WorldWideScience

Sample records for vesicle breakdown gvbd

  1. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte

    Science.gov (United States)

    Tombes, R. M.; Simerly, C.; Borisy, G. G.; Schatten, G.

    1992-01-01

    During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.

  2. The in vitro effects of steroids, human chorionic gonadotropin and cyanoketone on germinal vesicle breakdown of striped mullet ( Mugil cephalus L.) oocytes

    Science.gov (United States)

    Hong, Wanshu; Thomas, Peter

    1987-03-01

    The in vitro effects of steroids, human chorionic gonadotropin (HCG) and cyanoketone on germinal vesicle breakdown (GVBD) of striped mullet ( Mugil cephalus L.) oocytes were investigated. All concentrations of HCG (5,10,50 I.U./ml), progesterone and pregnenolone at the highest concentrations(lug/ml) were moderately effective in inducing GVBD, whereas 17β-estrodiol, cortisol, testosterone, 11β-hydroxyandrostenedione and 11-ketotestosterone did not stimulate GVBD. 17α, 20βdihydroxy-4-pregnen-3-one (17α, 20βdiOHprog) and deoxycorticosterone (DOC) were the most potent steroids in stimulating final oocyte maturation. The results indicate that C21 hydroxylated steroids are potent inducers of final maturation in mullet. Further, co-incubations with 17β-estradiol, cortisol and testosterone did not alter the maturation-inducing effects of HCG or 17α,20βdiOHprog. Cyanoketone, a blocker of 3βHSD activity, was only partially effective in blocking GVBD induced by HCG. This suggests that Δ5 (pregnenolone derived) and Δ4 steroids may be involved in final oocyte maturation in this species.

  3. Carrying-over effects of GVBD blocking on post-blocking meiotic progression of oocytes: species difference and the signaling pathway leading to MPF activation.

    Directory of Open Access Journals (Sweden)

    Guang-Zhong Jiao

    Full Text Available Efforts to improve the quality of in vitro matured oocytes by blocking germinal vesicle breakdown (GVBD and allowing more time for ooplasmic maturation have achieved little due to a lack of knowledge on the molecular events during GVBD blocking. Such knowledge is also important for studies aimed at regulating gene expression in maturing oocytes prior to GVBD. We studied species difference and signaling pathways leading to the carrying-over effect of GVBD blocking on post-blocking meiotic progression (PBMP. Overall, GVBD-blocking with roscovitine decelerated PBMP of mouse oocytes but accelerated that of pig oocytes. During blocking culture, whereas cyclin B of pig oocytes increased continuously, that of mouse oocytes declined first and then increased slowly. In both species, (a whereas active CDC2A showed a dynamics similar to cyclin B, inactive CDC2A decreased continuously; (b when oocytes were blocked in blocking medium containing cycloheximide, PBMP was decelerated significantly while cyclin B and active CDC2A decreasing to the lowest level; (c whereas sodium vanadate in blocking medium reduced PBMP, epidermal growth factor (EGF in blocking medium accelerated PBMP significantly with no effect on cyclin B levels. In conclusion, the EGF signaling cascade accelerated PBMP by promoting the pre-MPF (M-phase-promoting factor to MPF conversion during GVBD blocking with roscovitine. The significant difference in PBMP observed between mouse and pig oocytes was caused by species difference in cyclin B dynamics during blocking culture as no species difference was observed in either pre-MPF to MPF conversion or the EGF signaling activity.

  4. INHIBITION OF GERMINAL VESICLE BREAKDOWN (GVBD) IN XENOPUS OOCYTES IN VITRO BY A SERIES OF SUBSTITUTED GLYCOL ETHERS. (68D03044)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition in Bufo arenarum oocytes.

    Science.gov (United States)

    Sánchez Toranzo, G; López, L A; Martínez, J Zapata; Bühler, M C Gramajo; Bühler, M I

    2010-02-01

    Dehydroleucodine (DhL), a sesquiterpenic lactone, was isolated and purified from aerial parts of Artemisia douglasiana Besser, a medicinal herb used in Argentina. DhL is an alpha-methylene butyro-gamma-lactone ring connected to a seven-membered ring fused to an exocyclic alpha,beta-unsaturated cyclopentenone ring. It has been previously shown that DhL selectively induces a dose-dependent transient arrest in G2 of both meristematic cells and vascular smooth muscle cells. Treatment with DhL induces an inhibition of spontaneous and progesterone-induced maturation in a dose-dependent manner in Bufo arenarum fully grown oocytes arrested at G2, at the beginning of meiosis I. However, the nature of the mechanisms involved in the process is still unknown. The aim of this work was to analyse whether DhL's alpha-methylene-gamma-lactone function is responsible for the inhibition effect on meiosis reinitiation of Bufo arenarum oocytes as well as some of the transduction pathways that could be involved in this effect using a derivative of DhL inactivated for alpha-methylenelactone, the 11,13-dihydro-dehydroleucodine (2H-DhL). The use of 2H-DhL in the maturation promoting factor (MPF) amplification experiments by injection of both cytoplasm with active MPF and of germinal vesicle content showed results similar to the ones obtained with DhL, suggesting that the hydrogenated derivative would act in a similar way to DhL. Pretreatment with DhL or 2H-DhL did not affect the percentage of germinal vesicle breakdown (GVBD) induced by H89, a protein kinase A (PKA) inhibitor, which suggests that these lactones would act on another step of the signalling pathway that induces MPF activation. The fact that both DhL and 2H-Dhl inhibit GVBD induced by okadaic acid microinjection suggests that they could act on the activity of the Myt1 kinase. This idea is supported by the experiments of injection of GV contents in which an inhibitory effect of these lactones on GVBD was also observed. Our

