WorldWideScience

Sample records for vesicle fusion arises

  1. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  2. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  3. Mechanics of post-fusion exocytotic vesicle.

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-05-23

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  4. Mechanics of post-fusion exocytotic vesicle

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-06-01

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  5. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  6. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced...... by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non...

  7. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  8. Tension-induced fusion of bilayer membranes and vesicles

    Science.gov (United States)

    Shillcock, Julian C.; Lipowsky, Reinhard

    2005-03-01

    Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 × 50 nm2 planar membrane patches over 2 μs. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.

  9. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature of v...

  10. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies......, fusion pathway I, which does not involve any stalk formation, has not been described previously to the best of our knowledge. A statistical analysis of the various processes shows that fusion is the dominant pathway for releasing the tension of the vesicles. The functional dependence of the observed...

  11. SNAP-25 gene family members differentially support secretory vesicle fusion.

    Science.gov (United States)

    Arora, Swati; Saarloos, Ingrid; Kooistra, Robbelien; van de Bospoort, Rhea; Verhage, Matthijs; Toonen, Ruud F

    2017-06-01

    Neuronal dense-core vesicles (DCVs) transport and secrete neuropeptides necessary for development, plasticity and survival, but little is known about their fusion mechanism. We show that Snap-25 -null mutant (SNAP-25 KO) neurons, previously shown to degenerate after 4 days in vitro (DIV), contain fewer DCVs and have reduced DCV fusion probability in surviving neurons at DIV14. At DIV3, before degeneration, SNAP-25 KO neurons show normal DCV fusion, but one day later fusion is significantly reduced. To test if other SNAP homologs support DCV fusion, we expressed SNAP-23, SNAP-29 or SNAP-47 in SNAP-25 KO neurons. SNAP-23 and SNAP-29 rescued viability and supported DCV fusion in SNAP-25 KO neurons, but SNAP-23 did so more efficiently. SNAP-23 also rescued synaptic vesicle (SV) fusion while SNAP-29 did not. SNAP-47 failed to rescue viability and did not support DCV or SV fusion. These data demonstrate a developmental switch, in hippocampal neurons between DIV3 and DIV4, where DCV fusion becomes SNAP-25 dependent. Furthermore, SNAP-25 homologs support DCV and SV fusion and neuronal viability to variable extents - SNAP-23 most effectively, SNAP-29 less so and SNAP-47 ineffectively. © 2017. Published by The Company of Biologists Ltd.

  12. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics

    Science.gov (United States)

    Dhara, Madhurima; Yarzagaray, Antonio; Schwarz, Yvonne; Dutta, Soumyajit; Grabner, Chad; Moghadam, Paanteha K.; Bost, Anneka; Schirra, Claudia; Rettig, Jens; Reim, Kerstin; Brose, Nils; Mohrmann, Ralf

    2014-01-01

    ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus. PMID:24687280

  14. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  15. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. α-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers.

    Science.gov (United States)

    DeWitt, David C; Rhoades, Elizabeth

    2013-04-09

    The native function of α-synuclein is thought to involve regulation of synaptic vesicle trafficking. Recent work has also implicated a role in neurotransmission, possibly through interactions with the proteins involved in synaptic vesicle fusion. Here, we demonstrate that α-synuclein inhibits SNARE-mediated vesicle fusion through binding the membrane, without a direct interaction between α-synuclein and any of the SNARE proteins. This work supports a model in which α-synuclein plays a role in the regulation of vesicle fusion by modulating properties of the lipid bilayer.

  17. Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Won [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fattyacid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph- thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

  18. Formation of supported lipid bilayers by vesicle fusion

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup; Cardenas Gomez, Marite; Wacklin, Hanna

    2014-01-01

    phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid......We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main...... bilayers formed below or above Tmby neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses...

  19. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  20. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.

    NARCIS (Netherlands)

    Hoekstra, D.

    1982-01-01

    The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue

  1. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  2. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering

    DEFF Research Database (Denmark)

    Mohrmann, Ralf; de Wit, Heidi; Connell, Emma

    2013-01-01

    that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle...... ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused...

  3. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    Science.gov (United States)

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. IN-VITRO FUSION OF RETICULOCYTE ENDOCYTIC VESICLES WITH LIPOSOMES

    NARCIS (Netherlands)

    VIDAL, M; HOEKSTRA, D

    1995-01-01

    Since reticulocytes have a high demand for iron, which is required for heme biosynthesis, these cells are highly specialized in the endocytosis of the iron carrier transferrin (Tf). From the resulting endocytic vesicles (EVs), iron is released and the vesicles rapidly return to the cell membrane

  5. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.

    Science.gov (United States)

    Krisanova, N V; Trikash, I O; Borisova, T A

    2009-12-01

    Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO ( approximately 10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[(14)C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca(2+) or Mg(2+)/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.

  6. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    Science.gov (United States)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  7. Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules.

    Directory of Open Access Journals (Sweden)

    Jennine M Dawicki-McKenna

    Full Text Available In adipocytes, vesicles containing glucose transporter-4 (GLUT4 redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin, preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.

  8. Sites of Glucose Transporter-4 Vesicle Fusion with the Plasma Membrane Correlate Spatially with Microtubules

    Science.gov (United States)

    Dawicki-McKenna, Jennine M.; Goldman, Yale E.; Ostap, E. Michael

    2012-01-01

    In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion. PMID:22916292

  9. A novel synaptic vesicle fusion path in the rat cerebral cortex: the "saddle" point hypothesis.

    Science.gov (United States)

    Zampighi, Guido A; Serrano, Raul; Vergara, Julio L

    2014-01-01

    We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that "rods" assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these "connector rods" to protein complexes involved in "docking" and "priming" vesicles to the active zone. Depending on their orientation, the "rods" define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere ("randomly") in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called "indentations," that are spaced 75-85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection ("saddle") points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170-240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the "post-synaptic domains," the overwhelming majority of the rectangular particles formed bands in the "non-synaptic" plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the hybridization of the R-SNARE synaptobrevin

  10. Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes

    DEFF Research Database (Denmark)

    Mohrmann, Ralf; de Wit, Heidi; Verhage, Matthijs

    2010-01-01

    chromaffin cells. Simultaneous expression of wild-type SNAP-25 and a mutant unable to support exocytosis progressively altered fusion kinetics and fusion pore opening, indicating that both proteins assemble into heteromeric fusion complexes. Expressing different wild-type:mutant ratios revealed a third power......Exocytosis requires formation of SNARE complexes between vesicle- and target-membranes. Recent assessments in reduced model systems have produced divergent estimates of the number of SNARE complexes needed for fusion. Here, we used a titration approach to answer this question in intact, cultured...... relationship for fast (synchronous) fusion and a near-linear relationship for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, while slower release might occur with fewer. Heterogeneity in SNARE-complex number may...

  11. Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity

    DEFF Research Database (Denmark)

    M. Christensen, Sune; W. Mortensen, Michael; Stamou, Dimitrios

    2011-01-01

    the docking or the fusion of vesicles. Here we report a fluorescence microscopy-based assay to monitor SNARE-mediated docking and fusion of individual vesicle pairs. In situ measurement of the concentration of diffusing particles allowed us to quantify docking rates by a maximum-likelihood approach....... This analysis showed that C2AB and Ca(2+) accelerate vesicle-vesicle docking with more than two orders of magnitude. Comparison of the measured docking rates with ensemble lipid mixing kinetics, however, suggests that in most cases bilayer fusion remains therate-limiting step. Our single vesicle results show......Lipid mixing between vesicles functionalized with SNAREs and the cytosolic C2AB domain of synaptotagmin-1 recapitulates the basic Ca(2+) dependence of neuronal exocytosis. However, in the conventional ensemble lipid mixing assays it is not possible to discriminate whether Ca(2+) accelerates...

  12. Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis and Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Catherine Lynch

    2017-09-01

    Full Text Available It is known that apoptotic cells can have diverse effects on the tumor microenvironment. Emerging evidence indicates that, despite its renowned role in tumor suppression, apoptosis may also promote oncogenic evolution or posttherapeutic relapse through multiple mechanisms. These include immunomodulatory, anti-inflammatory, and trophic environmental responses to apoptosis, which drive tumor progression. Our group has introduced the term “onco-regenerative niche (ORN” to describe a conceptual network of conserved cell death-driven tissue repair and regeneration mechanisms that are hijacked in cancer. We propose that, among the key elements of the ORN are extracellular vesicles (EVs, notably those derived from apoptotic tumor cells. EVs are membrane-delimited subcellular particles, which contain multiple classes of bioactive molecules including markers of the cell from which they are derived. EVs are implicated in an increasing number of physiological and pathological contexts as mediators of local and systemic intercellular communication and detection of specific EVs may be useful in monitoring disease progression. Here, we discuss the mechanisms by which EVs produced by apoptotic tumor cells—both constitutively and as a consequence of therapy—may mediate host responsiveness to cell death in cancer. We also consider how the monitoring of such EVs and their cargoes may in the future help to improve cancer diagnosis, staging, and therapeutic efficacy.

  13. Fusion of Selected Cells and Vesicles Mediated by Optically Trapped Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Bahadori, Azra

    Selective fusion of two membrane surrounded volumes is of great interest in nanochemistry and nanomedicine as it can pave the way for performing controlled nanoscale chemical reactions and for delivering a cargo (e.g., chemicals, genetic regulatory factors, etc.) to a desired living cell...... vesicles (GUVs) and/or live cells. However, most of the fusion methods reported so far do not provide sufficient control over which cells/GUVs are going to fuse. Moreover, some of these approaches are not sufficiently non-invasive to be applied to living cells without compromising their viability....... In this work, we introduce a novel and extremely flexible physical method which can trigger membrane fusion in a highly selective manner not only between synthetic GUVs of different compositions, but also between live cells which remain viable after fusion. Optical tweezers’ laser (1064 nm) is used to position...

  14. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis.

    Science.gov (United States)

    Archer, Deborah A; Graham, Margaret E; Burgoyne, Robert D

    2002-05-24

    Membrane fusion during exocytosis and throughout the cell is believed to involve members of the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) family of proteins. The assembly of these proteins into a four-helix bundle may be part of the driving force for bilayer fusion. Regulated exocytosis in neurons and related cell types is specialized to be fast and Ca(2+)-dependent suggesting the involvement of other regulatory proteins specific for regulated exocytosis. Among these are the complexins, two closely related proteins that bind only to the assembled SNARE complex. We have investigated the function of complexin by analysis of single vesicle release events in adrenal chromaffin cells using carbon fiber amperometry. These cells express complexin II, and overexpression of this protein modified the kinetics of vesicle release events so that their time course was shortened. This effect depended on complexin interaction with the SNARE complex as introduction of a mutation of Arg-59, a residue that interacts with synaptobrevin in the SNARE complex, abolished its effects. The data are consistent with a function for complexin in stabilizing an intermediate of the SNARE complex to allow kiss-and-run recycling of the exocytosed vesicle.

  15. DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer's disease.

    Science.gov (United States)

    Keating, Damien J; Dubach, Daphne; Zanin, Mark P; Yu, Yong; Martin, Katherine; Zhao, Yu-Feng; Chen, Chen; Porta, Sílvia; Arbonés, Maria L; Mittaz, Laureane; Pritchard, Melanie A

    2008-04-01

    Genes located on chromosome 21, over-expressed in Down syndrome (DS) and Alzheimer's disease (AD) and which regulate vesicle trafficking, are strong candidates for involvement in AD neuropathology. Regulator of calcineurin activity 1 (RCAN1) is one such gene. We have generated mutant mice in which RCAN1 is either over-expressed (RCAN1(ox)) or ablated (Rcan1-/-) and examined whether exocytosis from chromaffin cells, a classic cellular model of neuronal exocytosis, is altered using carbon fibre amperometry. We find that Rcan1 regulates the number of vesicles undergoing exocytosis and the speed at which the vesicle fusion pore opens and closes. Cells from both Rcan1-/- and RCAN1(ox) mice display reduced levels of exocytosis. Changes in single-vesicle fusion kinetics are also evident resulting in the less catecholamine released per vesicle with increasing Rcan1 expression. Acute calcineurin inhibition did not replicate the effect of RCAN1 overexpression. These changes are not due to alterations in Ca2+ entry or the readily releasable vesicle pool size. Thus, we illustrate a novel regulator of vesicle exocytosis, Rcan1, which influences both exocytotic rate and vesicle fusion kinetics. If Rcan1 functions similarly in neurons then overexpression of this protein, as occurs in DS and AD brains, will reduce both the number of synaptic vesicles undergoing exocytosis and the amount of neurotransmitter released per fusion event. This has direct implications for the pathogenesis of these diseases as sufficient levels of neurotransmission are required for synaptic maintenance and the prevention of neurodegeneration and vesicle trafficking defects are the earliest hallmark of AD neuropathology.

  16. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences.

    Science.gov (United States)

    Wu, Jian; Xu, Yingke; Feng, Zhouyan; Zheng, Xiaoxiang

    2015-01-01

    Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs) and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  17. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  18. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles

    Science.gov (United States)

    Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong; Hamid, Edaeni; Sheng, Jiansong; Baydyuk, Maryna; Wen, Peter J.; Jin, Albert; Momboisse, Fanny; Wu, Ling-Gang

    2014-02-01

    Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles.

  19. Presynaptic pH and vesicle fusion in Drosophila larvae neurones.

    Science.gov (United States)

    Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J

    2013-11-01

    Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.

  20. Synaptotagmin Interaction with SNAP-25 Governs Vesicle Docking, Priming, and Fusion Triggering

    Science.gov (United States)

    de Wit, Heidi; Connell, Emma; Pinheiro, Paulo S.; Leese, Charlotte; Bruns, Dieter; Davletov, Bazbek; Verhage, Matthijs

    2013-01-01

    SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca2+-dependent by interactions with synaptotagmin-1. Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 × SNARE interactions at these sites are involved in regulating fast neurotransmitter release. Here, we have used electrophysiological techniques with high time-resolution to directly investigate the mechanistic ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused no further functional alterations in synaptotagmin-1-deficient cells, indicating that the central acidic patch indeed constitutes a mechanistically relevant synaptotagmin-1 interaction site. Moreover, our data show that the C-terminal binding interface only plays a subsidiary role in triggering but is required for the full size of the readily releasable pool. Intriguingly, we also found that mutation of synaptotagmin-1 interaction sites led to more pronounced phenotypes in the context of the adult neuronal isoform SNAP-25B than in the embryonic isoform SNAP-25A. Further experiments demonstrated that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle pool. PMID:24005294

  1. Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups.

    Science.gov (United States)

    Marchi-Artzner, V; Gulik-Krzywicki, T; Guedeau-Boudeville, M A; Gosse, C; Sanderson, J M; Dedieu, J C; Lehn, J M

    2001-06-18

    Equimolar mixtures of large unilamellar vesicles (LUVs) obtained from mixtures of egg lecithin and lipids containing complementary hydrogen bonding head groups (barbituric acid (BAR) and 2,4,6-triaminopyrimidine (TAP)) were shown to aggregate and fuse. These events have been studied in detail using electron microscopy and dynamic light scattering, and by fluorimetry using membrane or water-soluble fluorescence probes. It was shown that aggregation was followed by two competitive processes: a) lipid mixing leading to redispersion of the vesicles; b) fusion events generating much larger vesicles. In order to better understand the nature of the interaction, the effects of ionic strength and surface concentration of recognition lipids on the aggregation process were investigated by dynamic light scattering. Additionally, it was possible to inhibit the aggregation kinetics through addition of a soluble barbituric acid competitor. The study was extended to giant unilamellar vesicles (GUVs) to investigate the size effect and visualise the phenomena in situ. The interactions between complementary LUVs and GUVs or GUVs and GUVs were studied by optical microscopy using dual fluorescent labelling of both vesicle populations. A selective adhesion of LUVs onto GUVs was observed by electron and optical microscopies, whereas no aggregation took place in case of a GUV/GUV mixture. Furthermore, a fusion assay of GUV and LUV using the difference of size between GUV and LUV and calceine self-quenching showed that no mixing between the aqueous pools occured. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  2. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion.

    Science.gov (United States)

    Sato, T K; Rehling, P; Peterson, M R; Emr, S D

    2000-09-01

    In yeast, the Class C Vps protein complex (C-Vps complex), composed of Vps11, Vps16, Vps18, and Vps33, functions in Golgi-to-vacuole protein transport. In this study, we characterized and purified this complex and identified its interaction with the syntaxin homolog Vam3. Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole. The C-Vps complex does not bind to Vam3-Vti1-Vam7 paired SNARE complexes but instead binds to unpaired Vam3. Antibodies to a component of this complex inhibited in vitro vacuole-to-vacuole fusion. Furthermore, temperature-conditional mutations in the Class C VPS genes destabilized Vam3-Vti1-Vam7 pairing. Therefore, we propose that the C-Vps complex associates with unpaired (activated) Vam3 to mediate the assembly of trans-SNARE complexes during both vesicle docking/fusion and vacuole-to-vacuole fusion.

  3. Salt, shake, fuse--giant hybrid polymer/lipid vesicles through mechanically activated fusion.

    Science.gov (United States)

    Henderson, Ian M; Paxton, Walter F

    2014-03-24

    Large (200 nm) poly(ethylene oxide)-b-poly(butadiene) polymer vesicles fuse into giant (>1 μm) vesicles with mild agitation in dilute aqueous NaCl solutions. This unusual effect is attributed to the salt-induced contraction of the poly(ethylene oxide) corona, reducing steric resistance between vesicles and, with agitation, increasing the probability of contact between the hydrophobic cores of adjacent membranes. In addition, NaCl and agitation facilitated the creation of giant hybrid vesicles from much smaller homogeneous polymersomes and liposomes. Whereas lipid vesicles do not readily fuse with each other under the same circumstances, they did fuse with polymersomes to produce hybrid polymer/lipid vesicles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling

    Science.gov (United States)

    Stanley, Elise F

    2015-01-01

    At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441

  5. An extended model of vesicle fusion at the plasma membrane to estimate protein lateral diffusion from TIRF microscopy images.

    Science.gov (United States)

    Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles

    2017-07-24

    Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.

  6. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles

    NARCIS (Netherlands)

    Schoen, P; Chonn, A; Cullis, PR; Wilschut, J; Scherrer, P

    Hemagglutinin, the membrane fusion protein of influenza virus,is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we

  7. Optimal control of a class of nonlinear parabolic PDE systems arising in fusion plasma current profile dynamics

    Science.gov (United States)

    Ou, Yongsheng

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion arises as a potential source of energy with sufficient energy density to supply the world population with its steadily increasing energy demands. The need to optimize the tokamak concept for the design of an economical, possibly steady state, fusion power plant have motivated extensive international research aimed at finding the so-called "advanced tokamak (AT) operation scenarios." It has been demonstrated that simultaneous real-time control of the current and pressure profiles could lead to the steady state sustainment of an internal transport barrier (ITB), and so to a stationary optimized plasma regime. It has also been suggested that global current profile control, eventually combined with pressure profile control, can be an effective mechanism for neoclassical tearing mode (NTM) control and avoidance. The control of linear or quasi-linear parabolic diffusion-reaction partial differential equations (PDE) has been extensively studied using interior control (see [1] and references therein) or boundary control (see [2] and references therein). Recently, the control of bilinear parabolic partial differential equations via actuation of the diffusive coefficient term, named diffusivity control here, has caught increasing interest. The diffusive coefficient term in a parabolic PDE is not necessary fixed or uncontrollable. For example, the diffusivity control problem arises in the control of the current density profile in magnetically confined fusion plasmas [3], where physical actuators such as plasma total current, line-averaged density and non-inductive total power are used to steer the plasma current density to a desired profile in a designated time period. By modulating these physical actuators it is possible not only to vary the amount of non-inductive current driven into the system (interior control) and the total plasma current (boundary

  8. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna; Hansen, Jesper S.; Stibius, Karin B.

    2011-01-01

    establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein...... in a bilayer array with a total membrane area of 2mm2 within 20min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications....

  9. On the physical conditions for arising a controlled fusion chain reaction supported by neutrons in fusion facilities with magnetic plasma confinement

    Directory of Open Access Journals (Sweden)

    A.N. Shmelyov

    2015-11-01

    The fusion neutron source is considered to be the “richest”: neutron generation is accompanied by relatively small-scale processes. The thermonuclear facility with low neutron absorption blanket under consideration here could create a high density neutron flux in the blanket. It can be concluded from the above that such thermonuclear facilities could be used for fast transmutation of long-lived fission products with low neutron absorption cross-section, and perhaps even without their preliminary isotopic separation.

  10. A GALA lipopeptide mediates pH- and membrane charge dependent fusion with stable giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Etzerodt, Thomas P.; Trier, Sofie; Henriksen, Jonas R.

    2012-01-01

    Peptides capable of mediating fusion between lipid membranes are widely observed in nature, and have attracted considerable attention in the liposome drug delivery field. However, studies that are proving the benefit of small synthetic fusion peptides as components in drug delivery systems remain...

  11. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  12. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Carvalho

    2017-04-01

    Full Text Available Mayaro virus (MAYV is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

  13. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  14. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wasik, Anita A.; Dumont, Vincent [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Tienari, Jukka [Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, 05850 Hyvinkää (Finland); Nyman, Tuula A. [Institute of Biotechnology, University of Helsinki, 00014 Helsinki (Finland); Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Lehtonen, Eero [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Laboratory Animal Centre, University of Helsinki, 00014 Helsinki (Finland); Groop, Per-Henrik [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Baker IDI Heart & Diabetes Institute, 3004 Melbourne (Australia); Lehtonen, Sanna, E-mail: sanna.h.lehtonen@helsinki.fi [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland)

    2017-01-15

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  15. Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors.

    Science.gov (United States)

    Ojeda Naharros, Irene; Gesemann, Matthias; Mateos, José M; Barmettler, Gery; Forbes, Austin; Ziegler, Urs; Neuhauss, Stephan C F; Bachmann-Gagescu, Ruxandra

    2017-12-01

    Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming

  16. Homology with vesicle fusion mediator syntaxin-1a predicts determinants ofepimorphin/syntaxin-2 function in mammary epithelial morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Connie S.; Nelson, Celeste M.; Khauv, Davitte; Bennett, Simone; Radisky, Evette S.; Hirai, Yohei; Bissell, Mina J.; Radisky, Derek C.

    2009-06-03

    We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally.

  17. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes.

    Science.gov (United States)

    Jäger, Jens; Keese, Susanne; Roessle, Manfred; Steinert, Michael; Schromm, Andra B

    2015-05-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. © 2014 John Wiley & Sons Ltd.

  18. Vesicle Photonics

    Science.gov (United States)

    Vasdekis, A. E.; Scott, E. A.; Roke, S.; Hubbell, J. A.; Psaltis, D.

    2013-07-01

    Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transport molecular payloads. Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane. Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy). We conclude with emerging vesicle applications in biology and photochemical microreactors.

  19. Ca2+ Dependence of Synaptic Vesicle Endocytosis.

    Science.gov (United States)

    Leitz, Jeremy; Kavalali, Ege T

    2016-10-01

    Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.

  20. Spatial regulation of membrane fusion controlled by modification of phosphoinositides.

    Directory of Open Access Journals (Sweden)

    Fabrice Dumas

    Full Text Available Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET/two-photon fluorescence lifetime imaging microscopy (FLIM to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCgamma, GTP hydrolysis and (phosphatidylinsositol-(4,5-bisphosphate (PtdIns(4,5P(2 are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism.

  1. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    IAS Admin

    hemophagocytic syndrome) and metabolic (diabe- tes) disorders [2, 23, 33]. Mutations in the genes of the basic secretory protein machinery lead to a number of membrane trafficking diseases such as Charcot–Marie–Tooth disease, Cohen.

  2. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events

    OpenAIRE

    Xia, Xiaofeng; Lessmann, Volkmar; Martin, Thomas F. J.

    2008-01-01

    Evoked neuropeptide secretion in the central nervous system occurs slowly, but the basis for slow release is not fully understood. Whereas exocytosis of single synaptic vesicles in neurons and of dense-core vesicles (DCVs) in endocrine cells have been directly visualized, single DCV exocytic events in neurons of the central nervous system have not been previously studied. We imaged DCV exocytosis in primary cultured hippocampal neurons using fluorescent propeptide carg...

  3. Vesicles and vesicle gels - structure and dynamics of formation

    CERN Document Server

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and ...

  4. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  5. Interaction of a synthetic peptide corresponding to the N-terminus of canine distemper virus fusion protein with phospholipid vesicles: a biophysical study.

    Science.gov (United States)

    Aranda, Francisco J; Teruel, José A; Ortiz, Antonio

    2003-12-03

    The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain

  6. Pushing synaptic vesicles over the RIM.

    Science.gov (United States)

    Kaeser, Pascal S

    2011-05-01

    In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.

  7. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes.

    Science.gov (United States)

    Jin, Haibao; Zhou, Yongfeng; Huang, Wei; Zheng, Yongli; Zhu, Xinyuan; Yan, Deyue

    2014-06-11

    Large-scale and robust vesicle aggregates were obtained through molecular recognition among cell-sized polymer vesicles, carbon nanotubes and AuNPs, driven by adhesion interactions between Au and polydopamine. Vesicle fusion was effectively avoided in this three-component vesicle aggregation process.

  8. Vesicle transport and photoreceptor death: fishing for molecular links.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2013-06-10

    Intracellular vesicle transport defects can induce retinal degeneration and photoreceptor cell death, but the molecular connections between these processes remains poorly understood. Reporting in Developmental Cell, Nishiwaki et al. (2013) suggest that a vesicle fusion cis-SNARE complex component translates vesicular transport defects into photoreceptor cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  10. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

    Science.gov (United States)

    Abels, Erik R; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.

  11. Reconstituted Fusion Pore

    OpenAIRE

    Jeremic, Aleksandar; Kelly, Marie; Cho, Sang-Joon; Stromer, Marvin H.; Jena, Bhanu P.

    2003-01-01

    Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the por...

  12. Conflicting views on the membrane fusion machinery and the fusion pore

    DEFF Research Database (Denmark)

    Sørensen, Jakob B

    2009-01-01

    Fast exocytosis of synaptic vesicles differs from other membrane fusion reactions by being under tight temporal control by the intracellular calcium concentration. This is achieved by subjecting the SNARE-dependent fusion pathway to additional layers of control, both upstream and downstream...... of the water-soluble vesicle content. The fusion pore remains the most elusive part of the exocytosis pathway, owing to its short lifetime....

  13. Development of Biomimetic Surfaces by Vesicle Fusion

    Science.gov (United States)

    2004-12-01

    Alabaster, AL), 1,2-dihexadecanoyl- sn-glycero-3- phosphoethanolamine , triethylammonium salt (Texas Red® DHPE) purchased from Molecular Probes (Eugene...incident beam (superindices). See Figure 6. ir spE , , i sp r spsp ,,, εεε −=∆ Substrate Angle of Incidence Incident Beam λ=632.8 nm ReflectedBeam

  14. In vitro study of interaction of synaptic vesicles with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Castorph, S; Salditt, T [Institute for X-ray Physics, University of Goettingen, 37077 Goettingen (Germany); Konovalov, O [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Jahn, R; Holt, M, E-mail: sghosh1@gwdg.d, E-mail: mholt@gwdg.d, E-mail: tsaldit@gwdg.d [Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen (Germany)

    2010-10-15

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Although PIP{sub 2} is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP{sub 2} incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP{sub 2} incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca{sup 2+} ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  15. Docking of secretory vesicles is syntaxin dependent.

