS AND RESULTS: BMEVs were isolated from semi-skimmed milk by ultracentrifugation and the particle size was around 100

  11. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages

    NARCIS (Netherlands)

    Kranendonk, Mariëtte E G; Visseren, Frank L J; van Balkom, Bas W M; Nolte-'t Hoen, Esther N M; van Herwaarden, Joost A; de Jager, Wilco; Schipper, Henk S; Brenkman, Arjan B; Verhaar, Marianne C; Wauben, Marca H M; Kalkhoven, Eric

    2014-01-01

    OBJECTIVE: Extracellular vesicles (EVs) released by human adipocytes or adipose tissue (AT)-explants play a role in the paracrine interaction between adipocytes and macrophages, a key mechanism in AT inflammation, leading to metabolic complications like insulin resistance (IR) were determined.

  12. Handling and storage of human body fluids for analysis of extracellular vesicles

    NARCIS (Netherlands)

    Yuana, Yuana; Böing, Anita N.; Grootemaat, Anita E.; van der Pol, Edwin; Hau, Chi M.; Cizmar, Petr; Buhr, Egbert; Sturk, Auguste; Nieuwland, Rienk

    2015-01-01

    Because procedures of handling and storage of body fluids affect numbers and composition of extracellular vesicles (EVs), standardization is important to ensure reliable and comparable measurements of EVs in a clinical environment. We aimed to develop standard protocols for handling and storage of

  13. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells

    NARCIS (Netherlands)

    Kranendonk, Mariëtte E G; Visseren, Frank L J; van Herwaarden, Joost A; Nolte-'t Hoen, Esther N M; de Jager, Wilco; Wauben, Marca H M; Kalkhoven, Eric; Nolte - t Hoen, Esther

    2014-01-01

    OBJECTIVE: Insulin resistance (IR) is a key mechanism in obesity-induced cardiovascular disease. To unravel mechanisms whereby human adipose tissue (AT) contributes to systemic IR, the effect of human AT-extracellular vesicles (EVs) on insulin signaling in liver and muscle cells was determined.

  14. Extracellular vesicles, tissue factor, cancer and thrombosis - discussion themes of the ISEV 2014 Educational Day

    NARCIS (Netherlands)

    Gardiner, Chris; Harrison, Paul; Belting, Mattias; Böing, Anita; Campello, Elena; Carter, Bob S.; Collier, Mary E.; Coumans, Frank; Ettelaie, Camille; van Es, Nick; Hochberg, Fred H.; Mackman, Nigel; Rennert, Robert C.; Thaler, Johannes; Rak, Janusz; Nieuwland, Rienk

    2015-01-01

    Although the association between cancer and venous thromboembolism (VTE) has long been known, the mechanisms are poorly understood. Circulating tissue factor-bearing extracellular vesicles have been proposed as a possible explanation for the increased risk of VTE observed in some types of cancer.

  15. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation

    NARCIS (Netherlands)

    Yuana, Yuana; Levels, Johannes; Grootemaat, Anita; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) facilitate intercellular communication by carrying bioactive molecules such as proteins, messenger RNA, and micro (mi)RNAs. Recently, high-density lipoproteins (HDL) isolated from human plasma were also reported to transport miRNA to other cells. HDL, when isolated from

  16. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics...

  17. Biochemical and structural features of extracellular vesicle-binding RNA aptamers

    Science.gov (United States)

    Murakami, Kazuyoshi; Zhao, Jing; Yamasaki, Kazuhiko; Miyagishi, Makoto

    2017-01-01

    Extracellular vesicles are particles in mammalian body fluids that have attracted considerable attention as biomarkers for various diseases. In the present study, the authors isolated RNA aptamers with an affinity for extracellular vesicles from two library pools that encoded randomized sequences of different lengths. After the several rounds of selection, two conserved motifs are identified in the sequences that are obtained by next-generation sequencing. Most of the sequences were predicted to adopt a secondary structure that consisted of a non-conserved stem structure and a conserved loop sequence. Two minimal similar sequences are synthesized and confirmed the ability of these sequences to bind to extracellular vesicles. Circular dichroism spectroscopy and melting temperature analysis demonstrated that the aptamers were able to form a G-quadruplex structure in their loop regions and these structures were stabilized by potassium ions. Consistent with these structural data, the affinity of each aptamer for extracellular vesicles was dependent on potassium ions. The aptamers that were identified may be useful molecular tools for the development of diagnostic methods that utilize body fluids, such as blood, saliva and urine. PMID:28584632

  18. miRNA profiling of circulating EpCAM(+) extracellular vesicles

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics...

  19. Techniques used for the isolation and characterization of extracellular vesicles : results of a worldwide survey

    NARCIS (Netherlands)

    Gardiner, Chris; Di Vizio, Dolores; Sahoo, Susmita; Théry, Clotilde; Witwer, Kenneth W; Wauben, Marca|info:eu-repo/dai/nl/112675735; Hill, Andrew F

    2016-01-01

    Extracellular vesicles (EVs) represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous

  20. EV-TRACK : transparent reporting and centralizing knowledge in extracellular vesicle research

    NARCIS (Netherlands)

    Van Deun, Jan; Mestdagh, Pieter; Agostinis, Patrizia; Akay, Özden; Anand, Sushma; Anckaert, Jasper; Martinez, Zoraida Andreu; Baetens, Tine; Beghein, Els; Bertier, Laurence; Berx, Geert; Boere, Janneke|info:eu-repo/dai/nl/371593050; Boukouris, Stephanie; Bremer, Michel; Buschmann, Dominik; Byrd, James B; Casert, Clara; Cheng, Lesley; Cmoch, Anna; Daveloose, Delphine; De Smedt, Eva; Demirsoy, Seyma; Depoorter, Victoria; Dhondt, Bert; Driedonks, Tom A P; Dudek, Aleksandra; Elsharawy, Abdou; Floris, Ilaria; Foers, Andrew D; Gärtner, Kathrin; Garg, Abhishek D; Geeurickx, Edward; Gettemans, Jan; Ghazavi, Farzaneh; Giebel, Bernd; Kormelink, Tom Groot|info:eu-repo/dai/nl/31413137X; Hancock, Grace; Helsmoortel, Hetty; Hill, Andrew F; Hyenne, Vincent; Kalra, Hina; Kim, David; Kowal, Joanna; Kraemer, Sandra; Leidinger, Petra; Leonelli, Carina; Liang, Yaxuan; Lippens, Lien; Liu, Shu; Lo Cicero, Alessandra; Martin, Shaun; Mathivanan, Suresh; Mathiyalagan, Prabhu; Matusek, Támas; Milani, Gloria; Monguió-Tortajada, Marta; Mus, Liselot M; Muth, Dillon C; Németh, Andrea; Nolte-'t Hoen, Esther N M; O'Driscoll, Lorraine; Palmulli, Roberta; Pfaffl, Michael W; Primdal-Bengtson, Bjarke; Romano, Erminia; Rousseau, Quentin; Sahoo, Susmita; Sampaio, Natalia; Samuel, Monisha; Scicluna, Benjamin; Soen, Bieke; Steels, Anneleen; Swinnen, Johannes V; Takatalo, Maarit; Thaminy, Safia; Théry, Clotilde; Tulkens, Joeri; Van Audenhove, Isabel; van der Grein, Susanne|info:eu-repo/dai/nl/412755211; Van Goethem, Alan; van Herwijnen, Martijn J|info:eu-repo/dai/nl/313936021; Van Niel, Guillaume; Van Roy, Nadine; Van Vliet, Alexander R; Vandamme, Niels; Vanhauwaert, Suzanne; Vergauwen, Glenn; Verweij, Frederik; Wallaert, Annelynn; Wauben, Marca|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Zonneveld, Marijke I|info:eu-repo/dai/nl/338042202; De Wever, Olivier; Vandesompele, Jo; Hendrix, An

    2017-01-01

    We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the

  1. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool

    Science.gov (United States)

    Palmieri, Valentina; Lucchetti, Donatella; Gatto, Ilaria; Maiorana, Alessandro; Marcantoni, Margherita; Maulucci, Giuseppe; Papi, Massimiliano; Pola, Roberto; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.

  2. Quantitative and qualitative analysis of nano-sized vesicles released by dendritic cells and T cells. Towards deciphering the role of extracellular vesicles in immune cell communication

    NARCIS (Netherlands)

    van der Vlist, E.J.|info:eu-repo/dai/nl/314640908

    2013-01-01

    Many cell types release nano-sized vesicles, which can be found in body fluids as well as in cell culture-conditioned medium. These extracellular vesicles (EV) have been identified as vehicles for intercellular communication and are thought to be involved in many (patho)physiological processes. They

  3. From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis.

    Science.gov (United States)

    Giusti, Ilaria; Delle Monache, Simona; Di Francesco, Marianna; Sanità, Patrizia; D'Ascenzo, Sandra; Gravina, Giovanni Luca; Festuccia, Claudio; Dolo, Vincenza

    2016-09-01

    Glioblastoma has one of the highest mortality rates among cancers, and it is the most common and malignant form of brain cancer. Among the typical features of glioblastoma tumors, there is an aberrant vascularization: all gliomas are among the most vascularized/angiogenic tumors. In recent years, it has become clear that glioblastoma cells can secrete extracellular vesicles which are spherical and membrane-enclosed particles released, in vitro or in vivo, by both normal and tumor cells; they are involved in the regulation of both physiological and pathological processes; among the latter, cancer is the most widely studied. Extracellular vesicles from tumor cells convey messages to other tumor cells, but also to normal stromal cells in order to create a microenvironment that supports cancer growth and progression and are implicated in drug resistance, escape from immunosurveillance and from apoptosis, as well as in metastasis formation; they are also involved in angiogenesis stimulation, inducing endothelial cells proliferation, and other pro-angiogenic activities. To this aim, the present paper assesses in detail the extracellular vesicles phenomenon in the human glioblastoma cell line U251 and evaluates extracellular vesicles ability to promote the processes required to achieve the formation of new blood vessels in human brain microvascular endothelial cells, highlighting that they stimulate proliferation, motility, and tube formation in a dose-response manner. Moreover, a molecular characterization shows that extracellular vesicles are fully equipped for angiogenesis stimulation in terms of proteolytic enzymes (gelatinases and plasminogen activators), pro-angiogenic growth factors (VEGF and TGFβ), and the promoting-angiogenic CXCR4 chemokine receptor.

  4. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile.

    Science.gov (United States)

    Vermassen, Tijl; D'Herde, Katharina; Jacobus, Dominique; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Callewaert, Nico; Decaestecker, Karel; Villeirs, Geert; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2017-10-01

    Nowadays, extracellular vesicles are of great interest in prostate cancer (PCa) research. Asparagine (N)-linked glycosylation could play a significant role in the pathological mechanism of these vesicles. We investigated if prostatic protein N-glycosylation profiles were related to urinary vesicle-associated prostate-specific antigen (PSA) extractability and if this parameter showed diagnostic potential for PCa. Urinary extracellular vesicles were visualised using transmission electron microscopy. Urinary extracellular vesicles extraction by means of n -butanol allowed determination of urinary vesicle-associated PSA extractability. Diagnostic value was assessed between benign prostate hyperplasia (BPH; n=122) and patients with PCa (n=85). Additionally, correlation with urine N-glycosylation was assessed. Urinary extracellular vesicles with a diameter of approximately 100 nm were more abundantly present in urine of patients with PCa versus patients with BPH resulting in a higher vesicle-associated PSA extraction ratio (pvesicle-associated PSA extraction ratio was correlated to biantennary core-fucosylation (p=0.003). Finally, vesicle-associated PSA extraction ratio proved beneficial in PCa diagnosis, next to serum PSA and the urinary glycosylation marker (p=0.021). The urinary vesicle-associated PSA extraction ratio is increased in PCa which is a direct result of the abundant presence of extracellular vesicles in urine of patients with PCa. The urinary vesicle-associated PSA extraction ratio was associated with changes in N-glycoforms and showed diagnostic potential. Further research is warranted to unravel the pathological link between N-glycosylation and extracellular vesicles in cancer, as well as to assess the prognostic value of this biomarker. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  6. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering

    DEFF Research Database (Denmark)

    Mohrmann, Ralf; de Wit, Heidi; Connell, Emma

    2013-01-01

    that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle...... ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused...

  7. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    Science.gov (United States)

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles

    Science.gov (United States)

    Rider, Mark A.; Hurwitz, Stephanie N.; Meckes, David G.

    2016-01-01

    Initially thought to be a means for cells to eliminate waste, secreted extracellular vesicles, known as exosomes, are now understood to mediate numerous healthy and pathological processes. Though abundant in biological fluids, purifying exosomes has been challenging because their biophysical properties overlap with other secreted cell products. Easy-to-use commercial kits for harvesting exosomes are now widely used, but the relative low-purity and high-cost of the preparations restricts their utility. Here we describe a method for purifying exosomes and other extracellular vesicles by adapting methods for isolating viruses using polyethylene glycol. This technique, called ExtraPEG, enriches exosomes from large volumes of media rapidly and inexpensively using low-speed centrifugation, followed by a single small-volume ultracentrifugation purification step. Total protein and RNA harvested from vesicles is sufficient in quantity and quality for proteomics and sequencing analyses, demonstrating the utility of this method for biomarker discovery and diagnostics. Additionally, confocal microscopy studies suggest that the biological activity of vesicles is not impaired. The ExtraPEG method can be easily adapted to enrich for different vesicle populations, or as an efficient precursor to subsequent purification techniques, providing a means to harvest exosomes from many different biological fluids and for a wide variety of purposes. PMID:27068479

  9. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  10. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles.

    Science.gov (United States)

    Koliha, Nina; Heider, Ute; Ozimkowski, Tobias; Wiemann, Martin; Bosio, Andreas; Wild, Stefan

    2016-01-01

    Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient's plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient's plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells.

  11. Histamine stimulates secretion of extracellular vesicles with nucleotidase activity in rat submandibular gland.

    Science.gov (United States)

    González, Débora Alejandra; Barbieri van Haaster, Martín Matías; Quinteros Villarruel, Emmanuel; Brandt, Macarena; Benítez, María Belén; Stranieri, Graciela Mabel; Orman, Betina

    2018-01-01

    Extracellular vesicles released by different cells have been isolated from diverse fluids including saliva. We previously reported that rat submandibular glands secrete nanovesicles that catalyze hydrolysis of ATP, ADP and AMP, which are actors of the purinergic signaling system along with adenosine. Extracellular nucleotides like ATP and adenosine are involved in the regulation of inflammatory processes and apoptosis. Histamine, a widely distributed biogenic amine, is involved in inflammatory response. To test if activation of histamine receptors in rat submandibular gland promotes changes in the release of vesicles with nucleotidase activity that could modulate purinergic signaling. Rat submandibular glands were incubated in the absence or presence of histamine and JNJ7777120, an antagonist for H 4 receptors. Extracellular vesicles were isolated from incubation media by differential centrifugation. Vesicular nucleotidase activity was measured following Pi release by 3mM MgATP, MgADP or MgAMP. Histamine increased the release of vesicles with nucleotidase activity in a concentration dependent manner. JNJ7777120 significantly reduced this effect. Vesicular nucleotidases obtained in the absence or presence of histamine promoted Pi production from ATP, ADP and AMP. The results show a relationship between histamine and the regulation of purinergic signaling, which could be important in the modulation of inflammatory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter vesicles remains challenging. Thus far, vesicles vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (nvesicles vesicle-based clinical applications.

  13. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles.

    Science.gov (United States)

    Treps, Lucas; Perret, Raul; Edmond, Sébastien; Ricard, Damien; Gavard, Julie

    2017-01-01

    Glioblastoma multiforme (GBM) are mortifying brain tumours that contain a subpopulation of tumour cells with stem-like properties, termed glioblastoma stem-like cells (GSCs). GSCs largely contribute to tumour initiation, propagation and resistance to current anti-cancer therapies. GSCs are situated in perivascular niches, closely associated with brain microvascular endothelial cells, thereby involved in bidirectional molecular and cellular interactions. Moreover, extracellular vesicles are suspected to carry essential information that can adapt the microenvironment to the tumour's needs, including tumour-induced angiogenesis. In GBM, extracellular vesicles produced by differentiated tumour cells and GSCs were demonstrated to disseminate locally and at distance. Here, we report that the pro-angiogenic pro-permeability factor VEGF-A is carried in extracellular vesicles secreted from ex vivo cultured patient-derived GSCs. Of note, extracellular vesicle-derived VEGF-A contributes to the in vitro elevation of permeability and angiogenic potential in human brain endothelial cells. Indeed, VEGF-A silencing in GSCs compromised in vitro extracellular vesicle-mediated increase in permeability and angiogenesis. From a clinical standpoint, extracellular vesicles isolated from circulating blood of GBM patients present higher levels of VEGF-A, as compared to healthy donors. Overall, our results suggest that extracellular vesicle-harboured VEGF-A targets brain endothelial cells and might impact their ability to form new vessels. Thus, tumour-released EV cargo might emerge as an instrumental part of the tumour-induced angiogenesis and vascular permeability modus operandi in GBM.

  14. An extended model of vesicle fusion at the plasma membrane to estimate protein lateral diffusion from TIRF microscopy images.

    Science.gov (United States)

    Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles

    2017-07-24

    Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.

  15. IN-VITRO FUSION OF RETICULOCYTE ENDOCYTIC VESICLES WITH LIPOSOMES

    NARCIS (Netherlands)

    VIDAL, M; HOEKSTRA, D

    1995-01-01

    Since reticulocytes have a high demand for iron, which is required for heme biosynthesis, these cells are highly specialized in the endocytosis of the iron carrier transferrin (Tf). From the resulting endocytic vesicles (EVs), iron is released and the vesicles rapidly return to the cell membrane

  16. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.

    Science.gov (United States)

    Krisanova, N V; Trikash, I O; Borisova, T A

    2009-12-01

    Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO ( approximately 10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[(14)C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca(2+) or Mg(2+)/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.

  17. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    Science.gov (United States)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  18. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography

    DEFF Research Database (Denmark)

    Blans, Kristine Ingrid Marie; Hansen, Maria Stenum; Sørensen, Laila V.

    2017-01-01

    Studies have suggested that nanoscale extracellular vesicles (EV) in human and bovine milk carry immune modulatory properties which could provide beneficial health effects to infants. In order to assess the possible health effects of milk EV, it is essential to use isolates of high purity from...... other more abundant milk structures with well-documented bioactive properties. Furthermore, gentle isolation procedures are important for reducing the risk of generating vesicle artefacts, particularly when EV subpopulations are investigated. In this study, we present two isolation approaches...... accomplished in three steps based on size-exclusion chromatography (SEC) resulting in effective and reproducible EV isolation from raw milk. The approaches do not require any EV pelleting and can be applied to both human and bovine milk. We show that SEC effectively separates phospholipid membrane vesicles...

  19. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles.

    Science.gov (United States)

    Fonseca, P; Vardaki, I; Occhionero, A; Panaretakis, T

    2016-01-01

    Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

    DEFF Research Database (Denmark)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G

    2016-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages...... and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD m......RNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA...

  1. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles.

    Science.gov (United States)

    Perteghella, Sara; Crivelli, Barbara; Catenacci, Laura; Sorrenti, Milena; Bruni, Giovanna; Necchi, Vittorio; Vigani, Barbara; Sorlini, Marzio; Torre, Maria Luisa; Chlapanidas, Theodora

    2017-03-30

    The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Therapeutic application of extracellular vesicles in acute and chronic renal injury.

    Science.gov (United States)

    Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José

    A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.

  3. Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype

    OpenAIRE

    Vajen, Tanja; Benedikter, Birke J.; Heinzmann, Alexandra C. A.; Vasina, Elena M; Henskens, Yvonne; PARSONS, Martin; Maguire, Patricia B.; Stassen, Frank R.; Heemskerk, Johan W.M.; Schurgers, Leon J; Koenen, Rory R.

    2017-01-01

    ABSTRACT Extracellular vesicles (EVs) are mediators of cell communication during health and disease, and abundantly released by platelets upon activation or during ageing. Platelet EVs exert modulatory effects on immune and vascular cells. Platelet EVs may modulate the function of vascular smooth muscle cells (SMC). Platelet EVs were isolated from platelet-rich plasma and incubated with SMC in order to assess binding, proliferation, migration and pro-inflammatory phenotype of the cells. Plate...

  4. Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation

    OpenAIRE

    Ribeiro, Diana; Horvath, Istvan; Heath, Nikki; Hicks, Ryan; Forslöw, Anna; Wittung-Stafshede, Pernilla

    2017-01-01

    Protein assembly into amyloid fibers underlies such neurodegenerative disorders as Alzheimer’s disease and Parkinson’s disease. Type 2 diabetes (T2D) also involves amyloid formation, although in the pancreas. Because there are no cures for amyloid diseases and T2D is on the rise due to an increasing prevalence of obesity, identifying involved mechanisms and control processes is of utmost importance. Extracellular vesicles (EVs) can mediate physiological and pathological communication both loc...

  5. Extracellular Vesicles Mediate Receptor-Independent Transmission of Novel Tick-Borne Bunyavirus

    Science.gov (United States)

    Silvas, Jesus A.; Popov, Vsevolod L.; Paulucci-Holthauzen, Adriana

    2015-01-01

    ABSTRACT Severe fever with thrombocytopenia syndrome (SFTS) virus is a newly recognized member of the genus Phlebovirus in the family Bunyaviridae. The virus was isolated from patients presenting with hemorrhagic manifestations and an initial case fatality rate of 12 to 30% was reported. Due to the recent emergence of this pathogen, there is limited knowledge on the molecular virology of SFTS virus. Recently, we reported that the SFTS virus NSs protein inhibited the activation of the beta interferon (IFN-β) promoter. Furthermore, we also found that SFTS virus NSs relocalizes key components of the IFN response into NSs-induced cytoplasmic structures. Due to the important role these structures play during SFTS virus replication, we conducted live cell imaging studies to gain further insight into the role and trafficking of these cytoplasmic structures during virus infection. We found that some of the SFTS virus NSs-positive cytoplasmic structures were secreted to the extracellular space and endocytosed by neighboring cells. We also found that these secreted structures isolated from NSs-expressing cells and SFTS virus-infected cells were positive for the viral protein NSs and the host protein CD63, a protein associated with extracellular vesicles. Electron microscopy studies also revealed that the isolated CD63-immunoprecipitated extracellular vesicles produced during SFTS virus infection contained virions. The virions harbored within these structures were efficiently delivered to uninfected cells and were able to sustain SFTS virus replication. Altogether, these results suggest that SFTS virus exploits extracellular vesicles to mediate virus receptor-independent transmission to host cells and open the avenue for novel therapeutic strategies against SFTS virus and related pathogens. IMPORTANCE SFTS virus is novel bunyavirus associated with hemorrhagic fever illness. Currently, limited information is available about SFTS virus. In the present study, we demonstrated

  6. Sup35p in Its Soluble and Prion States Is Packaged inside Extracellular Vesicles.

    Science.gov (United States)

    Kabani, Mehdi; Melki, Ronald

    2015-08-18

    The yeast Saccharomyces cerevisiae harbors several prions that constitute powerful models to investigate the mechanisms of epigenetic structural inheritance. [PSI(+)] is undoubtedly the best-known yeast prion and results from the conversion of the translation termination factor Sup35p into self-perpetuating protein aggregates. Structurally different conformers of Sup35p aggregates can lead to [PSI(+)] strains with weak or strong prion phenotypes. Yeast prions are faithfully transmitted from mother to daughter cells during cell division, upon cytoplasmic mixing during mating, or when Sup35p fibrils made in test tubes are introduced into spheroplasts. Virtually all living cells in the three domains of life, Bacteria, Archaea, and Eukarya, secrete small membrane vesicles in the extracellular space. These extracellular vesicles (EV) have gained increasing interest as vehicles for the intercellular transfer of signaling molecules, nucleic acids, and pathogenic factors, as well as prion-like protein aggregates associated with neurodegenerative diseases. To begin to explore the question of whether EV could represent a natural mean for yeast prion transmission from cell to cell, we purified these extracellular vesicles and assessed whether they contained Sup35p. Here, we show that Sup35p is secreted within EV released in the extracellular medium of yeast cultures. We demonstrate that Sup35p within EV isolated from strong and weak [PSI(+)] cells is in an infectious prion conformation. Among the possible implications of our work is the possibility of previously unsuspected EV-mediated horizontal cell-to-cell transfer of fungal prions. Most living cells in the three domains of life, Bacteria, Archaea, and Eukarya, secrete small membrane vesicles in the extracellular space. These extracellular vesicles (EV) were long viewed as "trash cans" by which cells disposed of unwanted macromolecules. EV gained renewed interest as their roles as vehicles for the cell-to-cell transfer of

  7. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation.