  6. Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown.

    Science.gov (United States)

    Limatola, Nunzia; Chun, Jong T; Kyozuka, Keiichiro; Santella, Luigia

    2015-11-01

    It has been known that the intracellular Ca(2+) level transiently rises at the specific stages of mitosis such as the moment of nuclear envelope breakdown and at the metaphase-anaphase transition. Comparable intracellular Ca(2+) increases may also take place during meiosis, as was intermittently reported in mouse, Xenopus, and starfish oocytes. In a majority of starfish species, the maturing oocytes display an intracellular Ca(2+) increase within few minutes after the addition of the maturation hormone, 1-methyladenine (1-MA). Although starfish oocytes at meiosis also manifest a Ca(2+) increase at the time of polar body extrusion, a similar Ca(2+) increase has never been observed during the envelope breakdown of the nucleus (germinal vesicle, GV). Here, we report, for the first time, the existence of an additional Ca(2+) response in the maturing oocytes of Asterina pectinifera at the time of GV breakdown. In contrast to the immediate early Ca(2+) response to 1-MA, which is independent of external Ca(2+) and takes a form of intracellular Ca(2+) wave traveling three times as fast as that in the fertilized eggs, this late stage Ca(2+) response comprised a train of numerous spikes representing Ca(2+) influx. These Ca(2+) spikes coinciding with GV breakdown were mostly eliminated when the GV was removed from the oocytes prior to the addition of 1-MA, suggesting that the Ca(2+) spikes are rather a consequence of the GV breakdown. In support of the idea that these Ca(2+) spikes play a physiological role, the oocytes matured in calcium-free seawater had a higher rate of cleavage failure 2h after the fertilization in natural seawater. Specific inhibitors of L-type Ca(2+) channels, verapamil and diltiazem, severely suppressed the amplitude of the individual Ca(2+) spikes, but not their frequencies. On the other hand, latrunculin-A (LAT-A), which promotes net depolymerization of the actin cytoskeleton, had a dual effect on this late Ca(2+) response. When added immediately

  7. cyclic GMP Mediated Inhibition of Spontaneous Germinal Vesicle Breakdown Both with and without Cumulus in Mouse Oocyte.

    Science.gov (United States)

    Hwang, Heekyung; Cheon, Yong-Pil

    2016-12-01

    Intact germinal vesicle (GV) arrest and release are essential for maintaining the fertility of mammals inducing human. Intact germinal vesicle release, maturation of oocytes is maintained by very complex procedures along with folliculogenesis and is a critical step for embryonic development. Cyclic guanosine monophosphate (cGMP) has been suggested a key factor for meiotic arrest but so far its mechanisms are controversy. In this study we examine the effects of cGMP on germinal vesicle breakdown in cumulus-enclosed oocytes and denuded oocytes. Spontaneous maturation was inhibited by a cGMP agonist, 8-Br-cGMP with concentration dependent manners both in cumulus-enclosed oocytes and denuded oocytes. The inhibitory effect was more severe in denuded oocytes than cumulus-enclosed oocytes. The Rp-8-Br-cGMP and Rp-pCPT-8-Br-cGMP did not severely block GVB compared to 8-Br-cGMP. The spontaneous GVB inhibitory effects were different by the existence of cumulus. Based on them it is suggested that the cumulus modulates the role of cGMP in GV arrest.

  8. Vesicle Photonics

    Science.gov (United States)

    Vasdekis, A. E.; Scott, E. A.; Roke, S.; Hubbell, J. A.; Psaltis, D.

    2013-07-01

    Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transport molecular payloads. Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane. Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy). We conclude with emerging vesicle applications in biology and photochemical microreactors.

  9. Calcium signals and oocyte maturation in marine invertebrates.

    Science.gov (United States)

    Deguchi, Ryusaku; Takeda, Noriyo; Stricker, Stephen A

    2015-01-01

    In various oocytes and eggs of animals, transient elevations in cytoplasmic calcium ion concentrations are known to regulate key processes during fertilization and the completion of meiosis. However, whether or not calcium transients also help to reinitiate meiotic progression at the onset of oocyte maturation remains controversial. This article summarizes reports of calcium signals playing essential roles during maturation onset (=germinal vesicle breakdown, GVBD) in several kinds of marine invertebrate oocytes. Conversely, other data from the literature, as well as previously unpublished findings for jellyfish oocytes, fail to support the view that calcium signals are required for GVBD. In addition to assessing the effects of calcium transients on GVBD in marine invertebrate oocytes, the ability of maturing oocytes to enhance their calcium-releasing capabilities after GVBD is also reviewed. Furthermore, possible explanations are proposed for the contradictory results that have been obtained regarding calcium signals during oocyte maturation in marine invertebrates.