    Directory of Open Access Journals (Sweden)

    Heidi de Wit

    Full Text Available Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.

  16. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  17. Recognition and tethering of transport vesicles at the Golgi apparatus.

    Science.gov (United States)

    Witkos, Tomasz M; Lowe, Martin

    2017-08-01

    The Golgi apparatus occupies a central position within the secretory pathway where it is a hub for vesicle trafficking. Distinct classes of transport vesicles traffic diverse cargoes into and out of this organelle, as well as between the different Golgi subcompartments. A key feature of Golgi trafficking is the specific recognition of transport vesicles at the different regions of the Golgi apparatus, required for the correct cargo delivery. Specificity is ensured by coiled-coil golgins and multi-subunit tethering complexes (MTCs), which act together to capture vesicles and promote their subsequent fusion with the Golgi membrane. In this review we discuss our current understanding of how golgins and MTCs function together to mediate the specific recognition of vesicles at the Golgi apparatus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  19. Directed vesicle transport by diffusio-osmosis

    Science.gov (United States)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  20. Synaptic Vesicle Endocytosis

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  1. Why the need and how to approach the functional diversity of extracellular vesicles

    OpenAIRE

    Tkach, Mercedes; Kowal, Joanna; Théry, Clotilde

    2017-01-01

    In the past decade, cell-to-cell communication mediated by exosomes has attracted growing attention from biomedical scientists and physicians, leading to several recent publications in top-tier journals. Exosomes are generally defined as secreted membrane vesicles, or extracellular vesicles (EVs), corresponding to the intraluminal vesicles of late endosomal compartments, which are secreted upon fusion of multi-vesicular endosomes with the cell's plasma membrane. Cells, however, were shown to ...

  2. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  3. Membrane fusion induced by the membrane mobility agent, A2C. Differentiation between fusible and non-fusible cells. Transfer of fusibility.

    Science.gov (United States)

    Tavassoli, M; Kosower, N S; Halverson, C; Aoki, M; Kosower, E M

    1980-10-02

    Red cells of different species respond differently to the treatment with the membrane mobility agent, A2C, with respect to both the A2C interaction and the subsequent cell-cell interaction. Depending on whether both, one or neither of the processes are effective, some red cells (e.g., nucleated Leghorn hen red cells, rat red cells) fuse easily, some (human red cells) show morphological changes but do not fuse, and others (nucleated Rock hen red cells) show little or no response. Mixed fusion (i.e., between fusible cells of different species) is readily obtained, indicating that no species-specific recognition sites are required for A2C-induced fusion. the potential for fusion is a transferable characteristic. In the presence of fusible cells, A2C induces both heterologous and homologous fusion of otherwise 'non-fusible' cells. Electron micrographs of fusing cells after treatment with A2C reveal 'onion-ring' structures ('whorls'), free of intramembranous protein particles but different from the smooth appearance of A(2)C particles. Whorls are considered to arise from fusion-potent membrane areas. Fusion is apparent at multiple sites along the contact line between apposed membranes. The postulated appearance of vesicle-like structures along the fusion line (Kosower, E.M., Kosower, N.S. and Wegman, P. (1977) Biochim. Biophys. Acta 471, 311-329) is confirmed by micrographs. The mechanism of this fusion process is duscussed and compared to other types of fusion process.

  4. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  5. Synthetic lipid (DOPG) vesicles accumulate in the cell plate region but do not fuse.

    NARCIS (Netherlands)

    Esseling-Ozdoba, A.; Vos, J.W.; Lammeren, AA van; Emons, A.M.C.

    2008-01-01

    The cell plate is the new cell wall, with bordering plasma membrane, that is formed between two daughter cells in plants, and it is formed by fusion of vesicles (approximately 60 nm). To start to determine physical properties of cell plate forming vesicles for their transport through the

  6. Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin

    Science.gov (United States)

    1979-01-01

    A mixture of HVJ (Sendai virus) spike proteins, the nontoxic fragment A of diphtheria toxin, lecithin, and cholesterol was solubilized in sucrose solution containing a nonionic neutral detergent. The liposomal vesicles which formed on removal of the detergent by dialysis were purified by gel filtration and centrifugation on a sucrose gradient. The resulting purified vesicles had hemagglutinating activity, hemolytic activity and, after solubilization, the enzymic activity of fragment A. The vesicles had no cell fusion activity. Electron microscopy showed that both the outside and inside of membranes of the vesicles were associated with the spikes. When the vesicles were freeze- fractured, no large aggregates of particles were seen on either face. Such fragment A-containing lipid vesicles (liposomes) with HVJ spikes bound to mamalian cell membrane and released their fragment A into the cytoplasm causing cell death. Neither fragment A-containing liposomes without spikes nor empty liposomes with spikes were toxic. PMID:217880

  7. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    Science.gov (United States)

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    Science.gov (United States)

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  9. Spinal fusion

    Science.gov (United States)

    ... Low back pain - fusion; Herniated disk - fusion; Spinal stenosis - fusion; Laminectomy - fusion ... be done: With other surgical procedures for spinal stenosis , such as foraminotomy or laminectomy After diskectomy in ...

  10. Role of extracellular vesicles in autoimmune diseases.

    Science.gov (United States)

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dopamine neurons release transmitter via a flickering fusion pore.

    Science.gov (United States)

    Staal, Roland G W; Mosharov, Eugene V; Sulzer, David

    2004-04-01

    A key question in understanding mechanisms of neurotransmitter release is whether the fusion pore of a synaptic vesicle regulates the amount of transmitter released during exocytosis. We measured dopamine release from small synaptic vesicles of rat cultured ventral midbrain neurons using carbon fiber amperometry. Our data indicate that small synaptic vesicle fusion pores flicker either once or multiple times in rapid succession, with each flicker releasing approximately 25-30% of vesicular dopamine. The incidence of events with multiple flickers was reciprocally regulated by phorbol esters and staurosporine. Thus, dopamine neurons regulate the amount of neurotransmitter released by small synaptic vesicles by controlling the number of fusion pore flickers per exocytotic event. This mode of exocytosis is a potential mechanism whereby neurons can rapidly reuse vesicles without undergoing the comparatively slow process of recycling.

  12. Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.

    Science.gov (United States)

    Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang

    2017-09-04

    During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.

  13. Formation of asymmetric vesicles via phospholipase D-mediated transphosphatidylation.

    Science.gov (United States)

    Takaoka, Rina; Kurosaki, Haruko; Nakao, Hiroyuki; Ikeda, Keisuke; Nakano, Minoru

    2018-02-01

    Most biomembranes have an asymmetric structure with regard to phospholipid distribution between the inner and outer leaflets of the lipid bilayers. Control of the asymmetric distribution plays a pivotal role in several cellular functions such as intracellular membrane fusion and cell division. The mechanism by which membrane asymmetry and its alteration function in these transformation processes is not yet clear. To understand the significance of membrane asymmetry on trafficking and metabolism of intracellular vesicular components, a system that experimentally reproduces the asymmetric nature of biomembranes is essential. Here, we succeeded in obtaining asymmetric vesicles by means of transphosphatidylation reactions with phospholipase D (PLD), which acts exclusively on phosphatidylcholine (PC) present in the outer leaflet of vesicles. By treating PC vesicles with PLD in the presence of 1.7M serine and 0.3M ethanolamine, we obtained asymmetric vesicles that are topologically similar to intracellular vesicles containing phosphatidylserine and phosphatidylethanolamine in the cytosolic leaflet. PLD and other unwanted compounds could be removed by trypsin digestion followed by dialysis. Our established technique has a great advantage over conventional methods in that asymmetric vesicles can be provided at high yield and high efficiency, which is requisite for most physicochemical assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles

    Science.gov (United States)

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P.; Osorio-Fuentealba, Cesar; Antonescu, Costin N.; Bayer, K. Ulrich; Bilan, Philip J.; Klip, Amira

    2012-01-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding–deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  15. Sequential interactions with Sec23 control the direction of vesicle traffic.

    Science.gov (United States)

    Lord, Christopher; Bhandari, Deepali; Menon, Shekar; Ghassemian, Majid; Nycz, Deborah; Hay, Jesse; Ghosh, Pradipta; Ferro-Novick, Susan

    2011-05-12

    How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.

  16. How pure are your vesicles?

    Science.gov (United States)

    Webber, Jason; Clayton, Aled

    2013-01-01

    We propose a straightforward method to estimate the purity of vesicle preparations by comparing the ratio of nano-vesicle counts to protein concentration, using tools such as the increasingly available NanoSight platform and a colorimetric protein assay such as the BCA-assay. Such an approach is simple enough to apply to every vesicle preparation within a given laboratory, assisting researchers as a routine quality control step. Also, the approach may aid in comparing/standardising vesicle purity across diverse studies, and may be of particular importance in evaluating vesicular biomarkers. We herein propose some criteria to aid in the definition of pure vesicles. PMID:24009896

  17. Spinal Fusion

    Science.gov (United States)

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... are taking for other conditions, and your overall health can affect the rate of healing and fusion, ...

  18. Nuclear Fusion

    National Research Council Canada - National Science Library

    Ghoranneviss, Mahmood; Parashar, S. K. S; Aslan, Necdet; Aslaninejad, Morteza; Salar Elahi, A

    2014-01-01

    ... in both inertial and magnetic confinement fusion, with attendees from major fusion energy research centers worldwide. It is one of the most important issues in this field. Nuclear fusion continues t...

  19. A Model for Membrane Fusion

    Science.gov (United States)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  20. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  1. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  2. The toolbox of vesicle sidedness determination

    NARCIS (Netherlands)

    Meszaros, Peter; Hoekstra, Dick; Kok, Jan Willem

    2012-01-01

    Vesicles prepared from cellular plasma membranes are widely used in science for different purposes. The outer membrane leaflet differs from the inner membrane leaflet of the vesicle, and during vesicle preparation procedures two types of vesicles will be generated: right-side-out vesicles, of which

  3. Primary Mucinous Adenocarcinoma of a Seminal Vesicle Cyst Associated with Ectopic Ureter and Ipsilateral Renal Agenesis: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Hoon; Seo, Jung Wook; Han, Yoon Hee; Kim, Yong Hoon; Cha, Soon Joo [Inje University School of Medicine, Ilsan (Korea, Republic of)

    2007-06-15

    We report here on a case of primary mucinous adenocarcinoma arising from a seminal vesicle cyst that was associated with an ectopic ureter opening and ipsilateral renal agenesis, which is a very rare condition indeed. The lesion was depicted on transrectal ultrasonography, contrast enhanced CT and MRI as a papillary solid mass originating from the wall of the left seminal vesicle cyst.

  4. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

    Science.gov (United States)

    Südhof, Thomas C.

    2013-01-01

    During an action potential, Ca2+ entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca2+ stimulate release so rapidly and precisely? Work over the last decades revealed that Ca2+-binding to synaptotagmin triggers release by stimulating synaptotagmin-binding to a core machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca2+-channels. This architecture allows direct flow of Ca2+-ions from Ca2+-channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release. PMID:24183019

  5. Fusogenicity of Naja naja atra cardiotoxin-like basic protein on sphingomyelin vesicles containing oxidized phosphatidylcholine and cholesterol.

    Science.gov (United States)

    Kao, Pei-Hsiu; Chen, Ying-Jung; Yang, Shin-Yi; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2013-06-01

    This study investigated the effect of oxidized phosphatidylcholine (oxPC) and cholesterol (Chol) on Naja naja atra cardiotoxin-like basic protein (CLBP)-induced fusion and leakage in sphingomyelin (SM) vesicles. Compared with those on PC/SM/Chol vesicles, CLBP showed a lower activity to induce membrane permeability but a higher fusogenicity on oxPC/SM/Chol vesicles. A reduction in inner-leaflet fusion elucidated that CLBP fusogenicity was not in parallel to its membrane-leakage activity on oxPC/SM/Chol vesicles. The lipid domain formed by Chol and SM supported CLBP fusogenicity on oxPC/SM/Chol vesicles, while oxPC altered the interacted mode of CLBP with oxPC/SM/Chol vesicles as evidenced by Fourier transform infrared spectra analyses and colorimetric phospholipid/polydiacetylene membrane assay. Although CLBP showed similar binding affinity with PC/SM/Chol and oxPC/SM/Chol vesicles, the binding capability of CLBP with PC/SM/Chol and oxPC/SM/Chol vesicles was affected differently by NaCl. This emphasized that CLBP adopted different membrane interaction modes upon binding with PC/SM/Chol and oxPC/SM/Chol vesicles. CLBP induced fusion in vesicles containing oxPC bearing the aldehyde group, and aldehyde scavenger methoxyamine abrogated the CLBP ability to induce oxPC/SM/Chol fusion. Taken together, our data indicate that Chol and oxPC bearing aldehyde group alter the CLBP membrane-binding mode, leading to fusogenicity promotion while reducing the membrane-damaging activity of CLBP.

  6. Preeclampsia and Extracellular Vesicles.

    Science.gov (United States)

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers.

  7. Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells.

    Science.gov (United States)

    Castellano-Muñoz, Manuel; Schnee, Michael E; Ricci, Anthony J

    2016-01-01

    Hair cells from auditory and vestibular systems transmit continuous sound and balance information to the central nervous system through the release of synaptic vesicles at ribbon synapses. The high activity experienced by hair cells requires a unique mechanism to sustain recruitment and replenishment of synaptic vesicles for continuous release. Using pre- and postsynaptic electrophysiological recordings, we explored the potential contribution of calcium-induced calcium release (CICR) in modulating the recruitment of vesicles to auditory hair cell ribbon synapses. Pharmacological manipulation of CICR with agents targeting endoplasmic reticulum calcium stores reduced both spontaneous postsynaptic multiunit activity and the frequency of excitatory postsynaptic currents (EPSCs). Pharmacological treatments had no effect on hair cell resting potential or activation curves for calcium and potassium channels. However, these drugs exerted a reduction in vesicle release measured by dual-sine capacitance methods. In addition, calcium substitution by barium reduced release efficacy by delaying release onset and diminishing vesicle recruitment. Together these results demonstrate a role for calcium stores in hair cell ribbon synaptic transmission and suggest a novel contribution of CICR in hair cell vesicle recruitment. We hypothesize that calcium entry via calcium channels is tightly regulated to control timing of vesicle fusion at the synapse, whereas CICR is used to maintain a tonic calcium signal to modulate vesicle trafficking. Copyright © 2016 the American Physiological Society.

  8. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M; Guo, Bin; Evers, B Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  9. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    Science.gov (United States)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  10. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  11. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  12. `Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells

    Science.gov (United States)

    Oleinick, Alexander; Svir, Irina; Amatore, Christian

    2017-01-01

    Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering (`Kiss-and-Run' events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane-a stage called `full fusion'. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of `full fusion'.

  13. The class V myosin motor, myosin 5c, localizes to mature secretory vesicles and facilitates exocytosis in lacrimal acini.

    Science.gov (United States)

    Marchelletta, Ronald R; Jacobs, Damon T; Schechter, Joel E; Cheney, Richard E; Hamm-Alvarez, Sarah F

    2008-07-01

    We investigated the role of the actin-based myosin motor, myosin 5c (Myo5c) in vesicle transport in exocrine secretion. Lacrimal gland acinar cells (LGAC) are the major source for the regulated secretion of proteins from the lacrimal gland into the tear film. Confocal fluorescence and immunogold electron microscopy revealed that Myo5c was associated with secretory vesicles in primary rabbit LGAC. Upon stimulation of secretion with the muscarinic agonist, carbachol, Myo5c was also detected in association with actin-coated fusion intermediates. Adenovirus-mediated expression of green fluorescent protein (GFP) fused to the tail domain of Myo5c (Ad-GFP-Myo5c-tail) showed that this protein was localized to secretory vesicles. Furthermore, its expression induced a significant (P < or = 0.05) decrease in carbachol-stimulated release of two secretory vesicle content markers, secretory component and syncollin-GFP. Adenovirus-mediated expression of GFP appended to the full-length Myo5c (Ad-GFP-Myo5c-full) was used in parallel with adenovirus-mediated expression of GFP-Myo5c-tail in LGAC to compare various parameters of secretory vesicles labeled with either GFP-labeled protein in resting and stimulated LGAC. These studies revealed that the carbachol-stimulated increase in secretory vesicle diameter associated with compound fusion of secretory vesicles that was also exhibited by vesicles labeled with GFP-Myo5c-full was impaired in vesicles labeled with GFP-Myo5c-tail. A significant decrease in GFP labeling of actin-coated fusion intermediates was also seen in carbachol-stimulated LGAC transduced with GFP-Myo5c-tail relative to LGAC transduced with GFP-Myo5c-full. These results suggest that Myo5c participates in apical exocytosis of secretory vesicles.

  14. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  15. PI(4,5)P2-binding effector proteins for vesicle exocytosis

    Science.gov (United States)

    Martin, Thomas F. J.

    2014-01-01

    PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637

  16. PI(4,5)P₂-binding effector proteins for vesicle exocytosis.

    Science.gov (United States)

    Martin, Thomas F J

    2015-06-01

    PI(4,5)P₂participates directly in priming and possibly in fusion steps of Ca²⁺-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P₂reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P₂ domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P₂directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P₂-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P₂effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P₂, which promotes clustering, but an activating role for PI(4,5)P₂in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P₂-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P₂-binding proteins. This article is part of a Special Issue entitled Phosphoinositides. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  18. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  19. Extracellular Vesicles in Cardiovascular Theranostics

    OpenAIRE

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro,Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells pla...

  20. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  1. RNA in extracellular vesicles.

    Science.gov (United States)

    Kim, Kyoung Mi; Abdelmohsen, Kotb; Mustapic, Maja; Kapogiannis, Dimitrios; Gorospe, Myriam

    2017-07-01

    Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  3. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  4. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis

    Science.gov (United States)

    Kabachinski, Greg; Yamaga, Masaki; Kielar-Grevstad, D. Michelle; Bruinsma, Stephen; Martin, Thomas F. J.

    2014-01-01

    Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca2+-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca2+-triggered fusion were unknown. Ca2+-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca2+-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca2+-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca2+ influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca2+-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13. PMID:24356451

  5. Extension of Helix 12 in Munc18-1 Induces Vesicle Priming

    DEFF Research Database (Denmark)

    Munch, Anders S; Kedar, Girish H; van Weering, Jan R T

    2016-01-01

    Munc18-1 is essential for vesicle fusion and participates in the docking of large dense-core vesicles to the plasma membrane. Recent structural data suggest that conformational changes in the 12th helix of the Munc18-1 domain 3a within the Munc18-1:syntaxin complex result in an additional...... interaction with synaptobrevin-2/VAMP2 (vesicle-associated membrane protein 2), leading to SNARE complex formation. To test this hypothesis in living cells, we examined secretion from Munc18-1-null mouse adrenal chromaffin cells expressing Munc18-1 mutants designed to either perturb the extension of helix 12...... findings support the notion that a conformational transition within the Munc18-1 domain 3a helix 12 leads to opening of a closed Munc18-1:syntaxin complex, followed by productive SNARE complex assembly and vesicle priming. SIGNIFICANCE STATEMENT: The essential postdocking role of Munc18-1 in vesicular...

  6. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; Jansen, Anna M; de Wit, Heidi

    2014-01-01

    Protein Interacting with C Kinase 1 (PICK1) is a Bin/Amphiphysin/Rvs (BAR) domain protein involved in AMPA receptor trafficking. Here, we identify a selective role for PICK1 in the biogenesis of large, dense core vesicles (LDCVs) in mouse chromaffin cells. PICK1 colocalized with syntaxin-6......, a marker for immature granules. In chromaffin cells isolated from a PICK1 knockout (KO) mouse the amount of exocytosis was reduced, while release kinetics and Ca(2+) sensitivity were unaffected. Vesicle-fusion events had a reduced frequency and released lower amounts of transmitter per vesicle (i.......e., reduced quantal size). This was paralleled by a reduction in the mean single-vesicle capacitance, estimated by averaging time-locked capacitance traces. EM confirmed that LDCVs were fewer and of markedly reduced size in the PICK1 KO, demonstrating that all phenotypes can be explained by reductions...

  7. Morphological and topological transformations of lipid bilayer vesicles

    Science.gov (United States)

    Nomura, Fumimasa; Honda, Makoto; Takeda, Shuichi; Umeda, Tamiki; Takiguchi, Kingo; Hotani, Hirokazu

    2000-06-01

    Liposomes are the micro compartments made of lipid bilayer membrane of which characteristics are quite similar to those of biological membrane. To form artificial cell-like structure, we made liposomes that contained subunit of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shape by mechanical force generated by the polymerization of encapsulated subunits of microtubules. Disk or dumbbell shape was generated by the polymerization of encapsulated action. Dynamic processes of morphological transformations of liposomes were visualized by the high intensity dark-field light microscopy. Topological changes such as fusion and division of membrane vesicles also play an essential role in cellular activities. We investigated the mechanism of these topological transformations by visualizing their real-time processes. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles. .

  8. CAPS and Munc13: CATCHRs that SNARE vesicles

    Directory of Open Access Journals (Sweden)

    Declan J James

    2013-12-01

    Full Text Available Abstract. CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS and Munc13 (Mammalian Unc-13 proteins function to prime vesicles for Ca2+-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with CATCHR (Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes have been reported. Multi-subunit tethering complexes coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

  9. Gene expression profiling of Drosophila tracheal fusion cells.

    Science.gov (United States)

    Chandran, Rachana R; Iordanou, Ekaterini; Ajja, Crystal; Wille, Michael; Jiang, Lan

    2014-07-01

    The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Role of the synaptobrevin C terminus in fusion pore formation

    DEFF Research Database (Denmark)

    Ngatchou, Annita N; Kisler, Kassandra; Fang, Qinghua

    2010-01-01

    stimulation, the SNARE complex pulls the C terminus of sybII deeper into the vesicle membrane. We propose that this movement disrupts the vesicular membrane continuity leading to fusion pore formation. In contrast to current models, the experiments suggest that fusion pore formation begins with molecular......Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore...

  11. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  12. Controlled fusion; La fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, J.L

    2005-07-01

    During the last fifty years the researches on controlled thermonuclear fusion reached great performance in the magnetic confinement (tokamaks) as in the inertial confinement (lasers). But the state of the art is not in favor of the apparition of the fusion in the energy market before the second half of the 21 century. To explain this opinion the author presents the fusion reactions of light nuclei and the problems bound to the magnetic confinement. (A.L.B.)

  13. Cystadenoma of the seminal vesicle

    Directory of Open Access Journals (Sweden)

    Gil Antônio O.

    2003-01-01

    Full Text Available Primary tumors of the seminal vesicle are extremely rare. Among them, there is a spectrum of tumors derived from both epithelium and stroma and so classified as epithelial-stromal tumors. Herein, we report a case of a cystadenoma in a 49-year-old asymptomatic man, detected in a routine ultrasonography for liver disease follow-up. The digital rectal examination detected a large mass anterior to rectum and posterior to bladder. Computed tomography scan and magnetic resonance imaging showed a normal prostate and a 9.0 cm cystic tumor, replacing the left seminal vesicle. The gross appearance and microscopic aspect was compatible with cystadenoma of seminal vesicle. Patient's postoperative recovery was uneventful. He is currently alive, 3 years after the diagnosis, with no signs of recurrence.

  14. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.

    Science.gov (United States)

    Bahrami, Amir Houshang; Weikl, Thomas R

    2018-01-08

    Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

  15. Fusion physics

    CERN Document Server

    Lackner, Karl; Tran, Minh Quang

    2012-01-01

    This publication is a comprehensive reference for graduate students and an invaluable guide for more experienced researchers. It provides an introduction to nuclear fusion and its status and prospects, and features specialized chapters written by leaders in the field, presenting the main research and development concepts in fusion physics. It starts with an introduction to the case for the development of fusion as an energy source. Magnetic and inertial confinement are addressed. Dedicated chapters focus on the physics of confinement, the equilibrium and stability of tokamaks, diagnostics, heating and current drive by neutral beam and radiofrequency waves, and plasma–wall interactions. While the tokamak is a leading concept for the realization of fusion, other concepts (helical confinement and, in a broader sense, other magnetic and inertial configurations) are also addressed in the book. At over 1100 pages, this publication provides an unparalleled resource for fusion physicists and engineers.

  16. When to biopsy seminal vesicles.

    Science.gov (United States)

    Panach-Navarrete, J; García-Morata, F; Hernández-Medina, J A; Martínez-Jabaloyas, J M

    2015-05-01

    The involvement of seminal vesicles in prostate cancer can affect the prognosis and determine the treatment. The objective of this study was to determine whether we could predict its infiltration at the time of the prostate biopsy to know when to indicate the biopsy of the seminal vesicles. observational retrospective study of 466 patients who underwent seminal vesicle biopsy. The indication for this biopsy was a prostate-specific antigen (PSA) level greater than 10 ng/ml or an asymmetric or obliterated prostatoseminal angle. The following variables were included in the analysis: PSA level, PSA density, prostate volume, number of cores biopsied, suspicious rectal examination, and preservation of the prostatoseminal angle, studying its relationship with the involvement of the seminal vesicles. Forty-one patients (8.8%) had infiltrated seminal vesicles and 425 (91.2%) had no involvement. In the univariate analysis, the cases with infiltration had a higher mean PSA level (P 19.60 ng/dL (P < .01) and 2.95 times higher if there is a suspicious rectal examination (P = .014). Furthermore, this probability increases by 1.04 times for each unit of prostate volume lower (P < .01). The ROC curves showed maximum sensitivity and specificity at 19.6 ng/mL for PSA and 0.39 for PSA density. In this series, greater involvement of seminal vesicles was associated with a PSA level ≥20 ng/ml, a suspicious rectal examination and a lack of prostatoseminal angle preservation. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. SMALL VESICLES, BIG VEHICLES: EXOSOMES.

    Directory of Open Access Journals (Sweden)

    Saiz-Lopez P

    2016-09-01

    Full Text Available Exosomes are small membranous vesicles released by different cell types. Since their discovery, they have evolved from being considered simple vehicles for the liberation of cellular wastes, to become one of the most promising fields in the area of biomedical research, and more specifically in oncology, since the different malignant tumors release exosomes to all biological fluids, being involved in various functions of the neoplastic process. At present, it is possible to study these vesicles by minimally invasive techniques in patients, which approach us to obtain a more detailed diagnosis and prognosis, as well as to the discovery of new antitumoral therapies

  18. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tang, Hongting; Song, Meihui; He, Yao; Wang, Jiajing; Wang, Shenghuan; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2017-01-01

    Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera β-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the

  19. Pulling force and surface tension drive membrane fusion.

    Science.gov (United States)

    Liu, Xuejuan; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Zhong, Chongli

    2017-11-21

    Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.

  20. Pulling force and surface tension drive membrane fusion

    Science.gov (United States)

    Liu, Xuejuan; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Zhong, Chongli

    2017-11-01

    Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.

  1. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  2. Extracellular vesicles in physiological and pathological conditions

    NARCIS (Netherlands)

    Yuana, Yuana; Sturk, Auguste; Nieuwland, Rienk

    2013-01-01

    Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation.

  3. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    Science.gov (United States)

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.