    Science.gov (United States)

    Hong, S-W; Kim, M-R; Lee, E-Y; Kim, J H; Kim, Y-S; Jeon, S G; Yang, J-M; Lee, B-J; Pyun, B-Y; Gho, Y S; Kim, Y-K

    2011-03-01

    Recently, we found that Staphylococcus aureus produces extracellular vesicles (EV) that contain pathogenic proteins. Although S. aureus infection has been linked with atopic dermatitis (AD), the identities of the causative agents from S. aureus are controversial. We evaluated whether S. aureus-derived EV are causally related to the pathogenesis of AD. Extracellular vesicles were isolated by the ultracentrifugation of S. aureus culture media. The EV were applied three times per week to tape-stripped mouse skin. Inflammation and immune dysfunction were evaluated 48 h after the final application in hairless mice. Extracellular vesicles-specific IgE levels were measured by ELISA in AD patients and healthy subjects. The in vitro application of S. aureus EV increased the production of pro-inflammatory mediators (IL-6, thymic stromal lymphopoietin, macrophage inflammatory protein-1α, and eotaxin) by dermal fibroblasts. The in vivo application of S. aureus EV after tape stripping caused epidermal thickening with infiltration of the dermis by mast cells and eosinophils in mice. These changes were associated with the enhanced cutaneous production of IL-4, IL-5, IFN-γ, and IL-17. Interestingly, the serum levels of S. aureus EV-specific IgE were significantly increased in AD patients relative to healthy subjects. These results indicate that S. aureus EV induce AD-like inflammation in the skin and that S. aureus-derived EV are a novel diagnostic and therapeutic target for the control of AD. © 2010 John Wiley & Sons A/S.

  8. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Ludmila M.; Nakayasu, Ernesto S.; Sobreira, Tiago; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D.

    2016-03-30

    ABSTRACT

    Histoplasma capsulatumproduces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment ofH. capsulatumcells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bindH. capsulatumheat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion.

    IMPORTANCEDiverse fungal species release extracellular vesicles, indicating that this is a

  9. Cigarette smoke extract induces the release of extracellular vesicles by airway epithelial cells via cellular carbonyl stress

    NARCIS (Netherlands)

    Benedikter, B.J.; Volgers, C.; Haenen, G.R.M.M.; Savelkoul, P.H.M.; Wouters, E.F.M.; Rohde, G.G.U.; Weseler, A.R.; Stassen, F.R.M.

    2015-01-01

    Introduction: Secreted extracellular vesicles (EVs) participate in multiple processes by transferring proteins and RNA between cells. Yet, their contribution to chronic inflammation in the lungs is largely unexplored. We determined if exposure of airway epithelial cells (AEC) to cigarette smoke

  10. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for Myocardial Ischemic (MI) injury

    NARCIS (Netherlands)

    Cheow, Esther Sok Hwee; Cheng, Woo Chin; Lee, Chuen Neng; De Kleijn, Dominique; Sorokin, Vitaly; Sze, Siu Kwan

    2016-01-01

    Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac

  11. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis

    Directory of Open Access Journals (Sweden)

    Stephanie N. Hurwitz

    2016-07-01

    Full Text Available Background: Extracellular vesicles (EVs are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Methods: Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Results: Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. Conclusion: These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.

  12. Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules.

    Directory of Open Access Journals (Sweden)

    Jennine M Dawicki-McKenna

    Full Text Available In adipocytes, vesicles containing glucose transporter-4 (GLUT4 redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin, preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.

  13. Sites of Glucose Transporter-4 Vesicle Fusion with the Plasma Membrane Correlate Spatially with Microtubules

    Science.gov (United States)

    Dawicki-McKenna, Jennine M.; Goldman, Yale E.; Ostap, E. Michael

    2012-01-01

    In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion. PMID:22916292

  14. Modulation of Immune Responses by Extracellular Vesicles From Retinal Pigment Epithelium.

    Science.gov (United States)

    Knickelbein, Jared E; Liu, Baoying; Arakelyan, Anush; Zicari, Sonia; Hannes, Susan; Chen, Ping; Li, Zhiyu; Grivel, Jean-Charles; Chaigne-Delalande, Benjamin; Sen, H Nida; Margolis, Leonid; Nussenblatt, Robert B

    2016-08-01

    Extracellular vesicles (EV), such as exosomes, are important mediators of intercellular communication and have been implicated in modulation of the immune system. We investigated if EV released from retinal pigment epithelium (RPE) modulate immune responses in vitro. Extracellular vesicles were isolated from ARPE-19 cultures stimulated or not with the inflammatory cytokines IL-1β, IFN-γ, and TNF-α. Isolated EV were characterized by nanoparticle flow and Western blot analyses. Retinal pigment epithelium-derived EV were cultured with human peripheral blood mononuclear cells, which were assayed for T-cell proliferation by 3H-thymidine incorporation. Retinal pigment epithelium-derived EV were also independently cultured with enriched lymphocytes or monocytes. Cell phenotype and cell death were evaluated by flow cytometric analysis. Cytokine levels were assayed in culture supernatants by multiplex bead analysis. The concentration of ARPE-derived EV from cytokine-stimulated cultures was slightly higher than from nonstimulated cultures. The size of EV was approximately 100 nm in both groups. Extracellular vesicles from both nonstimulated and cytokine-stimulated ARPE-19 significantly inhibited T-cell proliferation without affecting T-cell viability. Culture of EV from nonstimulated ARPE-19 with undifferentiated human monocytes induced an immunoregulatory phenotype with a significantly higher percentage of CD14++CD16+ monocytes and upregulation of TGF-β1. Culture of EV from cytokine-stimulated ARPE-19 cells with human monocytes induced upregulation of several proinflammatory cytokines and monocyte death. Retinal pigment epithelium cells constitutively secrete EV in the size range of exosomes, with increased release from RPE cells stimulated with inflammatory cytokines. Extracellular vesicles from both nonstimulated and cytokine-stimulated RPE inhibited T-cell stimulation. Extracellular vesicles from nonstimulated ARPE-19 cells promoted an immunoregulatory CD14++CD16

  15. Secretion of RNA-containing extracellular vesicles by the porcine whipworm, Trichuris suis

    DEFF Research Database (Denmark)

    Hansen, Eline Palm; Kringel, Helene; Williams, Andrew Richard

    2015-01-01

    -transcriptional regulation of specific genes, and the potential of using these molecules as biomarkers of disease is currently being examined. It has recently been shown that parasites may secrete extracellular structures such as exosomes and microvesicles, containing proteins and miRNA. The fusion of these structures...

  16. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression.

    Science.gov (United States)

    Kim, Jung-Hwan; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Seong-Hoon; Jang, Min Seong; Lee, Eun-Jung; Moon, Sook Jin; Yun, Chang Ho; Im, Sin-Hyeog; Jeong, Seok-Geun; Park, Beom-Young; Kim, Kyong-Tai; Seoh, Ju-Young; Kim, Yoon-Keun; Oh, Sung-Jong; Ham, Jun-Sang; Yang, Bo-Gie; Jang, Myoung Ho

    2016-02-01

    The incidence of food allergies has increased dramatically during the last decade. Recently, probiotics have been studied for the prevention and treatment of allergic disease. We examined whether Bifidobacterium longum KACC 91563 and Enterococcus faecalis KACC 91532 have the capacity to suppress food allergies. B longum KACC 91563 and E faecalis KACC 91532 were administered to BALB/c wild-type mice, in which food allergy was induced by using ovalbumin and alum. Food allergy symptoms and various immune responses were assessed. B longum KACC 91563, but not E faecalis KACC 91532, alleviated food allergy symptoms. Extracellular vesicles of B longum KACC 91563 bound specifically to mast cells and induced apoptosis without affecting T-cell immune responses. Furthermore, injection of family 5 extracellular solute-binding protein, a main component of extracellular vesicles, into mice markedly reduced the occurrence of diarrhea in a mouse food allergy model. B longum KACC 91563 induces apoptosis of mast cells specifically and alleviates food allergy symptoms. Accordingly, B longum KACC 91563 and family 5 extracellular solute-binding protein exhibit potential as therapeutic approaches for food allergies. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form

    Directory of Open Access Journals (Sweden)

    Oscarsson Jan

    2008-01-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S and in its spontaneous laboratory variant (D7SS resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm, AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.

  18. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes

    Directory of Open Access Journals (Sweden)

    Francesco Drago

    2017-12-01

    Full Text Available Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs, which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012. However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.

  19. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer.

    Science.gov (United States)

    Takahashi, Kenji; Yan, Irene K; Kogure, Takayuki; Haga, Hiroaki; Patel, Tushar

    2014-01-01

    Hepatocellular cancers (HCC) are highly resistant to chemotherapy. TGFβ has been associated with chemoresistance in some human cancers but the mechanisms involved are unknown. We explored how TGFβ might contribute to altered responses to therapy by assessing the involvement and mechanistic contribution of extracellular vesicle long non-coding RNA (lncRNA) in mediating TGFβ-dependent chemoresistance. TGFβ reduced the sensitivity of HCC cells to sorafenib or doxorubicin and altered the release of both extracellular vesicles and of selected lncRNA within these vesicles. Amongst these, lincRNA-ROR (linc-ROR), a stress-responsive lncRNA was highly expressed in HCC cells and enriched within extracellular vesicles derived from tumor cells. Incubation with HCC-derived extracellular vesicles increased linc-ROR expression and reduced chemotherapy-induced cell death in recipient cells. Sorafenib increased linc-ROR expression in both tumor cells and extracellular vesicles, whereas siRNA to linc-ROR increased chemotherapy-induced apoptosis and cytotoxicity. Tumor-initiating cells that express CD133 have an increased resistance to therapy. TGFβ increased expression of CD133+ cells and colony growth in limiting dilution assays, both of which were attenuated by linc-ROR knockdown. These data provide mechanistic insights into primary chemoresistance in HCC by showing that: (a) TGFβ selectively enriches linc-RoR within extracellular vesicles, which has a potential role in intercellular signaling in response to TGFβ; (b) expression and enrichment of linc-ROR during chemotherapeutic stress plays a functional role in chemoresistance; and (c) the effects of TGFβ on chemoresistance in HCC may involve linc-RoR-dependent effects on tumor-initiating cells. These findings implicate extracellular vesicle lncRNA as mediators of the chemotherapeutic response, and support targeting linc-ROR to enhance chemosensitivity in HCC.

  20. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation.

    Science.gov (United States)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G; Enghild, Jan J; Praetorius, Jeppe; Borregaard, Niels; Petersen, Steen V

    2016-08-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research

    Science.gov (United States)

    Witwer, Kenneth W.; Buzás, Edit I.; Bemis, Lynne T.; Bora, Adriana; Lässer, Cecilia; Lötvall, Jan; Nolte-‘t Hoen, Esther N.; Piper, Melissa G.; Sivaraman, Sarada; Skog, Johan; Théry, Clotilde; Wauben, Marca H.; Hochberg, Fred

    2013-01-01

    The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments. PMID:24009894

  2. Extracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic Applications.

    Science.gov (United States)

    Giusti, Ilaria; Di Francesco, Marianna; Dolo, Vincenza

    2017-01-01

    Glioblastoma is the most common and malignant form of primary brain cancer; it is characterized by one of the highest mortality among human cancers. Maximal and aggressive surgical resection is the first approach treatment even if not usually definitive, being the tumor characterized by a high proliferative rate and extensive invasion. Early diagnosis, associated to careful monitoring, is pivotal in glioblastoma treatment; Magnetic Resonance Imaging is used for monitoring purpose, but it's not sensitive enough to detect very small tumors; a valid alternative could be a repeated biopsy, but it is associated to a significant morbidity: less invasive options for diagnosis and therapeutic monitoring are unfailingly researched. A careful search was performed on PubMed, mainly considering papers in the last 10 years. In recent years it has begun to take hold the knowledge that glioblastoma cells secrete extracellular vesicles (microvesicles and exosomes), which mirror the molecular features of parental cells and are able to escape from tumor microenvironment, reaching cerebrospinal fluid and systemic blood circulation. Such information led to consider the possibility to use extracellular vesicles in biological fluids as markers of glioblastoma pathology and to use them as a more feasible "liquid-biopsy" to gain diagnostic information, follow the disease progression and the response to clinical treatment, just through a blood test or cerebrospinal fluid collection. The most interesting extracellular vesiclesassociated molecules studied as glioblastoma markers are taken into account, as well as approaches aiming to use extracellular vesicles as cell-free vaccines or vehicle of therapeutic molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. A novel synaptic vesicle fusion path in the rat cerebral cortex: the "saddle" point hypothesis.

    Science.gov (United States)

    Zampighi, Guido A; Serrano, Raul; Vergara, Julio L

    2014-01-01

    We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that "rods" assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these "connector rods" to protein complexes involved in "docking" and "priming" vesicles to the active zone. Depending on their orientation, the "rods" define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere ("randomly") in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called "indentations," that are spaced 75-85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection ("saddle") points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170-240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the "post-synaptic domains," the overwhelming majority of the rectangular particles formed bands in the "non-synaptic" plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the hybridization of the R-SNARE synaptobrevin

  4. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics.

    Science.gov (United States)

    Kreimer, Simion; Belov, Arseniy M; Ghiran, Ionita; Murthy, Shashi K; Frank, David A; Ivanov, Alexander R

    2015-06-05

    This review discusses extracellular vesicles (EVs), which are submicron-scale, anuclear, phospholipid bilayer membrane enclosed vesicles that contain lipids, metabolites, proteins, and RNA (micro and messenger). They are shed from many, if not all, cell types and are present in biological fluids and conditioned cell culture media. The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), encompasses exosomes (30-100 nm in diameter), microparticles (100-1000 nm), apoptotic blebs, and other EV subsets. EVs have been implicated in cell-cell communication, coagulation, inflammation, immune response modulation, and disease progression. Multiple studies report that EV secretion from disease-affected cells contributes to disease progression, e.g., tumor niche formation and cancer metastasis. EVs are attractive sources of biomarkers due to their biological relevance and relatively noninvasive accessibility from a range of physiological fluids. This review is focused on the molecular profiling of the protein and lipid constituents of EVs, with emphasis on mass-spectrometry-based "omic" analytical techniques. The challenges in the purification and molecular characterization of EVs, including contamination of isolates and limitations in sample quantities, are discussed along with possible solutions. Finally, the review discusses the limited but growing investigation of post-translational modifications of EV proteins and potential strategies for future in-depth molecular characterization of EVs.

  5. Hyaluronan-coated extracellular vesicles--a novel link between hyaluronan and cancer.

    Science.gov (United States)

    Rilla, Kirsi; Siiskonen, Hanna; Tammi, Markku; Tammi, Raija

    2014-01-01

    The synthesis of hyaluronan (HA) on the plasma membrane is a unique and still partly mysterious way of macromolecular biosynthesis. HA forms pericellular coats around many cell types and accumulates in the extracellular matrix (ECM) of growing and renewing tissues. It is secreted to high concentrations in body fluids with antifriction properties like pleural, peritoneal, and synovial fluids, but is also detectable in plasma, saliva, and urine. In pathological states, like cancer and inflammation, the amount of HA is increased around cells, in the ECM, and in the body fluids. HA is an indicator of poor prognosis for cancer patients and creates a favorable environment for cellular growth and motility. The recent finding that HA-coated extracellular vesicles act both as a product of HA synthase activity and as special vehicles for HA, and perhaps carry signals important for malignant growth, provides a novel link between HA and cancer. HA could be carried on the surface of these vesicles in tissues and body fluids, creating beneficial environments by itself, or by associated molecules, for the invasion and metastasis of cancer cells. The HA-coated plasma membrane protrusions and vesicles shed from them are potential biomarkers in cancer and other HA-associated disease states. © 2014 Elsevier Inc. All rights reserved.

  6. The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination.

    Science.gov (United States)

    Nogués, Laura; Benito-Martin, Alberto; Hergueta-Redondo, Marta; Peinado, Héctor

    2017-12-05

    Extracellular vesicles (EVs) are key mediators of intercellular communication that have been ignored for decades. Tumour cells benefit from the secretion of vesicles as they can influence the behaviour of neighbouring tumour cells within the tumour microenvironment. Several studies have shown that extracellular vesicles play an active role in pre-metastatic niche formation and importantly, they are involved in the metastatic organotropism of different tumour types. Tumour-derived EVs carry and transfer molecules to recipient cells, modifying their behaviour through a process defined as "EV-driven education". EVs favour metastasis to sentinel lymph nodes and distal organs by reinforcing angiogenesis, inflammation and lymphangiogenesis. Hence, in this review we will summarize the main mechanisms by which tumour-derived EVs regulate lymph node and distal organ metastasis. Moreover, since some cancers metastasize through the lymphatic system, we will discuss recent discoveries about the presence and function of tumour EVs in the lymph. Finally, we will address the potential value of tumour EVs as prognostic biomarkers in liquid biopsies, specially blood and lymphatic fluid, and the use of these tools as early detectors of metastases. Copyright © 2017. Published by Elsevier Ltd.

  7. Selective release of circRNAs in platelet-derived extracellular vesicles.

    Science.gov (United States)

    Preußer, Christian; Hung, Lee-Hsueh; Schneider, Tim; Schreiner, Silke; Hardt, Martin; Moebus, Anna; Santoso, Sentot; Bindereif, Albrecht

    2018-01-01

    Circular RNAs (circRNAs) are a novel class of noncoding RNAs present in all eukaryotic cells investigated so far and generated by a special mode of alternative splicing of pre-mRNAs. Thereby, single exons, or multiple adjacent and spliced exons, are released in a circular form. CircRNAs are cell-type specifically expressed, are unusually stable, and can be found in various body fluids such as blood and saliva. Here we analysed circRNAs and the corresponding linear splice isoforms from human platelets, where circRNAs are particularly abundant, compared with other hematopoietic cell types. In addition, we isolated extracellular vesicles from purified and in vitro activated human platelets, using density-gradient centrifugation, followed by RNA-seq analysis for circRNA detection. We could demonstrate that circRNAs are packaged and released within both types of vesicles (microvesicles and exosomes) derived from platelets. Interestingly, we observed a selective release of circRNAs into the vesicles, suggesting a specific sorting mechanism. In sum, circRNAs represent yet another class of extracellular RNAs that circulate in the body and may be involved in signalling pathways. Since platelets are essential for central physiological processes such as haemostasis, wound healing, inflammation and cancer metastasis, these findings should greatly extend the potential of circRNAs as prognostic and diagnostic biomarkers.

  8. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Science.gov (United States)

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparative miRNA Analysis of Urine Extracellular Vesicles Isolated through Five Different Methods

    Directory of Open Access Journals (Sweden)

    Felix Royo

    2016-12-01

    Full Text Available Urine extracellular vesicles are a valuable low-invasive source of information, especially for the cells of the genitourinary tract. In the search for biomarkers, different techniques have been developed to isolate and characterize the cargo of these vesicles. In the present work, we compare five of these different isolation methods (three commercial isolation kits, ultracentrifugation, and lectin-based purification and perform miRNA profiling using a multiplex miRNA assay. The results showed high correlation through all isolation techniques, and 48 out of 68 miRNAs were detected above the detection limit at least 10 times. The results obtained by multiplex assay were validated through Taqman qPCR. In addition, using this technique combined with a clinically friendly extracellular vesicle (uEV-enrichment method, we performed the analysis of selected miRNAs in urine from patients affected with bladder cancer, benign prostate hyperplasia, or prostate cancer. Importantly, we found that those miRNAs could be detected in almost 100% of the samples, and no significant differences were observed between groups. Our results support the feasibility of analyzing exosomes-associated miRNAs using a methodology that requires a small volume of urine and is compatible with a clinical environment and high-throughput analysis.

  10. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions.

    Science.gov (United States)

    Gholizadeh, Shima; Shehata Draz, Mohamed; Zarghooni, Maryam; Sanati-Nezhad, Amir; Ghavami, Saeid; Shafiee, Hadi; Akbari, Mohsen

    2017-05-15

    Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complications and inflammatory disorders. Despite increasing scientific and clinical interest in this field, there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis.

    Science.gov (United States)

    Nakase, Ikuhiko; Noguchi, Kosuke; Fujii, Ikuo; Futaki, Shiroh

    2016-10-17

    Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained.

  12. How cancer cells dictate their microenvironment: present roles of extracellular vesicles.

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Yamamoto, Yusuke; Ochiya, Takahiro

    2017-02-01

    Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.

  13. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis.

    Science.gov (United States)

    Reiner, Agnes T; Ferrer, Nicolas-Guillermo; Venugopalan, Priyamvada; Lai, Ruenn Chai; Lim, Sai Kiang; Dostálek, Jakub

    2017-10-09

    The sensitive analysis of small lipid extracellular vesicles (EVs) by using a grating-coupled surface plasmon resonance (GC-SPR) biosensor has been reported. In order to enable the analysis of trace amounts of EVs present in complex liquid samples, the target analyte is pre-concentrated on the sensor surface by using magnetic nanoparticles and its affinity binding is probed by wavelength interrogation of SPR. The GC-SPR has been demonstrated to allow for the implementation of efficient pulling of EVs to the sensor surface by using magnetic nanoparticles and an external magnetic field gradient applied through the sensor chip. This approach overcomes slow diffusion-limited mass transfer and greatly enhances the measured sensor response. The specific detection of different EV populations secreted from mesenchymal stem cells is achieved with a SPR sensor chip modified with antibodies against the surface marker CD81 and magnetic nanoparticles binding the vesicles via annexin V and cholera toxin B chain.

  14. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells.