  10. Insulin alone can lead to a withdrawal of meiotic arrest in the carp ...

    Indian Academy of Sciences (India)

    Meiotic arrest of oocyte in an Indian carp, Labeo rohita Ham. has been found for the first time to be withdrawn by insulin only. Addition of insulin to oocytes in vitro caused germinal vesicle breakdown (GVBD), one of the first visual markers to determine initiation of the final maturational process. Under the influence of insulin ...

  11. Ascorbic acid effects on in vitro maturation of mouse oocyte with or ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... and COCs from germinal vesicle breakdown (GVBD) to metaphase II (MII) and prevents cumulus cell degeneration at certain levels, especially 250 μM/ml of ascorbic acid (P < 0.05). However, further studies on the potential effects of different concentrations of ascorbic acid on oocyte maturation are needed.

  12. Synaptic Vesicle Endocytosis

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  13. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  14. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  15. Impulse breakdown of liquids

    CERN Document Server

    Ushakov, Vasily Y

    2007-01-01

    The book describes the main physical processes and phenomena in pulsed electric breakdown. The knowledge and the control of the electric breakdown of liquids is important not only for the insulation inside power systems but it is also used for the creation and information of high voltage and high current pulses. Such high-voltage micro- and nanosecond pulses find wide application in experimental physics, electro discharge technology, physics of dielectrics, radar detection and ranging, high-speed photography. The nature of charge carriers, mechanism of formation and evolution of the gas phase,

  16. Breakdowns in collaborative information seeking

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    are breakdowns in collaborative grounding rather than information seeking, that the medication incidents mainly concern breakdowns in the use of records as opposed to oral communication, that the breakdowns span multiple degrees of separation between clinicians, and that the electronic medication record has...... introduced risks of new kinds of breakdown in collaborative information seeking. In working to prevent and recover from breakdowns in the seeking and sharing of information a focus on collaborative information seeking will point toward collaborative, organizational, and systemic reasons for breakdown......Collaborative information seeking is integral to many professional activities. In hospital work, the medication process encompasses continual seeking for information and collaborative grounding of information. This study investigates breakdowns in collaborative information seeking through analyses...

  17. How pure are your vesicles?

    Science.gov (United States)

    Webber, Jason; Clayton, Aled

    2013-01-01

    We propose a straightforward method to estimate the purity of vesicle preparations by comparing the ratio of nano-vesicle counts to protein concentration, using tools such as the increasingly available NanoSight platform and a colorimetric protein assay such as the BCA-assay. Such an approach is simple enough to apply to every vesicle preparation within a given laboratory, assisting researchers as a routine quality control step. Also, the approach may aid in comparing/standardising vesicle purity across diverse studies, and may be of particular importance in evaluating vesicular biomarkers. We herein propose some criteria to aid in the definition of pure vesicles. PMID:24009896

  18. Work breakdown structure guide

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  19. The toolbox of vesicle sidedness determination

    NARCIS (Netherlands)

    Meszaros, Peter; Hoekstra, Dick; Kok, Jan Willem

    2012-01-01

    Vesicles prepared from cellular plasma membranes are widely used in science for different purposes. The outer membrane leaflet differs from the inner membrane leaflet of the vesicle, and during vesicle preparation procedures two types of vesicles will be generated: right-side-out vesicles, of which

  20. Dynamic changes of the Golgi apparatus during bovine in vitro oocyte maturation.

    Science.gov (United States)

    Racedo, S E; Rawe, V Y; Niemann, H

    2012-04-01

    For successful fertilization by the male gamete, oocyte cytoplasmic organelles such as the Golgi apparatus have to undergo specific changes: the entire process is known as cytoplasmic maturation. The goal of this study was to unravel the dynamics of the Golgi apparatus in bovine oocytes at critical stages of in vitro maturation, i.e. germinal vesicle (GV), GV breakdown (GVBD), metaphase I (MI) and metaphase II, and to investigate the role of various molecules critically involved therein. The cytoplasmic distribution of proteins was assessed by immunocytochemistry and laser confocal microscopy. We applied specific inhibitors, including nocodazole to unravel the functional role of the microtubular elements; sodium orthovanadate, which primarily inhibits cytoplasmic dynein ATPase activity; monastrol which inhibits the kinesin EG5; and roscovitine to inhibit the kinase cyclin-dependent kinase 2A (CDC2A). Prior to GVBD, the Golgi apparatus was translocated from the centre of the cytoplasm to the cortical area in the periphery, where it underwent fragmentation. A second translocation was observed between GVBD and MI stages, when the Golgi apparatus was moved from the cortex to the centre of the cytoplasm. Incubation with the specific inhibitors revealed that microtubules played an active role in the final localization at GVBD, while CDC2A was essential for Golgi fragmentation at GVBD stage. This partitioning was a precondition for the second movement. In conclusion, for the first time we show basic mechanisms critically involved in the regulation of the dynamic changes of Golgi apparatus during meiosis of the bovine oocyte.