  4. Synaptic vesicles are primed for fast clathrin-mediated endocytosis at the ribbon synapse

    Directory of Open Access Journals (Sweden)

    Ilaria ePelassa

    2014-12-01

    Full Text Available Retrieval of synaptic vesicles can occur 1-10 s after fusion, but the role of clathrin during this process has been unclear because the classical mode of clathrin-mediated endocytosis (CME is an order of magnitude slower, as during retrieval of surface receptors. Classical CME is thought to be rate-limited by the recruitment of clathrin, which raises the question: How is clathrin recruited during synaptic vesicle recycling? To investigate this question we applied total internal reflection fluorescence microscopy (TIRF to the synaptic terminal of retinal bipolar cells expressing fluorescent constructs of clathrin light-chain A. Upon calcium influx we observed a fast accumulation of clathrin within 100 ms at the periphery of the active zone. The subsequent loss of clathrin from these regions reflected endocytosis because the application of a potent clathrin inhibitor Pitstop2 dramatically slowed down this phase by ~3 fold. These results indicate that clathrin-dependent retrieval of synaptic vesicles is unusually fast, most probably because of a priming step involving a state of association of clathrin with the docked vesicle and with the endosomes and cisternae surrounding the ribbons. FCS and FRAP showed that the majority of clathrin is moving with the same kinetics as synaptic vesicle proteins. Together, these results indicate that the fast endocytic mechanism operating to retrieve synaptic vesicles differs substantially from the classical mode of CME operating via formation of a coated pit.

  5. 1393-IJBCS-Article-Rotimi Arise

    African Journals Online (AJOL)

    hp

    combination, thus leading to leakage of membrane components into the extracellular fluid (Akanji et al., 1993). This is further supported by significant reduction in ... sarcosplasmic reticulum vesicles and from endosplasmic reticulum by inhibiting Ca2+ uptake by Ca2+ -Mg2+ ATPase. Exposure to xenobiotics results into.

  6. Fusion plasmas

    Science.gov (United States)

    Engelmann, F.

    1995-09-01

    In the following, a synthetic review of the information reported at the Conference will be given. No attempt is made to summarize specific contributions; rather the material contributed will be looked at from a few different angles. All areas of fusion plasma physics were represented: there were experimental results on magnetic confinement (tokamaks; stellarators; mirrors; reversed field pinches; field reversed configurations; Z-pinches, with emphasis on the dense Z-pinch; plasma focus, ect.) and on inertial confinement; related modelling and diagnolstics development; theory, as well as some technological activities (power generators; RF sources, etc.) and component (e.g. antennae) development for smaller fusion devices. In particular, fusion-related research in Latin America was exhaustively covered. In addition, large future projects in fusion research were summarized. (AIP)

  7. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Mai [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Kitaguchi, Tetsuya [Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABOIS), Waseda University, 11 Biopolis Way, 05-01/02 Helios, Singapore 138667 (Singapore); Numano, Rika [The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ikematsu, Kazuya [Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kakeyama, Masaki [Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Murata, Masayuki; Sato, Ken [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Tsuboi, Takashi, E-mail: takatsuboi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  8. In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion

    Science.gov (United States)

    Ko, Young-Joon; Lee, Miriam; Kang, KyeongJin; Song, Woo Keun; Jun, Youngsoo

    2014-01-01

    Intracellular membrane fusion requires not only SNARE proteins but also other regulatory proteins such as the Rab and Sec1/Munc18 (SM) family proteins. Although neuronal SNARE proteins alone can drive the fusion between synthetic liposomes, it remains unclear whether they are also sufficient to induce the fusion of biological membranes. Here, through the use of engineered yeast vacuoles bearing neuronal SNARE proteins, we show that neuronal SNAREs can induce membrane fusion between yeast vacuoles and that this fusion does not require the function of the Rab protein Ypt7p or the SM family protein Vps33p, both of which are essential for normal yeast vacuole fusion. Although excess vacuolar SNARE proteins were also shown to mediate Rab-bypass fusion, this fusion required homotypic fusion and vacuole protein sorting complex, which bears Vps33p and was accompanied by extensive membrane lysis. We also show that this neuronal SNARE-driven vacuole fusion can be stimulated by the neuronal SM protein Munc18 and blocked by botulinum neurotoxin serotype E, a well-known inhibitor of synaptic vesicle fusion. Taken together, our results suggest that neuronal SNARE proteins are sufficient to induce biological membrane fusion, and that this new assay can be used as a simple and complementary method for investigating synaptic vesicle fusion mechanisms. PMID:24821814

  9. The readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Kaeser, Pascal S; Regehr, Wade G

    2017-04-01

    Each presynaptic bouton is densely packed with many vesicles, only a small fraction of which are available for immediate release. These vesicles constitute the readily releasable pool (RRP). The RRP size, and the probability of release of each vesicle within the RRP, together determine synaptic strength. Here, we discuss complications and recent advances in determining the size of the physiologically relevant RRP. We consider molecular mechanisms to generate and regulate the RRP, and discuss the relationship between vesicle docking and the RRP. We conclude that many RRP vesicles are docked, that some docked vesicles may not be part of the RRP, and that undocked vesicles can contribute to the RRP by rapid recruitment to unoccupied, molecularly activated ready-to-release sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  11. Dynamics of endocytic vesicle creation.

    Science.gov (United States)

    Perrais, David; Merrifield, Christien J

    2005-11-01

    Clathrin-mediated endocytosis is the main path for receptor internalization in metazoans and is essential for controlling cell integrity and signaling. It is driven by a large array of protein and lipid interactions that have been deciphered mainly by biochemical and genetic means. To place these interactions into context, and ultimately build a fully operative model of endocytosis at the molecular level, it is necessary to know the kinetic details of the role of each protein in this process. In this review, we describe the recent efforts made, by using live cell imaging, to define clear steps in the formation of endocytic vesicles and to observe the recruitment of key proteins during membrane invagination, the scission of a newly formed vesicle, and its movement away from the plasma membrane.

  12. Extracellular vesicles and blood diseases.

    Science.gov (United States)

    Nomura, Shosaku

    2017-04-01

    Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.

  13. Asymmetric Phosphatidylethanolamine Distribution Controls Fusion Pore Lifetime and Probability.

    Science.gov (United States)

    Kreutzberger, Alex J B; Kiessling, Volker; Liang, Binyong; Yang, Sung-Tae; Castle, J David; Tamm, Lukas K

    2017-11-07

    Little attention has been given to how the asymmetric lipid distribution of the plasma membrane might facilitate fusion pore formation during exocytosis. Phosphatidylethanolamine (PE), a cone-shaped phospholipid, is predominantly located in the inner leaflet of the plasma membrane and has been proposed to promote membrane deformation and stabilize fusion pores during exocytotic events. To explore this possibility, we modeled exocytosis using plasma membrane SNARE-containing planar-supported bilayers and purified neuroendocrine dense core vesicles (DCVs) as fusion partners, and we examined how different PE distributions between the two leaflets of the supported bilayers affected SNARE-mediated fusion. Using total internal reflection fluorescence microscopy, the fusion of single DCVs with the planar-supported bilayer was monitored by observing DCV-associated neuropeptide Y tagged with a fluorescent protein. The time-dependent line shape of the fluorescent signal enables detection of DCV docking, fusion-pore opening, and vesicle collapse into the planar membrane. Four different distributions of PE in the planar bilayer mimicking the plasma membrane were examined: exclusively in the leaflet facing the DCVs; exclusively in the opposite leaflet; equally distributed in both leaflets; and absent from both leaflets. With PE in the leaflet facing the DCVs, overall fusion was most efficient and the extended fusion pore lifetime (0.7 s) enabled notable detection of content release preceding vesicle collapse. All other PE distributions decreased fusion efficiency, altered pore lifetime, and reduced content release. With PE exclusively in the opposite leaflet, resolution of pore opening and content release was lost. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Hyperfibers and vesicles in dentin matrix in dentinogenesis imperfecta (DI) associated with osteogenesis imperfecta (OI).

    Science.gov (United States)

    Waltimo, J

    1994-10-01

    Dentin matrix of deciduous teeth from two patients affected by dentinogenesis imperfecta (DI) associated with types IB and IVB osteogenesis imperfecta (OI) displayed previously undescribed structures in transmission electron microscopic examination. Vesicles were seen in dentin of both patients, and abnormally thick collagen fibers (hyperfibers) were found in dentin of the patient with the rare type IB OI. Both vesicles and hyperfibers were situated in abnormal, atubular areas of dentin. Matrix vesicles, which have normally been identified in mantle dentin only, were abundant in selected areas of the affected dentin, thereby supporting the concept that dentin matrix in OI is elaborated by successive cell generations. The hyperfibers, not previously described in either normal or abnormal human dentin, have possibly been formed by fusion of several collagen fibers. Further ultrastructural studies of dentin in DI with OI may help to clarify the marked clinical variation in teeth of patients affected by OI.

  15. Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming

    DEFF Research Database (Denmark)

    Cai, Haijiang; Reim, Kerstin; Varoqueaux, Frederique

    2008-01-01

    SNARE-mediated exocytosis is a multistage process central to synaptic transmission and hormone release. Complexins (CPXs) are small proteins that bind very rapidly and with a high affinity to the SNARE core complex, where they have been proposed recently to inhibit exocytosis by clamping...... the complex and inhibiting membrane fusion. However, several other studies also suggest that CPXs are positive regulators of neurotransmitter release. Thus, whether CPXs are positive or negative regulators of exocytosis is not known, much less the stage in the vesicle life cycle at which they function. Here......, we systematically dissect the vesicle stages leading up to exocytosis using a knockout-rescue strategy in a mammalian model system. We show that adrenal chromaffin cells from CPX II knockout mice exhibit markedly diminished releasable vesicle pools (comprising the readily and slowly releasable pools...

  16. Elastic Torques about Membrane Edges: A Study of Pierced Egg Lecithin Vesicles.

    Science.gov (United States)

    Lorenzen, S; Servuss, R M; Helfrich, W

    1986-10-01

    The shape of mechanically pierced giant vesicles is studied to obtain the elastic modulus of Gaussian curvature of egg lecithin bilayers. It is argued that such experiments are governed by an apparent modulus, kappa(app), not the true modulus of Gaussian curvature, kappa. A theory of kappa(app) is proposed, regarding the pierced bilayer vesicle as a closed monolayer vesicle. The quantity measured, i.e. kappa(app)/kappa, where kappa is the rigidity, agrees satisfactorily with the theory. We find kappa(app) = -(1.9 +/- 0.3) . 10(-12) erg (on the basis of kappa = (2.3 +/- 0.3) . 10(-12) erg). The result may have implications for bilayer fusion.

  17. Size distribution and radial density profile of synaptic vesicles by SAXS and light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Castorph, Simon; Salditt, Tim [Institute for X-ray Physics, Goettingen (Germany); Holt, Matthew; Jahn, Reinhard [Max Plank Institute for Biophysical Chemistry, Goettingen (Germany); Sztucki, Michael [European Synchrotron Radiation Facility, Grenoble (France)

    2008-07-01

    Synaptic vesicles are small membraneous organelles within the nerve terminal, encapsulating neurotransmitters by a lipid bilayer. The transport of the neurotransmitter, the fusion at the plasma membrane, and the release of the stored neurotransmitters into the synaptic cleft are since long know as essential step in nerve conduction of the chemical synapse. A detailed structural view of these molecular mechanisms is still lacking, not withstanding the enormous progress in the field during recent years. From measurements and quantitative fitting of small angle X-ray scattering curves and dynamic light scattering the averaged structural properties of synaptic vesicles can be determined. We present SAXS measurements and fits revealing the width of the size distribution function and details of the radial scattering length profile of synaptic vesicles from rat brain. Representative values for the inner and outer radius and the size polydispersity as well as the density and width of the outer protein layer are obtained.

  18. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  19. Cystosarcoma Phyllodes of the Seminal Vesicle: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Lucio Olivetti

    2014-01-01

    Full Text Available Cystosarcoma of the seminal vesicle is a very rare malignant tumor; in the literature only four cases are reported. We present a case of cystosarcoma phyllodes arising in the right seminal vesicle of a 49-year-old man without any urinary symptom but with persistent constipation. Ultrasound examination showed a mass at the right superior base of the prostate subsequently studied with CT and MRI. The patient underwent vesiculectomy; his postoperative course was uneventful. The patient is still well, without evidence of recurrent disease.

  20. Photon polarization in np fusion

    CERN Document Server

    Ramachandran, G; Kumar, S P

    2003-01-01

    A model-independent irreducible tensor formalism is developed to discuss photon polarization in np fusion. It is shown that photon polarization arising out of the interference of the dominant isovector M1 amplitude at thermal neutron energies with the small isoscalar M1 and E2 amplitudes can be studied with advantage in suitably designed polarized beam and polarized target experiments, where the neutron and proton polarizations are either opposite to each other or orthogonal to each other. (letter to the editor)

  1. The SNARE protein vti1a functions in dense-core vesicle biogenesis

    DEFF Research Database (Denmark)

    Walter, Alexander M; Kurps, Julia; de Wit, Heidi

    2014-01-01

    The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially...... overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca(2+)-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca(2+)-sensitivity remain unchanged, indicating that the final fusion...... reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days...

  2. Characterization of membrane-shed micro-vesicles from cytokine-stimulated beta-cells using proteomics strategies

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Jensen, Soren Skov; Le Bihan, Marie Catherine

    2012-01-01

    Micro-particles and exosomes are two of the most well characterized membrane-derived micro-vesicles released either directly from the plasma membrane or released through the fusion of intracellular multi-vesicular bodies with the plasma membrane, respectively. They are thought to be involved...... in many significant biological processes such as cell-to-cell communication, rescue from apoptosis and immunological responses. Here we report for the first time a quantitative study of proteins from beta-cell-derived micro-vesicles generated after cytokine induced apoptosis using stable-isotope labeled...... amino acids in cell culture (SILAC) combined with mass spectrometry. We identified and quantified a large number of beta-cell specific proteins and proteins previously described in micro-vesicles from other cell types in addition to new proteins located to these vesicles. In addition, we quantified...

  3. Primary extradural meningioma arising from the calvarium

    Directory of Open Access Journals (Sweden)

    N Ravi

    2013-06-01

    Full Text Available Meningiomas are the most common intracranial tumours. Meningiomas arising at other locations are termed primary extradural meningiomas (EDM and are rare. Here we report a case of EDM arising from the calvarium – a primary calvarial meningioma (PCM.

  4. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells.

    Science.gov (United States)

    Akopova, Irina; Tatur, Sabina; Grygorczyk, Mariusz; Luchowski, Rafał; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian; Grygorczyk, Ryszard

    2012-03-01

    Nucleotide release constitutes the first step of the purinergic signaling cascade, but its underlying mechanisms remain incompletely understood. In alveolar A549 cells much of the experimental data is consistent with Ca(2+)-regulated vesicular exocytosis, but definitive evidence for such a release mechanism is missing, and alternative pathways have been proposed. In this study, we examined ATP secretion from A549 cells by total internal reflection fluorescence microscopy to directly visualize ATP-loaded vesicles and their fusion with the plasma membrane. A549 cells were labeled with quinacrine or Bodipy-ATP, fluorescent markers of intracellular ATP storage sites, and time-lapse imaging of vesicles present in the evanescent field was undertaken. Under basal conditions, individual vesicles showed occasional quasi-instantaneous loss of fluorescence, as expected from spontaneous vesicle fusion with the plasma membrane and dispersal of its fluorescent cargo. Hypo-osmotic stress stimulation (osmolality reduction from 316 to 160 mOsm) resulted in a transient, several-fold increment of exocytotic event frequency. Lowering the temperature from 37°C to 20°C dramatically diminished the fraction of vesicles that underwent exocytosis during the 2-min stimulation, from ~40% to ≤1%, respectively. Parallel ATP efflux experiments with luciferase bioluminescence assay revealed that pharmacological interference with vesicular transport (brefeldin, monensin), or disruption of the cytoskeleton (nocodazole, cytochalasin), significantly suppressed ATP release (by up to ~80%), whereas it was completely blocked by N-ethylmaleimide. Collectively, our data demonstrate that regulated exocytosis of ATP-loaded vesicles likely constitutes a major pathway of hypotonic stress-induced ATP secretion from A549 cells.

  5. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  6. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  7. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Suk Yong; You, Jae Jun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author).

  8. Fusion systems

    OpenAIRE

    Aschbacher, Michael; Oliver, Bob

    2016-01-01

    This is a survey article on the theory of fusion systems, a relatively new area of mathematics with connections to local finite group theory, algebraic topology, and modular representation theory. We first describe the general theory and then look separately at these connections.

  9. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles

    NARCIS (Netherlands)

    Farsi, Z.; Preobraschenski, J.; Bogaart, G. van den; Riedel, D.; Jahn, R.; Woehler, A.

    2016-01-01

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided

  10. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  11. Exosomes: secreted vesicles and intercellular communications

    OpenAIRE

    Théry, Clotilde

    2011-01-01

    Exosomes are small membrane vesicles of endocytic origin secreted by most cell types, and are thought to play important roles in intercellular communications. Although exosomes were originally described in 1983, interest in these vesicles has really increased dramatically in the last 3 years, after the finding that they contain mRNA and microRNA. This discovery sparked renewed interest for the general field of membrane vesicles involved in intercellular communications, and research on these s...

  12. Reversibly formed bilayer vesicles: Energetics and polydispersity

    DEFF Research Database (Denmark)

    Bergstöm, M.

    1997-01-01

    orders of magnitude larger than where the local free energy minima of the equilibrium vesicle actually occur. Moreover, according to our analysis, the relative width of a vesicle size distribution, sigma(R)/R-max, is generally at full equilibrium equal to 0.283, independently of the energetic vesicle....... and a statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work...

  13. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-02-19

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  14. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  15. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells.

    Science.gov (United States)

    Vogl, Christian; Cooper, Benjamin H; Neef, Jakob; Wojcik, Sonja M; Reim, Kerstin; Reisinger, Ellen; Brose, Nils; Rhee, Jeong-Seop; Moser, Tobias; Wichmann, Carolin

    2015-02-15

    Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin. © 2015. Published by The Company of Biologists Ltd.

  16. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, D.; Nielsen, C.H.; Wojewodzka, U.

    2008-01-01

    Ternary lipid compositions in model membranes segregate into large-scale liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. Here, we show mum-sized lipid domain separation leading to vesicle formation in unperturbed human HaCaT keratinocytes. Budding vesicles in the apical portion of the ...... mum-sized surfaces to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events Udgivelsesdato: 2008/11....... Based on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total 'L(o)/L(d)' boundary line tension arising from the coalescence of smaller L(d)-like domains makes it energetically favourable for L(d)-like domains to bend from flat...

  17. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  18. Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion

    Science.gov (United States)

    Mellander, Lisa J.; Trouillon, Raphaël; Svensson, Maria I.; Ewing, Andrew G.

    2012-11-01

    The basis for communication between nerve cells lies in the process of exocytosis, the fusion of neurotransmitter filled vesicles with the cell membrane resulting in release of the signaling molecules. Even though much is known about this process, the extent that the vesicles are emptied upon fusion is a topic that is being debated. We have analyzed amperometric peaks corresponding to release at PC12 cells and find stable plateau currents during the decay of peaks, indicating closing of the vesicle after incomplete release of its content. Using lipid incubations to alter the amount of transmitter released we were able to estimate the initial vesicular content, and from that, the fraction of release. We propose a process for most exocytosis events where the vesicle partially opens to release transmitter and then closes directly again, leaving the possibility for regulation of transmission within events.

  19. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion.

    Science.gov (United States)

    Diao, Jiajie; Grob, Patricia; Cipriano, Daniel J; Kyoung, Minjoung; Zhang, Yunxiang; Shah, Sachi; Nguyen, Amie; Padolina, Mark; Srivastava, Ankita; Vrljic, Marija; Shah, Ankita; Nogales, Eva; Chu, Steven; Brunger, Axel T

    2012-12-13

    The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 μM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001.

  20. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen

    2008-11-01

    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  1. Extracellular Vesicles in Cardiovascular Theranostics.

    Science.gov (United States)

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.

  2. Fusion ambassador

    Science.gov (United States)

    Smith, Chris Llewellyn

    2009-02-01

    With his glasses and shock of thick, white hair, Chris Llewellyn Smith does not look like a superhero saving the world from peril. Yet the slim, 66-year-old physicist is seemingly becoming a potential saviour in the public eye. At least that is the reaction he says he got while recently moving house in Oxford. "I was quite surprised by my new neighbours' knowledge of energy issues when they said 'The world is relying on you to develop fusion!'."

  3. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation

    Science.gov (United States)

    Bobrie, Angélique; Colombo, Marina; Krumeich, Sophie; Raposo, Graça; Théry, Clotilde

    2012-01-01

    Exosomes are extracellular vesicles of 50 to 100 nm in diameter, released by many cell types. Exosomes are formed inside the cell in intracellular endosomal compartments and are secreted upon fusion of these compartments with the plasma membrane. Cells also secrete other types of membrane vesicles, for instance, by outward budding from the plasma membrane, and although some of them clearly differ from exosomes by their structural features (larger size), others are possibly more difficult to separate. Here, using Rab27a inhibition to modulate exosome secretion, we show the existence of at least 2 distinct populations of vesicles after purification by classical ultracentrifugation from mouse tumor cell conditioned medium. Rab27a inhibition lead to decreased vesicular secretion of some conventional markers of exosomes (CD63, Tsg101, Alix and Hsc70) but did not affect secretion of others (CD9 and Mfge8). By electron microscopy, CD9 was observed on vesicles of various sizes, ranging from 30 nm to more than 150 nm in diameter. Flotation onto sucrose gradients showed different proportions of CD63, CD9 and Mfge8 not only in fractions of densities classically described for exosomes (around 1.15 g/ml) but also in fractions of densities over 1.20 g/ml, indicating the presence of heterogenous vesicle populations. CD9 and Mfge8 were also found in large vesicles pelleted at low speed and can thus not be considered as specific components of endosome-derived vesicles. We propose that the most commonly used protocols for exosome preparations co-purify vesicles from endosomal and other origins, possibly the plasma membrane. Future work will be required to improve techniques for accurate purification and characterization of the different populations of extracellular vesicles. PMID:24009879

  4. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  5. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  6. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  7. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  8. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Urinary extracellular vesicles: biomarkers and beyond

    NARCIS (Netherlands)

    M. Salih (Mahdi)

    2017-01-01

    markdownabstractExtracellular vesicles have been isolated in various body fluids including urine. The cargo of urinary extracellular vesicles (uEVs) is composed of proteins and nucleic acids reflecting the physiological and possibly the pathophysiological state of cells lining the nephron. Because

  10. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  11. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    Science.gov (United States)

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case.

  13. Apoptotic Bodies: Selective Detection in Extracellular Vesicles.

    Science.gov (United States)

    Hauser, Paul; Wang, Sha; Didenko, Vladimir V

    2017-01-01

    Normal and dying cells release various types of membrane-bound vesicles including microvesicles, exosomes, and apoptotic bodies. These vesicles play important roles in intercellular communication and signal transduction. However, their diverse forms and subtypes fluctuate in size and other properties. In result current purification approaches do not fully discriminate between different categories of extracellular vesicles. Here, we present a fluorescence technique that specifically identifies apoptotic bodies in preparations of microvesicles, exosomes, and other extracellular vesicles.The approach exclusively labels the vesicles that contain DNA with 5'PO 4 blunt-ended DNA breaks, such as those produced by the apoptotic CAD nuclease during apoptotic DNA degradation. The technique can be useful in studies of apoptosis involving microvesicles and exosomes.

  14. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  15. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes

    National Research Council Canada - National Science Library

    M A Zoccoli; G E Lienhard

    1977-01-01

    .... Based on comparisons between erythrocytes and vesicles with regard to specificity, temparture dependence, and effects of inhibitors, we conclude that sorbose uptake into the vesicles occurs by way...

  16. Coarse-grained molecular simulations of the melting kinetics of small unilamellar vesicles.

    Science.gov (United States)

    Patel, Lara A; Kindt, James T

    2016-02-14

    Simulations of small unilamellar lipid bilayer vesicles have been performed to model their response to an instantaneous rise in temperature, starting from an initial low-temperature structure, to temperatures near or above the main chain transition temperature. The MARTINI coarse-grained force-field was used to construct slabs of gel-phase DPPC bilayers, which were assembled into truncated icosahedral structures containing 13,165 or 31,021 lipids. Equilibration at 280 K produced structures with several (5-8) domains, characterized by facets of lipids packed in the gel phase connected by disordered ridges. Instantaneous heating to final temperatures ranging from 290 K to 310 K led to partial or total melting over 500 ns trajectories, accompanied by changes in vesicle shape and the sizes and arrangements of remaining gel-phase domains. At temperatures that produced partial melting, the gel-phase lipid content of the vesicles followed an exponential decay, similar in form and timescale to the sub-microsecond phase of melting kinetics observed in recent ultrafast IR temperature-jump experiments. The changing rate of melting appears to be the outcome of a number of competing contributions, but changes in curvature stress arising from the expansion of the bilayer area upon melting are a major factor. The simulations give a more detailed picture of the changes that occur in frozen vesicles following a temperature jump, which will be of use for the interpretation of temperature-jump experiments on vesicles.

  17. Mutant Huntingtin Impairs Vesicle Formation from Recycling Endosomes by Interfering with Rab11 Activity▿ †

    Science.gov (United States)

    Li, Xueyi; Standley, Clive; Sapp, Ellen; Valencia, Antonio; Qin, Zheng-Hong; Kegel, Kimberly B.; Yoder, Jennifer; Comer-Tierney, Laryssa A.; Esteves, Miguel; Chase, Kathryn; Alexander, Jonathan; Masso, Nicholas; Sobin, Lindsay; Bellve, Karl; Tuft, Richard; Lifshitz, Lawrence; Fogarty, Kevin; Aronin, Neil; DiFiglia, Marian

    2009-01-01

    Huntingtin (Htt) localizes to endosomes, but its role in the endocytic pathway is not established. Recently, we found that Htt is important for the activation of Rab11, a GTPase involved in endosomal recycling. Here we studied fibroblasts of healthy individuals and patients with Huntington's disease (HD), which is a movement disorder caused by polyglutamine expansion in Htt. The formation of endocytic vesicles containing transferrin at plasma membranes was the same in control and HD patient fibroblasts. However, HD fibroblasts were delayed in recycling biotin-transferrin back to the plasma membrane. Membranes of HD fibroblasts supported less nucleotide exchange on Rab11 than did control membranes. Rab11-positive vesicular and tubular structures in HD fibroblasts were abnormally large, suggesting that they were impaired in forming vesicles. We used total internal reflection fluorescence imaging of living fibroblasts to monitor fluorescence-labeled transferrin-carrying transport intermediates that emerged from recycling endosomes. HD fibroblasts had fewer small vesicles and more large vesicles and long tubules than did control fibroblasts. Dominant active Rab11 expressed in HD fibroblasts normalized the recycling of biotin-transferrin. We propose a novel mechanism for cellular dysfunction by the HD mutation arising from the inhibition of Rab11 activity and a deficit in vesicle formation at recycling endosomes. PMID:19752198

  18. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles.