    Science.gov (United States)

    Jong, Ambrose Y; Wu, Chun-Hua; Li, Jingbo; Sun, Jianping; Fabbri, Muller; Wayne, Alan S; Seeger, Robert C

    2017-01-01

    Extracellular vesicles (EVs) have been the focus of great interest, as they appear to be involved in numerous important cellular processes. They deliver bioactive macromolecules such as proteins, lipids, and nucleic acids, allowing intercellular communication in multicellular organisms. EVs are secreted by all cell types, including immune cells such as natural killer cells (NK), and they may play important roles in the immune system. Currently, a large-scale procedure to obtain functional NK EVs is lacking, limiting their use clinically. In this report, we present a simple, robust, and cost-effective method to isolate a large quantity of NK EVs. After propagating and activating NK cells ex vivo and then incubating them in exosome-free medium for 48 h, EVs were isolated using a polymer precipitation method. The isolated vesicles contain the tetraspanin CD63, an EV marker, and associated proteins (fibronectin), but are devoid of cytochrome C, a cytoplasmic marker. Nanoparticle tracking analysis showed a size distribution between 100 and 200 nm while transmission electron microscopy imaging displayed vesicles with an oval shape and comparable sizes, fulfilling the definition of EV. Importantly, isolated EV fractions were cytotoxic against cancer cells. Furthermore, our results demonstrate for the first time that isolated activated NK (aNK) cell EVs contain the cytotoxic proteins perforin, granulysin, and granzymes A and B, incorporated from the aNK cells. Activation of caspase -3, -7 and -9 was detected in cancer cells incubated with aNK EVs, and caspase inhibitors blocked aNK EV-induced cytotoxicity, suggesting that aNK EVs activate caspase pathways in target cells. The ability to isolate functional aNK EVs on a large scale may lead to new clinical applications. Abbreviations: NK: natural killer cells; activated NK (aNK) cells; EVs: extracellular vesicles; ALL: acute lymphoblastic leukaemia; aAPC: artificial antigen-presenting cell; TEM: transmission electron

  15. Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes

    DEFF Research Database (Denmark)

    Mohrmann, Ralf; de Wit, Heidi; Verhage, Matthijs

    2010-01-01

    chromaffin cells. Simultaneous expression of wild-type SNAP-25 and a mutant unable to support exocytosis progressively altered fusion kinetics and fusion pore opening, indicating that both proteins assemble into heteromeric fusion complexes. Expressing different wild-type:mutant ratios revealed a third power......Exocytosis requires formation of SNARE complexes between vesicle- and target-membranes. Recent assessments in reduced model systems have produced divergent estimates of the number of SNARE complexes needed for fusion. Here, we used a titration approach to answer this question in intact, cultured...... relationship for fast (synchronous) fusion and a near-linear relationship for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, while slower release might occur with fewer. Heterogeneity in SNARE-complex number may...

  16. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy

    Directory of Open Access Journals (Sweden)

    Johanna L. Höög

    2015-11-01

    Full Text Available Human ejaculates contain extracellular vesicles (EVs, that to a large extent are considered to originate from the prostate gland, and are often denominated “prostasomes.” These EVs are important for human fertility, for example by promoting sperm motility and by inducing immune tolerance of the female immune system to the spermatozoa. So far, the EVs present in human ejaculate have not been studied in their native state, inside the seminal fluid without prior purification and isolation procedures. Using cryo-electron microscopy and tomography, we performed a comprehensive inventory of human ejaculate EVs. The sample was neither centrifuged, fixed, filtered or sectioned, nor were heavy metals added. Approximately 1,500 extracellular structures were imaged and categorized. The extracellular environment of human ejaculate was found to be diverse, with 5 major subcategories of EVs and 6 subcategories of extracellular membrane compartments, including lamellar bodies. Furthermore, 3 morphological features, including electron density, double membrane bilayers and coated surface, are described in all subcategories. This study reveals that the extracellular environment in human ejaculate is multifaceted. Several novel morphological EV subcategories are identified and clues to their cellular origin may be found in their morphology. This inventory is therefore important for developing future experimental approaches, and to interpret previously published data to understand the role of EVs for human male fertility.

  17. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy

    Science.gov (United States)

    Höög, Johanna L.; Lötvall, Jan

    2015-01-01

    Human ejaculates contain extracellular vesicles (EVs), that to a large extent are considered to originate from the prostate gland, and are often denominated “prostasomes.” These EVs are important for human fertility, for example by promoting sperm motility and by inducing immune tolerance of the female immune system to the spermatozoa. So far, the EVs present in human ejaculate have not been studied in their native state, inside the seminal fluid without prior purification and isolation procedures. Using cryo-electron microscopy and tomography, we performed a comprehensive inventory of human ejaculate EVs. The sample was neither centrifuged, fixed, filtered or sectioned, nor were heavy metals added. Approximately 1,500 extracellular structures were imaged and categorized. The extracellular environment of human ejaculate was found to be diverse, with 5 major subcategories of EVs and 6 subcategories of extracellular membrane compartments, including lamellar bodies. Furthermore, 3 morphological features, including electron density, double membrane bilayers and coated surface, are described in all subcategories. This study reveals that the extracellular environment in human ejaculate is multifaceted. Several novel morphological EV subcategories are identified and clues to their cellular origin may be found in their morphology. This inventory is therefore important for developing future experimental approaches, and to interpret previously published data to understand the role of EVs for human male fertility. PMID:26563734

  18. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity.

    Science.gov (United States)

    Nazimek, Katarzyna; Bryniarski, Krzysztof; Askenase, Philip W

    2016-01-01

    Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation. © 2016 S. Karger AG, Basel.

  19. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity

    Science.gov (United States)

    Nazimek, Katarzyna; Bryniarski, Krzysztof; Askenase, Philip W.

    2016-01-01

    Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between cells in general, that then can participate, as described herein, in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells, taking into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting non-specifically, but also can proceed in an antigen-specific manner due to coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These likely will significantly diminish the risks of current allergen specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for specific delivery of therapeutic molecular instructions through easily tolerated, non-invasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation. PMID:27820941

  20. Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity

    DEFF Research Database (Denmark)

    M. Christensen, Sune; W. Mortensen, Michael; Stamou, Dimitrios

    2011-01-01

    the docking or the fusion of vesicles. Here we report a fluorescence microscopy-based assay to monitor SNARE-mediated docking and fusion of individual vesicle pairs. In situ measurement of the concentration of diffusing particles allowed us to quantify docking rates by a maximum-likelihood approach....... This analysis showed that C2AB and Ca(2+) accelerate vesicle-vesicle docking with more than two orders of magnitude. Comparison of the measured docking rates with ensemble lipid mixing kinetics, however, suggests that in most cases bilayer fusion remains therate-limiting step. Our single vesicle results show......Lipid mixing between vesicles functionalized with SNAREs and the cytosolic C2AB domain of synaptotagmin-1 recapitulates the basic Ca(2+) dependence of neuronal exocytosis. However, in the conventional ensemble lipid mixing assays it is not possible to discriminate whether Ca(2+) accelerates...

  1. Loading of Extracellular Vesicles with Chemically Stabilized Hydrophobic siRNAs for the Treatment of Disease in the Central Nervous System.

    Science.gov (United States)

    Haraszti, Reka A; Coles, Andrew; Aronin, Neil; Khvorova, Anastasia; Didiot, Marie-Cécile

    2017-06-20

    Efficient delivery of oligonucleotide therapeutics, i.e., siRNAs, to the central nervous system represents a significant barrier to their clinical advancement for the treatment of neurological disorders. Small, endogenous extracellular vesicles were shown to be able to transport lipids, proteins and RNA between cells, including neurons. This natural trafficking ability gives extracellular vesicles the potential to be used as delivery vehicles for oligonucleotides, i.e., siRNAs. However, robust and scalable methods for loading of extracellular vesicles with oligonucleotide cargo are lacking. We describe a detailed protocol for the loading of hydrophobically modified siRNAs into extracellular vesicles upon simple co-incubation. We detail methods of the workflow from purification of extracellular vesicles to data analysis. This method may advance extracellular vesicles-based therapies for the treatment of a broad range of neurological disorders.

  2. Message in a Microbottle: Modulation of Vascular Inflammation and Atherosclerosis by Extracellular Vesicles.

    Science.gov (United States)

    van der Vorst, Emiel P C; de Jong, Renske J; Donners, Marjo M P C

    2018-01-01

    Extracellular vesicles (EVs) have emerged as a novel intercellular communication system. By carrying bioactive lipids, miRNAs and proteins they can modulate target cell functions and phenotype. Circulating levels of EVs are increased in inflammatory conditions, e.g., cardiovascular disease patients, and their functional contribution to atherosclerotic disease development is currently heavily studied. This review will describe how EVs can modulate vascular cell functions relevant to vascular inflammation and atherosclerosis, particularly highlighting the role of EV-associated proteolytic activity and effector proteins involved. Furthermore, we will discuss key questions and challenges, especially for EV-based therapeutics.

  3. Message in a Microbottle: Modulation of Vascular Inflammation and Atherosclerosis by Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Emiel P. C. van der Vorst

    2018-01-01

    Full Text Available Extracellular vesicles (EVs have emerged as a novel intercellular communication system. By carrying bioactive lipids, miRNAs and proteins they can modulate target cell functions and phenotype. Circulating levels of EVs are increased in inflammatory conditions, e.g., cardiovascular disease patients, and their functional contribution to atherosclerotic disease development is currently heavily studied. This review will describe how EVs can modulate vascular cell functions relevant to vascular inflammation and atherosclerosis, particularly highlighting the role of EV-associated proteolytic activity and effector proteins involved. Furthermore, we will discuss key questions and challenges, especially for EV-based therapeutics.

  4. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics......CAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood...

  5. High-yield isolation of extracellular vesicles using aqueous two-phase system

    Science.gov (United States)

    Shin, Hyunwoo; Han, Chungmin; Labuz, Joseph M.; Kim, Jiyoon; Kim, Jongmin; Cho, Siwoo; Gho, Yong Song; Takayama, Shuichi; Park, Jaesung

    2015-01-01

    Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs. PMID:26271727

  6. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System

    Science.gov (United States)

    Kim, Jongmin; Shin, Hyunwoo; Kim, Jiyoon; Kim, Junho; Park, Jaesung

    2015-01-01

    We present a simple and rapid method to isolate extracellular vesicles (EVs) by using a polyethylene glycol/dextran aqueous two-phase system (ATPS). This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs. PMID:26090684

  7. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System.

    Directory of Open Access Journals (Sweden)

    Jongmin Kim

    Full Text Available We present a simple and rapid method to isolate extracellular vesicles (EVs by using a polyethylene glycol/dextran aqueous two-phase system (ATPS. This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs.

  8. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia.

    Science.gov (United States)

    Ophelders, Daan R M G; Wolfs, Tim G A M; Jellema, Reint K; Zwanenburg, Alex; Andriessen, Peter; Delhaas, Tammo; Ludwig, Anna-Kristin; Radtke, Stefan; Peters, Vera; Janssen, Leon; Giebel, Bernd; Kramer, Boris W

    2016-06-01

    Preterm neonates are susceptible to perinatal hypoxic-ischemic brain injury, for which no treatment is available. In a preclinical animal model of hypoxic-ischemic brain injury in ovine fetuses, we have demonstrated the neuroprotective potential of systemically administered mesenchymal stromal cells (MSCs). The mechanism of MSC treatment is unclear but suggested to be paracrine, through secretion of extracellular vesicles (EVs). Therefore, we investigated in this study the protective effects of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in a preclinical model of preterm hypoxic-ischemic brain injury. Ovine fetuses were subjected to global hypoxia-ischemia by transient umbilical cord occlusion, followed by in utero intravenous administration of MSC-EVs. The therapeutic effects of MSC-EV administration were assessed by analysis of electrophysiological parameters and histology of the brain. Systemic administration of MSC-EVs improved brain function by reducing the total number and duration of seizures, and by preserving baroreceptor reflex sensitivity. These functional protections were accompanied by a tendency to prevent hypomyelination. Cerebral inflammation remained unaffected by the MSC-EV treatment. Our data demonstrate that MSC-EV treatment might provide a novel strategy to reduce the neurological sequelae following hypoxic-ischemic injury of the preterm brain. Our study results suggest that a cell-free preparation comprising neuroprotective MSC-EVs could substitute MSCs in the treatment of preterm neonates with hypoxic-ischemic brain injury, thereby circumventing the potential risks of systemic administration of living cells. Bone marrow-derived mesenchymal stromal cells (MSCs) show promise in treating hypoxic-ischemic injury of the preterm brain. Study results suggest administration of extracellular vesicles, rather than intact MSCs, is sufficient to exert therapeutic effects and avoids potential concerns associated with administration

  9. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases

    Science.gov (United States)

    Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Cronemberger Andrade, André; Batista, Wagner Luiz; Torrecilhas, Ana Claudia

    2015-01-01

    Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases. PMID:26380326

  10. The Mingle-Mangle of Wnt Signaling and Extracellular Vesicles: Functional Implications for Heart Research

    Directory of Open Access Journals (Sweden)

    Julia Christina Gross

    2018-02-01

    Full Text Available Wnt signaling is an important pathway in health and disease and a key regulator of stem cell maintenance, differentiation, and proliferation. During heart development, Wnt signaling controls specification, proliferation and differentiation of cardiovascular cells. In this regard, the role of activated Wnt signaling in cardiogenesis is well defined. However, the knowledge about signaling transmission has been challenged. Recently, the packaging of hydrophobic Wnt proteins on extracellular vesicles (EVs has emerged as a mechanism to facilitate their extracellular spreading and their functioning as morphogens. EVs spread systemically and therefore can have pleiotropic effects on very different cell types. They are heavily studied in tumor biology where they affect tumor growth and vascularization and can serve as biomarkers in liquid biopsies. In this review we will highlight recent discoveries of factors involved in the release of Wnts on EVs and its potential implications in the communication between physiological and pathological heart cells.

  11. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    2017-08-01

    Extracellular vesicles released by cancer cells are mediators of intercellular communication that have been reported to contribute to carcinogenesis. Since they are readily detected in bodily fluids, they may also be used as cancer biomarkers. The E6/E7 oncoproteins drive human papillomavirus (HPV)-associated cancers, which account for approximately 5% of all human cancers worldwide. Here, we investigate how HPV16 E6/E7 oncogene expression in primary human epithelial cells alters miR expression in extracellular vesicles and compare these to changes in intracellular miR expression. Examining a panel of 68 cancer related miRs revealed that many miRs had similar expression patterns in cells and in extracellular vesicles, whereas some other miRs had different expression patterns and may be selectively packaged into extracellular vesicles. Interestingly, the set of miRs that may be selectively packaged in HPV16 E6/E7 extracellular vesicles is predicted to inhibit necrosis and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases.

    Science.gov (United States)

    Monsel, Antoine; Zhu, Ying-Gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W

    2016-07-01

    Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification.

  13. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Andreea Milasan

    2016-09-01

    Full Text Available The lymphatic system works in close collaboration with the cardiovascular system to preserve fluid balance throughout the body and is essential for the trafficking of antigen-presenting cells and lymphocytes to lymphoid organs. Recent findings have associated lymphatic dysfunction with the pathogenesis of cardiovascular-related diseases such as atherosclerosis, inflammation and obesity. Whether lymphatic dysfunction is a cause or a consequence of these diseases, as well as how, is under intensive investigation. Extracellular vesicles (EVs are submicron vesicles released by diverse cell types upon activation or apoptosis and are considered important biomarkers for several inflammatory diseases. Thus, it is critical to characterize the presence of EVs in various biological tissues and fluids to delineate their origins and, subsequently, their functions. In the past few years, new techniques allowing the quantitative and qualitative analysis of EVs have emerged, thus facilitating the onset of studies bridging these vesicles to the lymphatic system. Using several state-of-the-art approaches, this article reports the presence of diverse EVs inclusively derived from red blood cells and platelets in lymph of healthy animals. Our results suggest that lymph from atherosclerotic mice displays a higher concentration of EVs, bringing forward the concept that EVs contained in lymph could either be a biomarker for lymphatic dysfunction or, conversely, for inflammatory disease progression.

  14. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis.

    Science.gov (United States)

    Milasan, Andreea; Tessandier, Nicolas; Tan, Sisareuth; Brisson, Alain; Boilard, Eric; Martel, Catherine

    2016-01-01

    The lymphatic system works in close collaboration with the cardiovascular system to preserve fluid balance throughout the body and is essential for the trafficking of antigen-presenting cells and lymphocytes to lymphoid organs. Recent findings have associated lymphatic dysfunction with the pathogenesis of cardiovascular-related diseases such as atherosclerosis, inflammation and obesity. Whether lymphatic dysfunction is a cause or a consequence of these diseases, as well as how, is under intensive investigation. Extracellular vesicles (EVs) are submicron vesicles released by diverse cell types upon activation or apoptosis and are considered important biomarkers for several inflammatory diseases. Thus, it is critical to characterize the presence of EVs in various biological tissues and fluids to delineate their origins and, subsequently, their functions. In the past few years, new techniques allowing the quantitative and qualitative analysis of EVs have emerged, thus facilitating the onset of studies bridging these vesicles to the lymphatic system. Using several state-of-the-art approaches, this article reports the presence of diverse EVs inclusively derived from red blood cells and platelets in lymph of healthy animals. Our results suggest that lymph from atherosclerotic mice displays a higher concentration of EVs, bringing forward the concept that EVs contained in lymph could either be a biomarker for lymphatic dysfunction or, conversely, for inflammatory disease progression.

  15. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells.

    Science.gov (United States)

    Gualerzi, Alice; Niada, Stefania; Giannasi, Chiara; Picciolini, Silvia; Morasso, Carlo; Vanna, Renzo; Rossella, Valeria; Masserini, Massimo; Bedoni, Marzia; Ciceri, Fabio; Bernardo, Maria Ester; Brini, Anna Teresa; Gramatica, Furio

    2017-08-29

    Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeutic agents for tissue regeneration and immunomodulation, but their clinical applications have so far been limited by the technical restraints of current isolation and characterisation procedures. This study shows for the first time the successful application of Raman spectroscopy as label-free, sensitive and reproducible means of carrying out the routine bulk characterisation of MSC-derived vesicles before their use in vitro or in vivo, thus promoting the translation of EV research to clinical practice. The Raman spectra of the EVs of bone marrow and adipose tissue-derived MSCs were compared with human dermal fibroblast EVs in order to demonstrate the ability of the method to distinguish the vesicles of the three cytotypes automatically with an accuracy of 93.7%. Our data attribute a Raman fingerprint to EVs from undifferentiated and differentiated cells of diverse tissue origin, and provide insights into the biochemical characteristics of EVs from different sources and into the differential contribution of sphingomyelin, gangliosides and phosphatidilcholine to the Raman spectra themselves.

  16. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting

    Directory of Open Access Journals (Sweden)

    Oscar P. B. Wiklander

    2015-04-01

    Full Text Available Extracellular vesicles (EVs have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.

  17. LL-37 Triggers Formation of Streptococcus pyogenes Extracellular Vesicle-Like Structures with Immune Stimulatory Properties.

    Science.gov (United States)

    Uhlmann, Julia; Rohde, Manfred; Siemens, Nikolai; Kreikemeyer, Bernd; Bergman, Peter; Johansson, Linda; Norrby-Teglund, Anna

    2016-01-01

    Reports have shown that the antimicrobial peptide LL-37 is abundantly expressed but has limited bactericidal effect in Streptococcus pyogenes infections. At sub-inhibitory concentrations, LL-37 has been reported to alter virulence gene expression. Here, we explored the interaction of S. pyogenes strains with LL-37, focusing on bacterial growth, cell surface alterations and pro-inflammatory responses. Bioscreen turbidity measurements of strain 5448 cultured in the presence or absence of LL-37 confirmed the poor antimicrobial effect, and revealed a significant increase in turbidity of bacterial cultures exposed to sub-inhibitory concentrations of LL-37. However, this was not linked to increased bacterial counts. Electron microscopy of LL-37-exposed bacteria revealed the presence of vesicle-like structures on the bacterial surface. The vesicles stained positive for LL-37 and were released from the bacterial surface. Concentrated supernatants enriched in these structures had a broader protein content, including several virulence factors, compared to supernatants from untreated bacteria. The supernatants from LL-37-exposed bacteria were pro-inflammatory and elicited resistin and myeloperoxidase release from neutrophils. This is the first report on S. pyogenes extracellular vesicle-like structures formed at the bacterial surface in response to LL-37. The associated increased pro-inflammatory activity further implicates LL-37 as a potential factor involved in S. pyogenes pathogenesis. © 2015 S. Karger AG, Basel.

  18. Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer.

    Science.gov (United States)

    Wang, Yayu; Chen, Xiaojia; Tian, Baoqing; Liu, Jiafan; Yang, Li; Zeng, Lilan; Chen, Tianfen; Hong, An; Wang, Xiaogang

    2017-01-01

    Small interfering RNAs (siRNA)/microRNAs (miRNA) have promising therapeutic potential, yet their clinical application has been hampered by the lack of appropriate delivery systems. Herein, we employed extracellular vesicles (EVs) as a targeted delivery system for small RNAs. EVs are cell-derived small vesicles that participate in cell-to-cell communication for protein and RNA delivery. We used the aptamer AS1411-modified EVs for targeted delivery of siRNA/microRNA to breast cancer tissues. Tumor targeting was facilitated via AS1411 binding to nucleolin, which is highly expressed on the surface membrane of breast cancer cells. This delivery vesicle targeted let-7 miRNA delivery to MDA-MB-231 cells in vitro as confirmed with fluorescent microscopic imaging and flow cytometry. Also, intravenously delivered AS1411-EVs loaded with miRNA let-7 labeled with the fluorescent marker, Cy5, selectively targeted tumor tissues in tumor-bearing mice and inhibited tumor growth. Importantly, the modified EVs were well tolerated and showed no evidence of nonspecific side effects or immune response. Thus, the RNAi nanoplatform is versatile and can deliver siRNA or miRNA to breast cancer cells both in vitro and in vivo. Our results suggest that the AS1411-EVs have a great potential as drug delivery vehicles to treat cancers.

  19. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro.

    Science.gov (United States)

    Mellisho, Edwin A; Velásquez, Alejandra E; Nuñez, María J; Cabezas, Joel G; Cueto, Juan A; Fader, Claudio; Castro, Fidel O; Rodríguez-Álvarez, Lleretny

    2017-01-01

    Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture

  20. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Roles in Tumor Growth, Progression, and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs are ubiquitously present in many tissues. Due to their unique advantages, MSCs have been widely employed in clinical studies. Emerging evidences indicate that MSCs can also migrate to the tumor surrounding stroma and exert complex effects on tumor growth and progression. However, the effect of MSCs on tumor growth is still a matter of debate. Several studies have shown that MSCs could favor tumor growth. On the contrary, other groups have demonstrated that MSCs suppressed tumor progression. Extracellular vesicles have emerged as a new mechanism of cell-to-cell communication in the development of tumor diseases. MSCs-derived extracellular vesicles (MSC-EVs could mimic the effects of the mesenchymal stem cells from which they originate. Different studies have reported that MSC-EVs may exert various effects on the growth, metastasis, and drug response of different tumor cells by transferring proteins, messenger RNA, and microRNA to recipient cells. In the present review, we summarize the components of MSC-EVs and discuss the roles of MSC-EVs in different malignant diseases, including the related mechanisms that may account for their therapeutic potential. MSC-EVs open up a promising opportunity in the treatment of cancer with increased efficacy.

  1. Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration.