  1. Vesicles and vesicle gels - structure and dynamics of formation

    CERN Document Server

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and ...

  2. Preeclampsia and Extracellular Vesicles.

    Science.gov (United States)

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers.

  3. Extracellular Vesicles in Cardiovascular Theranostics

    OpenAIRE

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S.; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro,Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells pla...

  4. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  5. RNA in extracellular vesicles.

    Science.gov (United States)

    Kim, Kyoung Mi; Abdelmohsen, Kotb; Mustapic, Maja; Kapogiannis, Dimitrios; Gorospe, Myriam

    2017-07-01

    Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  7. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  8. Probabilistic description of traffic breakdowns

    Science.gov (United States)

    Kühne, Reinhart; Mahnke, Reinhard; Lubashevsky, Ihor; Kaupužs, Jevgenijs

    2002-06-01

    We analyze the characteristic features of traffic breakdown. To describe this phenomenon we apply the probabilistic model regarding the jam emergence as the formation of a large car cluster on a highway. In these terms, the breakdown occurs through the formation of a certain critical nucleus in the metastable vehicle flow, which enables us to confine ourselves to one cluster model. We assume that, first, the growth of the car cluster is governed by attachment of cars to the cluster whose rate is mainly determined by the mean headway distance between the car in the vehicle flow and, maybe, also by the headway distance in the cluster. Second, the cluster dissolution is determined by the car escape from the cluster whose rate depends on the cluster size directly. The latter is justified using the available experimental data for the correlation properties of the synchronized mode. We write the appropriate master equation converted then into the Fokker-Planck equation for the cluster distribution function and analyze the formation of the critical car cluster due to the climb over a certain potential barrier. The further cluster growth irreversibly causes jam formation. Numerical estimates of the obtained characteristics and the experimental data of the traffic breakdown are compared. In particular, we draw a conclusion that the characteristic intrinsic time scale of the breakdown phenomenon should be about 1 min and explain the case why the traffic volume interval inside which traffic breakdown is observed is sufficiently wide.

  9. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  10. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to ...

  11. Cystadenoma of the seminal vesicle

    Directory of Open Access Journals (Sweden)

    Gil Antônio O.

    2003-01-01

    Full Text Available Primary tumors of the seminal vesicle are extremely rare. Among them, there is a spectrum of tumors derived from both epithelium and stroma and so classified as epithelial-stromal tumors. Herein, we report a case of a cystadenoma in a 49-year-old asymptomatic man, detected in a routine ultrasonography for liver disease follow-up. The digital rectal examination detected a large mass anterior to rectum and posterior to bladder. Computed tomography scan and magnetic resonance imaging showed a normal prostate and a 9.0 cm cystic tumor, replacing the left seminal vesicle. The gross appearance and microscopic aspect was compatible with cystadenoma of seminal vesicle. Patient's postoperative recovery was uneventful. He is currently alive, 3 years after the diagnosis, with no signs of recurrence.

  12. When to biopsy seminal vesicles.

    Science.gov (United States)

    Panach-Navarrete, J; García-Morata, F; Hernández-Medina, J A; Martínez-Jabaloyas, J M

    2015-05-01

    The involvement of seminal vesicles in prostate cancer can affect the prognosis and determine the treatment. The objective of this study was to determine whether we could predict its infiltration at the time of the prostate biopsy to know when to indicate the biopsy of the seminal vesicles. observational retrospective study of 466 patients who underwent seminal vesicle biopsy. The indication for this biopsy was a prostate-specific antigen (PSA) level greater than 10 ng/ml or an asymmetric or obliterated prostatoseminal angle. The following variables were included in the analysis: PSA level, PSA density, prostate volume, number of cores biopsied, suspicious rectal examination, and preservation of the prostatoseminal angle, studying its relationship with the involvement of the seminal vesicles. Forty-one patients (8.8%) had infiltrated seminal vesicles and 425 (91.2%) had no involvement. In the univariate analysis, the cases with infiltration had a higher mean PSA level (P 19.60 ng/dL (P < .01) and 2.95 times higher if there is a suspicious rectal examination (P = .014). Furthermore, this probability increases by 1.04 times for each unit of prostate volume lower (P < .01). The ROC curves showed maximum sensitivity and specificity at 19.6 ng/mL for PSA and 0.39 for PSA density. In this series, greater involvement of seminal vesicles was associated with a PSA level ≥20 ng/ml, a suspicious rectal examination and a lack of prostatoseminal angle preservation. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Breakdown of transistors in Marx bank circuit

    Science.gov (United States)

    Chatterjee, Amitabh

    2000-09-01

    We reconsider the mode of operation of a Marx bank circuit and analyze the secondary breakdown of transistors with shorted emitter-base. The mechanism of breakdown of the transistor when a fast rising voltage pulse is applied across is investigated. The device exhibits chaotic behavior at the breakdown point where it can go into two possible modes of breakdown. A new explanation for the working of the circuit consistent with the experimental observations is proposed.