    Science.gov (United States)

    Liu, Tianbo; Diemann, Ekkehard; Li, Huilin; Dress, Andreas W M; Müller, Achim

    2003-11-06

    Surfactants and membrane lipids readily assemble into complex structures such as micelles, liposomes or hollow vesicles owing to their amphiphilic character-the fact that part of their structure is attracted to polar environments while another part is attracted to non-polar environments. The self-assembly of complex structures also occurs in polyoxometallate chemistry, as exemplified by the molybdenum blue solutions known for centuries. But while the presence of nanometre-sized metal oxide aggregates in these solutions has long been recognized, unravelling the composition and formation process of these aggregates proved difficult. Recent work has indicated that discrete, wheel-shaped mixed-valence polyoxomolybdate clusters of the type [Mo154] (refs 2-4) assemble into well-defined nanometre-sized aggregates, including spherical structures. Here we report light-scattering data and transmission electron microscopy images of hollow spherical structures with an average, almost monodisperse radius of about 45 nm and composed of approximately 1,165 [Mo154] wheel-shaped clusters. The clusters appear to lie flat and homogeneously distributed on the vesicle surface. Unlike conventional lipid vesicles, the structures we observe are not stabilized by hydrophobic interactions. Instead, we believe the polyoxomolybdate-based vesicles form owing to a subtle interplay between short-range van der Waals attraction and long-range electrostatic repulsion, with important further stabilization arising from hydrogen bonding involving water molecules encapsulated between the wheel-shaped clusters and in the vesicles' interior.

  19. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, Dina; Helix Nielsen, Claus; Wojewodzka, Urszula

    2008-01-01

    on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total 'L-o/L-d' boundary line tension arising from the coalescence of smaller L-d-like domains makes it energetically favourable for L-d-like domains to bend from flat mu m-sized surfaces...... to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events....

  20. Cutaneous osteosarcoma arising from a burn scar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min A.; Yi, Jaehyuck [Kyungpook National University, Department of Radiology, College of Medicine, Daegu (Korea, Republic of); Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Chae, Jong Min [Kyungpook National University, Department of Pathology, College of Medicine, Daegu (Korea, Republic of)

    2017-04-15

    Tumors that develop in old burn scars are usually squamous cell carcinomas. Sarcomas have also been reported, albeit rarely. To our knowledge, there has been only one case report of an extraskeletal osteosarcoma arising in a prior burn scar reported in the English-language literature, mainly discussing the clinicopathological features. Herein, we present a case of cutaneous osteosarcoma visualized as a mineralized soft-tissue mass arising from the scar associated with a previous skin burn over the back. This seems to be the first report describing the imaging features of a cutaneous osteosarcoma from an old burn scar. (orig.)

  1. Cavernous lymphangioma arising from uterine corpus.

    Science.gov (United States)

    Furui, Tatsuro; Imai, Atsushi; Yokoyama, Yasuhiro; Sato, Eriko; Tamaya, Teruhiko

    2003-07-01

    A rare case of giant uterine lymphangioma was experienced. A 44-year-old female noted a rapidly grown abdominal tumor and its accompanied symptoms, progressive abdominal distension, lumbago, and developed leg edema. Ultrasonography made a possible diagnosis of a huge ovarian tumor; postoperative diagnosis was cavernous lymphangioma arising from the uterus. According to the literature, lymphangioma itself is a rare tumor, and giant lymphangioma arising from uterine corpus is extremely rare. We experienced an extremely rare case of uterine lymphangioma and ultrasound tomography better imaged the tumor inside.

  2. Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis

    Science.gov (United States)

    Walter, Alexander M.; Wiederhold, Katrin; Bruns, Dieter; Fasshauer, Dirk

    2010-01-01

    Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion. PMID:20142423

  3. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  4. Structure of Amphiphilic Terpolymer Raspberry Vesicles

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2017-07-01

    Full Text Available Terpolymer raspberry vesicles contain domains of different chemical affinities. They are potential candidates as multi-compartment cargo carriers. Their efficacy depends on their stability and load capacity. Using a model star terpolymer system in an aqueous solution, a dissipative particle dynamic (DPD simulation is employed to investigate how equilibrium aggregate structures are affected by polymer concentration and pairwise interaction energy in a solution. It is shown that a critical mass of polymer is necessary for vesicle formation. The free energy of the equilibrium aggregates are calculated and the results show that the transition from micelles to vesicles is governed by the interactions between the longest solvophobic block and the solvent. In addition, the ability of vesicles to encapsulate solvent is assessed. It is found that reducing the interaction energy favours solvent encapsulation, although solvent molecules can permeate through the vesicle’s shell when repulsive interactions among monomers are low. Thus, one can optimize the loading capacity and the release rate of the vesicles by turning pairwise interaction energies of the polymer and the solvent. The ability to predict and control these aspects of the vesicles is an essential step towards designing vesicles for specific purposes.

  5. ARISE: American renaissance in science education

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-14

    The national standards and state derivatives must be reinforced by models of curricular reform. In this paper, ARISE presents one model based on a set of principles--coherence, integration of the sciences, movement from concrete ideas to abstract ones, inquiry, connection and application, sequencing that is responsive to how people learn.

  6. Cellular schwannoma arising from sigmoid mesocolon presenting ...

    African Journals Online (AJOL)

    We present a case of a 58‑year‑old female with a massive twisted tumor arising from sigmoid mesocolon. The tumor was diagnosed to be a case of cellular schwannoma, an exceedingly rare tumor in this location with rare presentation. Keywords: Pelvis, Retroperitoneum, Schwannoma, Sigmoid mesocolon, Torsion, Tumor ...

  7. Cellular Schwannoma Arising from Sigmoid Mesocolon Presenting ...

    African Journals Online (AJOL)

    We present a case of a 58‑year‑old female with a massive twisted tumor arising from sigmoid mesocolon. The tumor was diagnosed to be a case of cellular schwannoma, an exceedingly rare tumor in this location with rare presentation. Keywords: Pelvis, Retroperitoneum, Schwannoma, Sigmoid mesocolon, Torsion, Tumor.

  8. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  9. The cortical acto-myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Andreas ePapadopulos

    2013-10-01

    Full Text Available Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca2+ to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones.Here we discuss the functions of the cortical actin network, myosins and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.

  10. Classification, Functions, and Clinical Relevance of Extracellular Vesicles

    NARCIS (Netherlands)

    van der Pol, Edwin; Böing, Anita N.; Harrison, Paul; Sturk, Augueste; Nieuwland, Rienk

    2012-01-01

    Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the

  11. Comparison of unitary exocytic events in pituitary lactotrophs and in astrocytes: modelling the discrete open fusion-pore states

    Directory of Open Access Journals (Sweden)

    Doron eKabaso

    2013-04-01

    Full Text Available In regulated exocytosis the merger between the vesicle and the plasma membranes leads to the formation of an aqueous channel (a fusion-pore, through which vesicular secretions exit into the extracellular space. A fusion pore was thought to be a short-lived intermediate preceding full-fusion of the vesicle and the plasma membranes (full-fusion exocytosis. However, transient exocytic events were also observed, where the fusion-pore opens and closes repetitively. Here we asked whether there are different discrete states of the open fusion-pore. Unitary exocytic events were recorded by the high-resolution cell-attached patch-clamp method in pituitary lactotrophs and brain astrocytes. We monitored reversible unitary exocytic events, characterized by an on-step, which is followed by an off-step in membrane capacitance (Cm, a parameter linearly related to the membrane area. The results revealed three categories of reversible exocytic events (transient fusion-pore openings, which do not end with the complete integration of the vesicle membrane into the plasma membrane. These were categorized according to the observed differences in the amplitude and sign of the change in the real (Re parts of the admittance signals: in case I events (Re≈0 fusion pores are relatively wide; in case II (Re > 0 and case III (Re < 0 events fusion pores are relatively narrow. We show that case III events are more likely to occur for small vesicles, whereas, case II events are more likely to occur for larger vesicles. Case III events were considerably more frequent in astrocytes than in lactotrophs.

  12. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer

    OpenAIRE

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz

    2016-01-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data in...

  13. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  14. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel

    2018-01-01

    the challenge of multiplicity in journalism studies by proposing an audience-centred, functional approach to scholarship. We argue this approach encourages the creative intellectual advancements afforded by interdisciplinary experimental cooking while respecting the classical intellectual questions that helped......Journalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze...... to the outside for conceptual inspiration and methodological tools lends itself to a journalism studies that is a fusion cuisine of media, communication and related scholarship. However, what happens when this object becomes as fragmented and multifaceted as the ways we study it? This essay addresses...

  15. Complexin Activates Exocytosis of Distinct Secretory Vesicles Controlled by Different Synaptotagmins

    Science.gov (United States)

    Cao, Peng; Yang, Xiaofei; Südhof, Thomas C.

    2013-01-01

    Complexins are SNARE-complex binding proteins essential for the Ca2+-triggered exocytosis mediated by synaptotagmin-1, -2, -7, or -9, but the possible role of complexins in other types of exocytosis controlled by other synaptotagmin isoforms remains unclear. Here we show that in mouse olfactory bulb neurons, synaptotagmin-1 localizes to synaptic vesicles and to large dense-core secretory vesicles as reported previously, whereas synaptotagmin-10 localizes to a distinct class of peptidergic secretory vesicles containing IGF-1. Both synaptotagmin-1-dependent synaptic vesicle exocytosis and synaptotagmin-10-dependent IGF-1 exocytosis were severely impaired by knockdown of complexins, demonstrating that complexin acts as a co-factor for both synaptotagmin-1 and synaptotagmin-10 despite the functional differences between these synaptotagmins. Rescue experiments revealed that only the activating but not the clamping function of complexins was required for IGF-1 exocytosis controlled by synaptotagmin-10. Thus, our data indicate that complexins are essential for activation of multiple types of Ca2+-induced exocytosis that are regulated by different synaptotagmin isoforms. These results suggest that different types of regulated exocytosis are mediated by similar synaptotagmin-dependent fusion mechanisms, that particular synaptotagmin isoforms confer specificity onto different types of regulated exocytosis, and that complexins serve as universal synaptotagmin-adaptors for all of these types of exocytosis independent of which synaptotagmin isoform is involved. PMID:23345244

  16. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  17. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  18. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  19. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  20. Sclerosing haemangioma arising within extralobar pulmonary sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Ahmetoglu, Ali; Kosucu, Polat; Guemele, Halit Resit [Department of Radiology, Farabi Hospital, Karadeniz Technical University, 61080 Trabzon (Turkey); Imamoglu, Mustafa; Cay, Ali [Department of Paediatric Surgery, Farabi Hospital, Karadeniz Technical University, Trabzon (Turkey); Reis, Abdulkadir [Department of Pathology, Farabi Hospital, Karadeniz Technical University, Trabzon (Turkey)

    2003-09-01

    Extralobar pulmonary sequestration is a rare anomaly of abnormal pulmonary tissue without any communication to the bronchial tree. Sclerosing haemangioma is a rare lung tumour, generally seen in middle-aged women. The combination of these two rare pathologies has not been previously reported. We describe the CT and CT angiographic findings of sclerosing haemangioma arising within an extralobar pulmonary sequestration in a 2-year-old girl. (orig.)

  1. Malignant fibrous histiocytoma arising on chronic osteomyelitis.

    Science.gov (United States)

    Foti, C; Giannelli, G; Berloco, A; Mascolo, V; Ingravallo, G; Giardina, C

    2002-07-01

    We present a case of a primary malignant fibrous histiocytoma of the skin (MFH) arising on chronic osteomyelitis in a 67-year-old woman. Although this condition seems to be a predisposing factor for the onset of the malignancy, MFH complicating chronic osteomyelitis is generally localized at the level of the bone tissue. In the case we report the neoplasm was primitively localized at the dermal and subcutaneous level and presented as a rapidly growing mass.

  2. Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling

    OpenAIRE

    Harris, Todd W.; Hartwieg, Erika; Horvitz, H. Robert; Jorgensen, Erik M.

    2000-01-01

    Synaptojanin is a polyphosphoinositide phosphatase that is found at synapses and binds to proteins implicated in endocytosis. For these reasons, it has been proposed that synaptojanin is involved in the recycling of synaptic vesicles. Here, we demonstrate that the unc-26 gene encodes the Caenorhabditis elegans ortholog of synaptojanin. unc-26 mutants exhibit defects in vesicle trafficking in several tissues, but most defects are found at synaptic termini. Specifically, we observed defects in ...

  3. Concentration-Independent Spontaneously Forming Biomimetric Vesicles

    Science.gov (United States)

    Nieh, M.-P.; Harroun, T. A.; Raghunathan, V. A.; Glinka, C. J.; Katsaras, J.

    2003-10-01

    In this Letter we present small-angle neutron scattering data from a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC-DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+), leads to the spontaneous formation of energetically stabilized monodisperse unilamellar vesicles whose radii are concentration independent and in contrast with previous experimental observations.

  4. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry

    OpenAIRE

    Aizea Morales-Kastresana; Bill Telford; Musich, Thomas A.; Katherine McKinnon; Cassandra Clayborne; Zach Braig; Ari Rosner; Thorsten Demberg; Watson, Dionysios C.; Karpova, Tatiana S.; Freeman, Gordon J.; DeKruyff, Rosemarie H.; Pavlakis, George N.; Masaki Terabe; Marjorie Robert-Guroff

    2017-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles, are 30?800?nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be brig...

  5. Conjunctival lymphoma arising from reactive lymphoid hyperplasia

    Directory of Open Access Journals (Sweden)

    Fukuhara Junichi

    2012-09-01

    Full Text Available Abstract Extra nodal marginal zone B-cell lymphoma (EMZL of the conjunctiva typically arises in the marginal zone of mucosa-associated lymphoid tissue. The pathogenesis of conjunctival EMZL remains unknown. We describe an unusual case of EMZL arising from reactive lymphoid hyperplasia (RLH of the conjunctiva. A 35-year-old woman had fleshy salmon-pink conjunctival tumors in both eyes, oculus uterque (OU. Specimens from conjunctival tumors in the right eye, oculus dexter (OD, revealed a collection of small lymphoid cells in the stroma. Immunohistochemically, immunoglobulin (Ig light chain restriction was not detected. In contrast, diffuse atypical lymphoid cell infiltration was noted in the left eye, oculus sinister (OS, and positive for CD20, a marker for B cells OS. The tumors were histologically diagnosed as RLH OD, and EMZL OS. PCR analysis detected IgH gene rearrangement in the joining region (JH region OU. After 11 months, a re-biopsy specimen demonstrated EMZL based on compatible pathological and genetic findings OD, arising from RLH. This case suggests that even if the diagnosis of the conjunctival lymphoproliferative lesions is histologically benign, confirmation of the B-cell clonality by checking IgH gene rearrangement should be useful to predict the incidence of malignancy.

  6. Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations

    OpenAIRE

    Quesenberry, Peter J.; Goldberg, Laura R.; Aliotta, Jason M.; Mark S Dooner; Pereira, Mandy G.; Wen, Sicheng; Camussi, Giovanni

    2014-01-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung o...

  7. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  8. Elastic energy of polyhedral bilayer vesicles.

    Science.gov (United States)

    Haselwandter, Christoph A; Phillips, Rob

    2011-06-01

    In recent experiments [M. Dubois, B. Demé, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. Désert, E. Perez, and T. Zemb, Nature (London) 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. USA 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron.

  9. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  10. EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development.

    Science.gov (United States)

    Posey, Avery D; Swanson, Kaitlin E; Alvarez, Manuel G; Krishnan, Swathi; Earley, Judy U; Band, Hamid; Pytel, Peter; McNally, Elizabeth M; Demonbreun, Alexis R

    2014-03-15

    EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion.

    Science.gov (United States)

    Wollam, Joshua; Mahata, Sumana; Riopel, Matthew; Hernandez-Carretero, Angelina; Biswas, Angshuman; Bandyopadhyay, Gautam K; Chi, Nai-Wen; Eiden, Lee E; Mahapatra, Nitish R; Corti, Angelo; Webster, Nicholas J G; Mahata, Sushil K

    2017-06-01

    Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in β-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO β-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient β-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of β-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.

  12. Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells.

    Science.gov (United States)

    Yuan, Tianyi; Lu, Jingze; Zhang, Jinzhong; Zhang, Yongdeng; Chen, Liangyi

    2015-01-20

    Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Extracellular Vesicles in Metabolic Syndrome.

    Science.gov (United States)

    Martínez, M Carmen; Andriantsitohaina, Ramaroson

    2017-05-12

    Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches. © 2017 American Heart Association, Inc.

  14. Eccrine Poroma Arising within Nevus Sebaceous

    Directory of Open Access Journals (Sweden)

    Natnicha Girdwichai

    2016-04-01

    Full Text Available Nevus sebaceous is a congenital, benign hamartomatous lesion, characterized by a yellowish to skin-colored, hairless, verrucous plaque on the head and neck region. In later life, a secondary tumor, either benign or malignant, can develop within nevus sebaceous. Eccrine poroma developing on nevus sebaceous is extremely rare. There are few case reports of eccrine poroma developing within nevus sebaceous. We report a case of a 30-year-old female who presented with a congenital, hairless, verrucous, yellowish lesion on the scalp and an erythematous nodule arising within the yellowish lesion for 8 months. Her clinical presentation and histopathological findings were compatible with nevus sebaceous and eccrine poroma.

  15. A two phase field model for tracking vesicle-vesicle adhesion.

    Science.gov (United States)

    Gu, Rui; Wang, Xiaoqiang; Gunzburger, Max

    2016-11-01

    A multi-phase-field model for simulating the adhesion between two vesicles is constructed. Two phase field functions are introduced to simulate each of the two vesicles. An energy model is defined which accounts for the elastic bending energy of each vesicle and the contact potential energy between the two vesicles; the vesicle volume and surface area constraints are imposed using a penalty method. Numerical results are provided to verify the efficacy of our model and to provide visual illustrations of the different types of contact. The method can be adjusted to solve endocytosis problems by modifying the bending rigidity coefficients of the two elastic bending energies. The method can also be extended to simulate multi-cell adhesions, one example of which is erythrocyte rouleaux. A comparison with laboratory observations demonstrates the effectiveness of the multi-phase field approach.

  16. Insights into the self-reproduction of oleate vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P [' Enrico Fermi' Centre, Compendio Viminale, 00184 Rome (Italy); Wehrli, E [Electron Microscopy Centre (EMEZ), Applied Physics Institute, ETH Hoenggerberg, 8093 Zurich (Switzerland); Luisi, P L [Biology Department, University of RomaTre, Viale Marconi 446, 00146 Rome (Italy)

    2006-08-23

    In view of the importance of vesicles as models for early cells, several groups have started work looking for conditions under which vesicles can undergo growth and division. Evidence for growth and division has been obtained with the help of ferritin-labelled vesicles; furthermore, it has been shown that in such processes the vesicle size distribution is largely conserved. In both cases, the data suggest that the process under study is mainly characterized by vesicle growth and eventually division into daughter vesicles. However, direct evidence for vesicle division has not been obtained. In this paper, mostly based on freeze-fracture electron microscopy, we describe conditions under which for the first time division intermediates can be trapped in the form of twin vesicles. This finding, together with supporting dynamic light scattering and fluorescence investigations, permits us to establish some additional points in the mechanism of vesicle self-reproduction.

  17. Spinal cord injury arising in anaesthesia practice.

    Science.gov (United States)

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  18. The t-SNAREs syntaxin4 and SNAP23 but not v-SNARE VAMP2 are indispensable to tether GLUT4 vesicles at the plasma membrane in adipocyte

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Takayuki [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine (Japan); Tamori, Yoshikazu, E-mail: tamori@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine (Japan); Kanda, Hajime; Yoshikawa, Mari; Tateya, Sanshiro; Nishino, Naonobu [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine (Japan); Kasuga, Masato [Research Institute, International Medical Center of Japan (Japan)

    2010-01-15

    SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.

  19. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Nazarul [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States); Hu, Chuan, E-mail: chuan.hu@louisville.edu [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States)

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  20. Titration of Syntaxin1 in mammalian synapses reveals multiple roles in vesicle docking, priming, and release probability.

    Science.gov (United States)

    Arancillo, Marife; Min, Sang-Won; Gerber, Stefan; Münster-Wandowski, Agnieszka; Wu, Yuan-Ju; Herman, Melissa; Trimbuch, Thorsten; Rah, Jong-Cheol; Ahnert-Hilger, Gudrun; Riedel, Dietmar; Südhof, Thomas C; Rosenmund, Christian

    2013-10-16

    Synaptic vesicles undergo sequential steps in preparation for neurotransmitter release. Individual SNARE proteins and the SNARE complex itself have been implicated in these processes. However, discrete effects of SNARE proteins on synaptic function have been difficult to assess using complete loss-of-function approaches. We therefore used a genetic titration technique in cultured mouse hippocampal neurons to evaluate the contribution of the neuronal SNARE protein Syntaxin1 (Stx1) in vesicle docking, priming, and release probability. We generated graded reductions of total Stx1 levels by combining two approaches, namely, endogenous hypomorphic expression of the isoform Stx1B and RNAi-mediated knockdown. Proximity of synaptic vesicles to the active zone was not strongly affected. However, overall release efficiency of affected neurons was severely impaired, as demonstrated by a smaller readily releasable pool size, slower refilling rate of primed vesicles, and lower release probability. Interestingly, dose-response fitting of Stx1 levels against readily releasable pool size and vesicular release probability showed similar Kd (dissociation constant) values at 18% and 19% of wild-type Stx1, with cooperativity estimates of 3.4 and 2.5, respectively. This strongly suggests that priming and vesicle fusion share the same molecular stoichiometry, and are governed by highly related mechanisms.

  1. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses.

    Science.gov (United States)

    Gu, Haigang; Lazarenko, Roman M; Koktysh, Dmitry; Iacovitti, Lorraine; Zhang, Qi

    2015-08-01

    The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations. ©AlphaMed Press.

  2. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  3. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  4. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    Science.gov (United States)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  5. Yarrowia lipolytica vesicle-mediated protein transport pathways

    Directory of Open Access Journals (Sweden)

    Beckerich Jean-Marie

    2007-11-01

    Full Text Available Abstract Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii. These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular

  6. Periorbital nodular fasciitis arising during pregnancy

    Directory of Open Access Journals (Sweden)

    Brandon N Phillips

    2014-01-01

    Full Text Available Nodular fasciitis (NF is a benign proliferation of fibroblasts and myofibroblasts that rarely occurs in the periorbital region. We report what we believe to be the first case of periorbital NF associated with pregnancy. A case of intravascular fasciitis, a NF variant, has been reported during pregnancy, but it was not located in the periorbital region. A weak presence of estrogen receptors has been reported in NF. This may make it more susceptible to the hormone-related changes during pregnancy and contribute to the development of the lesion by stimulating fibroblasts and smooth muscle cell types. Although rare, NF should be considered in the differential diagnosis of periorbital soft-tissue masses arising during pregnancy.

  7. Promoter element arising from the fusion of standard BioBrick parts.

    Science.gov (United States)

    Yao, Andrew I; Fenton, Timothy A; Owsley, Keegan; Seitzer, Phillip; Larsen, David J; Sit, Holly; Lau, Jennifer; Nair, Arjun; Tantiongloc, Justin; Tagkopoulos, Ilias; Facciotti, Marc T

    2013-02-15

    We characterize the appearance of a constitutive promoter element in the commonly used cI repressor-encoding BioBrick BBa_C0051. We have termed this promoter element pKAT. Full pKAT activity is created by the ordered assembly of sequences in BBa_C0051 downstream of the cI gene encoding the 11 amino acid LVA proteolytic degradation tag, a BioBrick standard double-TAA stop codon, a genetic barcode, and part of the RFC10 SpeI-XbaI BioBrick scar. Placing BBa_C0051 or other pKAT containing parts upstream of other functional RNA coding elements in a polycistronic context may therefore lead to the unintended transcription of the downstream elements. The frequent reuse of pKAT or pKAT-like containing basic parts in the Registry of Biological Parts has resulted in approximately 5% of registry parts encoding at least one instance of a predicted pKAT promoter located directly upstream of a ribosome binding site and ATG start codon. This example highlights that even seemingly simple modifications of a part's sequence (in this case addition of degradation tags and barcodes) may be sufficient to unexpectedly change the contextual behavior of a part and reaffirms the inherent challenge in carefully characterizing the behavior of standardized biological parts across a broad range of reasonable use scenarios.

  8. Functionally polymerized surfactant vesicles: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Kippenberger, D.J.; Klahn, P.L.; Prieto, N.E.; Fendler, J.H.

    1982-01-27

    Bis(2-(10-undecenoyloxycarbony bromide, bis(2-(10-undecenoyloxycarbony (2-hydroxyethyl)methylammonium bromide, bis(2-(10-undecenoyloxycarbony acid, bis(2-(10-undecenoyloxycarbony allylbis(2-dodecanoyloxycarbon bromide, and dimethyl-n-hexadecyl (10-(p-vin decyl)ammonium bromide have been synthesized. The predominantly single compartment bilayer vesicles formed from these surfactants could be polymerized either by exposure to ultraviolet irradiation or by the use of azoisobutyronitrile as an initiator. The presence of vesicles (unpolymerized and polymeric) has been demonstrated by electron micrography, H/sup 1/ NMR, gel filtration, phase transition, turbidity changes, substrate entrapment, and permeability. Polymerized vesicles are considerably more stable and less permeable and have reduced rates of turbidity changes compared to their unpolymerized counterparts. 19 references.

  9. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  10. Electrohydrodynamics of a compound vesicle under an AC electric field.

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M

    2017-07-12

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius [Formula: see text], is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  11. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  12. Dilation of fusion pores by crowding of SNARE proteins

    Science.gov (United States)

    Wu, Zhenyong; Bello, Oscar D; Thiyagarajan, Sathish; Auclair, Sarah Marie; Vennekate, Wensi; Krishnakumar, Shyam S; O'Shaughnessy, Ben; Karatekin, Erdem

    2017-01-01

    Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion). DOI: http://dx.doi.org/10.7554/eLife.22964.001 PMID:28346138

  13. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    Science.gov (United States)

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The role of extracellular vesicles in malaria biology and pathogenesis.

    Science.gov (United States)

    Sampaio, Natalia Guimaraes; Cheng, Lesley; Eriksson, Emily M

    2017-06-09

    In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted.

  15. Cutaneous leiomyosarcoma arising in a smallpox scar

    Science.gov (United States)

    2012-01-01

    Background Cutaneous leiomyosarcoma (CLM) is a very rare smooth muscle tumour that accounts for about 2–3% of all superficial soft tissue sarcomas. Although the development of various malignancies in scar tissue is well known, we report the first case of a CLM developing in a small pox scar. Case presentation A 66-year-old man presented with a painless, slow-growing lump in a small pox scar on his left shoulder. Histological biopsies showed the lesion to be a primary, well-differentiated cutaneous leiomyosarcoma. A CT scan of the thorax was conducted, which showed no signs of metastases. The complete lesion was then surgically excised, and histopathological examination revealed a radically excised cutaneous type leiomyosarcoma After 13 months’ review the patient was doing well with no evidence of tumour recurrence. Conclusions This is the first report of a CLM arising in a small pox scar. Although the extended time interval between scarring and malignant changes makes it difficult to advise strict follow-up for patients with small pox scars, one should be aware that atypical changes and/or symptoms occurring in a small pox scar could potentially mean malignant transformation. PMID:22799750

  16. [Chemical hazards arising from shale gas extraction].