    Science.gov (United States)

    Silva, Andreia M; Teixeira, José H; Almeida, Maria Ines; Gonçalves, Raquel M; Barbosa, Mário A; Santos, Susana G

    2017-02-15

    Inflammation is a complex and highly regulated biological process, crucial for a variety of functions in the human body, from host response against infectious agents to initiation of repair/regeneration of injured tissues. In the context of tissue repair, the action of different immune cell populations and their interplay with tissue specific cells, including stem cells, is still being uncovered. Extracellular Vesicles (EV) are small membrane vesicles secreted by cells in a controlled manner, which can act locally and systemically. The ability of EV to influence tissue repair and regeneration has been proposed as a physiologically intelligent and targeted strategy of cell communication. Herein, the role of EV in tissue repair is reviewed, summarising first their contribution to the regulation of immune cell function, and discussing the implications for the resolution of inflammation during repair. Next, the impact of EV on cell proliferation and differentiation, and on extracellular matrix remodelling, key aspects of the subsequent phases of tissue repair, is addressed. Finally, EV-based therapies are discussed, focusing on the application of naturally produced EV, and the use of EV as delivery vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci.

    Science.gov (United States)

    Li, Ming; Lee, Kiho; Hsu, Min; Nau, Gerard; Mylonakis, Eleftherios; Ramratnam, Bharat

    2017-03-14

    Probiotic bacteria are known to modulate host immune responses against various pathogens. Recently, extracellular vesicles (EVs) have emerged as potentially important mediators of host-pathogen interactions. In this study, we explored the role of L. plantarum derived EVs in modulating host responses to vancomycin-resistant Enterococcus faecium (VRE) using both Caenorhabditis elegans and human cells. Our previous work has shown that probiotic conditioning C. elegans with L. acidophilus NCFM prolongs the survival of nematodes exposed to VRE. Similarly, L. plantarum WCFS1 derived extracellular vesicles (LDEVs) also significantly protected the worms against VRE infection. To dissect the molecular mechanisms of this EV-induced protection, we found that treatment of C. elegans with LDEVs significantly increased the transcription of host defense genes, cpr-1 and clec-60. Both cpr-1 and clec-60 have been previously reported to have protective roles against bacterial infections. Incubating human colon-derived Caco-2 cells with fluorescent dye-labeled LDEVs confirmed that LDEVs could be transported into the mammalian cells. Furthermore, LDEV uptake was associated with significant upregulation of CTSB, a human homologous gene of cpr-1, and REG3G, a human gene that has similar functions to clec-60. We have found that EVs produced from L. plantarum WCFS1 up-regulate the expression of host defense genes and provide protective effects on hosts. Using probiotic-derived EVs instead of probiotic bacteria themselves, this study provides a new direction to treat antimicrobial resistant pathogens, such as VRE.

  3. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

    Directory of Open Access Journals (Sweden)

    Abir Mondal

    2017-07-01

    Full Text Available Diffuse gliomas are lethal tumors of the central nervous system (CNS characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs. These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

  4. Peptide-mediated ‘miniprep’ isolation of extracellular vesicles is suitable for high-throughput proteomics

    OpenAIRE

    Jaco C. Knol; Inge de Reus; Tim Schelfhorst; Robin Beekhof; Meike de Wit; Sander R. Piersma; Thang V. Pham; Egbert F. Smit; Henk M.W. Verheul; Connie R. Jiménez

    2016-01-01

    Extracellular vesicles (EVs) are cell-secreted membrane vesicles enclosed by a lipid bilayer derived from endosomes or from the plasma membrane. Since EVs are released into body fluids, and their cargo includes tissue-specific and disease-related molecules, they represent a rich source for disease biomarkers. However, standard ultracentrifugation methods for EV isolation are laborious, time-consuming, and require high inputs. Ghosh and co-workers recently described an isolation method utilizi...

  5. Highlights of the São Paulo ISEV workshop on extracellular vesicles in cross-kingdom communication

    DEFF Research Database (Denmark)

    Soares, Rodrigo P; Xander, Patrícia; Costa, Adriana Oliveira

    2017-01-01

    In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host–pathogen interaction, including invasion, immunomodulation, and pat......In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host–pathogen interaction, including invasion, immunomodulation......, and pathology as well as parasite–parasite communication. In this report, we summarised the role of EVs in infections caused by viruses, bacteria, fungi, protozoa, and helminths based on the talks and discussions carried out during the International Society for Extracellular Vesicles (ISEV) workshop held in São...

  6. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-02-01

    Full Text Available The surface protein composition of extracellular vesicles (EVs is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  7. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles.

    Science.gov (United States)

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C D; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell-derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  8. Extracellular vesicle-mediated transfer of membranous components from the highly malignant T24 urinary carcinoma cell line to the non-malignant RT4 urinary papilloma cell line.

    Science.gov (United States)

    Ogorevc, Eva; Hudoklin, Samo; Veranič, Peter; Kralj-Iglič, Veronika

    2014-05-01

    This communication reports the first experimental evidence that in the bladder cancer model, membranous components labelled with the DiO dye and the cholera toxin subunit B can be transported from highly malignant (T24) to non-malignant (RT4) cells by extracellular vesicles. Taking into account the presence of stable membranous nanostructures found by scanning electron microscopy, we suggest a possible uptake mechanism in recipient cells through fusion with highly curved membranous regions.

  9. PGE2/EP4Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles.

    Science.gov (United States)

    Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung

    2017-02-01

    Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS

  10. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    Directory of Open Access Journals (Sweden)

    Thomas Lener

    2015-12-01

    Full Text Available Extracellular vesicles (EVs, such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a anti-tumour therapy, (b pathogen vaccination, (c immune-modulatory and regenerative therapies and (d drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV and of the European Cooperation in Science and Technology (COST program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD, summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.

  11. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper

    Science.gov (United States)

    Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A.; del Portillo, Hernando A.; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M.; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C.; Hendrix, An; Hermann, Dirk M.; Hill, Andrew F.; Hochberg, Fred; Horn, Peter A.; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W.; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J.; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A.; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G.; Rivera, Francisco J.; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W. M.; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd

    2015-01-01

    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed. PMID:26725829

  12. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper

    Science.gov (United States)

    Mateescu, Bogdan; Kowal, Emma J. K.; van Balkom, Bas W. M.; Bartel, Sabine; Bhattacharyya, Suvendra N.; Buzás, Edit I.; Buck, Amy H.; de Candia, Paola; Chow, Franklin W. N.; Das, Saumya; Driedonks, Tom A. P.; Fernández-Messina, Lola; Haderk, Franziska; Hill, Andrew F.; Jones, Jennifer C.; Van Keuren-Jensen, Kendall R.; Lai, Charles P.; Lässer, Cecilia; Liegro, Italia di; Lunavat, Taral R.; Lorenowicz, Magdalena J.; Maas, Sybren L. N.; Mäger, Imre; Mittelbrunn, Maria; Momma, Stefan; Mukherjee, Kamalika; Nawaz, Muhammed; Pegtel, D. Michiel; Pfaffl, Michael W.; Schiffelers, Raymond M.; Tahara, Hidetoshi; Théry, Clotilde; Tosar, Juan Pablo; Wauben, Marca H. M.; Witwer, Kenneth W.; Nolte-‘t Hoen, Esther N. M.

    2017-01-01

    ABSTRACT The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data. PMID:28326170

  13. Time-dependent uptake and trafficking of vesicles capturing extracellular S100B in cultured rat astrocytes.

    Science.gov (United States)

    Lasič, Eva; Galland, Fabiana; Vardjan, Nina; Šribar, Jernej; Križaj, Igor; Leite, Marina Concli; Zorec, Robert; Stenovec, Matjaž

    2016-10-01

    Astrocytes, the most heterogeneous glial cells in the central nervous system, contribute to brain homeostasis, by regulating a myriad of functions, including the clearance of extracellular debris. When cells are damaged, cytoplasmic proteins may exit into the extracellular space. One such protein is S100B, which may exert toxic effects on neighboring cells unless it is removed from the extracellular space, but the mechanisms of this clearance are poorly understood. By using time-lapse confocal microscopy and fluorescently labeled S100B (S100B-Alexa 488 ) and fluorescent dextran (Dextran 546 ), a fluid phase uptake marker, we examined the uptake of fluorescently labeled S100B-Alexa 488 from extracellular space and monitored trafficking of vesicles that internalized S100B-Alexa 488 . Initially, S100B-Alexa 488 and Dextran 546 internalized with distinct rates into different endocytotic vesicles; S100B-Alexa 488 internalized into smaller vesicles than Dextran 546 . At a later stage, S100B-Alexa 488 -positive vesicles substantially co-localized with Dextran 546 -positive endolysosomes and with acidic LysoTracker-positive vesicles. Cell treatment with anti-receptor for advanced glycation end products (RAGE) antibody, which binds to RAGE, a 'scavenger receptor', partially inhibited uptake of S100B-Alexa 488 , but not of Dextran 546 . The dynamin inhibitor dynole 34-2 inhibited internalization of both fluorescent probes. Directional mobility of S100B-Alexa 488 -positive vesicles increased over time and was inhibited by ATP stimulation, an agent that increases cytosolic free calcium concentration ([Ca 2+ ] i ). We conclude that astrocytes exhibit RAGE- and dynamin-dependent vesicular mechanism to efficiently remove S100B from the extracellular space. If a similar process occurs in vivo, astroglia may mitigate the toxic effects of extracellular S100B by this process under pathophysiologic conditions. This study reveals the vesicular clearance mechanism of extracellular S100

  14. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation.

    Directory of Open Access Journals (Sweden)

    Kirsten Ridder

    2014-06-01

    Full Text Available Mechanisms behind how the immune system signals to the brain in response to systemic inflammation are not fully understood. Transgenic mice expressing Cre recombinase specifically in the hematopoietic lineage in a Cre reporter background display recombination and marker gene expression in Purkinje neurons. Here we show that reportergene expression in neurons is caused by intercellular transfer of functional Cre recombinase messenger RNA from immune cells into neurons in the absence of cell fusion. In vitro purified secreted extracellular vesicles (EVs from blood cells contain Cre mRNA, which induces recombination in neurons when injected into the brain. Although Cre-mediated recombination events in the brain occur very rarely in healthy animals, their number increases considerably in different injury models, particularly under inflammatory conditions, and extend beyond Purkinje neurons to other neuronal populations in cortex, hippocampus, and substantia nigra. Recombined Purkinje neurons differ in their miRNA profile from their nonrecombined counterparts, indicating physiological significance. These observations reveal the existence of a previously unrecognized mechanism to communicate RNA-based signals between the hematopoietic system and various organs, including the brain, in response to inflammation.

  15. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures

    Directory of Open Access Journals (Sweden)

    Marijke I. Zonneveld

    2014-08-01

    Full Text Available Extracellular vesicles (EV in breast milk carry immune relevant proteins and could play an important role in the instruction of the neonatal immune system. To further analyze these EV and to elucidate their function it is important that native populations of EV can be recovered from (stored breast milk samples in a reproducible fashion. However, the impact of isolation and storage procedures on recovery of breast milk EV has remained underexposed. Here, we aimed to define parameters important for EV recovery from fresh and stored breast milk. To compare various protocols across different donors, breast milk was spiked with a well-defined murine EV population. We found that centrifugation of EV down into density gradients largely improved density-based separation and isolation of EV, compared to floatation up into gradients after high-force pelleting of EV. Using cryo-electron microscopy, we identified different subpopulations of human breast milk EV and a not previously described population of lipid tubules. Additionally, the impact of cold storage on breast milk EV was investigated. We determined that storing unprocessed breast milk at −80°C or 4°C caused death of cells present in breast milk, leading to contamination of the breast milk EV population with storage-induced EV. Here, an alternative method is proposed to store breast milk samples for EV analysis at later time points. The proposed adaptations to the breast milk storage and EV isolation procedures can be applied for EV-based biomarker profiling of breast milk and functional analysis of the role of breast milk EV in the development of the neonatal immune system.

  16. Fusion of Selected Cells and Vesicles Mediated by Optically Trapped Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Bahadori, Azra

    Selective fusion of two membrane surrounded volumes is of great interest in nanochemistry and nanomedicine as it can pave the way for performing controlled nanoscale chemical reactions and for delivering a cargo (e.g., chemicals, genetic regulatory factors, etc.) to a desired living cell...... vesicles (GUVs) and/or live cells. However, most of the fusion methods reported so far do not provide sufficient control over which cells/GUVs are going to fuse. Moreover, some of these approaches are not sufficiently non-invasive to be applied to living cells without compromising their viability....... In this work, we introduce a novel and extremely flexible physical method which can trigger membrane fusion in a highly selective manner not only between synthetic GUVs of different compositions, but also between live cells which remain viable after fusion. Optical tweezers’ laser (1064 nm) is used to position...

  17. Monocyte activation drives preservation of membrane thiols by promoting release of oxidised membrane moieties via extracellular vesicles.

    Science.gov (United States)

    Szabó-Taylor, K É; Tóth, E Á; Balogh, A M; Sódar, B W; Kádár, L; Pálóczi, K; Fekete, N; Németh, A; Osteikoetxea, X; Vukman, K V; Holub, M; Pállinger, É; Nagy, Gy; Winyard, P G; Buzás, E I

    2017-07-01

    The redox state of cellular exofacial molecules is reflected by the amount of available thiols. Furthermore, surface thiols can be considered as indicators of immune cell activation. One group of thiol containing proteins, peroxiredoxins, in particular, have been associated with inflammation. In this study, we assessed surface thiols of the U937 and Thp1 monocyte cell lines and primary monocytes in vitro upon inflammatory stimulation by irreversibly labelling the cells with a fluorescent derivative of maleimide. We also investigated exofacial thiols on circulating blood mononuclear cells in patients with rheumatoid arthritis and healthy controls. When analysing extracellular vesicles, we combined thiol labelling with the use of antibodies to specific CD markers to exclude extracellular vesicle mimicking signals from thiol containing protein aggregates. Furthermore, differential detergent lysis was applied to confirm the vesicular nature of the detected extracellular events in blood plasma. We found an increase in exofacial thiols on monocytes upon in vitro stimulation by LPS or TNF, both in primary monocytes and monocytic cell lines (pextracellular vesicles showed a decrease in their exofacial thiols compared with those from unstimulated cells (pextracellular vesicles of isolated CD14 + cells from rheumatoid arthritis patients had decreased thiol levels compared with healthy subjects (pextracellular vesicles was increased in rheumatoid arthritis blood plasma (pextracellular vesicle-enriched preparations from blood plasma. Our data show that cell surface thiols play a protective role and reflect oxidative stress resistance state in activated immune cells. Furthermore, they support a role of extracellular vesicles in the redox regulation of human monocytes, possibly representing an antioxidant mechanism. Copyright © 2017. Published by Elsevier Inc.

  18. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis.

    Science.gov (United States)

    Archer, Deborah A; Graham, Margaret E; Burgoyne, Robert D

    2002-05-24

    Membrane fusion during exocytosis and throughout the cell is believed to involve members of the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) family of proteins. The assembly of these proteins into a four-helix bundle may be part of the driving force for bilayer fusion. Regulated exocytosis in neurons and related cell types is specialized to be fast and Ca(2+)-dependent suggesting the involvement of other regulatory proteins specific for regulated exocytosis. Among these are the complexins, two closely related proteins that bind only to the assembled SNARE complex. We have investigated the function of complexin by analysis of single vesicle release events in adrenal chromaffin cells using carbon fiber amperometry. These cells express complexin II, and overexpression of this protein modified the kinetics of vesicle release events so that their time course was shortened. This effect depended on complexin interaction with the SNARE complex as introduction of a mutation of Arg-59, a residue that interacts with synaptobrevin in the SNARE complex, abolished its effects. The data are consistent with a function for complexin in stabilizing an intermediate of the SNARE complex to allow kiss-and-run recycling of the exocytosed vesicle.

  19. Extraction and Analysis of Extracellular Vesicle-Associated miRNAs Following Antibody-Based Extracellular Vesicle Capture from Plasma Samples.

    Science.gov (United States)

    Zocco, Davide; Zarovni, Natasa

    2017-01-01

    Extracellular vesicle (EV)-associated RNAs (EV-RNA) are under intense investigation due to their potential role in health and disease. Several approaches are currently employed to isolate blood-derived EVs for RNA analysis, most of which are either time-consuming and expensive, such as methods based on EVs physical properties (ultracentrifugation and Optiprep density gradient), or also copurify blood contaminants, mostly protein aggregates and immune complexes, (such as chemical precipitation). In addition, there is a lack of standardized protocols for the extraction of EV-RNA and very little consensus on the technological platforms and normalization tools for assessing the expression levels of different RNA species. These methodological issues complicate the comparison between independent data sets, potentially biasing results and conclusions.In this book chapter we propose a protocol that might overcome some of the abovementioned issues through antibody-based isolation of blood-derived EVs followed by extraction and expression analysis of small-RNA species (miRNA) by reverse transcriptase quantitative PCR (RT-qPCR). The advantages of immunoaffinity approaches over other isolation methods are multiple and include: (1) the selective enrichment of specific EV subpopulations with restricted tissue/cell origin, (2) reduction of matrix effects and blood contaminants that may confound miRNA profiling from complex biological fluids and (3) easy coupling to conventional quantitative assays (e.g., RT-qPCR). In conclusion, we describe a protocol for standard enrichment and quantitative analysis of EV-miRNAs from blood and we warrant for technological improvements, such as the use of novel biomaterials, surface chemistries, binding agents and assay/sensor design that may further improve it.

  20. Addition of thrombin reduces the recovery of extracellular vesicles from blood plasma

    Science.gov (United States)

    Arakelyan, Anush; Fitzgerald, Wendy; Vagida, Murad; Vasilieva, Elena; Grivel, Jean-Charles

    2016-01-01

    Extracellular vesicles (EVs) are widely studied as a system of intercellular communication, as markers of various diseases, as well as a vehicle for delivery of various bioactive molecules to various cells. Investigation of EVs’ structure and function requires their isolation and precise quantification. However, in the current literature, there are significant discrepancies in the estimated numbers of EVs in different body fluids. In part, this discrepancy is due to the difference in EVs isolation protocols used by different investigators. A common protocol that includes ExoQuick™ is often used to isolate EVs from body fluids and culture medium. Here, we show that in the case of isolation of EVs from blood, thrombin should be omitted from the protocol as clots formed due to the thrombin-triggered coagulation may entrap many EVs thus leading to the underestimation of their numbers. PMID:28936260

  1. Addition of thrombin reduces the recovery of extracellular vesicles from blood plasma

    Directory of Open Access Journals (Sweden)

    Anush Arakelyan

    2016-10-01

    Full Text Available Extracellular vesicles (EVs are widely studied as a system of intercellular communication, as markers of various diseases, as well as a vehicle for delivery of various bioactive molecules to various cells. Investigation of EVs’ structure and function requires their isolation and precise quantification. However, in the current literature, there are significant discrepancies in the estimated numbers of EVs in different body fluids. In part, this discrepancy is due to the difference in EVs isolation protocols used by different investigators. A common protocol that includes ExoQuick ™ is often used to isolate EVs from body fluids and culture medium. Here, we show that in the case of isolation of EVs from blood, thrombin should be omitted from the protocol as clots formed due to the thrombin-triggered coagulation may entrap many EVs thus leading to the underestimation of their numbers.

  2. Multiplexed Detection and Quantitation of Extracellular Vesicle RNA Expression Using NanoString.

    Science.gov (United States)

    Shukla, Neha; Yan, Irene K; Patel, Tushar

    2018-01-01

    Several different types of RNA molecules such as microRNAs (miRNAs) have been detected within extracellular vesicles in the circulation. The detection and potential utility of these as disease biomarkers requires the ability to detect their presence with adequate sensitivity and to quantitate their expression. The potential for circulating miRNA to serve as biomarkers can be evaluated through their detection in association with specific disease states. Multiplexed detection of several miRNA simultaneously can be useful for discovery studies. We describe the analysis of miRNA from biological fluids like plasma and serum using the Nanostring nCounter platform. Assays can be used to quantitate the expression of miRNA using direct detection based on hybridization to target specific color-coded probes followed by counting each color-coded barcode digitally.

  3. THE ROLE OF EXTRACELLULAR VESICLES IN MODULATING THE HOST IMMUNE RESPONSE DURING PARASITIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    Sergio eMontaner

    2014-09-01

    Full Text Available Parasites are the cause of major diseases affecting billions of people. As the inflictions caused by these parasites affect mainly developing countries, they are considered as neglected diseases. These parasitic infections are often chronic and lead to significant immunomodulation of the host immune response by the parasite, which could benefit both the parasite and the host and are the result of millions of years of co-evolution. The description of parasite extracellular vesicles (EVs in protozoa and helminths suggest that they may play an important role in host-parasite communication. In this review, recent studies on parasitic (protozoa and helminths EVs are presented and their potential use as novel therapeutical approaches is discussed.

  4. Extracellular Vesicles, a Key Mediator to Link Environmental Microbiota to Airway Immunity.

    Science.gov (United States)

    Choi, Youngwoo; Park, Hanki; Park, Hae Sim; Kim, Yoon Keun

    2017-03-01

    Asthma is considered the hallmark of chronic airway inflammation, in which several inflammatory cells of the innate and adaptive immune system act together. The disease is thought to be caused by a combination of genetic and environmental factors; however, precise mechanisms for airway inflammation remain unclear. The human microbiota provides an increasingly favored explanation for inflammatory diseases; an altered microbiota composition has been shown to regulate immune responses. However, given the complexity of the microbiota, additional research is needed to elucidate its role in the development of disease. One of the candidate molecules that link microbiota to disease is the extracellular vesicles (EVs). EVs are secreted by diverse cell types and they possess the pathophysiological function of delivering signals between bacteria and host. We discuss the role of the microbiota in the development of asthma through releasing EVs.

  5. Inflammaging and Frailty Status Do Not Result in an Increased Extracellular Vesicle Concentration in Circulation

    Directory of Open Access Journals (Sweden)

    Ainhoa Alberro

    2016-07-01

    Full Text Available In the last decades extracellular vesicles (EVs have emerged as key players for intercellular communication. In the case of inflammation, several studies have reported that EV levels are increased in circulation during inflammatory episodes. Based on this, we investigated whether aging results in elevated EV number, as a basal proinflammatory status termed “inflammaging” has been described in aged individuals. Moreover, we also hypothesized that frailty and dependence conditions of the elderly could affect EV concentration in plasma. Results showed that inflammaging, frailty or dependence status do not result in EV increase, at least in the total number of EVs in circulation. These results open a new perspective for investigating the role of EVs in human aging and in the inflammaging process.

  6. Single particle analysis: Methods for detection of platelet extracellular vesicles in suspension (excluding flow cytometry).

    Science.gov (United States)

    Buzás, Edit I; Gardiner, Chris; Lee, Changwon; Smith, Zachary J

    2017-05-01

    Extracellular vesicles (EVs) are small, membrane-bound particles released by all cell types, including abundant release by platelets. EVs are a topic of increasing interest in the academic and clinical community due to their increasingly recognised and diverse role in normal biology as well as in disease. However, typical analysis methods to characterise EVs released by cultured cells or isolated from whole blood or other body fluids are restricted to bulk analysis of all EVs in a sample. In this review, we discuss the motivation for analysis of individual EVs, as well as discuss three emerging methods for physical and chemical characterisation of individual EVs: nanoparticle tracking analysis, tunable resistive pulse sensing and Raman spectroscopy. We give brief descriptions of the working principles of each technique, along with a review noting the benefits and limitations of each method as applied to detection of single EVs.