  14. SMALL VESICLES, BIG VEHICLES: EXOSOMES.

    Directory of Open Access Journals (Sweden)

    Saiz-Lopez P

    2016-09-01

    Full Text Available Exosomes are small membranous vesicles released by different cell types. Since their discovery, they have evolved from being considered simple vehicles for the liberation of cellular wastes, to become one of the most promising fields in the area of biomedical research, and more specifically in oncology, since the different malignant tumors release exosomes to all biological fluids, being involved in various functions of the neoplastic process. At present, it is possible to study these vesicles by minimally invasive techniques in patients, which approach us to obtain a more detailed diagnosis and prognosis, as well as to the discovery of new antitumoral therapies

  15. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature of v...

  16. Ca2+ Dependence of Synaptic Vesicle Endocytosis.

    Science.gov (United States)

    Leitz, Jeremy; Kavalali, Ege T

    2016-10-01

    Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.

  17. Extracellular vesicles in physiological and pathological conditions

    NARCIS (Netherlands)

    Yuana, Yuana; Sturk, Auguste; Nieuwland, Rienk

    2013-01-01

    Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation.

  18. DC Breakdown Experiments with Iridium Cathode

    CERN Document Server

    Profatilova, Iaroslava; Korsback, Anders; Muranaka, Tomoko; Wuensch, Walter

    2015-01-01

    Electrical breakdown occurring in rf accelerating structures is one of the major disruptions of the accelerated beam in CLIC. At CERN, as complements to rf facilities, DC-spark systems have been used to study breakdown properties of many candidate materials for making rf components. In this note, measurements of conditioning speed, breakdown field and field enhancement factor of iridium are presented comparing with previously tested materials. The average breakdown field after conditioning reached 238 MV/m, which places iridium next to copper. By comparison with results and properties of other metals, the low breakdown field of iridium could be explained by its face-centred-cubic crystal structure.

  19. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  20. Individual breakdown of pension rights

    CERN Multimedia

    2016-01-01

    You should have recently received, via email, your “Individual breakdown of pension rights”.   Please note that: the calculation was based on data as at 1st July 2016, as at 1st September 2016, CERN will introduce a new career structure; the salary position will now be expressed as a percentage of a midpoint of a grade.   We would like to draw your attention to the fact that your pension rights will remain unchanged. Benefits Service CERN Pension Fund

  1. DC breakdown experiments with cobalt electrodes

    CERN Document Server

    Descoeudres, Antoine; Nordlund, Kai

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. The conditioning speed, breakdown field and field enhancement factor of cobalt have been measured. The average breakdown field after conditioning reaches 615 MV/m, which places cobalt amongst the best materials tested so far. By comparison with results and properties of other metals, the high breakdown field of Co could be due to its high work function and maybe also to its hexagonal crystal structure. Geneva, Switzerland (June 2009) CLIC – Note – 875

  2. The readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Kaeser, Pascal S; Regehr, Wade G

    2017-04-01

    Each presynaptic bouton is densely packed with many vesicles, only a small fraction of which are available for immediate release. These vesicles constitute the readily releasable pool (RRP). The RRP size, and the probability of release of each vesicle within the RRP, together determine synaptic strength. Here, we discuss complications and recent advances in determining the size of the physiologically relevant RRP. We consider molecular mechanisms to generate and regulate the RRP, and discuss the relationship between vesicle docking and the RRP. We conclude that many RRP vesicles are docked, that some docked vesicles may not be part of the RRP, and that undocked vesicles can contribute to the RRP by rapid recruitment to unoccupied, molecularly activated ready-to-release sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  4. Dynamics of endocytic vesicle creation.

    Science.gov (United States)

    Perrais, David; Merrifield, Christien J

    2005-11-01

    Clathrin-mediated endocytosis is the main path for receptor internalization in metazoans and is essential for controlling cell integrity and signaling. It is driven by a large array of protein and lipid interactions that have been deciphered mainly by biochemical and genetic means. To place these interactions into context, and ultimately build a fully operative model of endocytosis at the molecular level, it is necessary to know the kinetic details of the role of each protein in this process. In this review, we describe the recent efforts made, by using live cell imaging, to define clear steps in the formation of endocytic vesicles and to observe the recruitment of key proteins during membrane invagination, the scission of a newly formed vesicle, and its movement away from the plasma membrane.

  5. Extracellular vesicles and blood diseases.

    Science.gov (United States)

    Nomura, Shosaku

    2017-04-01

    Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.