    Science.gov (United States)

    Pakulska, Daria

    2015-01-01

    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  17. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska

    2015-02-01

    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  18. Cutaneous leiomyosarcoma arising in a smallpox scar.

    Science.gov (United States)

    Pol, Robert A; Dannenberg, Hilde; Robertus, Jan-Lukas; van Ginkel, Robert J

    2012-07-16

    Cutaneous leiomyosarcoma (CLM) is a very rare smooth muscle tumour that accounts for about 2-3% of all superficial soft tissue sarcomas. Although the development of various malignancies in scar tissue is well known, we report the first case of a CLM developing in a small pox scar. A 66-year-old man presented with a painless, slow-growing lump in a small pox scar on his left shoulder. Histological biopsies showed the lesion to be a primary, well-differentiated cutaneous leiomyosarcoma. A CT scan of the thorax was conducted, which showed no signs of metastases. The complete lesion was then surgically excised, and histopathological examination revealed a radically excised cutaneous type leiomyosarcoma After 13 months' review the patient was doing well with no evidence of tumour recurrence. This is the first report of a CLM arising in a small pox scar. Although the extended time interval between scarring and malignant changes makes it difficult to advise strict follow-up for patients with small pox scars, one should be aware that atypical changes and/or symptoms occurring in a small pox scar could potentially mean malignant transformation.

  19. Cutaneous leiomyosarcoma arising in a smallpox scar

    Directory of Open Access Journals (Sweden)

    Pol Robert A

    2012-07-01

    Full Text Available Abstract Background Cutaneous leiomyosarcoma (CLM is a very rare smooth muscle tumour that accounts for about 2–3% of all superficial soft tissue sarcomas. Although the development of various malignancies in scar tissue is well known, we report the first case of a CLM developing in a small pox scar. Case presentation A 66-year-old man presented with a painless, slow-growing lump in a small pox scar on his left shoulder. Histological biopsies showed the lesion to be a primary, well-differentiated cutaneous leiomyosarcoma. A CT scan of the thorax was conducted, which showed no signs of metastases. The complete lesion was then surgically excised, and histopathological examination revealed a radically excised cutaneous type leiomyosarcoma After 13 months’ review the patient was doing well with no evidence of tumour recurrence. Conclusions This is the first report of a CLM arising in a small pox scar. Although the extended time interval between scarring and malignant changes makes it difficult to advise strict follow-up for patients with small pox scars, one should be aware that atypical changes and/or symptoms occurring in a small pox scar could potentially mean malignant transformation.

  20. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.; Dixon, T.; Bull, D.; Canagarajah, N.

    2007-01-01

    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much

  1. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.J.; Dixon, T.D.; Bull, D.R.; Canagarajah, C.N.

    2010-01-01

    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much

  2. Adsorption of DOPC vesicles on hydrophobic substrates in the ...

    Indian Academy of Sciences (India)

    Administrator

    In the present study, the interaction between an intact DOPC vesicle and the hydropho- bic surface is mainly through van der Waals interac- tion. In presence of increasing concentrations of electrolytes, counter ions are present in the vicinity of the DOPC vesicle. As the vesicle approaches the solid substrate, the counter ions ...

  3. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  4. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Role of Outer Membrance Vesicles of Bacteria. M V Jagannadham M K Chattopadhyay. General Article Volume 20 Issue 8 ... Keywords. Outer membrane ves ic les (OMVs); secretion; communication; virulence; antibiotic resistance; vaccines.

  5. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    Directory of Open Access Journals (Sweden)

    David R Stevens

    2011-02-01

    Full Text Available The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP and a slowly releasable (SRP pool are followed by sustained release, due to maturation and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.

  6. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  7. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  8. Towards traceable size determination of extracellular vesicles

    NARCIS (Netherlands)

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. In this manuscript, the size distribution of an

  9. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  10. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  11. Characterization of Extracellular Vesicles using Raman Spectroscopy

    NARCIS (Netherlands)

    Lee, Wooje; Nanou, Afroditi; Terstappen, Leonardus Wendelinus Mathias Marie; Rho, Hoon Suk; le Gac, Severine; Offerhaus, Herman L.

    2017-01-01

    In this research, we aim to characterize extracellular vesicles(EVs) with Confocal Raman spectroscopy to reveal relevant spectral lines that signify differences between EVs derived from different cell lines. In the first stage we performed confocal Raman measurements on various EV samples. For these

  12. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation.

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Barone

    Full Text Available BACKGROUND: Celiac Disease (CD is both a frequent disease (1:100 and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS: Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS: P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs

  13. PERSPECTIVE: Toward an artificial cell based on gene expression in vesicles

    Science.gov (United States)

    Noireaux, Vincent; Bar-Ziv, Roy; Godefroy, Jeremy; Salman, Hanna; Libchaber, Albert

    2005-09-01

    We present a new experimental approach to build an artificial cell using the translation machinery of a cell-free expression system as the hardware and a DNA synthetic genome as the software. This approach, inspired by the self-replicating automata of von Neumann, uses cytoplasmic extracts, encapsulated in phospholipid vesicles, to assemble custom-made genetic circuits to develop the functions of a minimal cell. Although this approach can find applications, especially in biotechnology, the primary goal is to understand how a DNA algorithm can be designed to build an operating system that has some of the properties of life. We provide insights on this cell-free approach as well as new results to transform step by step a long-lived vesicle bioreactor into an artificial cell. We show how the green fluorescent protein can be anchored to the membrane and we give indications of a possible insertion mechanism of integral membrane proteins. With vesicles composed of different phospholipids, the fusion protein alpha-hemolysin-eGFP can be expressed to reveal patterns on the membrane. The specific degradation complex ClpXP from E. coli is introduced to create a sink for the synthesized proteins. Perspectives and subsequent limitations of this approach are discussed.

  14. Generation of phospholipid vesicle-nanotube networks and transport of molecules therein.

    Science.gov (United States)

    Jesorka, Aldo; Stepanyants, Natalia; Zhang, Haijiang; Ortmen, Bahanur; Hakonen, Bodil; Orwar, Owe

    2011-06-01

    We describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires ∼90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime.

  15. Membrane-shed vesicles from the parasite Trichomonas vaginalis: characterization and their association with cell interaction.

    Science.gov (United States)

    Nievas, Yesica R; Coceres, Veronica M; Midlej, Victor; de Souza, Wanderley; Benchimol, Marlene; Pereira-Neves, Antonio; Vashisht, Ajay A; Wohlschlegel, James A; Johnson, Patricia J; de Miguel, Natalia

    2017-12-08

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract, where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Despite the serious consequences associated with trichomoniasis disease, little is known about parasite or host factors involved in attachment of the parasite-to-host epithelial cells. Here, we report the identification of microvesicle-like structures (MVs) released by T. vaginalis. MVs are considered universal transport vehicles for intercellular communication as they can incorporate peptides, proteins, lipids, miRNA, and mRNA, all of which can be transferred to target cells through receptor-ligand interactions, fusion with the cell membrane, and delivery of a functional cargo to the cytoplasm of the target cell. In the present study, we demonstrated that T. vaginalis release MVs from the plasma and the flagellar membranes of the parasite. We performed proteomic profiling of these structures demonstrating that they possess physical characteristics similar to mammalian extracellular vesicles and might be selectively charged with specific protein content. In addition, we demonstrated that viable T. vaginalis parasites release large vesicles (LVs), membrane structures larger than 1 µm that are able to interact with other parasites and with the host cell. Finally, we show that both populations of vesicles present on the surface of T vaginalis are induced in the presence of host cells, consistent with a role in modulating cell interactions.

  16. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.

  17. RIM1α SUMOylation Is Required for Fast Synaptic Vesicle Exocytosis

    Directory of Open Access Journals (Sweden)

    Fatima Girach

    2013-12-01

    Full Text Available The rapid, activity-dependent quantal presynaptic release of neurotransmitter is vital for brain function. The complex process of vesicle priming, fusion, and retrieval is very precisely controlled and requires the spatiotemporal coordination of multiple protein-protein interactions. Here, we show that posttranslational modification of the active zone protein Rab3-interacting molecule 1α (RIM1α by the small ubiquitin-like modifier 1 (SUMO-1 functions as a molecular switch to direct these interactions and is essential for fast synaptic vesicle exocytosis. RIM1α SUMOylation at lysine residue K502 facilitates the clustering of CaV2.1 calcium channels and enhances the Ca2+ influx necessary for vesicular release, whereas non-SUMOylated RIM1α participates in the docking/priming of synaptic vesicles and maintenance of active zone structure. These results demonstrate that SUMOylation of RIM1α is a key determinant of rapid, synchronous neurotransmitter release, and the SUMO-mediated “switching” of RIM1α between binding proteins provides insight into the mechanisms underpinning synaptic function and dysfunction.

  18. CAPS1 RNA Editing Promotes Dense Core Vesicle Exocytosis.

    Science.gov (United States)

    Miyake, Kotaro; Ohta, Toshio; Nakayama, Hisako; Doe, Nobutaka; Terao, Yuri; Oiki, Eiji; Nagatomo, Izumi; Yamashita, Yui; Abe, Takaya; Nishikura, Kazuko; Kumanogoh, Atsushi; Hashimoto, Kouichi; Kawahara, Yukio

    2016-11-15

    Calcium-dependent activator protein for secretion 1 (CAPS1) plays a distinct role in the priming step of dense core vesicle (DCV) exocytosis. CAPS1 pre-mRNA is known to undergo adenosine-to-inosine RNA editing in its coding region, which results in a glutamate-to-glycine conversion at a site in its C-terminal region. However, the physiological significance of CAPS1 RNA editing remains elusive. Here, we created mutant mice in which edited CAPS1 was solely expressed. These mice were lean due to increased energy expenditure caused by physical hyperactivity. Electrophysiological and biochemical analyses demonstrated that the exocytosis of DCVs was upregulated in the chromaffin cells and neurons of these mice. Furthermore, we showed that edited CAPS1 bound preferentially to the activated form of syntaxin-1A, a component of the exocytotic fusion complex. These findings suggest that RNA editing regulates DCV exocytosis in vivo, affecting physical activity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Vesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells.

    Science.gov (United States)

    Ji, Chen; Fan, Fan; Lou, Xuelin

    2017-08-08

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P2 perturbations, rapid and cell-wide PI(4,5)P2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca2+ concentration ([Ca2+]i) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca2+]i. These results highlight a key role of local PI(4,5)P2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P2 signaling in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Alexey M., E-mail: fysio@rambler.ru; Zakyrjanova, Guzalija F., E-mail: guzik121192@mail.ru; Yakovleva, Anastasia A., E-mail: nastya1234qwer@mail.ru; Zefirov, Andrei L., E-mail: zefiroval@rambler.ru

    2015-01-02

    Highlights: • We examine the involvement of PKC in MCD induced synaptic vesicle exocytosis. • PKC inhibitor does not decrease the effect MCD on MEPP frequency. • PKC inhibitor prevents MCD induced FM1-43 unloading. • PKC activation may switch MCD induced exocytosis from kiss-and-run to a full mode. • Inhibition of phospholipase C does not lead to similar change in exocytosis. - Abstract: Previous studies demonstrated that depletion of membrane cholesterol by 10 mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement of spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis.

  1. Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning.

    Science.gov (United States)

    Crone, Niek S A; Minnee, Dirk; Kros, Alexander; Boyle, Aimee L

    2018-01-10

    A minimal model system for membrane fusion, comprising two complementary peptides dubbed "E" and "K" joined to a cholesterol anchor via a polyethyleneglycol spacer, has previously been developed in our group. This system promotes the fusion of large unilamellar vesicles and facilitates liposome-cell fusion both in vitro and in vivo. Whilst several aspects of the system have previously been investigated to provide an insight as to how fusion is facilitated, anchor positioning has not yet been considered. In this study, the effects of placing the anchor at either the N-terminus or in the center of the peptide are investigated using a combination of circular dichroism spectroscopy, dynamic light scattering, and fluorescence assays. It was discovered that anchoring the "K" peptide in the center of the sequence had no effect on its structure, its ability to interact with membranes, or its ability to promote fusion, whereas anchoring the 'E' peptide in the middle of the sequence dramatically decreases fusion efficiency. We postulate that anchoring the 'E' peptide in the middle of the sequence disrupts its ability to form homodimers with peptides on the same membrane, leading to aggregation and content leakage.

  2. Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning

    Directory of Open Access Journals (Sweden)

    Niek S. A. Crone

    2018-01-01

    Full Text Available A minimal model system for membrane fusion, comprising two complementary peptides dubbed “E” and “K” joined to a cholesterol anchor via a polyethyleneglycol spacer, has previously been developed in our group. This system promotes the fusion of large unilamellar vesicles and facilitates liposome-cell fusion both in vitro and in vivo. Whilst several aspects of the system have previously been investigated to provide an insight as to how fusion is facilitated, anchor positioning has not yet been considered. In this study, the effects of placing the anchor at either the N-terminus or in the center of the peptide are investigated using a combination of circular dichroism spectroscopy, dynamic light scattering, and fluorescence assays. It was discovered that anchoring the “K” peptide in the center of the sequence had no effect on its structure, its ability to interact with membranes, or its ability to promote fusion, whereas anchoring the ‘E’ peptide in the middle of the sequence dramatically decreases fusion efficiency. We postulate that anchoring the ‘E’ peptide in the middle of the sequence disrupts its ability to form homodimers with peptides on the same membrane, leading to aggregation and content leakage.

  3. The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics.

    Science.gov (United States)

    Fang, Qinghua; Berberian, Khajak; Gong, Liang-Wei; Hafez, Ismail; Sørensen, Jakob B; Lindau, Manfred

    2008-10-07

    Formation of a fusion pore between a vesicle and its target membrane is thought to involve the so-called SNARE protein complex. However, there is no mechanistic model explaining how the fusion pore is opened by conformational changes in the SNARE complex. It has been suggested that C-terminal zipping triggers fusion pore opening. A SNAP-25 mutant named SNAP-25Delta9 (lacking the last nine C-terminal residues) should lead to a less-tight C-terminal zipping. Single exocytotic events in chromaffin cells expressing this mutant were characterized by carbon fiber amperometry and cell-attached patch capacitance measurements. Cells expressing SNAP-25Delta9 displayed smaller amperometric "foot-current" currents, reduced fusion pore conductances, and lower fusion pore expansion rates. We propose that SNARE/lipid complexes form proteolipid fusion pores. Fusion pores involving the SNAP-25Delta9 mutant will be less tightly zipped and may lead to a longer fusion pore structure, consistent with the observed decrease of fusion pore conductance.

  4. V-ATPase, ScNhx1p and yeast vacuole fusion.

    Science.gov (United States)

    Qiu, Quan-Sheng

    2012-04-20

    Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos. It is a central cellular reaction that plays important roles in signal transduction, protein sorting and subcellular compartmentation. Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summarized in this article. It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhx1p are key components of the vacuole fusion machinery in yeast. Yeast ScNhx1p regulates vacuole fusion by controlling the luminal pH. V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast. Fission defects are epistatic to fusion defects. Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast, the fusion reaction does not need the transport activity but requires the physical presence of the proton pump. V0, the membrane-integral sector of the V-ATPase, forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the V0trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion. Copyright © 2012. Published by Elsevier Ltd.

  5. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis.

    Science.gov (United States)

    Erne, Petra M; van Bezouwen, Laura S; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Boekema, Egbert J; Feringa, Ben L

    2015-12-07

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based flexible bilayers. When a hyperosmotic gradient is applied to these vesicle-capped nanotubes, the closed system loses water and the more flexible vesicle bilayer is pulled inwards. This leads to inclusion of vesicles inside the nanotubes without affecting the tube structure, showing controlled reorganization of the self-assembled multicomponent system upon a simple osmotic stimulus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Coated vesicles as protein release mechanism in myeloma cells.

    Science.gov (United States)

    Trombetta, L D; Lazarus, S S

    An electron microscopic study was undertaken of the protein release mechanism within myeloma cells showing a very high degree of protein production. Smooth surfaced vesicles (50 millimicrons) were seen to originate from the outer margin of the perinuclear cistern. Similar vesicles were also associated with distended Golgi sacs. Possible function of these vesicles could not be determined. Coated vesicles (60 millimicrons) originated as evaginations from endoplasmic reticulum in the transitional region. They were present throughout the cytoplasm and were seen to fuse with the cell membrane discharging an electron dense material. These vesicles are, therefore, thought to transport protein from the rough endoplasmic reticulum and discharge it at the cell surface.

  7. Interaction of insulin with SDS/CTAB catanionic Vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Tah, Bidisha; Pal, Prabir; Talapatra, G.B., E-mail: spgbt@iacs.res.in

    2014-01-15

    In the present study, a novel method was used for entrapping the protein, insulin into the catanionic SDS/CTAB vesicle membrane. The anionic SDS and cationic CTAB formed catanionic vesicles at particular concentration (35:65 by volume). In this study, vesicle membrane can be considered as model membrane. The vesicle formation and entrapment efficiency depend on the pH of the aqueous solution. The insulin molecules have attached with the vesicular membrane at pH 7.0. However, at acidic pH, the vesicles were ruptured and the insulin did not entrap into the vesicle membrane, whereas at alkaline pH insulin became fibriller. The scanning electron microscope (SEM), Dynamic light scattering (DLS), and Zeta potential studies established the self-assembled structure formation of insulin and catanionic vesicles. To know the protein confirmations, Circular dichroism (CD) was also employed. The temperature dependent steady state and time resolved emission spectroscopy show that at room temperature (25 °C), apart from the 305 nm tyrosine fluorescence, a new emission peak at 450 nm was observed only in case of insulin-vesicle system, and was assigned as the tyrosine phosphorescence. This phosphorescence peak is the signature of the entrapment of insulin into the vesicle membrane. Highlights: • SDS-CTAB based catanionic vesicle has been fabricated. • Insulin has been successfully immobilized on these vesicles. • Immobilized insulin shows room temperature phosphorescence.

  8. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.

    Science.gov (United States)

    Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  9. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    Science.gov (United States)

    Kawamoto, Shuhei; Klein, Michael L.; Shinoda, Wataru

    2015-12-01

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  10. Stability of phospholipid vesicles studied by asymmetrical flow field-flow fractionation and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Yohannes, Gebrenegus [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Pystynen, Kati-Henna [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Wiedmer, Susanne K. [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)]. E-mail: susanne.wiedmer@helsinki.fi

    2006-02-23

    The stability of zwitterionic phosphatidylcholine vesicles in the presence of 20 mol% phosphatidyl serine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI), and diacylphosphatidyl glycerol (PG) phospholipid vesicles, and cholesterol or calcium chloride was investigated by asymmetrical flow field-flow fractionation (AsFlFFF). Large unilamellar vesicles (LUV, diameter 100 nm) prepared by extrusion at 25 deg. C were used. Phospholipid vesicles (liposomes) were stored at +4 and -18 deg. C over an extended period of time. Extruded egg yolk phosphatidylcholine (EPC) particle diameters at peak maximum and mean measured by AsFlFFF were 101 {+-} 3 nm and 122 {+-} 5 nm, respectively. No significant change in diameter was observed after storage at +4 deg. C for about 5 months. When the storage period was extended to about 8 months (250 days) larger destabilized aggregates were formed (172 and 215 nm at peak maximum and mean diameters, respectively). When EPC was stored at -18 deg. C, large particles with diameters of 700-800 nm were formed as a result of dehydration, aggregation, and fusion processes. In the presence of calcium chloride, EPC alone did not form large aggregates. Addition of 20 mol% of negatively charged phospholipids (PS, PA, PI, or PG) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles increased the electrostatic interactions between calcium ion and the vesicles and large aggregates were formed. In the presence of cholesterol, large aggregates of about 250-350 nm appeared during storage at +4 and -18 deg. C for more than 1 day. The effect of liposome storage temperature on phospholipid coatings applied in capillary electrophoresis (CE) was studied by measuring the electroosmotic flow (EOF). EPC coatings with and without cholesterol, PS, or calcium chloride, prepared from liposomes stored at +25, +4, and -18 deg. C, were studied at 25 deg. C. The performances of the coatings were further evaluated with three uncharged compounds

  11. Entropic forces drive self-organization and membrane fusion by SNARE proteins.

    Science.gov (United States)

    Mostafavi, Hakhamanesh; Thiyagarajan, Sathish; Stratton, Benjamin S; Karatekin, Erdem; Warner, Jason M; Rothman, James E; O'Shaughnessy, Ben

    2017-05-23

    SNARE proteins are the core of the cell's fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes ("SNAREpins") with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric-electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release.

  12. Soft vesicles in the synthesis of hard materials.

    Science.gov (United States)

    Dong, Renhao; Liu, Weimin; Hao, Jingcheng

    2012-04-17

    Vesicles of surfactants in aqueous solution have received considerable attention because of their use as simple model systems for biological membranes and their applications in various fields including colloids, pharmaceuticals, and materials. Because of their architecture, vesicles could prove useful as "soft" templates for the synthesis of "hard materials". The vesicle phase, however, has been challenging and difficult to work with in the construction of hard materials. In the solution-phase synthesis of various inorganic or macromolecular materials, templating methods provide a powerful strategy to control the size, morphology, and composition of the resulting micro- and nanostructures. In comparison with hard templates, soft templates are generally constructed using amphiphilic molecules, especially surfactants and amphiphilic polymers. These types of compounds offer advantages including the wide variety of available templates, simple fabrication processes under mild conditions, and easy removal of the templates with less damage to the final structures. Researchers have used many ordered molecular aggregates such as vesicles, micelles, liquid crystals, emulsion droplets, and lipid nanotubes as templates or structure-directing agents to control the synthesis or assembly hard micro- and nanomaterials composed from inorganic compounds or polymers. In addition to their range of sizes and morphologies, vesicles present unique structures that can simultaneously supply different microenvironments for the growth and assembly of hard materials: the inner chamber of vesicles, the outer surface of the vesicles, and the space between bilayers. Two main approaches for applying vesicles in the field of hard materials have been explored: (i) in situ synthesis of micro- or nanomaterials within a specific microenvironment by vesicle templating and (ii) the assembly or incorporation of guest materials during the formation of vesicles. This Account provides an in-depth look at

  13. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  14. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells.

    Science.gov (United States)

    Zhou, Lu; Evangelinos, Minoas; Wernet, Valentin; Eckert, Antonia F; Ishitsuka, Yuji; Fischer, Reinhard; Nienhaus, G Ulrich; Takeshita, Norio

    2018-01-01

    Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFP thermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFP thermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s -1 ) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s -1 ) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.

  15. Signaling by Extracellular Vesicles Advances Cancer Hallmarks.

    Science.gov (United States)

    Kanada, Masamitsu; Bachmann, Michael H; Contag, Christopher H

    2016-02-01

    Mammalian cells secrete various extracellular vesicles (EVs; exosomes, microvesicles, and apoptotic bodies) that differ in biogenesis, composition, and function. Each vesicle type can originate from normal or cancerous cells, transfer molecular cargo to both neighboring and distant cells, and modulate cellular behaviors involved in eubiology and pathology, such as tumor development. Here, we review evidence for the role of EVs in the establishment and maintenance of cancer hallmarks, including sustaining proliferative signaling, evading growth suppression, resisting cell death, reprogramming energy metabolism, acquiring genomic instability, and remodeling the tumor microenvironment. We also discuss how EVs are implicated in the induction of angiogenesis, control of cellular invasion, initiation of premetastatic niches, maintenance of inflammation, and evasion of immune surveillance. The deeper understanding of the biology of EVs and their contribution to the development and progression of tumors is leading to new opportunities in the diagnosis and treatment of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Seminal vesicle cystadenoma: a rare clinical perspective.

    Science.gov (United States)

    Lorber, Gideon; Pizov, Galina; Gofrit, Ofer N; Pode, Dov

    2011-08-01

    A 52-yr-old man presented with severe obstructive urinary symptoms. Ten years earlier, a digital rectal examination disclosed a small mass above the prostate, and a computed tomography (CT) scan showed a 3.5-cm cystic tumor of the right seminal vesicle. He had been followed conservatively elsewhere. Reevaluation of the mass with a CT scan and magnetic resonance imaging showed that the mass had grown to a maximal diameter of 14 cm. A transabdominal needle biopsy revealed benign fibromuscular tissue. The tumor was then resected by an open transvesical approach. Pathology was consistent with a benign seminal vesicle cystadenoma. The natural history, pathology, and surgical approach are described. Copyright © 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    Directory of Open Access Journals (Sweden)

    Zhenyong Wu

    2017-10-01

    Full Text Available Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs. Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores

  18. Vitrification of Germinal Vesicle Stage Oocytes

    OpenAIRE

    ABE, Yasuyuki; AONO, Nobuya; Hara, Kenshiro; Matsumoto, Hiromichi; BAKHTIYARI, Mehrdad; Sasada, Hiroshi; Sato, Eimei

    2004-01-01

    In order to cryopreserve germinal vesicle (GV) stage oocytes, we first need to develop a novel container for keeping large quantities of GV oocytes, because of collecting them as cumulus oocytes complexes (COCs) that have bigger size and larger volume than oocytes themselves, and second modify a protocol for optimizing vitrification of them. In this mini-review, we describe our recent progress for attaining these objectives. When 65 bovine COCs having GV oocytes could be placed on a sheet of ...

  19. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    Science.gov (United States)

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (inflammation in immune cells. © 2017 American Heart Association, Inc.

  20. A readily retrievable pool of synaptic vesicles

    OpenAIRE

    Hua, Y; Sinha, R.; Thiel, C.; Schmidt, R.; Hueve, J.; Martens, H.; Hell, S.; Egner, A.; Klingauf, J.

    2011-01-01

    Abstract Although clathrin-mediated endocytosis (CME) is thought to be the predominant mechanism of synaptic vesicle (SV) recycling, it seems to be too slow for fast recycling. Therefore, it was suggested that a pre-sorted and pre-assembled pool of SV proteins on the presynaptic membrane might support a first wave of fast CME. In this study we monitored the temporal dynamics of such a 'readily retrievable pool' of SV proteins in rat hippocampal neurons using a novel probe. Applying...

  1. Experiments in predictive sensor fusion

    Science.gov (United States)

    Keller, James M.; Auephanwiriyakul, Sansanee; Gader, Paul D.

    2001-10-01

    Data fusion is a process of combining evidence from different information sources in order to make a better judgement. However, multiple sources can provide complementary information that can be used to increase the performance in detection and recognition. There are many frameworks within which to combine these pieces into a more meaningful answer. However, new information added might be redundant or even conflicting with the existing information. These questions arise: can we predict the value added by fusing their outputs together, if we know the general characteristics of a set of sensors. Can we specify the needed characteristics of a new sensor/algorithm to add to an existing suite to gain a desired improvement performance. The characteristic of a new sensor can be in any forms, e.g., the ratio of a target's signal to the clutter's signal, the position resolution etc. In this paper, we consider these questions in the context of fuzzy set theory and in particular, a soft decision level fusion scheme we developed for land mine detection scenarios. Here, we primarily consider the ratio of a target's signal. We develop a tool to estimate a final d-metric when the information form several sensor is fused through the linguistic Choquet fuzzy integral. We utilize this tool in the examination of the performance of d-metrics in a simulation environment. The approach is demonstrated for data obtained from an Advanced Technology Demonstration in vehicle-based mine detection.