  7. Flow analysis of individual blood extracellular vesicles in acute coronary syndrome.

    Science.gov (United States)

    Vagida, Murad; Arakelyan, Anush; Lebedeva, Anna; Grivel, Jean-Charles; Shpektor, Alexander; Vasilieva, Elena; Margolis, Leonid

    2017-03-01

    A diverse population of small extracellular vesicles (EVs) that are released by various cells has been characterized predominantly in bulk, a procedure whereby the individual characteristics of EVs are lost. Here, we used a new nanotechnology-based flow cytometric analysis to characterize the antigenic composition of individual EVs in patients with acute coronary syndrome (ACS). Plasma EVs were captured with 15-nm magnetic nanoparticles coupled to antibodies against CD31 (predominantly an endothelial marker), CD41a (a marker for platelets), and CD63 or MHC class I (common EV markers). The total amounts of EVs were higher in the ACS patients than in the controls, predominantly due to the contribution of patients with acute myocardial infarction. For all captured fractions, the differences in the EV amounts were restricted to CD41a+ EVs. The increase in the numbers of EVs in the ACS patients, predominantly of platelet origin, probably reflects platelet activation and may indicate disease progression.

  8. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey

    Directory of Open Access Journals (Sweden)

    Chris Gardiner

    2016-10-01

    Full Text Available Extracellular vesicles (EVs represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous in size, origin and molecular constituents, with considerable overlap in size and phenotype between different populations of EVs. Little is known about current practices for the isolation, purification and characterization of EVs. We report here the first large, detailed survey of current worldwide practices for the isolation and characterization of EVs. Conditioned cell culture media was the most widely used material (83%. Ultracentrifugation remains the most commonly used isolation method (81% with 59% of respondents use a combination of methods. Only 9% of respondents used only 1 characterization method, with others using 2 or more methods. Sample volume, sample type and downstream application all influenced the isolation and characterization techniques employed.

  9. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia.

    Science.gov (United States)

    Szempruch, Anthony J; Sykes, Steven E; Kieft, Rudo; Dennison, Lauren; Becker, Allison C; Gartrell, Anzio; Martin, William J; Nakayasu, Ernesto S; Almeida, Igor C; Hajduk, Stephen L; Harrington, John M

    2016-01-14

    Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects.

    Science.gov (United States)

    Eaton, Sally A; Jayasooriah, Navind; Buckland, Michael E; Martin, David Ik; Cropley, Jennifer E; Suter, Catherine M

    2015-10-01

    The ability of environmental exposures to induce phenotypic change across multiple generations of offspring has gathered an enormous amount of interest in recent years. There are by now many examples of nongenetic transgenerational effects of environmental exposures, covering a broad range of stressors. Available evidence indicates that epigenetic inheritance may mediate at least some of these transgenerational effects, but how environmental exposures induce changes to the epigenome of the germline is unknown. One possibility is that exposed somatic cells can communicate their exposures to the germline to induce a stable change. In this Perspective, we propose that extracellular vesicles shed by somatic cells represent a credible means by which environmental experience could effect a transmissible epigenetic change in the germline, leading to the inheritance of acquired traits.

  11. A novel community driven software for functional enrichment analysis of extracellular vesicles data

    Science.gov (United States)

    Pathan, Mohashin; Keerthikumar, Shivakumar; Chisanga, David; Alessandro, Riccardo; Ang, Ching-Seng; Askenase, Philip; Batagov, Arsen O.; Benito-Martin, Alberto; Camussi, Giovanni; Clayton, Aled; Collino, Federica; Di Vizio, Dolores; Falcon-Perez, Juan Manuel; Fonseca, Pedro; Fonseka, Pamali; Fontana, Simona; Gho, Yong Song; Hendrix, An; Hoen, Esther Nolte-’t; Iraci, Nunzio; Kastaniegaard, Kenneth; Kislinger, Thomas; Kowal, Joanna; Kurochkin, Igor V.; Leonardi, Tommaso; Liang, Yaxuan; Llorente, Alicia; Lunavat, Taral R.; Maji, Sayantan; Monteleone, Francesca; Øverbye, Anders; Panaretakis, Theocharis; Patel, Tushar; Peinado, Héctor; Pluchino, Stefano; Principe, Simona; Ronquist, Goran; Royo, Felix; Sahoo, Susmita; Spinelli, Cristiana; Stensballe, Allan; Théry, Clotilde; van Herwijnen, Martijn J.C.; Wauben, Marca; Welton, Joanne L.; Zhao, Kening; Mathivanan, Suresh

    2017-01-01

    ABSTRACT Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture “what the community needs in a tool”. Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines. PMID:28717418

  12. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey

    Science.gov (United States)

    Gardiner, Chris; Vizio, Dolores Di; Sahoo, Susmita; Théry, Clotilde; Witwer, Kenneth W.; Wauben, Marca; Hill, Andrew F.

    2016-01-01

    Extracellular vesicles (EVs) represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous in size, origin and molecular constituents, with considerable overlap in size and phenotype between different populations of EVs. Little is known about current practices for the isolation, purification and characterization of EVs. We report here the first large, detailed survey of current worldwide practices for the isolation and characterization of EVs. Conditioned cell culture media was the most widely used material (83%). Ultracentrifugation remains the most commonly used isolation method (81%) with 59% of respondents use a combination of methods. Only 9% of respondents used only 1 characterization method, with others using 2 or more methods. Sample volume, sample type and downstream application all influenced the isolation and characterization techniques employed. PMID:27802845

  13. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques

    Science.gov (United States)

    Hutcheson, Joshua D.; Goettsch, Claudia; Bertazzo, Sergio; Maldonado, Natalia; Ruiz, Jessica L.; Goh, Wilson; Yabusaki, Katsumi; Faits, Tyler; Bouten, Carlijn; Franck, Gregory; Quillard, Thibaut; Libby, Peter; Aikawa, Masanori; Weinbaum, Sheldon; Aikawa, Elena

    2016-03-01

    Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque’s collagen content--two determinants of atherosclerotic plaque stability--are interlinked.

  14. Current Perspectives on In Vivo Noninvasive Tracking of Extracellular Vesicles with Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-01-01

    Full Text Available Clinical and preclinical in vivo tracking of extracellular vesicles (EVs are a crucial tool for the development and optimization of EV-based diagnosis and treatment. EVs have gained interest due to their unique properties that make them excellent candidates for biological applications. Noninvasive in vivo EV tracking has allowed marked progress towards elucidating the mechanisms and functions of EVs in real time in preclinical and clinical studies. In this review, we summarize several molecular imaging methods that deal with EVs derived from different cells, which have allowed investigations of EV biodistribution, as well as their tracking, delivery, and tumor targeting, to determine their physiological functions and to exploit imaging-derived information for EV-based theranostics.

  15. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA

    Science.gov (United States)

    Chakrabortty, Sudipto K.; Prakash, Ashwin; Nechooshtan, Gal; Hearn, Stephen; Gingeras, Thomas R.

    2015-01-01

    Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion. PMID:26392588

  16. Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells

    Science.gov (United States)

    Marcilla, Antonio; Trelis, María; Cortés, Alba; Sotillo, Javier; Cantalapiedra, Fernando; Minguez, María Teresa; Valero, María Luz; Sánchez del Pino, Manuel Mateo; Muñoz-Antoli, Carla; Toledo, Rafael; Bernal, Dolores

    2012-01-01

    The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents. PMID:23029346

  17. Endothelial Cell-derived Extracellular Vesicles Size-dependently Exert Procoagulant Activity Detected by Thromboelastometry.

    Science.gov (United States)

    Holnthoner, Wolfgang; Bonstingl, Cornelia; Hromada, Carina; Muehleder, Severin; Zipperle, Johannes; Stojkovic, Stefan; Redl, Heinz; Wojta, Johann; Schöchl, Herbert; Grillari, Johannes; Weilner, Sylvia; Schlimp, Christoph J

    2017-06-16

    Endothelial cells (ECs) are major modulators of hemostasis by expressing and releasing pro- and anticoagulant mediators into the circulation. Previous studies showed that cultured ECs release procoagulant mediators into cell culture supernatants as evidenced by the reduction of viscoelastic clotting time. This effect was reversed with an anti-tissue factor antibody. Here, we aimed to investigate whether tissue factor (TF) was released by endothelial-derived extracellular vesicles (EVs) and which portion of the released vesicles displays the most prominent procoagulant properties. After stimulation of ECs with tumor-necrosis factor-α (TNF-α) the supernatants of EC cultures were subjected to differential centrifugation steps to collect larger and smaller EVs which were then characterised by nanoparticle tracking analysis (NTA) and flow cytometry. Mixed with fresh human blood and analysed by thromboelastometry EVs exerted a significant procoagulant stimulus, which could be partly reversed by addition of an anti-TF antibody. Moreover, TF activity was confirmed in the centrifuged fractions. In summary, our results provide evidence of the procoagulant potential of smaller and larger endothelial-derived EV fractions detected by thromboelastometry. The observed effect is most likely due to the release of TF-bearing EVs of different dimensions, which are released upon TNF-α stimulation of endothelial cell cultures.

  18. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine.

    Science.gov (United States)

    Fais, Stefano; O'Driscoll, Lorraine; Borras, Francesc E; Buzas, Edit; Camussi, Giovanni; Cappello, Francesco; Carvalho, Joana; Cordeiro da Silva, Anabela; Del Portillo, Hernando; El Andaloussi, Samir; Ficko Trček, Tanja; Furlan, Roberto; Hendrix, An; Gursel, Ihsan; Kralj-Iglic, Veronika; Kaeffer, Bertrand; Kosanovic, Maja; Lekka, Marilena E; Lipps, Georg; Logozzi, Mariantonia; Marcilla, Antonio; Sammar, Marei; Llorente, Alicia; Nazarenko, Irina; Oliveira, Carla; Pocsfalvi, Gabriella; Rajendran, Lawrence; Raposo, Graça; Rohde, Eva; Siljander, Pia; van Niel, Guillaume; Vasconcelos, M Helena; Yáñez-Mó, María; Yliperttula, Marjo L; Zarovni, Natasa; Zavec, Apolonija Bedina; Giebel, Bernd

    2016-04-26

    Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.

  19. Point-of-care detection of extracellular vesicles: Sensitivity optimization and multiple-target detection.

    Science.gov (United States)

    Oliveira-Rodríguez, Myriam; Serrano-Pertierra, Esther; García, Agustín Costa; López-Martín, Soraya; Yañez-Mo, María; Cernuda-Morollón, Eva; Blanco-López, M C

    2017-01-15

    Extracellular vesicles (EVs) are membrane-bound nanovesicles delivered by different cellular lineages under physiological and pathological conditions. Although these vesicles have shown relevance as biomarkers for a number of diseases, their isolation and detection still has several technical drawbacks, mainly related with problems of sensitivity and time-consumed. Here, we reported a rapid and multiple-targeted lateral flow immunoassay (LFIA) system for the detection of EVs isolated from human plasma. A range of different labels (colloidal gold, carbon black and magnetic nanoparticles) was compared as detection probe in LFIA, being gold nanoparticles that showed better results. Using this platform, we demonstrated that improvements may be carried out by incorporating additional capture lines with different antibodies. The device exhibited a limit of detection (LOD) of 3.4×10 6 EVs/µL when anti-CD81 and anti-CD9 were selected as capture antibodies in a multiple-targeted format, and anti-CD63 labeled with gold nanoparticles was used as detection probe. This LFIA, coupled to EVs isolation kits, could become a rapid and useful tool for the point-of-care detection of EVs, with a total analysis time of two hours. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders.

    Science.gov (United States)

    Lakhter, Alexander J; Sims, Emily K

    2015-11-01

    Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes.

  1. Signed, sealed, delivered: microenvironmental modulation of extracellular vesicle-dependent immunoregulation in the lung

    Directory of Open Access Journals (Sweden)

    Daniel J Schneider

    2016-08-01

    Full Text Available Unconventional secretion and subsequent uptake of molecular cargo via extracellular vesicles (EVs is an important mechanism by which cells can exert paracrine effects. While this phenomenon has been widely characterized in the context of their ability to promote inflammation, less is known about the ability of EVs to transfer immunosuppressive cargo. Maintenance of normal physiology in the lung requires suppression of potentially damaging inflammatory responses to the myriad of insults to which it is continually exposed. Recently, our laboratory has reported the ability of alveolar macrophages (AMs to secrete suppressors of cytokine signaling (SOCS proteins within microvesicles (MVs and exosomes (Exos. Uptake of these EVs by alveolar epithelial cells (AECs resulted in inhibition of pro-inflammatory STAT activation in response to cytokines. Moreover, AM packaging of SOCS within EVs could be rapidly tuned in response to exogenous or AEC-derived substances. In this article we will highlight gaps in knowledge regarding microenvironmental modulation of cargo packaging and utilization as well as EV secretion and uptake. Advances in these areas are critical for improving understanding of intercellular communication in the immune system and for therapeutic application of artificial vesicles aimed at treatment of diseases characterized by dysregulated inflammation.

  2. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs.

    Science.gov (United States)

    Njock, Makon-Sébastien; Cheng, Henry S; Dang, Lan T; Nazari-Jahantigh, Maliheh; Lau, Andrew C; Boudreau, Emilie; Roufaiel, Mark; Cybulsky, Myron I; Schober, Andreas; Fish, Jason E

    2015-05-14

    The blood contains high concentrations of circulating extracellular vesicles (EVs), and their levels and contents are altered in several disease states, including cardiovascular disease. However, the function of circulating EVs, especially the microRNAs (miRNAs) that they contain, are poorly understood. We sought to determine the effect of secreted vesicles produced by quiescent endothelial cells (ECs) on monocyte inflammatory responses and to assess whether transfer of microRNAs occurs between these cells. We observed that monocytic cells cocultured (but not in contact) with ECs were refractory to inflammatory activation. Further characterization revealed that endothelium-derived EVs (EC-EVs) suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses. EVs isolated from mouse plasma also suppressed monocyte activation. Importantly, injection of EC-EVs in vivo repressed monocyte/macrophage activation, confirming our in vitro findings. We found that several antiinflammatory microRNAs were elevated in EC-EV-treated monocytes. In particular, miR-10a was transferred to monocytic cells from EC-EVs and could repress inflammatory signaling through the targeting of several components of the NF-κB pathway, including IRAK4. Our findings reveal that ECs secrete EVs that can modulate monocyte activation and suggest that altered EV secretion and/or microRNA content may affect vascular inflammation in the setting of cardiovascular disease. © 2015 by The American Society of Hematology.

  3. Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp.

    Science.gov (United States)

    Blesa, Alba; Berenguer, José

    2015-09-01

    Highly efficient apparatus for natural competence and conjugation have been shown as the major contributors to horizontal gene transfer (HGT) in Thermus thermophilus. In practical terms, both mechanisms can be distinguished by the sensitivity of the former to the presence of DNAse, and the requirement for cell to cell contacts in the second. Here we demonstrate that culture supernatants of different strains of Thermus spp. produce DNAse-resistant extracellular DNA (eDNA) in a growth-rate dependent manner. This eDNA was double stranded, similar in size to isolated genomic DNA (around 20 kbp), and represented the whole genome of the producer strain. Protection against DNAse was the consequence of association of the eDNA to membrane vesicles which composition was shown to include a great diversity of cell envelope proteins with minor content of cytoplasmic proteins. Access of the recipient cell to the protected eDNA depended on the natural competence apparatus and elicited the DNA-DNA interference defence mediated by the Argonaute protein. We hypothesize on the lytic origin of the eDNA carrying vesicles and discuss the relevance of this alternative mechanism for HGT in natural thermal environments. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    Science.gov (United States)

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  5. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes

    Science.gov (United States)

    Kowal, Joanna; Arras, Guillaume; Colombo, Marina; Jouve, Mabel; Morath, Jakob Paul; Primdal-Bengtson, Bjarke; Dingli, Florent; Tkach, Mercedes; Théry, Clotilde

    2016-01-01

    Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies. PMID:26858453

  6. Extracellular vesicles in breast cancer drug resistance and their clinical application.

    Science.gov (United States)

    Yu, Shentong; Wei, Yifang; Xu, Yuqiao; Zhang, Yuan; Li, Jipeng; Zhang, Jian

    2016-03-01

    Drug resistance currently represents a daunting challenge in the treatment of breast cancer patients. With an increased understanding of the underlying mechanisms of drug resistance, the role of extracellular vesicles (EVs) in the development of chemo-insensitivity attracts extensive attention. EVs are membrane-limited, cell type-dependent vesicles that are secreted by normal or malignant cells. EVs comprise various types of contents, including genetic cargoes, proteins, and specific lipids. The characteristics of the contents determine their specific functions in not only physiological but also pathological conditions. It has been demonstrated that miRNAs and proteins in EVs are strongly correlated with breast cancer drug resistance. Additionally, they may exert an influence on de novo and acquired resistance bioprocesses. With the advances in extraction and detection technologies, EVs have also been employed to precisely diagnose and predict the outcome of therapy in breast cancer. On the other hand, they can also be exploited as efficient delivery system in future anticancer applications. In this paper, we summarized relative mechanisms concerning the relationship between EVs and breast cancer drug resistance, and then, we provide up-to-date research advances in the clinical application of EVs.

  7. Signed, Sealed, Delivered: Microenvironmental Modulation of Extracellular Vesicle-Dependent Immunoregulation in the Lung.

    Science.gov (United States)

    Schneider, Daniel J; Speth, Jennifer M; Peters-Golden, Marc

    2016-01-01

    Unconventional secretion and subsequent uptake of molecular cargo via extracellular vesicles (EVs) is an important mechanism by which cells can exert paracrine effects. While this phenomenon has been widely characterized in the context of their ability to promote inflammation, less is known about the ability of EVs to transfer immunosuppressive cargo. Maintenance of normal physiology in the lung requires suppression of potentially damaging inflammatory responses to the myriad of insults to which it is continually exposed. Recently, our laboratory has reported the ability of alveolar macrophages (AMs) to secrete suppressors of cytokine signaling (SOCS) proteins within microvesicles (MVs) and exosomes (Exos). Uptake of these EVs by alveolar epithelial cells (AECs) resulted in inhibition of pro-inflammatory STAT activation in response to cytokines. Moreover, AM packaging of SOCS within EVs could be rapidly tuned in response to exogenous or AEC-derived substances. In this article we will highlight gaps in knowledge regarding microenvironmental modulation of cargo packaging and utilization as well as EV secretion and uptake. Advances in these areas are critical for improving understanding of intercellular communication in the immune system and for therapeutic application of artificial vesicles aimed at treatment of diseases characterized by dysregulated inflammation.

  8. TNF-α promotes extracellular vesicle release in mouse astrocytes through glutaminase.

    Science.gov (United States)

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C

    2017-04-20

    Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-α promotes glutaminase expression in neurons. However, the expression and the functionality of glutaminase in astrocytes during neuroinflammation remain unknown. We posit that TNF-α can promote the release of EVs in astrocytes through upregulation of glutaminase expression. Release of EVs, which was demonstrated by electron microscopy, nanoparticle tracking analysis (NTA), and Western Blot, increased in mouse astrocytes when treated with TNF-α. Furthermore, TNF-α treatment significantly upregulated protein levels of glutaminase and increased the production of glutamate, suggesting that glutaminase activity is increased after TNF-α treatment. Interestingly, pretreatment with a glutaminase inhibitor blocked TNF-α-mediated generation of reactive oxygen species in astrocytes, which indicates that glutaminase activity contributes to stress in astrocytes during neuroinflammation. TNF-α-mediated increased release of EVs can be blocked by either the glutaminase inhibitor, antioxidant N-acetyl-L-cysteine, or genetic knockout of glutaminase, suggesting that glutaminase plays an important role in astrocyte EV release during neuroinflammation. These findings suggest that glutaminase is an important metabolic factor controlling EV release from astrocytes during neuroinflammation.

  9. Extracellular vesicles concentration is a promising and important parameter for industrial bioprocess monitoring.

    Science.gov (United States)

    Zavec, Apolonija Bedina; Kralj-Iglič, Veronika; Brinc, Matjaž; Trček, Tanja Ficko; Kuzman, Drago; Schweiger, Ana; Anderluh, Gregor

    2016-05-01

    Extracellular vesicles (EVs) are membrane vesicles that are produced by cells to be released into their microenvironment. In this study, we present the EV concentration as a new factor for optimization of industrial bioprocess control. The release of EVs depends on many cell properties, including cell activation and stress status, and cell death. Therefore, the EV concentration might provide a readout for identification of the cell state and the conditions during a bioprocess. Our data show that the EV concentration increased during the bioprocess, which indicated deteriorating conditions in the bioreactor. This increase in EV concentration in the fermentation broth was the consequence of two different processes: cell activation, and cell death. However, the release of EVs from activated living cells had a much weaker impact on EV concentration in the bioreactor than those released during cell death. EVs and cells in the bioprocess environment were quantified by flow cytometry. The most accurate data were obtained directly from unprocessed samples, making the monitoring of the EV concentration a rapid, easy, and cheap method. These EV concentrations reflect the conditions in the bioreactor and provide new information regarding the state of the bioprocess. Therefore, we suggest EV concentration as a new and important parameter for the monitoring of industrial bioprocesses. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro.

    Science.gov (United States)

    Lopera-Vasquez, Ricaurte; Hamdi, Meriem; Maillo, Veronica; Gutierrez-Adan, Alfonso; Bermejo-Alvarez, Pablo; Ramírez, Miguel Ángel; Yáñez-Mó, María; Rizos, Dimitrios

    2017-04-01

    The aim of this study was to evaluate the effect of extracellular vesicles (EV) from oviductal fluid (OF), either from the ampulla or isthmus, on the development and quality of in vitro-cultured bovine embryos. Zygotes were cultured in synthetic oviduct fluid (SOF + 3 mg/mL BSA) without calf serum (C- group), in the presence of 3 × 105 EV/mL from ampullary or isthmic OF at either 1 × 104 g (10 K) or 1 × 105 g (100 K), and compared with SOF + 5% FCS (C+ group). OF-EV size and concentration were assessed by electron microscopy and nanotracking analysis system. Embryo development was recorded on Days 7-9, and blastocyst quality was assessed through cryotolerance and gene expression analysis. Lower blastocyst yield was observed on Day 7 in the C- and OF-EV groups (12.0-14.3%) compared with C+ (20.6%); however, these differences were compensated at Days 8 and 9 (Day 9: 28.5-30.8%). Importantly, the survival rate of blastocysts produced with isthmic 100 K OF-EV was higher than that of C+ and C- group at 72 h after vitrification and warming (80.1 vs 34.5 and 50.5% respectively, P produced in the presence of 100 K isthmic OF-EV upregulated the water channel AQP3 and DNMT3A and SNRPN transcripts compared with the C+, with the expression in C- being intermediate. The lipid receptor LDLR was downregulated in C+ compared with all other groups. In conclusion, the addition of oviductal fluid extracellular vesicles from isthmus, to in vitro culture of bovine embryos in the absence of serum improves the development and quality of the embryos produced. © 2017 Society for Reproduction and Fertility.