  6. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  7. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  8. The Development of Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2007-01-01

    Full Text Available The conditions under which breakdown of composite liquid - solid insulation can be occurred, e.g. in transformer, play an important role in designing of such insulation. The initial state of breakdown development is explained based on development of streamers in cavitations. The whole breakdown development in transformer oil is represented by RLC circuit and it depends on the parameters of outer circuit.

  9. Laser-Induced Breakdown in Liquid Helium

    Science.gov (United States)

    Sirisky, S.; Yang, Y.; Wei, W.; Maris, H. J.

    2017-10-01

    We report on experiments in which focused laser light is used to induce optical breakdown in liquid helium-4. The threshold intensity has been measured over the temperature range from 1.1 to 2.8 K with light of wavelength 1064 nm. In addition to the measurement of the threshold, we have performed experiments to study how the breakdown from one pulse modifies the probability that a subsequent pulse will result in breakdown.

  10. Investigation of the DC vacuum breakdown mechanism

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    Breakdowns occurring in rf accelerating structures will limit the ultimate performance of future linear colliders such as the Compact Linear Collider (CLIC). Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN to better understand the vacuum breakdown mechanism in a simple setup. Measurements of the field enhancement factor β show that the local breakdown field is constant and depends only on the electrode material. With copper electrodes, the local breakdown field is around 10:8 GV/m, independent of the gap distance. The β value characterizes the electrode surface state, and the next macroscopic breakdown field can be well predicted. In breakdown rate experiments, where a constant field is applied to the electrodes, clusters of consecutive breakdowns alternate with quiet periods. The occurrence and lengths of these clusters and quiet periods depend on the evolution of β. The application of a high field can even modify the electrode surface in the abse...

  11. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...... technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct...... successful teaching. Thus, knowing how to cope with technological breakdowns is a pivotal part of being a technological literate....

  12. On exponential growth [of gas breakdown

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The agreement obtained between measured breakdown voltages and predicted breakdown values is frequently used as a means of assessing the validity of the theory/model in question. However, owing to the mathematical nature of exponential growth, it is easy to formulate a criterion that provides acc...... acceptable breakdown values, although the criterion may contain totally unrealistic features. An example from the work of A. Pedersen (1989) showing unrestricted exponential growth in SF 6 is used to highlight the insensitivity of breakdown voltages with respect to modeling...

  13. Work Breakdown Structure (WBS) Handbook

    Science.gov (United States)

    2010-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  14. Synaptic vesicle proteins and active zone plasticity

    Directory of Open Access Journals (Sweden)

    Robert J Kittel

    2016-04-01

    Full Text Available Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone. The complex molecular architecture of active zones mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of active zones vary significantly, even for a given connection. Thus, there appear to be distinct active zone states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the active zone.The protein-rich cytomatrix at the active zone (CAZ provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1 and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and active zone states, which has heretofore received little attention.

  15. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles

    NARCIS (Netherlands)

    Farsi, Z.; Preobraschenski, J.; Bogaart, G. van den; Riedel, D.; Jahn, R.; Woehler, A.

    2016-01-01

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided

  16. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  17. Exosomes: secreted vesicles and intercellular communications

    OpenAIRE

    Théry, Clotilde

    2011-01-01

    Exosomes are small membrane vesicles of endocytic origin secreted by most cell types, and are thought to play important roles in intercellular communications. Although exosomes were originally described in 1983, interest in these vesicles has really increased dramatically in the last 3 years, after the finding that they contain mRNA and microRNA. This discovery sparked renewed interest for the general field of membrane vesicles involved in intercellular communications, and research on these s...

  18. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  19. Reversibly formed bilayer vesicles: Energetics and polydispersity

    DEFF Research Database (Denmark)

    Bergstöm, M.

    1997-01-01

    orders of magnitude larger than where the local free energy minima of the equilibrium vesicle actually occur. Moreover, according to our analysis, the relative width of a vesicle size distribution, sigma(R)/R-max, is generally at full equilibrium equal to 0.283, independently of the energetic vesicle....... and a statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work...

  20. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-02-19

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  1. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  2. Simulation of vortex breakdown in swirling jets

    Science.gov (United States)

    Moise, Pradeep; Mathew, Joseph

    2017-11-01

    Numerical simulations of laminar incompressible swirling jets have been carried out to study different types of vortex breakdown, including the commonly reported axisymmetric bubble and the lesser known conical breakdown. Existence of the latter type of breakdown was first discovered in experiments of Billant et al. (1998) who proposed that the bubble and conical breakdown exhibit bistability behaviour. This is confirmed by the present study, where it is shown that the conical breakdown coexists with bubble breakdown over a wide range of swirl strengths. A novel approach employing PDE-constrained optimization techniques (adjoint-based method) is formulated to elucidate the relation between bistable states. This is implemented by means of minimizing strengths of introduced initial velocity perturbations which trigger required transition from one state to another. Features of conical breakdown and their dependence on flow parameters are examined. Solutions of both breakdown types are tested with predictions of the conjugate state theory of Benjamin (1962) by investigating upstream propagation of introduced disturbances in subcritical regions of flow and the theory of Brown and Lopez (1990), by examining development of negative azimuthal vorticity in the flow.