  2. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse

    DEFF Research Database (Denmark)

    Vasyutina, Elena; Martarelli, Benedetta; Brakebusch, Cord

    2009-01-01

    Rac1 and Cdc42 are small G-proteins that regulate actin dynamics and affect plasma membrane protrusion and vesicle traffic. We used conditional mutagenesis in mice to demonstrate that Rac1 and Cdc42 are essential for myoblast fusion in vivo and in vitro. The deficit in fusion of Rac1 or Cdc42...... mutant myoblasts correlates with a deficit in the recruitment of actin fibers and vinculin to myoblast contact sites. Comparison of the changes observed in mutant myogenic cells indicates that Rac1 and Cdc42 function in a nonredundant and not completely overlapping manner during the fusion process. Our...... genetic analysis demonstrates thus that the function of Rac in myoblast fusion is evolutionarily conserved from insects to mammals and that Cdc42, a molecule hitherto not implicated in myoblast fusion, is essential for the fusion of murine myoblasts....

  3. Thermal-hydraulic analysis of low activity fusion blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Yu, W S

    1977-01-01

    The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required.

  4. ATP: The crucial component of secretory vesicles.

    Science.gov (United States)

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  5. Detection of platelet vesicles by flow cytometry.

    Science.gov (United States)

    Nolan, John P; Jones, Jennifer C

    2017-05-01

    The composition and function of platelet-derived extracellular vesicles (EVs) in health and in disease are a major topic of investigation in biomedical research. However, efforts to delineate specific molecular repertoires and roles for different types of EVs in the circulation are limited not only by the lack of flow cytometers capable of analyzing submicron- and nano-materials across the full size spectrum of plasma EVs, but also by the lack of standardized methods and reference materials that would permit inter-laboratory reproducibility for these analyses. In this review, we summarize the flow cytometry of EVs, with a focus on platelet vesicles in plasma. In addition to delineating the basic principles that govern what precautions must be considered when using flow cytometry for the analysis of platelet vesicles, we provide an overview for how to standardize, control, annotate, and report EV flow cytometry data reproducibly, while looking forward to a next generation of high sensitivity instruments for the analysis of EVs and other submicron biomaterials in the circulation.

  6. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  7. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers?

    Science.gov (United States)

    Erdbrügger, Uta; Le, Thu H

    2016-01-01

    Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles. Copyright © 2016 by the American Society of Nephrology.

  8. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith?

    Science.gov (United States)

    Osteikoetxea, Xabier; Németh, Andrea; Sódar, Barbara W; Vukman, Krisztina V; Buzás, Edit Irén

    2016-06-01

    In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Maximum Likelihood Fusion Model

    Science.gov (United States)

    2014-08-09

    Symposium of Robotics Re- search. Sienna, Italy: Springer, 2003. [12] D. Hall and J. Llinas, “An introduction to multisensor data fusion ,” Proceed- ings of...a data fusion approach for combining Gaussian metric models of an environment constructed by multiple agents that operate outside of a global... data fusion , hypothesis testing,maximum likelihood estimation, mobile robot navigation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  10. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  11. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  12. Filter Bank Fusion Frames

    OpenAIRE

    Chebira, Amina; Fickus, Matthew; Mixon, Dustin G.

    2010-01-01

    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using ...

  13. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  14. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  15. Minimally invasive lumbar fusion.

    Science.gov (United States)

    Foley, Kevin T; Holly, Langston T; Schwender, James D

    2003-08-01

    Review article. To provide an overview of current techniques for minimally invasive lumbar fusion. Minimally invasive techniques have revolutionized the management of pathologic conditions in various surgical disciplines. Although these same principles have been used in the treatment of lumbar disc disease for many years, minimally invasive lumbar fusion procedures have only recently been developed. The goals of these procedures are to reduce the approach-related morbidity associated with traditional lumbar fusion, yet allow the surgery to be performed in an effective and safe manner. The authors' clinical experience with minimally invasive lumbar fusion was reviewed, and the pertinent literature was surveyed. Minimally invasive approaches have been developed for common lumbar procedures such as anterior and posterior interbody fusion, posterolateral onlay fusion, and internal fixation. As with all new surgical techniques, minimally invasive lumbar fusion has a learning curve. As well, there are benefits and disadvantages associated with each technique. However, because these techniques are new and evolving, evidence to support their potential benefits is largely anecdotal. Additionally, there are few long-term studies to document clinical outcomes. Preliminary clinical results suggest that minimally invasive lumbar fusion will have a beneficial impact on the care of patients with spinal disorders. Outcome studies with long-term follow-up will be necessary to validate its success and allow minimally invasive lumbar fusion to become more widely accepted.

  16. Magnetic fusion reactor economics

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  17. A sequential vesicle pool model with a single release sensor and a ca(2+)-dependent priming catalyst effectively explains ca(2+)-dependent properties of neurosecretion

    DEFF Research Database (Denmark)

    Walter, Alexander M; da Silva Pinheiro, Paulo César; Verhage, Matthijs

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release - synaptot......Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release...... identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1...... that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent properties of secretion without assuming parallel pools or sensors....

  18. Identification of cancer fusion drivers using network fusion centrality

    OpenAIRE

    Wu, Chia-Chin; Kannan, Kalpana; Lin, Steven; Yen, Laising; Milosavljevic, Aleksandar

    2013-01-01

    Summary: Gene fusions are being discovered at an increasing rate using massively parallel sequencing technologies. Prioritization of cancer fusion drivers for validation cannot be performed using traditional single-gene based methods because fusions involve portions of two partner genes. To address this problem, we propose a novel network analysis method called fusion centrality that is specifically tailored for prioritizing gene fusions. We first propose a domain-based fusion model built on ...

  19. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  20. Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion.

    Science.gov (United States)

    Chang, Che-Wei; Chiang, Chung-Wei; Gaffaney, Jon D; Chapman, Edwin R; Jackson, Meyer B

    2016-02-05

    SNARE proteins catalyze many forms of biological membrane fusion, including Ca(2+)-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca(2+)-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca(2+)-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  3. Gram-negative and Gram-positive bacterial extracellular vesicles.

    Science.gov (United States)

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lee, Jaewook; Kim, Si-Hyun; Choi, Dong-Sic; Lee, Jong Seok; Kim, Dae-Kyum; Go, Gyeongyun; Park, Seon-Min; Kim, Si Hyun; Shin, Jeong Hwan; Chang, Chulhun L; Gho, Yong Song

    2015-10-01

    The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC-MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 (http://proteomecentral.proteomexchange.org/dataset/PXD001160). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. LegC3, an Effector Protein from Legionella pneumophila, Inhibits Homotypic Yeast Vacuole Fusion In Vivo and In Vitro

    Science.gov (United States)

    Bennett, Terry L.; Kraft, Shannon M.; Reaves, Barbara J.; Mima, Joji; O’Brien, Kevin M.; Starai, Vincent J.

    2013-01-01

    During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes). This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis. PMID:23437241

  6. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.

    Science.gov (United States)

    Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D

    2013-12-01

    During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.

  7. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. DNA-mediated self-assembly of artificial vesicles.

    Science.gov (United States)

    Hadorn, Maik; Eggenberger Hotz, Peter

    2010-03-26

    Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and

  9. Cellular phenotype and extracellular vesicles: basic and clinical considerations.

    Science.gov (United States)

    Quesenberry, Peter J; Goldberg, Laura R; Aliotta, Jason M; Dooner, Mark S; Pereira, Mandy G; Wen, Sicheng; Camussi, Giovanni

    2014-07-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.

  10. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  11. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  12. [Seminal vesicle cystadenoma as the cause of a retrovesical tumor].

    Science.gov (United States)

    Kaminsky, A; Kania, U; Ortloff, P; Sperling, H

    2014-04-01

    Tumors of the seminal vesicle are rare. Malignant tumors are more common than benign tumors. A seminal vesicle cystadenoma is a rarity. We report on a 41-year-old man with the incidental finding of an asymptomatic retrovesical tumor. The tumor, the seminal vesicle, and the abdominal part of the ductus deferens were surgically removed. The operative access is variable and surgical treatment is the method of choice. The patient's prognosis is good and there are no signs of recurrence.

  13. Wilms tumor arising in extracoelomic paravertebral soft tissues.

    LENUS (Irish Health Repository)

    Mulligan, Linda

    2012-02-01

    Extrarenal Wilms tumor (ERWT) is a well-established entity which most commonly arises within the genitourinary tract, including intracoelomic paranephric soft tissue. Rarely, ERWT arises within teratoma, and it tends to occur predominantly in distinct settings, such as females with spinal defects and males with testicular teratomas. We report a unique ERWT arising within an extracoelomic teratoma of the paraspinal musculature, thereby expanding the range of reported locations for this unusual tumor.

  14. Fusion helps diversification

    NARCIS (Netherlands)

    Liang, S.; Ren, Z.; de Rijke, M.

    2014-01-01

    A popular strategy for search result diversification is to first retrieve a set of documents utilizing a standard retrieval method and then rerank the results. We adopt a different perspective on the problem, based on data fusion. Starting from the hypothesis that data fusion can improve performance

  15. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  16. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  17. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  18. Fusion of biological membranes

    Indian Academy of Sciences (India)

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent ...

  19. Fusion Science Education Outreach

    Science.gov (United States)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  20. Controlled thermonuclear fusion; La fusion thermonucleaire controlee

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, Jean-Louis

    2011-10-27

    This book presents, first, the basic nuclear physics and plasma physics principles at the origin of the researches on nuclear fusion which started in the 1950's. Then the magnetic and inertial confinement principles are described with their corresponding facilities: the tokamaks and the laser-induced inertial confinement fusion devices. After a brief outline of some exotic processes, the book describes some projects of thermonuclear power plants capable to supply electricity by the end of the 21. century. (J.S.)

  1. Dynamic properties of the alkaline vesicle population at hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Mareike Röther

    Full Text Available In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.

  2. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    Science.gov (United States)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  3. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  4. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    Science.gov (United States)

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  5. Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells.

    Science.gov (United States)

    Feinshreiber, Lori; Singer-Lahat, Dafna; Friedrich, Reut; Matti, Ulf; Sheinin, Anton; Yizhar, Ofer; Nachman, Rachel; Chikvashvili, Dodo; Rettig, Jens; Ashery, Uri; Lotan, Ilana

    2010-06-01

    Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine cells, but also occurs in the somatic-vesicle release from dorsal-root-ganglion neurons and is mediated by direct association of Kv2.1 with syntaxin. We further show in adrenal chromaffin cells that facilitation induced by both wild-type and non-conducting mutant Kv2.1 channels in response to long stimulation persists during successive stimulation, and can be attributed to an increased number of exocytotic events and not to changes in single-spike kinetics. Moreover, rigorous analysis of the pools of released vesicles reveals that Kv2.1 enhances the rate of vesicle recruitment during stimulation with high Ca(2+), without affecting the size of the readily releasable vesicle pool. These findings place a voltage-gated K(+) channel among the syntaxin-binding proteins that directly regulate pre-fusion steps in exocytosis.

  6. From Nucleons To Nuclei To Fusion Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  7. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  8. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  9. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  10. Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis

    DEFF Research Database (Denmark)

    Walter, Alexander M; Wiederhold, Katrin; Bruns, Dieter

    2010-01-01

    Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)-dependent exocytosis pathway at an intermediate "cocked" state, from which fusion can be triggered by Ca(2+). It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE......) to the syntaxin-SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N...

  11. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Liang, Shuang; Ratnayake, Punsisi; Keinath, Craig; Jia, Lihui; Wolfe, Robert; Ranaweera, Ahinsa; Weliky, David P

    2018-01-18

    Human immunodeficiency virus (HIV) is membrane-enveloped and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41 which is a single-pass integral viral membrane protein. The protein contains a ~170-residue ectodomain located outside the virus that is important for fusion, and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has non-covalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ~500-residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. Gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There isn't yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures isn't known. The present study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers which are in a native oligomeric state that reflects the initial complex with gp120, and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER, and non-helical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by

  12. Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa

    Directory of Open Access Journals (Sweden)

    Marcianò Vito

    2008-01-01

    Full Text Available Abstract Background The presence of small membranous particles characterizes the male genital fluids of different mammalian species. The influence of semen vesicles, denominated prostasomes, on sperm functional properties has been well documented in humans, but their biological activity is scarcely known in other species. The present work investigated prostasome-like vesicles in pig semen for their ability to interact with spermatozoa and to affect acrosome reaction. Methods Prostasome-like vesicles have been isolated from pig seminal plasma by high-speed centrifugation and Sephadex G-200 gel chromatography. Morphology of purified vesicles has been checked by scanning electron microscopy while their protein pattern has been investigated by SDS-PAGE. Then prostasome- like vesicles have been incubated with pig spermatozoa and their ability to interact with sperm has been tested by the aminopeptidase assay. In addition, the efficiency of vesicles to influence the acrosome reaction has been investigated by assessing the sperm acrosomal status by the PI/FITC-PNA (propidium iodide/fluorescein isothiocyanate-labeled peanut agglutinin stainings. Results Purified vesicles revealed a complex protein pattern with the occurrence of bands in the high, medium and low molecular weight range. However, the two major bands were observed at ~90 kDa and ~60 kDa. A vesicle-mediated transfer of aminopeptidase to sperm cells has been also detected. Furthermore, a significant increase of acrosome reaction extent has been revealed in spermatozoa incubated with prostasome-like vesicles in comparison to control sperm. Conclusion This is the first report demonstrating that pig prostasome-like vesicles are able, in vitro, to interact with spermatozoa and to stimulate the acrosome reaction. These findings lead to hypothesize a transfer of molecules from vesicles to sperm membrane, thus sensitizing male gametes to undergo the acrosome reaction

  13. Bioinformatics Tools for Extracellular Vesicles Research.

    Science.gov (United States)

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Gho, Yong Song; Mathivanan, Suresh

    2017-01-01

    Extracellular vesicles (EVs) are a class of membranous vesicles that are released by multiple cell types into the extracellular environment. This unique class of extracellular organelles which play pivotal role in intercellular communication are conserved across prokaryotes and eukaryotes. Depending upon the cell origin and the functional state, the molecular cargo including proteins, lipids, and RNA within the EVs are modulated. Owing to this, EVs are considered as a subrepertoire of the host cell and are rich reservoirs of disease biomarkers. In addition, the availability of EVs in multiple bodily fluids including blood has created significant interest in biomarker and signaling research. With the advancement in high-throughput techniques, multiple EV studies have embarked on profiling the molecular cargo. To benefit the scientific community, existing free Web-based resources including ExoCarta, EVpedia, and Vesiclepedia catalog multiple datasets. These resources aid in elucidating molecular mechanism and pathophysiology underlying different disease conditions from which EVs are isolated. Here, the existing bioinformatics tools to perform integrated analysis to identify key functional components in the EV datasets are discussed.

  14. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  15. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion...

  16. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  17. Formation and structural properties of multi-block copolymer vesicles

    Science.gov (United States)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  18. Slow Sedimentation and Deformability of Charged Lipid Vesicles

    Science.gov (United States)

    Rey Suárez, Iván; Leidy, Chad; Téllez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity. PMID:23874582

  19. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...... and partly removed from between the surfaces under high loads. These layers offer very low friction coefficient (

  20. Block-Copolymer Vesicles as Nanoreactors for Enzymatic Reactions

    NARCIS (Netherlands)

    Chen, Qi; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    The impact of the spatial confinement of polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer (BCP) vesicles on the reactivity of encapsulated bovine pancreas trypsin is studied. Enzymes, as well as small molecules, are encapsulated with loading efficiencies up to 30% in BCP vesicles with

  1. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These

  2. The freezing process of small lipid vesicles at molecular resolution

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    At present very little is known about the kinetic barriers which a small vesicle will face during the transformation from the liquid-crystalline to the gel phase, and what the structure of frozen vesicles looks like at the molecular level. The formation of gel domains in the strongly curved bilayer

  3. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes

    DEFF Research Database (Denmark)

    de Wit, Heidi; Walter, Alexander M; Milosevic, Ira

    2009-01-01

    to SNARE complex assembly. Here, using adrenal chromaffin cells, we identify the vesicular docking partner as synaptotagmin-1, the calcium sensor for exocytosis, and SNAP-25 as an essential plasma membrane docking factor, which, together with the previously known docking factors Munc18-1 and syntaxin, form...... the minimal docking machinery. Moreover, we show that the requirement for Munc18-1 in docking, but not fusion, can be overcome by stabilizing syntaxin/SNAP-25 acceptor complexes. These findings, together with cross-rescue, double-knockout, and electrophysiological data, lead us to propose that vesicles dock...... when synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes, whereas Munc18-1 is required for the downstream association of synaptobrevin to form fusogenic SNARE complexes....

  4. A recursive vesicle-based model protocell with a primitive model cell cycle.

    Science.gov (United States)

    Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi

    2015-09-29

    Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.

  5. PML-RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells.

    Science.gov (United States)

    Fang, Yi; Garnier, Delphine; Lee, Tae Hoon; D'Asti, Esterina; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2016-01-01

    Oncogenic transformation is believed to impact the vascular phenotype and microenvironment in cancer, at least in part, through mechanisms involving extracellular vesicles (EVs). We explored these questions in the context of acute promyelocytic leukemia cells (NB4) expressing oncogenic fusion protein, PML-RARa and exquisitely sensitive to its clinically used antagonist, the all-trans retinoic acid (ATRA). We report that NB4 cells produce considerable numbers of EVs, which are readily taken up by cultured endothelial cells triggering their increased survival. NB4 EVs contain PML-RARa transcript, but no detectable protein, which is also absent in endothelial cells upon the vesicle uptake, thereby precluding an active intercellular trafficking of this oncogene in this setting. ATRA treatment changes the emission profile of NB4-related EVs resulting in preponderance of smaller vesicles, an effect that occurs in parallel with the onset of cellular differentiation. ATRA also increases IL-8 mRNA and protein content in NB4 cells and their EVs, while decreasing the levels of VEGF and tissue factor (TF). Endothelial cell uptake of NB4-derived EVs renders these cells more TF-positive and procoagulant, and this effect is diminished by pre-treatment of EV donor cells with ATRA. Profiling angiogenesis-related transcripts in intact and ATRA-treated APL cells and their EVs reveals multiple differences attributable to cellular responses and EV molecular packaging. These observations point to the potential significance of changes in the angiogenic signature and activity associated with EVs released from tumor cells subjected to targeted therapy.

  6. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    effects on the fusion excitation function. However, a simultaneous analysis of the fusion, elastic and quasi-elastic channels would fix the structure and the reaction unambiguously. Keywords. Heavy ion fusion; fusion barrier distributions; nuclear structure; coupled reaction chan- nel calculations. PACS Nos 25.70.Bc; 25.70.

  7. UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in Caenorhabditis elegans.

    Science.gov (United States)

    Park, Seungmee; Bin, Na-Ryum; Yu, Bin; Wong, Raymond; Sitarska, Ewa; Sugita, Kyoko; Ma, Ke; Xu, Junjie; Tien, Chi-Wei; Algouneh, Arash; Turlova, Ekaterina; Wang, Siyan; Siriya, Pranay; Shahid, Waleed; Kalia, Lorraine; Feng, Zhong-Ping; Monnier, Philippe P; Sun, Hong-Shuo; Zhen, Mei; Gao, Shangbang; Rizo, Josep; Sugita, Shuzo

    2017-09-06

    Munc18-1/UNC-18 is believed to prime SNARE-mediated membrane fusion, yet the underlying mechanisms remain enigmatic. Here, we examine how potential gain-of-function mutations of Munc18-1/UNC-18 affect locomotory behavior and synaptic transmission, and how Munc18-1-mediated priming is related to Munc13-1/UNC-13 and Tomosyn/TOM-1, positive and negative SNARE regulators, respectively. We show that a Munc18-1(P335A)/UNC-18(P334A) mutation leads to significantly increased locomotory activity and acetylcholine release in Caenorhabditis elegans, as well as enhanced synaptic neurotransmission in cultured mammalian neurons. Importantly, similar to tom-1 null mutants, unc-18(P334A) mutants partially bypass the requirement of UNC-13. Moreover, unc-18(P334A) and tom-1 null mutations confer a strong synergy in suppressing the phenotypes of unc-13 mutants. Through biochemical experiments, we demonstrate that Munc18-1(P335A) exhibits enhanced activity in SNARE complex formation as well as in binding to the preformed SNARE complex, and partially bypasses the Munc13-1 requirement in liposome fusion assays. Our results indicate that Munc18-1/UNC-18 primes vesicle fusion downstream of Munc13-1/UNC-13 by templating SNARE complex assembly and acts antagonistically with Tomosyn/TOM-1.SIGNIFICANCE STATEMENT At presynaptic sites, SNARE-mediated membrane fusion is tightly regulated by several key proteins including Munc18/UNC-18, Munc13/UNC-13, and Tomosyn/TOM-1. However, how these proteins interact with each other to achieve the precise regulation of neurotransmitter release remains largely unclear. Using Caenorhabditis elegans as an in vivo model, we found that a gain-of-function mutant of UNC-18 increases locomotory activity and synaptic acetylcholine release, that it partially bypasses the requirement of UNC-13 for release, and that this bypass is synergistically augmented by the lack of TOM-1. We also elucidated the biochemical basis for the gain-of-function caused by this mutation

  8. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    Artificial vesicles have been used for decades as model systems of biological cells to investigate scientific questions in simulacra. In recent years, the significance of artificial vesicles further increased because they represent ideal candidates to become the building block of a de novo...... construction of a cell in a bottom-up manner. Numerous efforts to build an artificial cell that bridge the living and non-living world will most presumably represent one of the main goals of science in the 21st century. It was shown that artificial genetic programs and the required cellular machinery can...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  9. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  10. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  11. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    Science.gov (United States)

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Placental Extracellular Vesicles and Feto-Maternal Communication

    Science.gov (United States)

    Tong, M.; Chamley, L.W.

    2015-01-01

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. PMID:25635060

  13. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hou, Jin; Tyo, Keith; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2012-03-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often restricted due to the limitations of the host strain. In the protein secretory pathway, the protein trafficking between different organelles is catalyzed by the soluble NSF (N-ethylmaleimide-sensitive factor) receptor (SNARE) complex and regulated by the Sec1/Munc18 (SM) proteins. In this study, we report that over-expression of the SM protein encoding genes SEC1 and SLY1, improves the protein secretion in S. cerevisiae. Engineering Sec1p, the SM protein that is involved in vesicle trafficking from Golgi to cell membrane, improves the secretion of heterologous proteins human insulin precursor and α-amylase, and also the secretion of an endogenous protein invertase. Enhancing Sly1p, the SM protein regulating the vesicle fusion from endoplasmic reticulum (ER) to Golgi, increases α-amylase production only. Our study demonstrates that strengthening the protein trafficking in ER-to-Golgi and Golgi-to-plasma membrane process is a novel secretory engineering strategy for improving heterologous protein production in S. cerevisiae. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Aceclofenac encapsulated ethanolic nano-vesicles for effective treatment of osteoarthritis

    National Research Council Canada - National Science Library

    Kaur, Arvinder; Jain, Sunil K; Pandey, Ravi S

    2012-01-01

    .... Ethanolic nano-vesicles were prepared by solvent dispersion method. Vesicles were characterized for vesicular size, surface morphology, size and size distribution, zeta potential, entrapment efficiency...

  15. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  16. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  17. Spinal fusion - slideshow

    Science.gov (United States)

    ... ency/presentations/100121.htm Spinal fusion - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  18. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  19. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  20. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  1. What is Binocular Fusion?

    Directory of Open Access Journals (Sweden)

    Stuart Wallis

    2012-05-01

    Full Text Available When images in the two eyes are sufficiently similar, they are ‘fused’. Fusion has motor (vergence and sensory components. When vergence is prevented, sensory ‘fusion’ of disparate images still occurs, but the nature of this fusion has received curiously little attention. Summation of signals from the two eyes is fairly well understood and seems the obvious basis for fusion. But summation of disparate edges should cause the fused edge to appear more blurred. We tested this by studying the perceived blur of single edges with vertical disparities that spanned fusion and diplopia. Single, horizontal, Gaussian-blurred edges (blur, B=1.6 to 40 minarc were presented to each eye at various disparities (0 to 4B, or were added together in the same eye (monoptic control. Perceived blur was measured by blur-matching, using a two-interval forced-choice method. In monoptic conditions, matched blur increased with disparity in the fusional range (0 to 2B as expected. But, surprisingly, when the two edges were in different eyes (dichoptic, matched blur remained almost constant and did not increase with disparity. This shows that fusion preserves the sharpness or blur of each eye's image, and that fusion cannot easily be explained by summation or arithmetic averaging of spatial signals across the eyes. We show that fusion of this kind occurs if (a each monocular signal is the spatial derivative (gradient profile of the input edge, and (b binocular combination is the contrast-weighted geometric mean of these signals. This achieves positional averaging (‘allelotropia’ without blurring or smearing.

  2. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles ? about microvesicles, exosomes, ectosomes and other extracellular vesicles

    OpenAIRE

    L?tvall, Jan; Rajendran, Lawrence; Gho, Yong-Song; Thery, Clotilde; Wauben, Marca; Raposo, Graca; Sj?strand, Margareta; Taylor, Douglas; Telemo, Esbj?rn; Breakefield, Xandra O.

    2012-01-01

    In 2011, researchers around the world interested in extracellular vesicles (EV) joined forces and founded the International Society for Extracellular Vesicles (ISEV). Membership has grown to approximately 750 in eight months, and the Society’s first meeting will take place in Gothenburg, Sweden, on 18-21 April 2012. Already approximately 500 participants have been attracted to this event. These are signs of rapid expansion in global research in the field of EV.(Published: 16 April 2012)Citati...

  3. Immobilization of Ferrocene-Modified SNAP-Fusion Proteins

    Directory of Open Access Journals (Sweden)

    Pascal Jonkheijm

    2013-02-01

    Full Text Available The supramolecular assembly of proteins on surfaces has been investigated via the site-selective incorporation of a supramolecular moiety on proteins. To this end, fluorescent proteins have been site-selectively labeled with ferrocenes, as supramolecular guest moieties, via SNAP-tag technology. The assembly of guest-functionalized SNAP-fusion proteins on cyclodextrin- and cucurbit[7]uril-coated surfaces yielded stable monolayers. The binding of all ferrocene fusion proteins is specific as determined by surface plasmon resonance. Micropatterns of the fusion proteins, on patterned cyclodextrin and cucurbituril surfaces, have been visualized using fluorescence microscopy. The SNAP-fusion proteins were also immobilized on cyclodextrin vesicles. The supramolecular SNAP-tag labeling of proteins, thus, allows for the assembly of modified proteins via supramolecular host-guest interaction on different surfaces in a controlled manner. These findings extend the toolbox of fabricating supramolecular protein patterns on surfaces taking advantage of the high labeling efficiency of the SNAP-tag with versatile supramolecular moieties.

  4. A Perspective on Extracellular Vesicles Proteomics

    Directory of Open Access Journals (Sweden)

    Livia Rosa-Fernandes

    2017-11-01

    Full Text Available Increasing attention has been given to secreted extracellular vesicles (EVs in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  5. Versatile roles of extracellular vesicles in cancer

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  6. Role of extracellular vesicles in rheumatoid arthritis.