  11. Esophageal Adenocarcinoma–Derived Extracellular Vesicle MicroRNAs Induce a Neoplastic Phenotype in Gastric Organoids

    Directory of Open Access Journals (Sweden)

    Xiquan Ke

    2017-11-01

    Full Text Available There have been no reports describing the effects of cancer cell–derived extracellular vesicles (EVs on three-dimensional organoids. In this study, we delineated the proneoplastic effects of esophageal adenocarcinoma (EAC–derived EVs on gastric organoids (gastroids and elucidated molecular mechanisms underlying these effects. EVs were identified using PKH-67 staining. Morphologic changes, Ki-67 immunochemistry, cell viability, growth rates, and expression levels of miR-25 and miR-210, as well as of their target mRNAs, were determined in gastroids co-cultured with EAC-derived extracellular vesicles (c-EVs. C-EVs were efficiently taken up by gastroids. Notably, c-EV–treated gastroids were more crowded, compact, and multilayered and contained smaller lumens than did those cultured in organoid medium alone or in EAC-conditioned medium that had been depleted of EVs. Moreover, c-EV–treated gastroids manifested increased proliferation and cellular viability relative to medium-only or EV-depleted controls. Expression levels of miR-25 and miR-210 were significantly higher, and those of PTEN and AIFM3 significantly lower, in c-EV–treated versus medium-only or EV-depleted control groups. Inhibitors of miR-25 and miR-210 reversed the increased cell proliferation induced by c-exosomes in co-cultured gastroids by lowering miR-25 and miR-210 levels. In conclusion, we have constructed a novel model system featuring the co-culture of c-EVs with three-dimensional gastroids. Using this model, we discovered that cancer-derived EVs induce a neoplastic phenotype in gastroids. These changes are due, at least in part, to EV transfer of miR-25 and miR-210.

  12. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties

    NARCIS (Netherlands)

    Nordin, Joel Z.; Lee, Yi; Vader, Pieter; Mäger, Imre; Johansson, Henrik J.; Heusermann, Wolf; Wiklander, Oscar P B; Hällbrink, Mattias; Seow, Yiqi; Bultema, Jarred J.; Gilthorpe, Jonathan; Davies, Tim; Fairchild, Paul J.; Gbrielsson, Susanne; Meisner-Kober, Nicole C.; Lehtiö, Janne; Smith, C. I Edvard; Wood, Matthew J A; Andaloussi, Samir E L

    2015-01-01

    Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and

  13. Highlights of the São Paulo ISEV workshop on extracellular vesicles in cross-kingdom communication

    DEFF Research Database (Denmark)

    Soares, Rodrigo P.; Xander, Patrícia; Costa, Adriana Oliveira

    2017-01-01

    In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host–pathogen interaction, including invasion, immunomodulation, and pat...

  14. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and CH stretching vibrations.

    Science.gov (United States)

    Mihály, Judith; Deák, Róbert; Szigyártó, Imola Csilla; Bóta, Attila; Beke-Somfai, Tamás; Varga, Zoltán

    2017-03-01

    Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were investigated by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Amide and CH stretching band intensity ratios calculated from IR bands, characteristic of protein and lipid components, proved to be distinctive for the different extracellular vesicle subpopulations. This proposed 'spectroscopic protein-to-lipid ratio', combined with the outlined spectrum-analysis protocol is valid also for low sample concentrations (0.15-0.05mg/ml total protein content) and can carry information about the presence of other non-vesicular formations such as aggregated proteins, lipoproteins and immune complexes. Detailed analysis of IR data reveals compositional changes of extracellular vesicles subpopulations: second derivative spectra suggest changes in protein composition from parent cell towards exosomes favoring proteins with β-turns and unordered motifs at the expense of intermolecular β-sheet structures. The IR-based protein-to-lipid assessment protocol was tested also for red blood cell derived microvesicles for which similar values were obtained. The potential applicability of this technique for fast and efficient characterization of vesicular components is high as the investigated samples require no further preparations and all the different molecular species can be determined in the same sample. The results indicate that ATR-FTIR measurements provide a simple and reproducible method for the screening of extracellular vesicle preparations. It is hoped that this sophisticated technique will have further impact in extracellular vesicle research. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biodistribution, Uptake and Effects Caused by Cancer-derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Lilite Sadovska

    2015-03-01

    Full Text Available Extracellular vesicles (EVs have recently emerged as important mediators of intercellular communication. They are released in the extracellular space by a variety of normal and cancerous cell types and have been found in all human body fluids. Cancer-derived EVs have been shown to carry lipids, proteins, mRNAs, non-coding and structural RNAs and even extra-chromosomal DNA, which can be taken up by recipient cells and trigger diverse physiological and pathological responses. An increasing body of evidence suggests that cancer-derived EVs mediate paracrine signalling between cancer cells. This leads to the increased invasiveness, proliferation rate and chemoresistance, as well as the acquisition of the cancer stem cell phenotype. This stimulates angiogenesis and the reprogramming of normal stromal cells into cancer-promoting cell types. Furthermore, cancer-derived EVs contribute to the forma‐ tion of the pre-metastatic niche and modulation of anti- tumour immune response. However, as most of these data are obtained by in vitro studies, it is not entirely clear which of these effects are recapitulated in vivo. In the current review, we summarize studies that assess the tissue distribution, trafficking, clearance and uptake of cancer- derived EVs in vivo and discuss the impact they have, both locally and systemically.

  16. Biodistribution, Uptake and Effects Caused by Cancer-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Lilite Sadovska

    2015-03-01

    Full Text Available Extracellular vesicles (EVs have recently emerged as important mediators of intercellular communication. They are released in the extracellular space by a variety of normal and cancerous cell types and have been found in all human body fluids. Cancer-derived EVs have been shown to carry lipids, proteins, mRNAs, non-coding and structural RNAs and even extra-chromosomal DNA, which can be taken up by recipient cells and trigger diverse physiological and pathological responses. An increasing body of evidence suggests that cancer-derived EVs mediate paracrine signalling between cancer cells. This leads to the increased invasiveness, proliferation rate and chemoresistance, as well as the acquisition of the cancer stem cell phenotype. This stimulates angiogenesis and the reprogramming of normal stromal cells into cancer-promoting cell types. Furthermore, cancer-derived EVs contribute to the formation of the pre-metastatic niche and modulation of anti-tumour immune response. However, as most of these data are obtained by in vitro studies, it is not entirely clear which of these effects are recapitulated in vivo . In the current review, we summarize studies that assess the tissue distribution, trafficking, clearance and uptake of cancer-derived EVs in vivo and discuss the impact they have, both locally and systemically.

  17. Extracellular vesicle associated long non-coding RNAs functionally enhance cell viability

    Directory of Open Access Journals (Sweden)

    Chris Hewson

    2016-10-01

    Full Text Available Cells communicate with one another to create microenvironments and share resources. One avenue by which cells communicate is through the action of exosomes. Exosomes are extracellular vesicles that are released by one cell and taken up by neighbouring cells. But how exosomes instigate communication between cells has remained largely unknown. We present evidence here that particular long non-coding RNA molecules are preferentially packaged into exosomes. We also find that a specific class of these exosome associated non-coding RNAs functionally modulate cell viability by direct interactions with l-lactate dehydrogenase B (LDHB, high-mobility group protein 17 (HMG-17, and CSF2RB, proteins involved in metabolism, nucleosomal architecture and cell signalling respectively. Knowledge of this endogenous cell to cell pathway, those proteins interacting with exosome associated non-coding transcripts and their interacting domains, could lead to a better understanding of not only cell to cell interactions but also the development of exosome targeted approaches in patient specific cell-based therapies. Keywords: Non-coding RNA, Extracellular RNA, Exosomes, Retroelement, Pseudogene

  18. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Jinghuan Li

    2015-05-01

    Full Text Available Extracellular vesicles (EVs play a significant role in cell–cell communication in numerous physiological processes and pathological conditions, and offer promise as novel biomarkers and therapeutic agents for genetic diseases. Many recent studies have described different molecular mechanisms that contribute to EV biogenesis and release from cells. However, little is known about how external stimuli such as cell culture conditions can affect the quantity and content of EVs. While N2a neuroblastoma cells cultured in serum-free (OptiMEM conditions did not result in EVs with significant biophysical or size differences compared with cells cultured in serum-containing (pre-spun conditions, the quantity of isolated EVs was greatly increased. Moreover, the expression levels of certain vesicular proteins (e.g. small GTPases, G-protein complexes, mRNA processing proteins and splicing factors, some of which were previously reported to be involved in EV biogenesis, were found to be differentially expressed in EVs under different culture conditions. These data, therefore, contribute to the understanding of how extracellular factors and intracellular molecular pathways affect the composition and release of EVs.

  19. DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer's disease.

    Science.gov (United States)

    Keating, Damien J; Dubach, Daphne; Zanin, Mark P; Yu, Yong; Martin, Katherine; Zhao, Yu-Feng; Chen, Chen; Porta, Sílvia; Arbonés, Maria L; Mittaz, Laureane; Pritchard, Melanie A

    2008-04-01

    Genes located on chromosome 21, over-expressed in Down syndrome (DS) and Alzheimer's disease (AD) and which regulate vesicle trafficking, are strong candidates for involvement in AD neuropathology. Regulator of calcineurin activity 1 (RCAN1) is one such gene. We have generated mutant mice in which RCAN1 is either over-expressed (RCAN1(ox)) or ablated (Rcan1-/-) and examined whether exocytosis from chromaffin cells, a classic cellular model of neuronal exocytosis, is altered using carbon fibre amperometry. We find that Rcan1 regulates the number of vesicles undergoing exocytosis and the speed at which the vesicle fusion pore opens and closes. Cells from both Rcan1-/- and RCAN1(ox) mice display reduced levels of exocytosis. Changes in single-vesicle fusion kinetics are also evident resulting in the less catecholamine released per vesicle with increasing Rcan1 expression. Acute calcineurin inhibition did not replicate the effect of RCAN1 overexpression. These changes are not due to alterations in Ca2+ entry or the readily releasable vesicle pool size. Thus, we illustrate a novel regulator of vesicle exocytosis, Rcan1, which influences both exocytotic rate and vesicle fusion kinetics. If Rcan1 functions similarly in neurons then overexpression of this protein, as occurs in DS and AD brains, will reduce both the number of synaptic vesicles undergoing exocytosis and the amount of neurotransmitter released per fusion event. This has direct implications for the pathogenesis of these diseases as sufficient levels of neurotransmission are required for synaptic maintenance and the prevention of neurodegeneration and vesicle trafficking defects are the earliest hallmark of AD neuropathology.

  20. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation

    Directory of Open Access Journals (Sweden)

    Kerry L. Inder

    2014-06-01

    Full Text Available Background: Tumour-derived extracellular vesicles (EVs play a role in tumour progression; however, the spectrum of molecular mechanisms regulating EV secretion and cargo selection remain to be fully elucidated. We have reported that cavin-1 expression in prostate cancer PC3 cells reduced the abundance of a subset of EV proteins, concomitant with reduced xenograft tumour growth and metastasis. Methods: We examined the functional outcomes and mechanisms of cavin-1 expression on PC3-derived EVs (PC3-EVs. Results: PC3-EVs were internalized by osteoclast precursor RAW264.7 cells and primary human osteoblasts (hOBs in vitro, stimulating osteoclastogenesis 37-fold and hOB proliferation 1.5-fold, respectively. Strikingly, EVs derived from cavin-1-expressing PC3 cells (cavin-1-PC3-EVs failed to induce multinucleate osteoblasts or hOB proliferation. Cavin-1 was not detected in EVs, indicating an indirect mechanism of action. EV morphology, size and quantity were also not affected by cavin-1 expression, suggesting that cavin-1 modulated EV cargo recruitment rather than release. While cavin-1-EVs had no osteoclastogenic function, they were internalized by RAW264.7 cells but at a reduced efficiency compared to control EVs. EV surface proteins are required for internalization of PC3-EVs by RAW264.7 cells, as proteinase K treatment abolished uptake of both control and cavin-1-PC3-EVs. Removal of sialic acid modifications by neuraminidase treatment increased the amount of control PC3-EVs internalized by RAW264.7 cells, without affecting cavin-1-PC3-EVs. This suggests that cavin-1 expression altered the glycosylation modifications on PC3-EV surface. Finally, cavin-1 expression did not affect EV in vivo tissue targeting as both control and cavin-1-PC3-EVs were predominantly retained in the lung and bone 24 hours after injection into mice. Discussion: Taken together, our results reveal a novel pathway for EV cargo sorting, and highlight the potential of utilizing

  1. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms

    KAUST Repository

    Barteneva, Natasha S.

    2017-06-29

    Extracellular vesicle (EV) production is a universal feature of metazoan cells as well as prokaryotes (bMVs - bacterial microvesicls). They are small vesicles with phospholipid membrane carrying proteins, DNA and different classes of RNAs and are heavily involved in intercellular communication acting as vectors of information to target cells. For the last decade, the interest in EV research has exponentially increased though thorough studies of their roles in various pathologies that was not previously possible due to technical limitations.This review focuses on research evaluating the role of EV production in gastrointestinal (GI) cancer development in conjunction with GI microbiota and inflammatory diseases. We also discuss recent studies on the promising role of EVs and their content as biomarkers for early diagnosis of GI cancers. The bMVs have also been implicated in the pathogenesis of GI chronic inflammatory diseases, however, possible role of bMVs in tumorigenesis remains underestimated. We propose that EVs from eukaryotic cells as well as from different microbial, fungi, parasitic species and edible plants in GI tract act as mediators of intracellular and inter-species communication, particularly facilitating tumour cell survival and multi-drug resistance. In conclusion, we suggest that matching sequences from EV proteomes (available from public databases) with known protein sequences of microbiome gut bacteria will be useful in identification of antigen mimicry between evolutionary conservative protein sequences. Using this approach we identified Bacteroides spp. pseudokinase with activation loop and homology to PDGFRα, providing a proof-of-concept strategy. We speculate that existence of microbial pseudokinase that ‘mimic” PDGFRα may be related to PDGFRα and Bacteroides spp. roles in colorectal carcinogenesis that require further investigation.

  2. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  3. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells.

    Science.gov (United States)

    Bach, Frances; Libregts, Sten; Creemers, Laura; Meij, Björn; Ito, Keita; Wauben, Marca; Tryfonidou, Marianna

    2017-10-24

    During intervertebral disc ageing, chondrocyte-like cells (CLCs) replace notochordal cells (NCs). NCs have been shown to induce regenerative effects in CLCs. Since vesicles released by NCs may be responsible for these effects, we characterized NC-derived extracellular vesicles (EVs) and determined their effect on CLCs. EVs were purified from porcine NC-conditioned medium (NCCM) through size exclusion chromatography, ultracentrifugation or density gradient centrifugation. Additionally, the EVs were quantitatively analyzed by high-resolution flow cytometry. The effect of NCCM-derived EVs was studied on canine and human CLC micro-aggregates in vitro and compared with NCCM-derived proteins and unfractionated NCCM. Porcine NCCM contained a considerable amount of EVs. NCCM-derived EVs induced GAG deposition in canine CLCs to a comparable level as NCCM-derived proteins and unfractionated NCCM, and increased the DNA and glycosaminoglycan (GAG) content of human micro-aggregates, although to a lesser extent than unfractionated NCCM. The biological EV effects were not considerably influenced by ultracentrifugation compared with size exclusion-based purification. Upon ultracentrifugation, interfering GAGs, but not collagens, were lost. Nonetheless, collagen type I or II supplemented to CLCs in a concentration as present in NCCM induced no anabolic effects. Porcine NCCM-derived EVs exerted anabolic effects comparable to NCCM-derived proteins, while unfractionated NCCM was more potent in human CLCs. GAGs and collagens appeared not to mediate the regenerative EV effects. Thus, NC-derived EVs have regenerative potential, and their effects may be influenced by the proteins present in NCCM. The optimal combination of NC-secreted factors needs to be determined to fully exploit the regenerative potential of NC-based technology.

  4. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles.

    Science.gov (United States)

    Gardiner, Chris; Shaw, Michael; Hole, Patrick; Smith, Jonathan; Tannetta, Dionne; Redman, Christopher W; Sargent, Ian L

    2014-01-01

    Optical techniques are routinely used to size and count extracellular vesicles (EV). For comparison of data from different methods and laboratories, suitable calibrators are essential. A suitable calibrator must have a refractive index (RI) as close to that of EV as possible but the RI of EV is currently unknown. To measure EV, RI requires accurate knowledge of size and light scattering. These are difficult to measure as most EVs cannot be resolved by light microscopy and their diameter is smaller than the wavelength of visible light. However, nanoparticle tracking analysis (NTA) provides both size and relative light scattering intensity (rLSI) values. We therefore sought to determine whether it was possible to use NTA to measure the RI of individual EVs. NTA was used to measure the rLSI and size of polystyrene and silica microspheres of known size and RI (1.470 and 1.633, respectively) and of EV isolated from a wide range of cells. We developed software, based on Mie scattering code, to calculate particle RI from the rLSI data. This modelled theoretical scattering intensities for polystyrene and silica microspheres of known size (100 and 200 nm) and RI. The model was verified using data from the polystyrene and silica microspheres. Size and rLSI data for each vesicle were processed by the software to generate RI values. The following modal RI measurements were obtained: fresh urinary EV 1.374, lyophilised urinary EV 1.367, neuroblastoma EV 1.393, blood EV 1.398, EV from activated platelets 1.390, small placental EV 1.364-1.375 and 1.398-1.414 for large placental EV (>200 nm). Large placental EV had a significantly higher RI than small placental EV (p1.40 were observed for some large (>200 nm) microvesicles. This method for measuring EV RI will be useful for developing appropriate calibrators for EV measurement.

  5. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Kuhlmann, Katja; Böttcher, Alfred; Konovalova, Tatiana; Black, Anne; Orsó, Evelyn; Liebisch, Gerhard; Ahrens, Maike; Eisenacher, Martin; Meyer, Helmut E; Schmitz, Gerd

    2015-03-01

    Platelets (PLTs) in stored PLT concentrates (PLCs) release PLT extracellular vesicles (PL-EVs) induced by senescence and activation, resembling the PLT storage lesion. No comprehensive classification or molecular characterization of senescence-induced PL-EVs exists to understand PL-EV heterogeneity. PL-EVs from 5-day-stored PLCs from healthy individuals were isolated and subfractionated by differential centrifugation, filtration, and density gradient ultracentrifugation into five PLT microvesicle (PL-MV) subfractions (Fraction [F]1-F5) and PLT exosomes (PL-EXs). PL-EV size, concentration, and composition were analyzed by nanoparticle tracking analysis, flow cytometry, and lipid and protein mass spectrometry. Protein data were verified by Western blot. PL-EVs showed overlapping mean particle sizes of 180 to 260 nm, but differed significantly in composition. Less dense, intermediate, and dense PL-MVs enriched specific lipidomic and proteomic markers related to the plasma membrane, intracellular membranes, PLT granules, mitochondria, and PLT activation. α-Synuclein (81% of total) accumulated in F1 and F2, amyloid-β (Aβ) precursor protein in F3 and F4 (84%), and apolipoprotein (Apo)E (88%) and ApoJ (92%) in F3 to F5. PL-EXs enriched lipid species and proteins, with high abundance of lipid raft, PLT adhesion, and immune response-related markers. Differential lipid and protein compositions of PL-EVs suggest their unique cellular origins and functions, partly overlapping with PLT granule secretion. Dense PL-MVs might represent autophagic vesicles released during PLT activation and apoptosis and PL-EXs resemble lipid rafts, with a potential role in PLT aggregation and immunity. Segregation of α-synuclein and Aβ precursor protein, ApoE, and ApoJ into less dense and dense PL-MVs, respectively, show their differential carrier role of neurologic disease-related cargo. © 2014 AABB.

  6. DNA Content in Extracellular Vesicles Isolated from Porcine Coronary Venous Blood Directly after Myocardial Ischemic Preconditioning.

    Directory of Open Access Journals (Sweden)

    Kristina Svennerholm

    Full Text Available Extracellular vesicles (EV are nano-sized membranous structures released from most cells. They have the capacity to carry bioactive molecules and gene expression signals between cells, thus mediating intercellular communication. It is believed that EV confer protection after ischemic preconditioning (IPC. We hypothesize that myocardial ischemic preconditioning will lead to rapid alteration of EV DNA content in EV collected from coronary venous effluent.In a porcine myocardial ischemic preconditioning model, EV were isolated from coronary venous blood before and after IPC by differential centrifugation steps culminating in preparative ultracentrifugation combined with density gradient ultracentrifugation. The EV preparation was validated, the DNA was extracted and further characterized by DNA sequencing followed by bioinformatics analysis.Porcine genomic DNA fragments representing each chromosome, including mitochondrial DNA sequences, were detected in EV isolated before and after IPC. There was no difference detected in the number of sequenced gene fragments (reads or in the genomic coverage of the sequenced DNA fragments in EV isolated before and after IPC. Gene ontology analysis showed an enrichment of genes coding for ion channels, enzymes and proteins for basal metabolism and vesicle biogenesis and specific cardiac proteins.This study demonstrates that porcine EV isolated from coronary venous blood plasma contain fragments of DNA from the entire genome, including the mitochondria. In this model we did not find specific qualitative or quantitative changes of the DNA content in EV collected immediately after an in vivo myocardial IPC provocation. This does not rule out the possibility that EV DNA content changes in response to myocardial IPC which could occur in a later time frame.

  7. Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry.

    Directory of Open Access Journals (Sweden)

    Kirsty M Danielson

    Full Text Available The identification of extracellular vesicles (EVs as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions and concentration (proportions of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus

  8. Comparative marker analysis of extracellular vesicles in different human cancer types

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshioka

    2013-06-01

    Full Text Available Several cell types, including tumour cells, secrete extracellular vesicles (EVs, and tumour-derived EVs play a role in cancer initiation and progression. These vesicles include both a common set of membrane and cytosolic proteins and origin-specific subsets of proteins that likely correlated to cell type–associated functions. To confirm the presence of EVs in the preparations, researchers have identified so-called EV marker proteins, including the tetraspanin family proteins and such cytosolic proteins as heat shock 70 kDa protein 4 (HSP70 and tumour susceptibility gene 101 (TSG101. However, studies have shown that some EV markers are not always present in all EVs, which not only complicates the identification of EVs but also precludes the quantitative evaluation of EV proteins. Thus, it is strongly required to explore well-conserved EV marker proteins that are present at similar levels, regardless of their tissue or cellular origin. In this study, we compared the presence of 11 well-known EV marker proteins by immunoblotting using EVs isolated from 4 human prostate cell lines and 5 human breast cell lines, including cancer cells with different phenotypes. We found that all the tested EVs were positive for CD9 and CD81, with similar abundance that was irrespective of the EV origin. In contrast, other EV marker proteins, such as TSG101, Rab-5b and CD63, were detected in an inconsistent manner, depending on the origin of the EVs. Thus, we propose that the detection of CD9 and/or CD81 should ensure the presence of EVs.