  3. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...

  4. Extracellular Vesicles in Cardiovascular Theranostics.

    Science.gov (United States)

    Bei, Yihua; Das, Saumya; Rodosthenous, Rodosthenis S; Holvoet, Paul; Vanhaverbeke, Maarten; Monteiro, Marta Chagas; Monteiro, Valter Vinicius Silva; Radosinska, Jana; Bartekova, Monika; Jansen, Felix; Li, Qian; Rajasingh, Johnson; Xiao, Junjie

    2017-01-01

    Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.

  5. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  6. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  7. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  8. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  9. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Urinary extracellular vesicles: biomarkers and beyond

    NARCIS (Netherlands)

    M. Salih (Mahdi)

    2017-01-01

    markdownabstractExtracellular vesicles have been isolated in various body fluids including urine. The cargo of urinary extracellular vesicles (uEVs) is composed of proteins and nucleic acids reflecting the physiological and possibly the pathophysiological state of cells lining the nephron. Because

  11. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    Science.gov (United States)

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  13. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    Science.gov (United States)

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case.

  15. Pushing synaptic vesicles over the RIM.

    Science.gov (United States)

    Kaeser, Pascal S

    2011-05-01

    In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.

  16. Apoptotic Bodies: Selective Detection in Extracellular Vesicles.

    Science.gov (United States)

    Hauser, Paul; Wang, Sha; Didenko, Vladimir V

    2017-01-01

    Normal and dying cells release various types of membrane-bound vesicles including microvesicles, exosomes, and apoptotic bodies. These vesicles play important roles in intercellular communication and signal transduction. However, their diverse forms and subtypes fluctuate in size and other properties. In result current purification approaches do not fully discriminate between different categories of extracellular vesicles. Here, we present a fluorescence technique that specifically identifies apoptotic bodies in preparations of microvesicles, exosomes, and other extracellular vesicles.The approach exclusively labels the vesicles that contain DNA with 5'PO 4 blunt-ended DNA breaks, such as those produced by the apoptotic CAD nuclease during apoptotic DNA degradation. The technique can be useful in studies of apoptosis involving microvesicles and exosomes.

  17. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes

    National Research Council Canada - National Science Library

    M A Zoccoli; G E Lienhard

    1977-01-01

    .... Based on comparisons between erythrocytes and vesicles with regard to specificity, temparture dependence, and effects of inhibitors, we conclude that sorbose uptake into the vesicles occurs by way...

  18. Post-breakdown stages in transformer oil

    Science.gov (United States)

    Kúdelčík, Jozef; Varačka, Lukáš; Jahoda, Emil; Poljak, Silvester

    2017-05-01

    The external pressure influences significantly on the electric strength of liquid dielectrics. Quantitative explanation of this experimental fact is one of the main evidences for the bubble breakdown theory. The measurements of negative dc breakdown voltage were made in transformer oil ITO 100 for various external pressures and the developments of post-breakdown stages were recorded by high-speed camera. The initiation of breakdown was characterized by the growth of narrow streamers the creation of which was attributed to field injected electrons at local asperities of the cathode surface. Once the streamers reached the anode, large currents were found to flow through the gap leading to formation of a plasma channel. Post-breakdown stage in transformer oil consisted of vapour channel between the electrodes. This channel was created during breakdown and it expanded into space and then contracted. Time development of its length and diameter from records of high-speed camera were determined. The times of expansion and collapse were dependent on the breakdown voltage and the external pressures. These parameters decreased with the increase of the external pressure.

  19. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  20. Quantitative Outgassing studies in DC Electrical breakdown

    CERN Document Server

    Levinsen, Yngve Inntjore; Calatroni, Sergio; Taborelli, Mauro; Wünsch, Walter

    2010-01-01

    Breakdown in the accelerating structures sets an important limit to the performance of the CLIC linear collider. Vacuum degradation and subsequent beam instability are possible outcomes of a breakdown if too much gas is released from the cavity surface. Quantitative data of gas released by breakdowns are provided for copper (milled Cu-OFE, as-received and heat-treated), and molybdenum. These data are produced in a DC spark system based on a capacitance charged at fixed energy, and will serve as a reference for the vacuum design of the CLIC accelerating structures.

  1. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate...... the elastomers after electrical breakdown....

  2. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.