    Science.gov (United States)

    Fu, Haitao; Hu, Die; Zhang, Licheng; Tang, Peifu

    2018-01-01

    Cell-derived extracellular vesicles (EVs) are involved in the pathogenesis of rheumatoid arthritis (RA), playing important roles in antigen presentation, inflammation, angiogenesis, cell-cell signal communication, thrombosis, and articular cartilage extracellular matrix degradation. Understanding the pathogenic mechanism of RA is important for developing therapies. The pathogenic indicators of RA, such as submicron-sized EVs, represent promising biomarkers for evaluating RA activity. This review summarizes the recent advances in understanding the pathogenesis of RA, and sheds light on the pathogenic as well as anti-inflammatory or immunosuppressive roles of EVs. We suggest that EVs could be harnessed as tools for drug delivery or targets for RA therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Isolation of Platelet-Derived Extracellular Vesicles.

    Science.gov (United States)

    Aatonen, Maria; Valkonen, Sami; Böing, Anita; Yuana, Yuana; Nieuwland, Rienk; Siljander, Pia

    2017-01-01

    Platelets participate in several physiological functions, including hemostasis, immunity, and development. Additionally, platelets play key roles in arterial thrombosis and cancer progression. Given this plethora of functions, there is a strong interest of the role of platelet-derived (extracellular) vesicles (PDEVs) as functional mediators and biomarkers. Moreover, the majority of the blood-borne EVs are thought to originate from either platelets or directly from the platelet precursor cells, the megakaryocytes, which reside in the bone marrow. To circumvent confusion, we use the term PDEVs for both platelet-derived and/or megakaryocyte-derived EVs. PDEVs can be isolated from blood or from isolated platelets after activation. In this chapter, we describe all commonly used PDEV isolation methods from blood and prepurified platelets.

  8. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  9. A Perspective on Extracellular Vesicles Proteomics.

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  10. Squamous cell carcinoma arising in mature cystic teratoma of ovary

    Directory of Open Access Journals (Sweden)

    Ranu Patni

    2014-01-01

    Full Text Available Squamous cell carcinoma of the ovary is a rare condition and usually arises in mature cystic teratoma (MCT or dermoid cyst of the ovary. The reported incidence of malignant transformation in MCT is approximately 2%. A case of squamous cell carcinoma arising in a dermoid cyst of the ovary presenting at an early stage is presented here. A 53-year-old postmenopausal lady, presented with the complaint of pain in right lower abdomen since one month and a large complex abdomino-pelvic mass on examination and investigations. Final histopathology was reported as squamous cell carcinoma of left ovary arising from dermoid cyst and a benign dermoid cyst in the right ovary. The patient was assigned to squamous cell carcinoma of the ovary arising in a mature cystic teratoma, surgical stage Ic2. In view of the poor prognosis, adjuvant chemotherapy was started.

  11. Blacks More Prone to Colon Cancers That Arise Between Colonoscopies

    Science.gov (United States)

    ... news/fullstory_165821.html Blacks More Prone to Colon Cancers That Arise Between Colonoscopies: Study Differences in biology ... 22, 2017 MONDAY, May 22, 2017 (HealthDay News) -- Colon cancer guidelines now recommend a colonoscopy every 10 years, ...

  12. Biological reference materials for extracellular vesicle studies.

    Science.gov (United States)

    Valkonen, S; van der Pol, E; Böing, A; Yuana, Y; Yliperttula, M; Nieuwland, R; Laitinen, S; Siljander, P R M

    2017-02-15

    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Extracellular vesicles in obesity and diabetes mellitus.

    Science.gov (United States)

    Pardo, Fabián; Villalobos-Labra, Roberto; Sobrevia, Bastián; Toledo, Fernando; Sobrevia, Luis

    2017-11-24

    Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In vitro toxicology studies of extracellular vesicles.

    Science.gov (United States)

    Maji, Sayantan; Yan, Irene K; Parasramka, Mansi; Mohankumar, Swathi; Matsuda, Akiko; Patel, Tushar

    2017-03-01

    Extracellular vesicles (EVs) are membrane-bound vesicles released from cells into the extracellular environment. There is emerging interest in the use of EVs as potential therapeutic interventions. We sought to evaluate the safety of EVs that may be therapeutically used by performing in vitro toxicological assessments. EVs were obtained from mesenchymal stem cells (MSC-EV) or from bovine milk (BM-EV) by differential ultracentrifugation, and quantitated using nanoparticle tracking analysis. Genotoxic effects, hematological effects, immunological effects and endotoxin production were evaluated at two dose levels. Neither MSC-EVs nor BM-EVs elicited detectable genotoxic effects using either the alkaline comet assay or micronucleus assay. Hemolysis was observed with BM-EVs but not with MSC-EVs. MSC-EVs did not have any significant effect on either spontaneous or collagen-induced platelet aggregation. In contrast, BM-EVs were noted to increase collagen-induced platelet aggregation, even though no spontaneous increase in platelet aggregation was noted. Both types of EVs induced leukocyte proliferation, which was greater with BM-EV. Neither MSC-EVs nor BM-EVs induced HL-60 phagocytosis, although BM-EVs decreased zymosan-induced phagocytosis. Furthermore, neither MSC-EVs nor BM-EVs induced nitric oxide production. Unlike MSC-EVs, BM-EVs tested positive for endotoxin and induced complement activation. There are significant differences in toxicological profiles between MSC-EVs and BM-EVs that may reflect variations in techniques for EV isolation, EV content or cross-species differences. The safety of MSC-EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM-EVs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Membrane fusion of pH-sensitive liposomes – a quantitative study using giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2011-01-01

    This article presents a methodology for developing small-signal behavioral electromagnetic (EM) models of p-i-n photodiodes (PDs) for high-speed applications. The EM model includes RC bandwidth limitation effect and transit-time effect. The model is capable of accurately modeling arbitrary complex...

  16. Number theory arising from finite fields analytic and probabilistic theory

    CERN Document Server

    Knopfmacher, John

    2001-01-01

    ""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.

  17. Biomaterials and Bioactive Agents in Spinal Fusion.

    Science.gov (United States)

    Duarte, Rui M; Varanda, Pedro; Reis, Rui L; Duarte, Ana Rita C; Correia-Pinto, Jorge

    2017-12-01

    Management of degenerative spine pathologies frequently leads to the need for spinal fusion (SF), where bone growth is induced toward stabilization of the interventioned spine. Autologous bone graft (ABG) remains the gold-standard inducer, whereas new bone graft substitutes attempt to achieve effective de novo bone formation and solid fusion. Limited fusion outcomes have driven motivation for more sophisticated and multidisciplinary solutions, involving new biomaterials and/or biologics, through innovative delivery platforms. The present review will analyze the most recent body of literature that is focused on new approaches for consistent bone fusion of spinal vertebrae, including the development of new biomaterials that pursue physical and chemical aptitudes; the delivery of growth factors (GF) to accelerate new bone formation; and the use of cells to improve functional bone development. Bone graft substitutes currently in clinical practice, such as demineralized bone matrix and ceramics, are still used as a starting point for the study of new bioactive agents. Polyesters such as polycaprolactone and polylactic acid arise as platforms for the development of composites, where a mineral element and cell/GF constitute the delivery system. Exciting fusion outcomes were obtained in several small and large animal models with these. On what regards bioactive agents, mesenchymal stem cells, preferentially derived from the bone marrow or adipose tissue, were studied in this context. Autologous and allogeneic approaches, as well as osteogenically differentiated cells, have been tested. These cell sources have further been genetically engineered for specific GF expression. Nevertheless, results on fusion efficacy with cells have been inconsistent. On the other hand, the delivery of GF (most commonly bone morphogenetic protein-2 [BMP-2]) has provided favorable outcomes. Complications related to burst release and dosing are still the target of research through the development

  18. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  19. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research

    Science.gov (United States)

    Witwer, Kenneth W.; Buzás, Edit I.; Bemis, Lynne T.; Bora, Adriana; Lässer, Cecilia; Lötvall, Jan; Nolte-‘t Hoen, Esther N.; Piper, Melissa G.; Sivaraman, Sarada; Skog, Johan; Théry, Clotilde; Wauben, Marca H.; Hochberg, Fred

    2013-01-01

    The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments. PMID:24009894

  20. Removal of Vesicle Structures From Transmission Electron Microscope Images

    Science.gov (United States)

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  1. [EXTRACELLULAR VESICLES: INTERCELLULAR INFORMATION FLOW AND MEDICAL APPLICATIONS].

    Science.gov (United States)

    Pupyshev, A B

    2015-01-01

    The major features of extracellular vesicles secreted by mammalian cells are considered. Cell activation caused by formation of pathology stimulates the secretion acutely. The vesicles (exosomes, microvesicles) are enriched with annexin V, tetraspanin, miRNA. Exosomes are enriched especially by integrins, heat shock proteins. Microvesicles contain elevated amounts of tissue factors, phosphatidylserine, mRNA. The vesicles carry information about the pathological process, and microvesicles contain more proteins characteristic of inflammation and death than exosomes. They are important mediators of inflammation and infection in the body, have different effects on the immune system and the processes of carcinogenesis and neurodegeneration. However, antigenic profiles of extracellular vesicles differ not profoundly in various pathologies and so far they help diagnostics limitedly. The vesicles carry signals of genetic reprogramming of the cells and epigenetic stimulation, connected with both protein factors and mRNA and miRNA. Profiles of miRNA vesicles produced by the various pathological sources are studied actively and are useful as indicators of source and stage of cancer. Some ways of therapeutic use of the vesicles are also considered.

  2. Placenta-derived extracellular vesicles: their cargo and possible functions.

    Science.gov (United States)

    Familari, Mary; Cronqvist, Tina; Masoumi, Zahra; Hansson, Stefan R

    2017-03-01

    The literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions. A meta-analysis of available trophoblast-derived extracellular vesicle proteomic datasets revealed only three proteins in common: albumin, fibronectin-1 and plasminogen activator inhibitor-1, suggesting some variability in vesicle cargo, most likely reflecting stage and cell type of origin. We discuss the possible sources of variability that may have led to the low number of common markers, which has led us to speculate that markers and density in common use may not be strict criteria for identifying and isolating placenta-derived exosomes.

  3. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2006-07-01

    Full Text Available Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.

  4. Leukocytospermia and function of the seminal vesicles on seminal quality.

    Science.gov (United States)

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1992-05-01

    To determine possible relationships between number of leukocytes, function of seminal vesicles, and seminal quality. The study was carried out on men who consecutively attended an infertility clinic between June 1989 to June 1991. This study was conducted in a private immunological center for infertility, a tertiary care center, The Centro Immunológico-Sección Esterilidad y Reproducción. Semen samples from 280 infertility patients attending an Immunological Center for Infertility were analyzed. We evaluated the effect of leukocytospermia in the presence of normal or abnormal function of seminal vesicles on seminal quality. Sperm count, percent of motile sperm, and percent of sperm vitality were significantly reduced when both leukocytospermia and hypofunction of seminal vesicles were present (P less than 0.01). Leukocytospermic subjects with normal function of seminal vesicles showed similar seminal parameters to those nonleukocytspermics. The incidence of subjects with antisperm antibodies measured by direct immunobeads was significantly higher in leukocytospermic men with hypofunction of seminal vesicles. No differences in the incidence of antisperm antibodies with nonleukocytospermic samples were observed in those with both leukocytospermia and normal function of seminal vesicles. These data provide evidence that white blood cells were deleterious for seminal quality when seminal vesicles were also affected.

  5. The tail domain of tomosyn controls membrane fusion through tomosyn displacement by VAMP2

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasunori; Fujikura, Kohei; Sakaue, Mio; Okimura, Kenjiro; Kobayashi, Yuta; Nakamura, Toshihiro [Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Sakisaka, Toshiaki, E-mail: sakisaka@med.kobe-u.ac.jp [Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan)

    2010-08-13

    Research highlights: {yields} The tail domain of tomosyn has no effect on the tomosyn-SNARE complex formation. {yields} The tail domain binding to the VAMP-like domain allows VAMP2 to displace tomosyn. {yields} Tomosyn displacement by VAMP2 leads to SNARE complex formation. {yields} The SNARE complex formation drives membrane fusion. -- Abstract: Neurotransmitter release is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn sequesters target SNAREs (t-SNAREs) through its C-terminal VAMP-like domain (VLD). Cumulative biochemical results suggest that the tomosyn-SNARE complex is so tight that VAMP2 cannot displace tomosyn. Based on these results, the tomosyn-SNARE complex has been believed to be a dead-end complex to inhibit neurotransmitter release. On the other hand, some studies using siRNA depletion of tomosyn suggest that tomosyn positively regulates exocytosis. Therefore, it is still controversial whether tomosyn is a simple inhibitor for neurotransmitter release. We recently reported that the inhibitory activity of tomosyn is regulated by the tail domain binding to the VLD. In this study, we employed the liposome fusion assay in order to further understand modes of action of tomosyn in detail. The tail domain unexpectedly had no effect on binding of the VLD to t-SNARE-bearing liposomes. Nonetheless, the tail domain decreased the inhibitory activity of the VLD on the SNARE complex-mediated liposome fusion. These results indicate that the tail domain controls membrane fusion through tomosyn displacement by VAMP2. Deletion of the tail domain-binding region in the VLD retained the binding to t-SNAREs and promoted the liposome fusion. Together, we propose here a novel mechanism of tomosyn that controls synaptic vesicle fusion positively by serving as a placeholder for VAMP2.

  6. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Haiyan eLi

    2011-11-01

    Full Text Available Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2, and a presynaptically-localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3 with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Re-acidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real-time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.

  7. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  8. Dynamics of multicomponent vesicles in a viscous fluid

    Science.gov (United States)

    Sohn, Jin Sun; Tseng, Yu-Hau; Li, Shuwang; Voigt, Axel; Lowengrub, John S.

    2010-01-01

    We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small. PMID:20808718

  9. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus

    Science.gov (United States)

    Burns, Gregory; Brooks, Kelsey; Wildung, Mark; Navakanitworakul, Raphatphorn; Christenson, Lane K.; Spencer, Thomas E.

    2014-01-01

    Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy. PMID:24614226

  10. Low energy cost for optimal speed and control of membrane fusion.

    Science.gov (United States)

    François-Martin, Claire; Rothman, James E; Pincet, Frederic

    2017-02-07

    Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.

  11. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  12. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules.

    Science.gov (United States)

    Heijnen, H F; Schiel, A E; Fijnheer, R; Geuze, H J; Sixma, J J

    1999-12-01

    Platelet activation leads to secretion of granule contents and to the formation of microvesicles by shedding of membranes from the cell surface. Recently, we have described small internal vesicles in multivesicular bodies (MVBs) and alpha-granules, and suggested that these vesicles are secreted during platelet activation, analogous to the secretion of vesicles termed exosomes by other cell types. In the present study we report that two different types of membrane vesicles are released after stimulation of platelets with thrombin receptor agonist peptide SFLLRN (TRAP) or alpha-thrombin: microvesicles of 100 nm to 1 microm, and exosomes measuring 40 to 100 nm in diameter, similar in size as the internal vesicles in MVBs and alpha-granules. Microvesicles could be detected by flow cytometry but not the exosomes, probably because of the small size of the latter. Western blot analysis showed that isolated exosomes were selectively enriched in the tetraspan protein CD63. Whole-mount immuno-electron microscopy (IEM) confirmed this observation. Membrane proteins such as the integrin chains alpha(IIb)-beta(3) and beta(1), GPIbalpha, and P-selectin were predominantly present on the microvesicles. IEM of platelet aggregates showed CD63(+) internal vesicles in fusion profiles of MVBs, and in the extracellular space between platelet extensions. Annexin-V binding was mainly restricted to the microvesicles and to a low extent to exosomes. Binding of factor X and prothrombin was observed to the microvesicles but not to exosomes. These observations and the selective presence of CD63 suggest that released platelet exosomes may have an extracellular function other than the procoagulant activity, attributed to platelet microvesicles.

  13. Ionic control of the size of the vesicle matrix of beige mouse mast cells.

    Science.gov (United States)

    Curran, M J; Brodwick, M S

    1991-10-01

    Isolated matrices of the giant secretory vesicles of mast cells of the beige mouse were reliably produced by the osmotic lysis of isolated vesicles. These matrices maintained their form, and their sizes were easily measured using Nomarski optics. The size of the matrix depended on the ionic composition of the bathing solution. The physiologically relevant ions, histamine and serotonin, contracted the matrix. Multivalent cations condensed the matrix relative to univalents. Ag+, acid pH (below 5), and basic pH (above 9) expanded the matrix. In the presence of 10 mM histamine, lowering the pH from 9 to 5 contracted the matrix more than can be attributed to the pH-dependent matrix contraction in zero histamine. The nontitratable organic cation, dimethonium, contracts the matrix with little effect of pH in the range of 5-9. These results suggest that histamine acts as a matrix contractor in the divalent form. The dose-response (contraction) relation for histamine was gradual from micromolar to 316 mM (millimolar) histamine. Experiments with mixtures of histamine and sodium show antagonistic effects on the matrix but are inconsistent with either a model where ions compete for identical sites or a parallel model where ions interact with separate independent sites. In vigorous histamine washoff experiments, the half time for vesicle expansion in 10(-4) M pH buffer was approximately 4 s; in isotonic NaCl solution, it was 0.5 s. When 1 M histamine was presented to closely apposed matrices, fusion resulted. The matrix material returned to its initial shape after being mechanically deformed with a glass probe. These results suggest that the matrix size is controlled by its ion exchange properties. The matrix expansion can quantitatively account for the vesicular size increase observed upon exocytosis (as a postfusional event) and the osmotic nonideality of intact vesicles. The mechanical expansion is probably significant in the widening of the exocytotic pore and the dispersal

  14. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Directory of Open Access Journals (Sweden)

    Erik Ronzone

    Full Text Available Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  15. Identification of cancer fusion drivers using network fusion centrality

    Science.gov (United States)

    Wu, Chia-Chin; Kannan, Kalpana; Lin, Steven; Yen, Laising; Milosavljevic, Aleksandar

    2013-01-01

    Summary: Gene fusions are being discovered at an increasing rate using massively parallel sequencing technologies. Prioritization of cancer fusion drivers for validation cannot be performed using traditional single-gene based methods because fusions involve portions of two partner genes. To address this problem, we propose a novel network analysis method called fusion centrality that is specifically tailored for prioritizing gene fusions. We first propose a domain-based fusion model built on the theory of exon/domain shuffling. The model leads to a hypothesis that a fusion is more likely to be an oncogenic driver if its partner genes act like hubs in a network because the fusion mutation can deregulate normal functions of many other genes and their pathways. The hypothesis is supported by the observation that for most known cancer fusion genes, at least one of the fusion partners appears to be a hub in a network, and even for many fusions both partners appear to be hubs. Based on this model, we construct fusion centrality, a multi-gene-based network metric, and use it to score fusion drivers. We show that the fusion centrality outperforms other single gene-based methods. Specifically, the method successfully predicts most of 38 newly discovered fusions that had validated oncogenic importance. To our best knowledge, this is the first network-based approach for identifying fusion drivers. Availability: Matlab code implementing the fusion centrality method is available upon request from the corresponding authors. Contact: perwu777@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23505294

  16. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. Published by Elsevier Ltd.

  17. Mating-reactive membrane vesicles from cilia of Paramecium caudatum

    Science.gov (United States)

    1976-01-01

    Membrane vesicles with a high mating reactivity were obtained from cilia of Paramecium caudatum by treatment with a solution containing 2 M urea and 0.1 mM Na2-EDTA. All processes of conjugation were induced in cells of the complementary mating type by approximately 10 mug/ml proteins of the vesicles. Electron microscope observation showed that the membrane vesicles have a diameter of 100-150 nm. Electrophoretic analysis on SDS polyacrylamide gel revealed no significant difference in polypeptide patterns of the particles from the two complementary mating types. PMID:818093

  18. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  19. Ba2+-inhibitable /sup 86/Rb+ fluxes across membranes of vesicles from toad urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Garty, H.; Civan, M.M.

    1987-01-01

    /sup 86/Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6 mM. The effects of externally added cations on /sup 86/Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. The Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry.

  20. Analysis of bacteria-derived outer membrane vesicles using tunable resistive pulse sensing

    Science.gov (United States)

    Bogomolny, Evgeny; Hong, Jiwon; Blenkiron, Cherie; Simonov, Denis; Dauros, Priscila; Swift, Simon; Phillips, Anthony; Willmott, Geoff R.

    2015-03-01

    Accurate characterization of submicron particles within biological fluids presents a major challenge for a wide range of biomedical research. Detection, characterization and classification are difficult due to the presence of particles and debris ranging from single molecules up to particles slightly smaller than cells. Especial interest arises from extracellular vesicles (EVs) which are known to play a pivotal role in cell-signaling in multicellular organisms. Tunable resistive pulse sensing (TRPS) is increasingly proving to be a useful tool for high throughput particle-by-particle analysis of EVs and other submicron particles. This study examines the capability of TRPS for characterization of EVs derived from bacteria, also called outer membrane vesicles (OMVs). Measurement of a size distribution (124 +/- 3 nm modal diameter) and concentration (lower bound 7.4 x 109 mL-1) are demonstrated using OMVs derived from uropathogenic Escherichia coli. Important aspects of measurement are discussed, including sample preparation and size selection. Application of TRPS to study EVs could assist the development of these particles in clinical diagnostics and therapeutics.

  1. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis.

    Science.gov (United States)

    Petrie, Matt; Esquibel, Joseph; Kabachinski, Greg; Maciuba, Stephanie; Takahashi, Hirohide; Edwardson, J Michael; Martin, Thomas F J

    2016-09-30

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca 2+ -triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P 2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P 2 -triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Huntingtin-associated protein-1 is a synapsin I-binding protein regulating synaptic vesicle exocytosis and synapsin I trafficking.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lumsden, Amanda L; Guo, Feng; Duffield, Michael D; Chataway, Timothy; Lim, Yoon; Zhou, Xin-Fu; Keating, Damien J

    2016-09-01

    Huntingtin-associated protein-1 (HAP1) is involved in intracellular trafficking, vesicle transport, and membrane receptor endocytosis. However, despite such diverse functions, the role of HAP1 in the synaptic vesicle (SV) cycle in nerve terminals remains unclear. Here, we report that HAP1 functions in SV exocytosis, controls total SV turnover and the speed of vesicle fusion in nerve terminals and regulates glutamate release in cortical brain slices. We found that HAP1 interacts with synapsin I, an abundant neuronal phosphoprotein that associates with SVs during neurotransmitter release and regulates synaptic plasticity and neuronal development. The interaction between HAP1 with synapsin I was confirmed by reciprocal co-immunoprecipitation of the endogenous proteins. Furthermore, HAP1 co-localizes with synapsin I in cortical neurons as discrete puncta. Interestingly, we find that synapsin I localization is specifically altered in Hap1(-/-) cortical neurons without an effect on the localization of other SV proteins. This effect on synapsin I localization was not because of changes in the levels of synapsin I or its phosphorylation status in Hap1(-/-) brains. Furthermore, fluorescence recovery after photobleaching in transfected neurons expressing enhanced green fluorescent protein-synapsin Ia demonstrates that loss of HAP1 protein inhibits synapsin I transport. Thus, we demonstrate that HAP1 regulates SV exocytosis and may do so through binding to synapsin I. The Proposed mechanism of synapsin I transport mediated by HAP1 in neurons. HAP1 interacts with synapsin I, regulating the trafficking of synapsin I containing vesicles and/or transport packets, possibly through its engagement of microtubule motors. The absence of HAP1 reduces synapsin I transport and neuronal exocytosis. These findings provide insights into the processes of neuronal trafficking and synaptic signaling. © 2016 International Society for Neurochemistry.

  3. Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall.

    Science.gov (United States)

    Salnikov, Vadim V; Ageeva, Marina V; Gorshkova, Tatyana A

    2008-11-01

    The gelatinous type of secondary cell wall is present in tension wood and in phloem fibers of many plants. It is characterized by the absence of xylan and lignin, a high cellulose content and axially orientated microfibrils in the huge S2 layer. In flax phloem fiber, the major non-cellulosic component of such cell walls is tissue-specific galactan, which is tightly bound to cellulose. Ultrastructural analysis of flax fiber revealed that initiation of gelatinous secondary cell wall formation was accompanied by the accumulation of specific Golgi vesicles, which had a characteristic bicolor (dark-light) appearance and were easily distinguishable from vesicles made in different tissues and during the other stages of fiber development. Many of the bicolor vesicles appeared to fuse with each other, forming large vacuoles. The largest observed was 4 mum in diameter. Bicolor vesicles and vacuoles fused with the plasma membrane and spread their content in a characteristic "syringe-like" manner, covering a significant area of periplasm and forming "dark" stripes on the inner wall surface. Both Golgi derivatives and cell wall layers were labeled by LM5 antibody, indicating the presence of tissue- and stage-specific (1-->4)-beta-galactan. We suggest that this specific type of galactan secretion, which allows coverage of a large area of periplasm, is designed to increase the chance of the galactan meeting the cellulose microfibrils while they are still in the process of construction. The membrane fusion machinery of flax fiber must possess special components, which may be crucial for the formation of the gelatinous type cell wall.

  4. Pannexin2 oligomers localize into endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Daniela eBoassa

    2015-02-01

    Full Text Available Pannexin2 (Panx2 is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS have been documented. Whereas Pannexin1 (Panx1 is fairly ubiquitous and Pannexin3 (Panx3 is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the

  5. Fusion Electra: A Krypton Fluoride Laser for Fusion Energy

    National Research Council Canada - National Science Library

    Sethian, J; Friedman, M; Giuliani, J; Lehmberg, R; Myers, M; Obenschain, S; Hegeler, F; Swanekamp, S

    2001-01-01

    .... We will focus on technologies that can be scalable to the 50-150 kJ energy needed for a full-size fusion power plant beam line and are projected to meet the economic requirements for fusion power...

  6. Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion.

    Science.gov (United States)

    Petrov, Alexey M; Zakyrjanova, Guzalija F; Yakovleva, Anastasia A; Zefirov, Andrei L

    2015-01-02

    Previous studies demonstrated that depletion of membrane cholesterol by 10mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement of spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  8. Cryogenics for Fusion

    Science.gov (United States)

    Dauguet, P.; Gistau-Baguer, G. M.; Bonneton, M.; Boissin, J. C.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.

    2008-03-01

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to "fusion for energy" will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  9. Naja naja atra and Naja nigricollis cardiotoxins induce fusion of Escherichia coli and Staphylococcus aureus membrane-mimicking liposomes.