  9. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study

    Science.gov (United States)

    Vestad, Beate; Llorente, Alicia; Neurauter, Axl; Phuyal, Santosh; Kierulf, Bente; Kierulf, Peter; Skotland, Tore; Sandvig, Kirsten; Haug, Kari Bente F.; Øvstebø, Reidun

    2017-01-01

    ABSTRACT Current methods for characterisation of extracellular vesicles (EVs) need further standardisation in order to obtain an acceptable level of data comparability. Size and concentration of EVs can be determined by nanoparticle tracking analysis (NTA). However, both the heterogeneity of EVs and the choice of instrument settings may cause an appreciable analytical variation. Intra-assay (within-day, n = 6) and inter-assay (day-to-day, n = 6) variations (coefficient of variation, % CV) of different preparations of EVs and artificial vesicles or beads were determined using two NanoSight NS500 instruments, located at different laboratories. All analyses were performed by the same operator. The effect of applying identical software settings or instrument-optimised settings for each sample type and instrument was also evaluated. Finally, the impact of different operators and the use of two different software versions were investigated. The intra-assay CVs were 1–12% for both EVs and artificial samples, measured on the same instrument. The overall day-to-day variation was similar for both instruments, ranging from 2% to 25%. However, significantly different results were observed between the two instruments using identical software settings. The effect of applying instrument-optimised settings reduced the mismatch between the instruments, resulting in little to no significant divergences. The impact of using different operators and software versions when analysing silica microspheres and microvesicles from monocytes using instrument-optimised settings on the same instrument did not contribute to significant variation compared to the overall day-to-day variation of one operator. Performance differences between two similar NTA instruments may display significant divergences in size and concentration measurements when analysing EVs, depending on applied instrument settings and technical conditions. The importance of developing a streamlined and standardised

  10. Identification of the alpha-enolase P46 in the extracellular membrane vesicles of Bacteroides fragilis

    Directory of Open Access Journals (Sweden)

    Thais Gonçalves Ferreira

    Full Text Available BACKGROUND Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA, although their involvement in virulence is still not clear. OBJECTIVE The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM and immunoelectron microscopy (IM. To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS. FINDINGS TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS

  11. Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature.

    Science.gov (United States)

    Barkalina, Natalia; Jones, Celine; Wood, Matthew J A; Coward, Kevin

    2015-01-01

    Currently, even the most sophisticated methods of assisted reproductive technology (ART) allow us to achieve live births in only approximately 30% of patients, indicating that our understanding of the fine mechanisms underlying reproduction is far from ideal. One of the main challenges associated with studies of gamete structure and function is that these cells are remarkably resistant towards the uptake of exogenous substances, including 'molecular research tools' such as drugs, biomolecules and intracellular markers. This phenomenon can affect not only the performance of reproductive biology research techniques, but also the outcomes of the in vitro handling of gametes, which forms the cornerstone of ART. Improvement of intra-gamete delivery in a non-aggressive fashion is vital for the investigation of gamete physiology, and the advancement of infertility treatment. In this review, we outline the current state of nanomaterial-mediated delivery into gametes and embryos in vitro, and discuss the potential of a novel exciting drug delivery technology, based upon the use of targeted 'natural' nanoparticles known as extracellular vesicles (EVs), for reproductive science and ART, given the promising emerging data from other fields. A comprehensive electronic search of PubMed and Web of Science databases was performed using the following keywords: 'nanoparticles', 'nanomaterials', 'cell-penetrating peptides', 'sperm', 'oocyte', 'egg', 'embryo', 'exosomes', 'microvesicles', 'extracellular vesicles', 'delivery', 'reproduction', to identify the relevant research and review articles, published in English up to January 2015. The reference lists of identified publication were then scanned to extract additional relevant publications. Biocompatible engineered nanomaterials with high loading capacity, stability and selective affinity represent a potential versatile tool for the minimally invasive internalization of molecular cargo into gametes and embryos. However, it is

  12. Extracellular Vesicles Secreted by Atherogenic Macrophages Transfer MicroRNA to Inhibit Cell Migration.

    Science.gov (United States)

    Nguyen, My-Anh; Karunakaran, Denuja; Geoffrion, Michèle; Cheng, Henry S; Tandoc, Kristofferson; Perisic Matic, Ljubica; Hedin, Ulf; Maegdefessel, Lars; Fish, Jason E; Rayner, Katey J

    2018-01-01

    During inflammation, macrophages secrete vesicles carrying RNA, protein, and lipids as a form of extracellular communication. In the vessel wall, extracellular vesicles (EVs) have been shown to be transferred between vascular cells during atherosclerosis; however, the role of macrophage-derived EVs in atherogenesis is not known. Here, we hypothesize that atherogenic macrophages secrete microRNAs (miRNAs) in EVs to mediate cell-cell communication and promote proinflammatory and proatherogenic phenotypes in recipient cells. We isolated EVs from mouse and human macrophages treated with an atherogenic stimulus (oxidized low-density lipoprotein) and characterized the EV miRNA expression profile. We confirmed the enrichment of miR-146a, miR-128, miR-185, miR-365, and miR-503 in atherogenic EVs compared with controls and demonstrate that these EVs are taken up and transfer exogenous miRNA to naive recipient macrophages. Bioinformatic pathway analysis suggests that atherogenic EV miRNAs are predicted to target genes involved in cell migration and adhesion pathways, and indeed delivery of EVs to naive macrophages reduced macrophage migration both in vitro and in vivo. Inhibition of miR-146a, the most enriched miRNA in atherogenic EVs, reduced the inhibitory effect of EVs on macrophage migratory capacity. EV-mediated delivery of miR-146a repressed the expression of target genes IGF2BP1 (insulin-like growth factor 2 mRNA-binding protein 1) and HuR (human antigen R or ELAV-like RNA-binding protein 1) in recipient cells, and knockdown of IGF2BP1 and HuR using short interfering RNA greatly reduced macrophage migration, highlighting the importance of these EV-miRNA targets in regulating macrophage motility. EV-derived miRNAs from atherogenic macrophages, in particular miR-146a, may accelerate the development of atherosclerosis by decreasing cell migration and promoting macrophage entrapment in the vessel wall. © 2017 American Heart Association, Inc.

  13. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    2011-01-01

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  14. CD18-mediated adhesion is required for the induction of a proinflammatory phenotype in lung epithelial cells by mononuclear cell-derived extracellular vesicles.

    Science.gov (United States)

    Neri, Tommaso; Scalise, Valentina; Passalacqua, Ilaria; Giusti, Ilaria; Lombardi, Stefania; Balia, Cristina; D'Alessandro, Delfo; Berrettini, Stefano; Pedrinelli, Roberto; Paggiaro, Pierluigi; Dolo, Vincenza; Celi, Alessandro

    2018-02-21

    Extracellular vesicles are submicron vesicles that upregulate the synthesis of proinflammatory mediators by lung epithelial cells. We investigated whether these structures adhere to lung epithelial cells, and whether adhesion is a prerequisite for their proinflammatory activity. Extracellular vesicles were generated by stimulation of normal human mononuclear cells with the calcium ionophore A23187, and labelled with carboxyfluorescein diacetate succinimidyl ester. Adhesion of vesicles to monolayers of immortalized bronchial epithelial (16HBE) and alveolar (A549) cells was analyzed by fluorescence microscopy. The role of candidate adhesion receptors was evaluated with inhibitory monoclonal antibodies and soluble peptides. The synthesis of proinflammatory mediators was assessed by ELISA. Transmission electron microscopy confirmed the generation of closed vesicles with an approximate size range between 50 and 600 nm. Adhesion of extracellular vesicles to epithelial cells was upregulated upon stimulation of the latter with tumor necrosis factor-α. Adhesion was blocked by an anti-CD18 antibody, by peptides containing the sequence RGD and, to a lesser extent, by an antibody to ICAM-1. The same molecules also blocked the upregulation of the synthesis of interleukin-8 and monocyte chemotactic protein-1 induced by extracellular vesicles. CD18-mediated adhesion of extracellular vesicles is a prerequisite for their proinflammatory activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Metabolically active extracellular vesicles released from hepatocytes under drug-induced liver-damaging conditions modify serum metabolome and might affect different pathophysiological processes.

    Science.gov (United States)

    Royo, Felix; Palomo, Laura; Mleczko, Justyna; Gonzalez, Esperanza; Alonso, Cristina; Martínez, Ibon; Pérez-Cormenzana, Miriam; Castro, Azucena; Falcon-Perez, Juan M

    2017-02-15

    Hepatocytes are involved in the endogenous and drug metabolism; many of the enzymes involved in those processes are incorporated into extracellular vesicles and secreted into the bloodstream. Liver-damaging conditions modify the molecular cargo of those vesicles significantly. However, no information about the effect of these hepatic vesicles on the extracellular environment is available. Drug-induced liver damage increases the number of circulating extracellular vesicles and affects the release and content of hepatocyte-derived vesicles. In this work, we evaluated the metabolic effect of these vesicles on the composition of the serum. We performed a targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomics analysis of serum samples. The samples had been first incubated with hepatic extracellular vesicles from hepatocytes challenged with acetaminophen or diclofenac. The incubation affected the serum levels of 67 metabolites, such as amino acids and different species of lipids. The metabolites included various species of phosphatidylcholines and phosphatidylethanolamines. These compounds are the components of biological membranes; our observations suggest that the vesicles might take part in remodelling and maintenance of the membranes. Alterations in the levels of some other serum metabolites might have deleterious consequences, for example, the tetracosanoic acid with its cardiovascular effects. However, some of the metabolites whose levels were increased, including alpha-linoleic and tauroursodeoxycholic acids, have been reported to have a protective effect. Our targeted metabolomics analysis indicated that the hepatic extracellular vesicles act as nano-metabolic machines supplying the extracellular environment with the means to integrate diverse tissue responses. In conclusion, we show that the hepatic extracellular vesicles are metabolically active and might play a role in the physiopathological response to hepatic insults

  16. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner.

    Science.gov (United States)

    Polanco, Juan Carlos; Scicluna, Benjamin James; Hill, Andrew Francis; Götz, Jürgen

    2016-06-10

    The microtubule-associated protein tau has a critical role in Alzheimer disease and related tauopathies. There is accumulating evidence that tau aggregates spread and replicate in a prion-like manner, with the uptake of pathological tau seeds causing misfolding and aggregation of monomeric tau in recipient cells. Here we focused on small extracellular vesicles enriched for exosomes that were isolated from the brains of tau transgenic rTg4510 and control mice. We found that these extracellular vesicles contained tau, although the levels were significantly higher in transgenic mice that have a pronounced tau pathology. Tau in the vesicles was differentially phosphorylated, although to a lower degree than in the brain cells from which they were derived. Several phospho-epitopes (AT8, AT100, and AT180) thought to be critical for tau pathology were undetected in extracellular vesicles. Despite this, when assayed with FRET tau biosensor cells, extracellular vesicles derived from transgenic mice were capable of seeding tau aggregation in a threshold-dependent manner. We also observed that the dye used to label extracellular vesicle membranes was still present during nucleation and formation of tau inclusions, suggesting either a role for membranes in the seeding or in the process of degradation. Together, we clearly demonstrate that extracellular vesicles can transmit tau pathology. This indicates a role for extracellular vesicles in the transmission and spreading of tau pathology. The characteristics of tau in extracellular vesicles and the seeding threshold we identified may explain why tau pathology develops very slowly in neurodegenerative diseases such as Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    Directory of Open Access Journals (Sweden)

    Kazuya Iwai

    2016-05-01

    Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.

  18. RIG-I activation induces the release of extracellular vesicles with antitumor activity.

    Science.gov (United States)

    Daßler-Plenker, Juliane; Reiners, Katrin S; van den Boorn, Jasper G; Hansen, Hinrich P; Putschli, Bastian; Barnert, Sabine; Schuberth-Wagner, Christine; Schubert, Rolf; Tüting, Thomas; Hallek, Michael; Schlee, Martin; Hartmann, Gunther; Pogge von Strandmann, Elke; Coch, Christoph

    2016-01-01

    Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate-RNA (3pRNA) triggers antitumor immunity predominantly via NK cell activation and direct apoptosis induction in tumor cells. However, how NK cells are mobilized to attack the tumor cells remains elusive. Here, we show that RIG-I activation induced the secretion of extracellular vesicles (EVs) from melanoma cells, which by themselves revealed antitumor activity in vitro and in vivo. RIG-I-induced EVs from melanoma cells exhibited an increased expression of the NKp30-ligand (BAG6, BAT3) on their surface triggering NK cell-mediated lysis of melanoma cells via activation of the cytotoxicity NK cell-receptor NKp30. Moreover, systemic administration of RIG-I-induced melanoma-EVs showed a potent antitumor activity in a melanoma mouse model in vivo. In conclusion, our data establish a new RIG-I-dependent pathway leading to NK cell-mediated tumor cell killing.

  19. A direct-imaging cryo-EM study of shedding extracellular vesicles from leukemic monocytes.

    Science.gov (United States)

    Koifman, Na'ama; Biran, Idan; Aharon, Anat; Brenner, Benjamin; Talmon, Yeshayahu

    2017-06-01

    The human leukemia monocytic cell line (THP-1) is known to shed extracellular vesicles (EVs) under various stimulations. We studied the effects of two types of common stimulation types, lipopolysaccharide (LPS) and starvation conditions by high resolution cryogenic electron microscopy, namely, cryo-SEM and cryo-TEM. Cryo-SEM data of cells undergoing EV blebbing and shedding is presented here for the first time. The high-resolution images show good agreement with models describing the membrane processes of shedding. Cells that underwent a 48-h starvation treatment exhibited differing morphological features, including shrunken nucleus and elongated membrane protrusions. LPS treated cells, however, showed extensive blebbing originating from the cell membrane, in good agreement with the sizes of EVs imaged by cryo-TEM. EVs isolated from both types of stimulations were measured by nanoparticle tracking analysis (NanoSight), by which LPS-EVs samples exhibited higher concentration and smaller mean diameter, as compared to starvation-EVs. Our results suggest a difference in the effects of the two stimulation types on the shedding process and possibly on the type of EVs shed. Our unique methodologies provide an important and innovative outlook of the shedding process and on its products, paving the way to further discoveries in this developing field of research, in which much is still unknown. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Isolation and Characterization of Serum Extracellular Vesicles (EVs from Atlantic Salmon Infected with Piscirickettsia Salmonis

    Directory of Open Access Journals (Sweden)

    Leidy Lagos

    2017-12-01

    Full Text Available Secretion of extracellular vesicles (EVs is a common feature of both eukaryotic and prokaryotic cells. Isolated EVs have been shown to contain different types of molecules, including proteins and nucleic acids, and are reported to be key players in intercellular communication. Little is known, however, of EV secretion in fish, or the effect of infection on EV release and content. In the present study, EVs were isolated from the serum of healthy and Piscirickettsia salmonis infected Atlantic salmon in order to evaluate the effect of infection on EV secretion. P. salmonis is facultative intracellular bacterium that causes a systemic infection disease in farmed salmonids. EVs isolated from both infected and non-infected fish had an average diameter of 230–300 nm, as confirmed by transmission electron microscopy, nanoparticle tracking, and flow cytometry. Mass spectrometry identified 180 proteins in serum EVs from both groups of fish. Interestingly, 35 unique proteins were identified in serum EVs isolated from the fish infected with P. salmonis. These unique proteins included proteasomes subunits, granulins, and major histocompatibility class I and II. Our results suggest that EV release could be part of a mechanism in which host stimulatory molecules are released from infected cells to promote an immune response.

  1. Paper-based Devices for Isolation and Characterization of Extracellular Vesicles

    Science.gov (United States)

    Chen, Chihchen; Lin, Bo-Ren; Hsu, Min-Yen; Cheng, Chao-Min

    2015-01-01

    Extracellular vesicles (EVs), membranous particles released from various types of cells, hold a great potential for clinical applications. They contain nucleic acid and protein cargo and are increasingly recognized as a means of intercellular communication utilized by both eukaryote and prokaryote cells. However, due to their small size, current protocols for isolation of EVs are often time consuming, cumbersome, and require large sample volumes and expensive equipment, such as an ultracentrifuge. To address these limitations, we developed a paper-based immunoaffinity platform for separating subgroups of EVs that is easy, efficient, and requires sample volumes as low as 10 μl. Biological samples can be pipetted directly onto paper test zones that have been chemically modified with capture molecules that have high affinity to specific EV surface markers. We validate the assay by using scanning electron microscopy (SEM), paper-based enzyme-linked immunosorbent assays (P-ELISA), and transcriptome analysis. These paper-based devices will enable the study of EVs in the clinic and the research setting to help advance our understanding of EV functions in health and disease. PMID:25867034

  2. Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular Vesicles.

    Science.gov (United States)

    Sanada, Takahiro; Hirata, Yuichi; Naito, Yutaka; Yamamoto, Naoki; Kikkawa, Yoshiaki; Ishida, Yuji; Yamasaki, Chihiro; Tateno, Chise; Ochiya, Takahiro; Kohara, Michinori

    2017-03-01

    An extracellular vesicle (EV) is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV) infection. We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells). Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA-transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA-transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization-resistant route of HBV infection.

  3. Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype.

    Science.gov (United States)

    Chaiyadet, Sujittra; Sotillo, Javier; Smout, Michael; Cantacessi, Cinzia; Jones, Malcolm K; Johnson, Michael S; Turnbull, Lynne; Whitchurch, Cynthia B; Potriquet, Jeremy; Laohaviroj, Marut; Mulvenna, Jason; Brindley, Paul J; Bethony, Jeffrey M; Laha, Thewarach; Sripa, Banchob; Loukas, Alex

    2015-11-15

    Throughout Asia, there is an unprecedented link between cholangiocarcinoma and infection with the liver fluke Opisthorchis viverrini. Multiple processes, including chronic inflammation and secretion of parasite proteins into the biliary epithelium, drive infection toward cancer. Until now, the mechanism and effects of parasite protein entry into cholangiocytes was unknown. Various microscopy techniques were used to identify O. viverrini extracellular vesicles (EVs) and their internalization by human cholangiocytes. Using mass spectrometry we characterized the EV proteome and associated changes in cholangiocytes after EV uptake, and we detected EV proteins in bile of infected hamsters and humans. Cholangiocyte proliferation and interleukin 6 (IL-6) secretion was measured to assess the impact of EV internalization. EVs were identified in fluke culture medium and bile specimens from infected hosts. EVs internalized by cholangiocytes drove cell proliferation and IL-6 secretion and induced changes in protein expression associated with endocytosis, wound repair, and cancer. Antibodies to an O. viverrini tetraspanin blocked EV uptake and IL-6 secretion by cholangiocytes. This is the first time that EVs from a multicellular pathogen have been identified in host tissues. Our findings imply a role for O. viverrini EVs in pathogenesis and highlight an approach to vaccine development for this infectious cancer. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  4. Extracellular Vesicles from Adipose Tissue—A Potential Role in Obesity and Type 2 Diabetes?

    Directory of Open Access Journals (Sweden)

    Xuan Gao

    2017-08-01

    Full Text Available Adipose tissue plays a key role in the development of insulin resistance and its pathological sequelae, such as type 2 diabetes and non-alcoholic fatty liver disease. Dysfunction in the adipose tissue response to storing excess fatty acids as triglyceride can lead to adipose tissue inflammation and spillover of fatty acids from this tissue and accumulation of fatty acids as lipid droplets in ectopic sites, such as liver and muscle. Extracellular vesicles (EVs are released from adipocytes and have been proposed to be involved in adipocyte/macrophage cross talk and to affect insulin signaling and transforming growth factor β expression in liver cells leading to metabolic disease. Furthermore EV produced by adipose tissue-derived mesenchymal stem cells (ADSC can promote angiogenesis and cancer cell migration and have neuroprotective and neuroregenerative properties. ADSC EVs have therapeutic potential in vascular and neurodegenerative disease and may also be used to target specific functional miRNAs to cells. Obesity is associated with an increase in adipose-derived EV which may be related to the metabolic complications of obesity. In this review, we discuss our current knowledge of EV produced by adipose tissue and the potential impact of adipose tissue-derived EV on metabolic diseases associated with obesity.

  5. Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation.

    Science.gov (United States)

    Harting, Matthew T; Srivastava, Amit K; Zhaorigetu, Siqin; Bair, Henry; Prabhakara, Karthik S; Toledano Furman, Naama E; Vykoukal, Jody V; Ruppert, Katherine A; Cox, Charles S; Olson, Scott D

    2018-01-01

    Extracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSCs) have been proposed to be a key mechanistic link in the therapeutic efficacy of cells in response to cellular injuries through paracrine effects. We hypothesize that inflammatory stimulation of MSCs results in the release of EVs that have greater anti-inflammatory effects. The present study evaluates the immunomodulatory abilities of EVs derived from inflammation-stimulated and naive MSCs (MSCEv + and MSCEv, respectively) isolated using a current Good Manufacturing Practice-compliant tangential flow filtration system. Detailed characterization of both EVs revealed differences in protein composition, cytokine profiles, and RNA content, despite similarities in size and expression of common surface markers. MSCEv + further attenuated release of pro-inflammatory cytokines in vitro when compared to MSCEv, with a distinctly different pattern of EV-uptake by activated primary leukocyte subpopulations. The efficacy of EVs was partially attributed to COX2/PGE 2 expression. The present study demonstrates that inflammatory stimulation of MSCs renders release of EVs that have enhanced anti-inflammatory properties partially due to COX2/PGE 2 pathway alteration. Stem Cells 2018;36:79-90. © 2017 AlphaMed Press.

  6. Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles.

    Science.gov (United States)

    Adams, Katherine R; Chauhan, Sitara; Patel, Divya B; Clements, Virginia K; Wang, Yan; Jay, Steven M; Edwards, Nathan J; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2018-01-05

    Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.

  7. Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Catherine Lynch

    2017-09-01

    Full Text Available It is known that apoptotic cells can have diverse effects on the tumor microenvironment. Emerging evidence indicates that, despite its renowned role in tumor suppression, apoptosis may also promote oncogenic evolution or posttherapeutic relapse through multiple mechanisms. These include immunomodulatory, anti-inflammatory, and trophic environmental responses to apoptosis, which drive tumor progression. Our group has introduced the term “onco-regenerative niche (ORN” to describe a conceptual network of conserved cell death-driven tissue repair and regeneration mechanisms that are hijacked in cancer. We propose that, among the key elements of the ORN are extracellular vesicles (EVs, notably those derived from apoptotic tumor cells. EVs are membrane-delimited subcellular particles, which contain multiple classes of bioactive molecules including markers of the cell from which they are derived. EVs are implicated in an increasing number of physiological and pathological contexts as mediators of local and systemic intercellular communication and detection of specific EVs may be useful in monitoring disease progression. Here, we discuss the mechanisms by which EVs produced by apoptotic tumor cells—both constitutively and as a consequence of therapy—may mediate host responsiveness to cell death in cancer. We also consider how the monitoring of such EVs and their cargoes may in the future help to improve cancer diagnosis, staging, and therapeutic efficacy.

  8. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia.