    Science.gov (United States)

    Kao, Pei-Hsiu; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2012-09-01

    Our previous studies showed that the bactericidal effect of Naja naja atra cardiotoxin 3 (CTX3) and Naja nigricollis toxin γ was associated with their membrane-damaging activity. To elucidate the mechanism responsible for CTX3- and toxin γ-induced membrane permeability, we investigated the interacted mode of CTX3 and toxin γ with model membrane of Escherichia coli (phosphatidylethanolamine (PE)/phosphatidylglycerol (PG), mol/mol, 75/25) and Staphylococcus aureus (PG/cardiolipin, mol/mol, 60/40) in this study. Membrane-damaging activity of toxin γ on PE/PG and PG/cardiolipin vesicles were similar, while CTX3-induced leakage of PG/cardiolipin vesicles was notably higher than that of PE/PG vesicles. Noticeably, fusogenic activity of CTX3 and toxin γ on the phospholipid vesicles correlated positively with their membrane-damaging activity. Unlike toxin γ, CTX3 induced increasingly leakage and fusion of phospholipid vesicles with increased cardiolipin content. Changes in membrane fluidity and lipid packing occurred with the binding of CTX3 and toxin γ with vesicles, reflecting the penetration of toxin molecules into membrane bilayers. Consistent with the finding that PE/PG and PG/cardiolipin vesicles induced differently conformational changes of CTX3 and toxin γ, CTX3 and toxin γ adopted different membrane bound-mode upon absorption onto either PE/PG or PG/cardiolipin vesicles. Taken together, our data indicate that membrane-bound mode and membrane-perturbing effect of CTX3 and toxin γ in concert with targeted membrane compositions determine their fusogenicity and membrane-damaging activity, and suggest a causal relationship between bactericidal activity and fusogenicity of CTX3 and toxin γ. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    Science.gov (United States)

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. © 2016. Published by The Company of Biologists Ltd.

  11. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  12. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  13. Fusion for Space Propulsion

    Science.gov (United States)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  14. Multisensor Data Fusion and Integration for Mobile Robots: A Review

    Directory of Open Access Journals (Sweden)

    KS Nagla

    2013-09-01

    Full Text Available One of the most important and useful feature of autonomous mobile robots is their ability to adopt themselves to operate in unstructured environment. Today robots are performing autonomously in industrial floor, office environments, as well as in crowded public places where the robots need to maintain their localization and mapping parameters.The basic requirement of an intelligent mobile robot is to develop and maintain localization and mapping parameters to complete the complex missions. In such situations, several difficulties arise in due to the inaccuracies and uncertainties in sensor measurements. Various techniques are there to handle such noises where the multisensor data fusion is not the exceptional one.From the last two decades, multisensor data fusions in mobile robots become a dominant paradigm  due to its potential advantages like reduction in uncertainty, increase in accuracy and reliability and reduction of cost.This paper presents the reviews of autonomous mobile robots and role of multisenosr data fusion.

  15. Light-dependent delta pH and membrane potential changes in halobacterial vesicles coupled to sodium transport

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, N.; Racanelli, T.; Packer, L.

    1982-01-01

    Bacteriorhodopsin and Halorhodopsin present in Halobacterium halobium strains have been investigated in relation to Na/sup +//H/sup +/ exchange in isolated cell envelope vesicles. Upon illumination, these retinal proteins result in extrusion of sodium ions by either an electrogenic Na/sup +//Ha/sup +/ antiporter and/or a direct sodium pump. Since a molecular characterization of these mechanism(s) of sodium extrusion has not yet been realized, it was of interest to measure directly the light- and sodium-dependent changes in delta pH and membrane potential under nearly identical conditions in S9 and R1mR cell membrane vesicles to gain information on the relation of these retinal proteins to sodium extrusion. These activities were evaluated in terms of their dependence on light intensity, and on the inhibitory effect of chemical modifiers of carboxyl groups (carbodiimides); electroneutral exchanges (monensin and triphenyltin); digitoxin and some analogues; and phloretin. Under most of the conditions and treatments employed, light- and sodium-dependent delta pH led to similar effects in both membrane vesicle types. Hence, it is concluded that the delta pH and delta psi which arise from sodium transport occur by either a single mechanism or by one which shares common features.

  16. Visualization of peptide secretory vesicles in living nerve cells.

    Science.gov (United States)

    Park, Joshua J; Loh, Y Peng

    2011-01-01

    Analysis of real-time movements of peptidergic vesicles in live neurons provides insight into molecular mechanism(s) supporting the activity-dependent secretion of neurotrophins and neuropeptides. We examined the effect of overexpression of exogenous peptides comprising of the cytoplasmic tail sequence of vesicular carboxypeptidase E (CPE), proposed to be involved in the mechanism of trafficking of peptidergic secretory vesicles, in live hippocampal neurons. E16 rat hippocampal neurons were transfected with the peptidergic vesicle markers, CPE C-terminally tagged with red or green fluorescent protein, or brain-derived neurotrophic factor (BDNF) tagged with green fluorescent protein, and grown on dishes specialized for real-time live cell visualization. Movements of peptidergic vesicles were imaged in a temperature-controlled chamber on a confocal inverted microscope and analyzed with respect to their velocity, displacement distance, and processivity.

  17. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  18. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  19. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  20. Theory of dielectric response of charged-bilayer-vesicle solutions

    Science.gov (United States)

    Lu, C.-Y. D.

    1996-10-01

    The dielectric response is calculated for a solution containing charged bilayer vesicles and simple electrolyte. The solution is assumed to contain a high salt concentration so that the Debye screening length is small compared to the size of the vesicles. The presence of two (electric) double layers, one on each side of the bilayer, gives low-frequency salt relaxations (kHz for 1 μm vesicles) that explain the experimentally observed α relaxations which are known to appear only for charged vesicles. The double layers also modify the high-frequency β relaxations which have been previously modeled by using the Maxwell-Wagner theory. The calculation method can be easily extended to other bilayer geometries.

  1. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  2. Yeast Membrane Vesicles: Isolation and General Characteristics1

    Science.gov (United States)

    Christensen, Michael S.; Cirillo, Vincent P.

    1972-01-01

    Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848

  3. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates.

    Science.gov (United States)

    Sotillo, Javier; Pearson, Mark; Potriquet, Jeremy; Becker, Luke; Pickering, Darren; Mulvenna, Jason; Loukas, Alex

    2016-01-01

    Herein we show for the first time that Schistosoma mansoni adult worms secrete exosome-like extracellular vesicles ranging from 50 to 130nm in size. Extracellular vesicles were collected from the excretory/secretory products of cultured adult flukes and purified by Optiprep density gradient, resulting in highly pure extracellular vesicle preparations as confirmed by transmission electron microscopy and Nanosight tracking analysis. Extracellular vesicle proteomic analysis showed numerous known vaccine candidates, potential virulence factors and molecules implicated in feeding. These findings provide new avenues for the exploration of host-schistosome interactions and offer a potential mechanism by which some vaccine antigens exert their protective efficacy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Large Deformation Mechanics of Plasma Membrane Chained Vesicles in Cells

    Science.gov (United States)

    Kosawada, Tadashi; Sanada, Kouichi; Takano, Tetsuo

    The clathrin-coated pits, vesicles and chained vesicles on the inner surface of the plasma membrane facilitate the cell to transport specific extracellular macromolecules. This cellular process is strongly involved with large mechanical deformations of the plasma membrane accompanied by changes in membrane curvature. The assembly of the clathrin coat is thought to provide curvature into the membrane. Hence, effects of in-plane shear elasticity due to these coat structure may be significant on the vesicular mechanics. In this study, large deformation mechanics of plasma membrane chained vesicles in cells have been formulated based on minimization of bending and in-plane shear strain energy of the membrane. Effects of outer surrounding cytoplasmic flat membrane upon mechanically stable shapes of the vesicles were revealed, while effects of in-plane shear elasticity were partly discussed.

  5. Assembly of cells and vesicles for organ engineering

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tetsushi, E-mail: taguchi.tetsushi@nims.go.jp [Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-12-15

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  6. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain...... obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...... regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation...

  7. Assembly of cells and vesicles for organ engineering

    Science.gov (United States)

    Taguchi, Tetsushi

    2011-12-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.

  8. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  9. Extracellular vesicles in human follicular fluid do not promote coagulation.

    Science.gov (United States)

    Franz, Cordula; Böing, Anita N; Montag, Markus; Strowitzki, Thomas; Markert, Udo R; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-11-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an observational study, follicular fluid from women undergoing IVF/intracytoplasmic sperm injection (ICSI) was analysed by fluorescence-activated cell sorting (FACS), electron microscopy, resistive pulse sensing (RPS), nanoparticle-tracking analysis (NTA) and fibrin generation tests (FGT). The presence of extracellular vesicles, especially CD9-positive extracellular vesicles in follicular fluid, was proven. However, clotting tests revealed no procoagulant properties of the detected extracellular vesicles. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Unilamellar Vesicle Formation and Encapsulation by Microfluidic Jetting

    National Research Council Canada - National Science Library

    Jeanne C. Stachowiak; David L. Richmond; Thomas H. Li; Allen P. Liu; Sapun H. Parekh; Daniel A. Fletcher

    2008-01-01

    ...) using a pulsed microfluidic jet. Akin to blowing a bubble, the microfluidic jet deforms a planar lipid bilayer into a vesicle that is filled with solution from the jet and separates from the planar bilayer...

  11. Four Different Tumors Arising in a Nevus Sebaceous

    Directory of Open Access Journals (Sweden)

    Takeshi Namiki

    2016-04-01

    Full Text Available Nevus sebaceous is known by its association with one or more secondary tumors, but more than three multiple tumors arising from a nevus sebaceous is extremely rare. A 67-year-old female presented with a light brown plaque on the back of her head that contained a dome-shaped black node and an erosive lesion. Histopathological examination showed atypical basaloid cells in the black node. At the periphery of that node, structures resembling follicular germs extruded from interlacing cords in the upper portion and tumor nests with sebocytes were in the lower portion. In the erosive lesion, papillated structures with an apocrine epithelium were observed. In the light brown plaque, enlargement of sebaceous lobules was noted. From those histopathological features, a diagnosis of syringocystadenoma papilliferum, sebaceoma, trichoblastoma and basal cell carcinoma arising from a nevus sebaceous was made. We discuss the rarity of multiple tumors arising from a nevus sebaceous.

  12. Anomalous Posterior Intercostal Arterial Trunk Arising From the Abdominal Aorta

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Bing, E-mail: jbshh@163.com; Yu, Dong, E-mail: yudong-mail@126.com; Jiang, Sen, E-mail: jasfly77@vip.163.com [Tongji University School of Medicine, Department of Radiology, Shanghai Pulmonary Hospital (China)

    2016-04-15

    A common trunk of the ipsilateral posterior intercostal artery (PIA) arising from the thoracic aorta is usually an anatomical variation. However, a common trunk of bilateral posterior intercostal arterial trunk (PIAT) arising from the abdominal aorta is rare. It is important to recognize this anatomical variation of PIA when performing interventional radiological procedures. We present a rare case of an anomalous PIAT that originated from the abdominal aorta in a patient with hemoptysis caused by tuberculosis sequelae. Bilateral 4th to 11th PIAs arose from a common trunk and the trunk arising from the posterior aspect of the abdominal aorta at the level of T12/L1 intervertebral space. The pathological right 4th and 5th PIAs and bronchial arteries were embolized. Hemoptysis has been controlled for 3 months.

  13. Workmanship standards for fusion welding

    Science.gov (United States)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  14. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  15. Multisensor data fusion algorithm development

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  16. The quest for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1997-10-01

    A brief history of the magnetic fusion program from the point of view of a stellarator enthusiast who worked at a major tokamak laboratory. The reason that success in the magnetic fusion energy program is essential is presented. (author)

  17. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  18. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    OpenAIRE

    Yuana, Yuana; Koning, Roman I.; Maxim E. Kuil; Rensen, Patrick C.N.; Koster, Abraham J.; Bertina, Rogier M.; Osanto, Susanne

    2013-01-01

    Introduction: Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.Objectives: To image EV and determine the morphology, ...

  19. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  20. Luminescent functionalized vesicles: synthesis, characterization and analytical applications

    OpenAIRE

    Balk, Stefan

    2014-01-01

    This work describes the membrane functionalization of small unilamellar phospholipid vesicles by incorporation of artificial amphiphiles. The presented investigations demonstrate a fast and simple approach for sensing molecular recognition events at the membrane-water interface. Chapter 1 describes the dynamic recognition of multivalent ligands by receptor recruiting in fluid vesicle membranes. Two amphiphilic metal-complexes with attached FRET-pair labels were prepared and embedded into D...

  1. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative...... vesicles. Pulse-chase and intravital imaging experiments suggested EVs liberated by exercise have a propensity to localize in the liver and can transfer their protein cargo. Moreover, by employing arteriovenous balance studies across the contracting human limb, we identified several novel candidate...

  2. TNF-? promotes extracellular vesicle release in mouse astrocytes through glutaminase

    OpenAIRE

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C.

    2017-01-01

    Background Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-? promotes glutaminase expression in neurons. However, the expressio...

  3. Adsorption and encapsulation of flexible polyelectrolytes in charged spherical vesicles

    Science.gov (United States)

    Shojaei, H. R.; Muthukumar, M.

    2017-06-01

    We present a theory of adsorption of flexible polyelectrolytes on the interior and exterior surfaces of a charged vesicle in an electrolyte solution. The criteria for adsorption and the density profiles of the adsorbed polymer chain are derived in terms of various characteristics of the polymer, vesicle, and medium, such as the charge density and length of the polymer, charge density and size of the vesicle, electrolyte concentration and dielectric constant of the medium. For adsorption inside the vesicle, the competition between the loss of conformational entropy and gain in adsorption energy results in two kinds of encapsulated states, depending on the strength of the polymer-vesicle interaction. By considering also the adsorption from outside the vesicle, we derive the entropic and energy contributions to the free energy change to transfer an adsorbed chain in the interior to an adsorbed chain on the exterior. In this paper, we have used the Wentzel-Kramers-Brillouin (WKB) method to solve the equation for the probability distribution function of the chain. The present WKB results are compared with the previous results based on variational methods. The WKB and variational results are in good agreement for both the interior and exterior states of adsorption, except in the zero-salt limit for adsorption in the exterior region. The adsorption criteria and density profiles for both the interior and exterior states are presented in terms of various experimentally controllable variables. Calculation of the dependencies of free energy change to transfer an adsorbed chain from the interior to the exterior surface on salt concentration and vesicle radius shows that the free energy penalty to expel a chain from a vesicle is only of the order of thermal energy.

  4. Papillary Carcinoma Arising from the Pyramidal Lobe of the Thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Gi; Lee, Sarah; Kim, Eun Kyung; Moon, Hee Jung; Kwak, Jin Young [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    The authors present a rare case of papillary carcinoma arising from the pyramidal lobe of the thyroid in a 54-year-old woman, who presented with a right submental palpable mass. An ultrasound evaluation depicted a 3 cm mixed echoic mass from the thyroid cartilage level without a focal lesion in the thyroid gland. Surgical specimens obtained during bilateral thyroidectomy confirmed papillary carcinoma of the pyramidal lobe. To the authors' knowledge, this is the first case report to describe papillary carcinoma arising from the pyramidal lobe of the thyroid gland

  5. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  6. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  7. Membrane tension and membrane fusion

    OpenAIRE

    Kozlov, Michael M.; Chernomordik, Leonid V.

    2015-01-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  8. Melanoma affects the composition of blood cell-derived extracellular vesicles

    OpenAIRE

    Nina Koliha; Ute Heider; Tobias Ozimkowski; Martin Wiemann; Andreas Bosio; Stefan Wild

    2016-01-01

    Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of...

  9. Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision

    OpenAIRE

    Jernej Zupanc; Barbara Drašler; Sabina Boljte; Veronika Kralj-Iglič; Aleš Iglič; Deniz Erdogmus; Damjana Drobne

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their ...

  10. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  11. Extracellular Vesicles and Autophagy in Osteoarthritis

    Science.gov (United States)

    Guo, Weimin; Chen, Mingxue; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Li, Penghao; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Zhang, Li; Xu, Wenjing; Lu, Shibi

    2016-01-01

    Osteoarthritis (OA) is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs) are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies. PMID:28078284

  12. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  13. The Role of Ion Selectivity of the Fusion Pore on Transmission and the Exocytosis of Neurotransmitters and Hormones

    Science.gov (United States)

    Delacruz, Joannalyn Bongar

    Healthy nervous system function depends on proper transmission. Synaptic transmission occurs by the release of transmitters from vesicles that fuse to the plasma membrane of a pre-synaptic cell. Regulated release of neurotransmitters, neuropeptides, and hormones occurs by exocytosis, initiated by the formation of the fusion pore. The initial fusion pore has molecular dimensions with a diameter of 1-2 nm and a rapid lifetime on the millisecond time scale. It connects the vesicular lumen and extracellular space, serving as an important step for regulating the release of charged transmitters. Comprehending the molecular structure and biophysical properties of the fusion pore is essential for a mechanistic understanding of vesicle-plasma membrane fusion and transmitter release. Release of charged transmitter molecules such as glutamate, acetylcholine, dopamine, or noradrenaline through a narrow fusion pore requires compensation of change in charge. Transmitter release through the fusion pore is therefore an electrodiffusion process. If the fusion pore is selective for specific ions, then its selectivity will affect the rate of transmitter release via the voltage gradient that develops across the fusion pore. The elucidation of these mechanisms can lead to a better understanding of nervous system cell biology, neural and endocrine signaling, learning, memory, motor control, sensory function and integration, and in particular synaptic transmission. This investigation can advance our understanding of neurological disorders in which noradrenergic and dopaminergic exocytosis is disturbed, leading to neurological consequences of developmental disorders, epilepsy, Parkinson's disease, and other neurodegenerative diseases. Ultimately, understanding the role of selectivity in the fusion pore and its effects on exocytosis can contribute to the development of more effective therapies. This study investigates the selectivity of the fusion pore by observing the effects of ion

  14. Asymmetric osmotic water permeation through a vesicle membrane

    Science.gov (United States)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  15. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  16. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  17. Biogenesis and function of ESCRT-dependent extracellular vesicles.

    Science.gov (United States)

    Juan, Thomas; Fürthauer, Maximilian

    2018-02-01

    From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure.

    Science.gov (United States)

    Peters, K R; Carley, W W; Palade, G E

    1985-12-01

    Capillary endothelial cells have a large population of small (65-80 nm diameter in transmission electron microscopy) vesicles of which a large fraction is associated with the plasmalemma of the luminal and abluminal side. We studied the fine structure and distribution of these plasmalemmal vesicles by high resolution scanning electron microscopy in cultured endothelial cells obtained from bovine adrenal cortical capillaries. Cell monolayers were covered with polylysine-coated silicon chips, split in high potassium buffer, fixed in aldehyde mixtures, and then treated with OsO4 and thiocarbohydrazide. After critical point drying, the specimens were coated with a thin (less than 2 nm) continuous film of chromium. On the cytoplasmic aspect of the dorsal plasmalemmal fragments seen in such specimens, plasmalemmal vesicles appear as uniform vesicular protrusions approximately 70-90 nm in diameter, preferentially concentrated in distinct large fields in which they occur primarily as single units. Individual plasmalemmal vesicles exhibit a striped surface fine structure which consists of ridges approximately 10 nm in diameter, separated by furrows and oriented as meridians, often ending at two poles on opposite sides of the vesicles in a plane parallel to the plasmalemma. This striped surface structure is clearly distinct from the cage structure of coated pits found, at low surface density, on the same specimens. The cytoplasmic aspect of the plasmalemma proper is covered by a fibrillar infrastructure which does not extend over plasmalemmal vesicles but on which the latter appear to be anchored by fine filaments.

  19. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  20. Minimal experimental requirements for definition of extracellular vesicles and their functions : a position statement from the International Society for Extracellular Vesicles

    NARCIS (Netherlands)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently

  1. Graphite for fusion energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  2. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-12-15

    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  3. Mars manned fusion spaceship

    Science.gov (United States)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  4. Bouillabaisse sushi fusion power

    CERN Multimedia

    2004-01-01

    "If avant-garde cuisine is any guide, Japanese-French fusion does not work all that well. And the interminable discussions over the International Thermonuclear Experimental Reactor (ITER) suggest that what is true of cooking is true of physics" (1 page)

  5. Separating fusion from rivalry.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    Full Text Available Visual fusion is the process in which differing but compatible binocular information is transformed into a unified percept. Even though this is at the basis of binocular vision, the underlying neural processes are, as yet, poorly understood. In our study we therefore aimed to investigate neural correlates of visual fusion. To this end, we presented binocularly compatible, fusible (BF, and incompatible, rivaling (BR stimuli, as well as an intermediate stimulus type containing both binocularly fusible and monocular, incompatible elements (BFR. Comparing BFR stimuli with BF and BR stimuli, respectively, we were able to disentangle brain responses associated with either visual fusion or rivalry. By means of functional magnetic resonance imaging, we measured brain responses to these stimulus classes in the visual cortex, and investigated them in detail at various retinal eccentricities. Compared with BF stimuli, the response to BFR stimuli was elevated in visual cortical areas V1 and V2, but not in V3 and V4 - implying that the response to monocular stimulus features decreased from V1 to V4. Compared to BR stimuli, the response to BFR stimuli decreased with increasing eccentricity, specifically within V3 and V4. Taken together, it seems that although the processing of exclusively monocular information decreases from V1 to V4, the processing of binocularly fused information increases from earlier to later visual areas. Our findings suggest the presence of an inhibitory neural mechanism which, depending on the presence of fusion, acts differently on the processing of monocular information.

  6. Separating fusion from rivalry.

    Science.gov (United States)

    Kallenberger, Stefan M; Schmidt, Constanze; Dechent, Peter; Forster, Clemens; von Steinbüchel, Nicole; Wüstenberg, Torsten; Strasburger, Hans

    2014-01-01

    Visual fusion is the process in which differing but compatible binocular information is transformed into a unified percept. Even though this is at the basis of binocular vision, the underlying neural processes are, as yet, poorly understood. In our study we therefore aimed to investigate neural correlates of visual fusion. To this end, we presented binocularly compatible, fusible (BF), and incompatible, rivaling (BR) stimuli, as well as an intermediate stimulus type containing both binocularly fusible and monocular, incompatible elements (BFR). Comparing BFR stimuli with BF and BR stimuli, respectively, we were able to disentangle brain responses associated with either visual fusion or rivalry. By means of functional magnetic resonance imaging, we measured brain responses to these stimulus classes in the visual cortex, and investigated them in detail at various retinal eccentricities. Compared with BF stimuli, the response to BFR stimuli was elevated in visual cortical areas V1 and V2, but not in V3 and V4 - implying that the response to monocular stimulus features decreased from V1 to V4. Compared to BR stimuli, the response to BFR stimuli decreased with increasing eccentricity, specifically within V3 and V4. Taken together, it seems that although the processing of exclusively monocular information decreases from V1 to V4, the processing of binocularly fused information increases from earlier to later visual areas. Our findings suggest the presence of an inhibitory neural mechanism which, depending on the presence of fusion, acts differently on the processing of monocular information.

  7. International fusion og spaltning

    DEFF Research Database (Denmark)

    Hansen, Lone L.

    Bogen analyserer de nye muligheder fra 2007 i europæisk ret med hensyn til fusion eller spaltning mellem aktieselskaber og anpartsselskaber med hjemsted i forskellige europæiske lande. Bogen gennemgår de nye muligheder for strukturændringer, der herved er opstået mulighed for, og den sætter fokus...

  8. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  9. Osteosarcoma Arising in a S,olitary Osteochondroma

    African Journals Online (AJOL)

    1971-07-24

    Jul 24, 1971 ... In his patients osteo- sarcoma arose from an osteochondroma at the distal end of the femur. The complete files of the Mayo Clinic contain only 3 such cases.' Anderson et al.' reported a case of a sarcoma arising from an osteochondroma of the upper tibia. There was some doubt a to the precise histology of.

  10. Primary Malignant Amelanotic Melanoma Arising From a Vitiligo ...

    African Journals Online (AJOL)

    Skin cancer is rare in people of African origin while vitiligo occurs worldwide. The occurrence of primary malignant melanoma and vitiligo together is very rare. We present a rare case of primary malignant amelanotic melanoma arising from a depigmented patch of a patient with vitiligo. It was completely excised and followed ...

  11. Solitary fibrous tumor arising in an intrathoracic goiter

    DEFF Research Database (Denmark)

    Larsen, Stine Rosenkilde; Godballe, Christian; Krogdahl, Annelise

    2010-01-01

    BACKGROUND: Solitary fibrous tumor (SFT) is a rare spindle cell tumor most often found in the mediastinal pleura. Nineteen cases of SFT arising in the thyroid gland have been reported. We report a case of SFT of the thyroid gland with immunohistochemical and cytogenetic investigation. SUMMARY: A 58...

  12. Infiltrative Oncocytoma arising from minor salivary glands of palate ...

    African Journals Online (AJOL)

    Oncocytoma of salivary gland origin is an uncommon tumor found mainly in the parotid gland. On rare occasions, oncocytoma arise in the intra-oral minor salivary glands; having a greater tendency for locally aggressive behavior and infiltrating the adjacent tissues due to incomplete encapsulation. The current case is of ...

  13. Lower Limb Injuries Arising From Motorcycle Crashes | Kortor ...

    African Journals Online (AJOL)

    Methods: All the patients with lower limb injuries arising from motorcycle accidents who presented in our hospital between 1st October 2006 and 30th September 2007 were reviewed. History was obtained and detailed examination was done after resuscitation to determine the site, nature and the characteristics of injuries.

  14. Transcultural Knowledge and Skills Transfer: Issues Arising from Evaluation Processes

    Science.gov (United States)

    Green, Anita J.; Holloway, David G.

    2007-01-01

    The transfer of knowledge, policy and practice between nations increasingly involves knowledge of the theory and practice of evaluation. This article examines issues arising from the transcultural evaluation of a drug and alcohol misuse knowledge and skills transfer programme for nurses, nurse teachers and medical staff in the narcology service in…

  15. Marjolin's ulcer arising from cutaneous lichen planus | Olawoye ...

    African Journals Online (AJOL)

    The association between cutaneous lichen planus and Squamous cell carcinoma has been controversial. The rarity of documented cases, has led some to suggest that it may represent a chance association. Whilst there have been many reports of Marjolin's ulcer arising from oral lichen planus, reports of Squamous cell ...

  16. A rare case of Cystic artery arising from Gastroduodenal artery ...

    African Journals Online (AJOL)

    An uncommon anatomical variation in the origin and course of cystic artery was found during human cadaveric dissection in our laboratory. A blood vessel was seen arising from the gastroduodenal artery about 1 cm distal to its origin from the common hepatic artery. The vessel when traced towards its termination was found ...

  17. Knowledge Protection and Input Complexity Arising from Open Innovation

    DEFF Research Database (Denmark)

    Peeters, Thijs; Sofka, Wolfgang

    Controlling unique knowledge is of increasing importance to firms. Therefore, firms use knowledge protection mechanisms to prevent competitors from imitating their knowledge. We study the effects of the complexity of knowledge inputs that arises from open innovation on the importance of two widely...

  18. Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii.

    Science.gov (United States)

    Knitsch, Regine; Schneefeld, Marie; Weitzel, Kerstin; Pfeifer, Felicitas

    2017-09-12

    Gas vesicles are proteinaceous, gas-filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in-silico 3D-model of GvpA of the predicted coil-α1-β1-β2-α2-coil structure is available and implies that the two β-chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac(+) phenotype). In most cases, an alanine substitution of a non-polar residue did not abolish gas vesicle formation, but the replacement of single non-polar by charged residues in β1 or β2 resulted in Vac(-) transformants. A replacement of residues near the β-turn altered the spindle-shape to a cylindrical morphology of the gas vesicles. Vac(-) transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt-bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac(-) transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid-state NMR. © 2017 John Wiley & Sons Ltd.

  19. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  20. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles.

    Science.gov (United States)

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-02-06

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.