    Science.gov (United States)

    Tannetta, Dionne; Masliukaite, Ieva; Vatish, Manu; Redman, Christopher; Sargent, Ian

    2017-02-01

    The release of extracellular vesicles (EV) by the syncytiotrophoblast (STB) may be an important mechanism by which the placenta signals to the mother. STB derived EV (STBEV) are comprised predominantly of exosomes (50-150nm) and microvesicles (100-1000nm) that contain bioactive mediators such as proteins, nucleic acids and lipids. They, along with larger syncytial nuclear aggregates are released by the STB into the maternal circulation throughout gestation in normal pregnancy where they appear to have an immunoregulatory role, inhibiting T cell and NK cell responses. In pre-eclampsia (PE) STBEV are released in significantly increased numbers and have pro-inflammatory, anti-angiogenic and procoagulant activity, implicating them in the maternal systemic inflammation, endothelial dysfunction and activation of the clotting system which typifies the disorder. Research has focused on understanding the biological significance of STBEV by measuring their size and repertoire of molecules carried and how they differ in normal pregnancy and PE, using techniques such as Nanoparticle Tracking Analysis, flow cytometry and mass spectrometry. We have also found alterations in STBEV surface glycans associated with PE. The goal is to better understand the role STBEV play in normal pregnancy and PE and whether they are potential biomarkers of placental pathology and therapeutic targets in PE. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Syncytiotrophoblast Extracellular Vesicles from Pre-Eclampsia Placentas Differentially Affect Platelet Function.

    Directory of Open Access Journals (Sweden)

    Dionne S Tannetta

    Full Text Available Pre-eclampsia (PE complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.

  10. Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Linda A. Ban

    2016-03-01

    Full Text Available In recent years, the global burden of obesity and diabetes has seen a parallel rise in other metabolic complications, such as non-alcoholic fatty liver disease (NAFLD. This condition, once thought to be a benign accumulation of hepatic fat, is now recognized as a serious and prevalent disorder that is conducive to inflammation and fibrosis. Despite the rising incidence of NAFLD, there is currently no reliable method for its diagnosis or staging besides the highly invasive tissue biopsy. This limitation has resulted in the study of novel circulating markers as potential candidates, one of the most popular being extracellular vesicles (EVs. These submicron membrane-bound structures are secreted from stressed and activated cells, or are formed during apoptosis, and are known to be involved in intercellular communication. The cargo of EVs depends upon the parent cell and has been shown to be changed in disease, as is their abundance in the circulation. The role of EVs in immunity and epigenetic regulation is widely attested, and studies showing a correlation with disease severity have made these structures a favorable target for diagnostic as well as therapeutic purposes. This review will highlight the research that is available on EVs in the context of NAFLD, the current limitations, and projections for their future utility in a clinical setting.

  11. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair.

    Science.gov (United States)

    Bui, Triet M; Mascarenhas, Lorraine A; Sumagin, Ronen

    2018-02-02

    Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.

  12. Extracellular vesicles from Paracoccidioides pathogenic species transport polysaccharide and expose ligands for DC-SIGN receptors

    Science.gov (United States)

    da Silva, Roberta Peres; Heiss, Christian; Black, Ian; Azadi, Parastoo; Gerlach, Jared Q.; Travassos, Luiz R.; Joshi, Lokesh; Kilcoyne, Michelle; Puccia, Rosana

    2015-01-01

    Extracellular vesicles (EVs) mediate non-conventional transport of molecules across the fungal cell wall. We aimed at describing the carbohydrate composition and surface carbohydrate epitopes of EVs isolated from the pathogenic fungi Paracoccidioides brasiliensis and P. lutzii using standard procedures. Total EV carbohydrates were ethanol-precipitated from preparations depleted of lipids and proteins, then analyzed by chemical degradation, gas chromatography-mass spectrometry, nuclear magnetic resonance and size-exclusion chromatography. EV glycosyl residues of Glc, Man, and Gal comprised most probably two major components: a high molecular mass 4,6-α-glucan and a galactofuranosylmannan, possibly an oligomer, bearing a 2-α-Manp main chain linked to β-Galf (1,3) and α-Manp (1,6) end units. The results also suggested the presence of small amounts of a (1→6)-Manp polymer, (1→3)-glucan and (1→6)-glucan. Glycan microarrays allowed identification of EV surface lectin(s), while plant lectin microarray profiling revealed terminal Man and GlcNAc residues exposed at the EVs surface. Mammalian lectin microarray profiling showed that DC-SIGN receptors recognized surface carbohydrate in Paracoccidioides EVs. Our results suggest that oligosaccharides, cytoplasmic storage, and cell wall polysaccharides can be exported in fungal EVs, which also expose surface PAMPs and lectins. The role of these newly identified components in the interaction with the host remains to be unraveled. PMID:26387503

  13. Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype.

    Science.gov (United States)

    Vajen, Tanja; Benedikter, Birke J; Heinzmann, Alexandra C A; Vasina, Elena M; Henskens, Yvonne; Parsons, Martin; Maguire, Patricia B; Stassen, Frank R; Heemskerk, Johan W M; Schurgers, Leon J; Koenen, Rory R

    2017-01-01

    Extracellular vesicles (EVs) are mediators of cell communication during health and disease, and abundantly released by platelets upon activation or during ageing. Platelet EVs exert modulatory effects on immune and vascular cells. Platelet EVs may modulate the function of vascular smooth muscle cells (SMC). Platelet EVs were isolated from platelet-rich plasma and incubated with SMC in order to assess binding, proliferation, migration and pro-inflammatory phenotype of the cells. Platelet EVs firmly bound to resting SMC through the platelet integrin αIIbβ3, while binding also occurred in a CX3CL1-CX3CR1-dependent manner after cytokine stimulation. Platelet EVs increased SMC migration comparable to platelet derived growth factor or platelet factor 4 and induced SMC proliferation, which relied on CD40- and P-selectin interactions. Flow-resistant monocyte adhesion to platelet EV-treated SMC was increased compared with resting SMC. Again, this adhesion depended on integrin αIIbβ3 and P-selectin, and to a lesser extent on CD40 and CX3CR1. Treatment of SMC with platelet EVs induced interleukin 6 secretion. Finally, platelet EVs induced a synthetic SMC morphology and decreased calponin expression. Collectively, these data indicate that platelet EVs exert a strong immunomodulatory activity on SMC. In particular, platelet EVs induce a switch towards a pro-inflammatory phenotype, stimulating vascular remodelling.

  14. Syncytiotrophoblast Extracellular Vesicles from Pre-Eclampsia Placentas Differentially Affect Platelet Function.

    Science.gov (United States)

    Tannetta, Dionne S; Hunt, Kathryn; Jones, Chris I; Davidson, Naomi; Coxon, Carmen H; Ferguson, David; Redman, Christopher W; Gibbins, Jonathan M; Sargent, Ian L; Tucker, Katherine L

    2015-01-01

    Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.

  15. Contributing role of extracellular vesicles on vascular endothelium haemostatic balance in cancer

    Directory of Open Access Journals (Sweden)

    Céline Bouvy

    2014-07-01

    Full Text Available Extracellular vesicles (EVs generated during tumourigenesis are thought to play a major role in the hypercoagulant state observed in cancer patients. They exhibit negatively charged phospholipids and tissue factor (TF that promote coagulation cascade activation. In addition, they contain surface proteins and cytoplasmic molecules, both originating from the producing cell that can impact target cells’ expression. By targeting endothelial cells of blood vessels, these EVs could disturb the physiological anticoagulant properties of these cells and be partly responsible for the vascular endothelium activation observed in cancer patients. Indeed, vascular endothelium naturally exhibits heparin-like proteoglycan, TF pathway inhibitor and protein C anticoagulant pathway that prevent thrombosis in physiological condition. An overexpression of TF and a decreased expression of coagulation cascade inhibitors have been reported after EVs’ treatment of endothelial cells. The induction of apoptosis and an increased expression of platelet adhesion molecules have also been highlighted. These events may promote thrombus formation in cancer. The aim of this paper is to provide a targeted review on the current evidence and knowledge of roles and impact of EVs on endothelial surface anticoagulant and procoagulant factors and cellular adhesion molecules expression.

  16. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response.

    Science.gov (United States)

    Rossaint, Jan; Kühne, Katharina; Skupski, Jennifer; Van Aken, Hugo; Looney, Mark R; Hidalgo, Andres; Zarbock, Alexander

    2016-11-15

    The innate immune response to bacterial infections requires the interaction of neutrophils and platelets. Here, we show that a multistep reciprocal crosstalk exists between these two cell types, ultimately facilitating neutrophil influx into the lung to eliminate infections. Activated platelets adhere to intravascular neutrophils through P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1)-mediated binding, a primary interaction that allows platelets glycoprotein Ibα (GPIbα)-induced generation of neutrophil-derived extracellular vesicles (EV). EV production is directed by exocytosis and allows shuttling of arachidonic acid into platelets. EVs are then specifically internalized into platelets in a Mac1-dependent fashion, and relocated into intracellular compartments enriched in cyclooxygenase1 (Cox1), an enzyme processing arachidonic acid to synthesize thromboxane A2 (TxA2). Finally, platelet-derived-TxA2 elicits a full neutrophil response by inducing the endothelial expression of ICAM-1, intravascular crawling, and extravasation. We conclude that critical substrate-enzyme pairs are compartmentalized in neutrophils and platelets during steady state limiting non-specific inflammation, but bacterial infection triggers regulated EV shuttling resulting in robust inflammation and pathogen clearance.

  17. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts.

    Science.gov (United States)

    Kohli, Shrey; Ranjan, Satish; Hoffmann, Juliane; Kashif, Muhammed; Daniel, Evelyn A; Al-Dabet, Moh'd Mohanad; Bock, Fabian; Nazir, Sumra; Huebner, Hanna; Mertens, Peter R; Fischer, Klaus-Dieter; Zenclussen, Ana C; Offermanns, Stefan; Aharon, Anat; Brenner, Benjamin; Shahzad, Khurrum; Ruebner, Matthias; Isermann, Berend

    2016-10-27

    Preeclampsia (PE) is a placenta-induced inflammatory disease associated with maternal and fetal morbidity and mortality. The mechanisms underlying PE remain enigmatic and delivery of the placenta is the only known remedy. PE is associated with coagulation and platelet activation and increased extracellular vesicle (EV) formation. However, thrombotic occlusion of the placental vascular bed is rarely observed and the mechanistic relevance of EV and platelet activation remains unknown. Here we show that EVs induce a thromboinflammatory response specifically in the placenta. Following EV injection, activated platelets accumulate particularly within the placental vascular bed. EVs cause adenosine triphosphate (ATP) release from platelets and inflammasome activation within trophoblast cells through purinergic signaling. Inflammasome activation in trophoblast cells triggers a PE-like phenotype, characterized by pregnancy failure, elevated blood pressure, increased plasma soluble fms-like tyrosine kinase 1, and renal dysfunction. Intriguingly, genetic inhibition of inflammasome activation specifically in the placenta, pharmacological inhibition of inflammasome or purinergic signaling, or genetic inhibition of maternal platelet activation abolishes the PE-like phenotype. Inflammasome activation in trophoblast cells of women with preeclampsia corroborates the translational relevance of these findings. These results strongly suggest that EVs cause placental sterile inflammation and PE through activation of maternal platelets and purinergic inflammasome activation in trophoblast cells, uncovering a novel thromboinflammatory mechanism at the maternal-embryonic interface. © 2016 by The American Society of Hematology.

  18. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration.

    Science.gov (United States)

    Arraud, N; Linares, R; Tan, S; Gounou, C; Pasquet, J-M; Mornet, S; Brisson, A R

    2014-05-01

    Plasma and other body fluids contain membranous extracellular vesicles (EVs), which are considered to derive from activated or apoptotic cells. EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. Knowledge on EVs is, however, limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. Our aim was to provide a comprehensive description of EVs from plasma of healthy subjects. Cryo-transmission electron microscopy combined with receptor-specific gold labeling was used to reveal the morphology, size and phenotype of EVs. An original approach based on sedimentation on electron microscopy grids was developed for enumerating EVs. A correlation was performed between conventional flow cytometry and electron microscopy results. We show that platelet-free plasma samples contain spherical EVs, 30 nm to 1 μm in diameter, tubular EVs, 1-5 μm long, and membrane fragments, 1-8 μm large. We show that only a minority of EVs expose the procoagulant lipid phosphatidylserine, in contrast to the classical theory of EV formation. In addition, the concentrations of the main EV sub-populations are determined after sedimentation on EM grids. Finally, we show that conventional flow cytometry, the main method of EV characterization, detects only about 1% of them. This study brings novel insights on EVs from normal plasma and provides a reference for further studies of EVs in disease situations. © 2014 International Society on Thrombosis and Haemostasis.

  19. Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis

    Directory of Open Access Journals (Sweden)

    Gagan Deep

    2016-07-01

    Full Text Available Prostate cancer (PCa is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa.

  20. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying miRNAs in the Bloodstream.

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    Full Text Available In the past few years, skeletal muscle has emerged as an important secretory organ producing soluble factors, called myokines, that exert either autocrine, paracrine or endocrine effects. Moreover, recent studies have shown that muscle releases microRNAs into the bloodstream in response to physical exercise. These microRNAs affect target cells, such as hormones and cytokines. The mechanisms underlying microRNA secretion are poorly characterized at present. Here, we investigated whether muscle tissue releases extracellular vesicles (EVs, which carry microRNAs in the bloodstream under physiological conditions such as physical exercise. Using density gradient separation of plasma from sedentary and physically fit young men we found EVs positive for TSG101 and alpha-sarcoglycan (SGCA, and enriched for miR-206. Cytometric analysis showed that the SGCA+ EVs account for 1-5% of the total and that 60-65% of these EVs were also positive for the exosomal marker CD81. Furthermore, the SGCA-immuno captured sub-population of EVs exhibited higher levels of the miR-206/miR16 ratio compared to total plasma EVs. Finally, a significant positive correlation was found between the aerobic fitness and muscle-specific miRNAs and EV miR-133b and -181a-5p were significantly up-regulated after acute exercise. Thus, our study proposes EVs as a novel means of muscle communication potentially involved in muscle remodeling and homeostasis.

  1. Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts

    Directory of Open Access Journals (Sweden)

    Miguel Tofiño-Vian

    2017-01-01

    Full Text Available Osteoarthritis (OA affects all articular tissues leading to pain and disability. The dysregulation of bone metabolism may contribute to the progression of this condition. Adipose-derived mesenchymal stem cells (ASC are attractive candidates in the search of novel strategies for OA treatment and exert anti-inflammatory and cytoprotective effects on cartilage. Chronic inflammation in OA is a relevant factor in the development of cellular senescence and joint degradation. In this study, we extend our previous observations of ASC paracrine effects to study the influence of conditioned medium and extracellular vesicles from ASC on senescence induced by inflammatory stress in OA osteoblasts. Our results in cells stimulated with interleukin- (IL- 1β indicate that conditioned medium, microvesicles, and exosomes from ASC downregulate senescence-associated β-galactosidase activity and the accumulation of γH2AX foci. In addition, they reduced the production of inflammatory mediators, with the highest effect on IL-6 and prostaglandin E2. The control of mitochondrial membrane alterations and oxidative stress may provide a mechanism for the protective effects of ASC in OA osteoblasts. We have also shown that microvesicles and exosomes mediate the paracrine effects of ASC. Our study suggests that correction of abnormal osteoblast metabolism by ASC products may contribute to their protective effects.

  2. Data supporting the shedding of larger extracellular vesicles by multidrug resistant tumour cells

    Directory of Open Access Journals (Sweden)

    Vanessa Lopes-Rodrigues

    2016-03-01

    Full Text Available To date, there are no simple and minimally invasive methods to diagnose MDR. Extracellular vesicles (EVs are shed by all cells, carry a specific cargo from the donor cells and are present in several body fluids, which means that they can potentially be easily collected from cancer patients and become the source of biomarkers to diagnose cancer. This data article contains a full list of the proteins identified in the EVs shed by an isogenic pair of chronic myeloid leukaemia cells (MDR cells and their drug-sensitive counterparts by LC/MS/MS analysis, together with their GeneOntology analysis. In addition, it also contains data from protein content analysis and Dynamic light scattering count-rate events of the referred EVs as well as of the EVs shed from an isogenic pair of non-small cell lung cancer cells (MDR cells and their drug-sensitive counterparts. The interpretation of the data presented in this article and further extensive insights can be found in “Multidrug resistant tumour cells shed more microvesicles-like EVs and less exosomes than their drug-sensitive counterpart cells” [1].

  3. Proteomic and Bioinformatic Characterization of Extracellular Vesicles Released from Human Macrophages upon Influenza A Virus Infection.

    Science.gov (United States)

    Cypryk, Wojciech; Lorey, Martina; Puustinen, Anne; Nyman, Tuula A; Matikainen, Sampsa

    2017-01-06

    Influenza A viruses (IAVs) are aggressive pathogens that cause acute respiratory diseases and annual epidemics in humans. Host defense against IAV infection is initiated by macrophages, which are the principal effector cells of the innate immune system. We have previously shown that IAV infection of human macrophages is associated with robust secretion of proteins via conventional and unconventional protein release pathways. Here we have characterized unconventional, extracellular vesicle (EV)-mediated protein secretion in human macrophages during IAV infection using proteomics, bioinformatics, and functional studies. We demonstrate that at 9 h postinfection a robust EV-mediated protein secretion takes place. We identified 2359 human proteins from EVs of IAV-infected macrophages compared with 1448 proteins identified from EVs of control cells. Bioinformatic analysis shows that many proteins involved in translation, like components of spliceosome machinery and the ribosome, are secreted in EVs in response to IAV infection. Our data also shows that EVs derived from IAV-infected macrophages contain fatty acid-binding proteins, antiviral cytokines, copper metabolism Murr-1 domain proteins, and autophagy-related proteins. In addition, our data suggest that secretory autophagy plays a role in activating EV-mediated protein secretion during IAV infection.

  4. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use.

    Science.gov (United States)

    Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva

    2017-06-03

    Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.

  5. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy.

    Science.gov (United States)

    Yuan, ZhengQiang; Kolluri, Krishna K; Gowers, Kate H C; Janes, Sam M

    2017-01-01

    Extracellular vesicles (EVs) are lipid membrane-enclosed nanoparticles released by cells. They mediate intercellular communication by transferring biological molecules and therefore have potential as innovative drug delivery vehicles. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of cancer cells. Unfortunately, the clinical application of recombinant rTRAIL has been hampered by its low bioavailability and resistance of cancer cells. EV-mediated TRAIL delivery may circumvent these problems. Mesenchymal stromal cells (MSCs) produce EVs and could be a good source for therapeutic EV production. We investigated if TRAIL could be expressed in MSC-derived EVs and examined their cancer cell-killing efficacy. EVs were isolated by ultracentrifugation and were membranous particles of 50-70 nm in diameter. Both MSC- and TRAIL-expressing MSC (MSCT)-derived EVs express CD63, CD9 and CD81, but only MSCT-EVs express surface TRAIL. MSCT-EVs induced apoptosis in 11 cancer cell lines in a dose-dependent manner but showed no cytotoxicity in primary human bronchial epithelial cells. Caspase activity inhibition or TRAIL neutralisation blocked the cytotoxicity of TRAIL-positive EVs. MSCT-EVs induced pronounced apoptosis in TRAIL-resistant cancer cells and this effect could be further enhanced using a CDK9 inhibitor. These data indicate that TRAIL delivery by MSC-derived EVs is an effective anticancer therapy.

  6. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications.

    Science.gov (United States)

    Rani, Sweta; Ryan, Aideen E; Griffin, Matthew D; Ritter, Thomas

    2015-05-01

    Mesenchymal stem (stromal) cells (MSCs) are multipotent cells with the ability to differentiate into several cell types, thus serving as a cell reservoir for regenerative medicine. Much of the current interest in therapeutic application of MSCs to various disease settings can be linked to their immunosuppressive and anti-inflammatory properties. One of the key mechanisms of MSC anti-inflammatory effects is the secretion of soluble factors with paracrine actions. Recently it has emerged that the paracrine functions of MSCs could, at least in part, be mediated by extracellular vesicles (EVs). EVs are predominantly released from the endosomal compartment and contain a cargo that includes miRNA, mRNA, and proteins from their cells of origin. Recent animal model-based studies suggest that EVs have significant potential as a novel alternative to whole cell therapies. Compared to their parent cells, EVs may have a superior safety profile and can be safely stored without losing function. In this article, we review current knowledge related to the potential use of MSC-derived EVs in various diseases and discuss the promising future for EVs as an alternative, cell-free therapy.

  7. Urinary extracellular vesicles as reservoirs of altered proteins during the pathogenesis of polycystic kidney disease.

    Science.gov (United States)

    Pocsfalvi, Gabriella; Raj, Delfin A A; Fiume, Immacolata; Vilasi, Annalisa; Trepiccione, Francesco; Capasso, Giovambattista

    2015-06-01

    Recent findings indicate that urinary extracellular vesicles (EVs) might reflect the pathophysiological state of urinary system; and that EVs-induced ciliary signaling is a possible mechanism of intercellular communication within the tract. Here, we aimed to analyze the protein expression of urinary EVs during autosomal dominant polycystic kidney disease (ADPKD). EVs were isolated from pooled urine samples of healthy control and ADPKD patients at two different stages of the disease and under tolvaptan treatment using the double-cushion ultracentrifugation method. Proteins were identified and quantified by iTRAQ and multidimensional protein identification technology (MudPIT)-based quantitative proteomics. Quantitative analyses identified 83 differentially expressed EV proteins. Many of these have apical membrane origin and are involved in signal transduction pathways of primary cilia, Ca(2+) -activated signaling, cell-cycle regulation, and cell differentiation. The reduced AQP-2 and the increased APO-A1 levels observed in all ADPKD-affected groups may reflects the impaired renal concentrating capability of these patients and correlated with estimated glomerular filtration rate decline. The levels of some upregulated proteins involved in Ca(2+) -activated signaling declined upon tolvaptan treatment. The results obtained suggest that the quantitative proteomics of urinary EVs might be useful to monitor proteins difficult to access noninvasively, and thus advance our understanding of urinary tract physiology and pathology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies.

    Science.gov (United States)

    Amorim, Maria G; Valieris, Renan; Drummond, Rodrigo D; Pizzi, Melissa P; Freitas, Vanessa M; Sinigaglia-Coimbra, Rita; Calin, George A; Pasqualini, Renata; Arap, Wadih; Silva, Israel T; Dias-Neto, Emmanuel; Nunes, Diana N

    2017-10-31

    Extracellular vesicles (EVs) are key mediators of intercellular communication. Part of their biological effects can be attributed to the transfer of cargos of diverse types of RNAs, which are promising diagnostic and prognostic biomarkers. EVs found in human biofluids are a valuable source for the development of minimally invasive assays. However, the total transcriptional landscape of EVs is still largely unknown. Here we develop a new method for total transcriptome profiling of plasma-derived EVs by next generation sequencing (NGS) from limited quantities of patient-derived clinical samples, which enables the unbiased characterization of the complete RNA cargo, including both small- and long-RNAs, in a single library preparation step. This approach was applied to RNA extracted from EVs isolated by ultracentrifugation from the plasma of five healthy volunteers. Among the most abundant RNAs identified we found small RNAs such as tRNAs, miRNAs and miscellaneous RNAs, which have largely unknown functions. We also identified protein-coding and long noncoding transcripts, as well as circular RNA species that were also experimentally validated. This method enables, for the first time, the full spectrum of transcriptome data to be obtained from minute patient-derived samples, and will therefore potentially allow the identification of cell-to-cell communication mechanisms and biomarkers.

  9. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis.

    Science.gov (United States)

    Costa Verdera, Helena; Gitz-Francois, Jerney J; Schiffelers, Raymond M; Vader, Pieter

    2017-11-28

    Recent evidence has established that extracellular vesicles (EVs), including exosomes and microvesicles, form an endogenous transport system through which biomole