    Science.gov (United States)

    Mita, Masatoshi

    2017-03-01

    l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  4. Structure of Amphiphilic Terpolymer Raspberry Vesicles

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2017-07-01

    Full Text Available Terpolymer raspberry vesicles contain domains of different chemical affinities. They are potential candidates as multi-compartment cargo carriers. Their efficacy depends on their stability and load capacity. Using a model star terpolymer system in an aqueous solution, a dissipative particle dynamic (DPD simulation is employed to investigate how equilibrium aggregate structures are affected by polymer concentration and pairwise interaction energy in a solution. It is shown that a critical mass of polymer is necessary for vesicle formation. The free energy of the equilibrium aggregates are calculated and the results show that the transition from micelles to vesicles is governed by the interactions between the longest solvophobic block and the solvent. In addition, the ability of vesicles to encapsulate solvent is assessed. It is found that reducing the interaction energy favours solvent encapsulation, although solvent molecules can permeate through the vesicle’s shell when repulsive interactions among monomers are low. Thus, one can optimize the loading capacity and the release rate of the vesicles by turning pairwise interaction energies of the polymer and the solvent. The ability to predict and control these aspects of the vesicles is an essential step towards designing vesicles for specific purposes.

  5. Dielectric breakdown of fast switching LCD shutters

    Science.gov (United States)

    Mozolevskis, Gatis; Sekacis, Ilmars; Nitiss, Edgars; Medvids, Arturs; Rutkis, Martins

    2017-02-01

    Fast liquid crystal optical shutters due to fast switching, vibrationless control and optical properties have found various applications: substitutes for mechanical shutters, 3D active shutter glasses, 3D volumetric displays and more. Switching speed depends not only on properties of liquid crystal, but also on applied electric field intensity. Applied field in the shutters can exceed >10 V/micron which may lead to dielectric breakdown. Therefore, a dielectric thin film is needed between transparent conductive electrodes in order to reduce breakdown probability. In this work we have compared electrical and optical properties of liquid crystal displays with dielectric thin films with thicknesses up to few hundred nanometers coated by flexo printing method and magnetron sputtering. Dielectric breakdown values show flexographic thin films to have higher resistance to dielectric breakdown, although sputtered coatings have better optical properties, such as higher transmission and no coloration.

  6. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  7. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  8. Classification, Functions, and Clinical Relevance of Extracellular Vesicles

    NARCIS (Netherlands)

    van der Pol, Edwin; Böing, Anita N.; Harrison, Paul; Sturk, Augueste; Nieuwland, Rienk

    2012-01-01

    Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the

  9. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer

    OpenAIRE

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz

    2016-01-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data in...

  10. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  11. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  12. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  13. Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling

    OpenAIRE

    Harris, Todd W.; Hartwieg, Erika; Horvitz, H. Robert; Jorgensen, Erik M.

    2000-01-01

    Synaptojanin is a polyphosphoinositide phosphatase that is found at synapses and binds to proteins implicated in endocytosis. For these reasons, it has been proposed that synaptojanin is involved in the recycling of synaptic vesicles. Here, we demonstrate that the unc-26 gene encodes the Caenorhabditis elegans ortholog of synaptojanin. unc-26 mutants exhibit defects in vesicle trafficking in several tissues, but most defects are found at synaptic termini. Specifically, we observed defects in ...

  14. Concentration-Independent Spontaneously Forming Biomimetric Vesicles

    Science.gov (United States)

    Nieh, M.-P.; Harroun, T. A.; Raghunathan, V. A.; Glinka, C. J.; Katsaras, J.

    2003-10-01

    In this Letter we present small-angle neutron scattering data from a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC-DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+), leads to the spontaneous formation of energetically stabilized monodisperse unilamellar vesicles whose radii are concentration independent and in contrast with previous experimental observations.

  15. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry

    OpenAIRE

    Aizea Morales-Kastresana; Bill Telford; Musich, Thomas A.; Katherine McKinnon; Cassandra Clayborne; Zach Braig; Ari Rosner; Thorsten Demberg; Watson, Dionysios C.; Karpova, Tatiana S.; Freeman, Gordon J.; DeKruyff, Rosemarie H.; Pavlakis, George N.; Masaki Terabe; Marjorie Robert-Guroff

    2017-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles, are 30?800?nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be brig...

  16. Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations

    OpenAIRE

    Quesenberry, Peter J.; Goldberg, Laura R.; Aliotta, Jason M.; Mark S Dooner; Pereira, Mandy G.; Wen, Sicheng; Camussi, Giovanni

    2014-01-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung o...

  17. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  18. Elastic energy of polyhedral bilayer vesicles.

    Science.gov (United States)

    Haselwandter, Christoph A; Phillips, Rob

    2011-06-01

    In recent experiments [M. Dubois, B. Demé, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. Désert, E. Perez, and T. Zemb, Nature (London) 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. USA 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron.

  19. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  20. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  1. Breakdown of Modularity in Complex Networks.

    Science.gov (United States)

    Valverde, Sergi

    2017-01-01

    The presence of modular organization is a common property of a wide range of complex systems, from cellular or brain networks to technological graphs. Modularity allows some degree of segregation between different parts of the network and has been suggested to be a prerequisite for the evolvability of biological systems. In technology, modularity defines a clear division of tasks and it is an explicit design target. However, many natural and artificial systems experience a breakdown in their modular pattern of connections, which has been associated with failures in hub nodes or the activation of global stress responses. In spite of its importance, no general theory of the breakdown of modularity and its implications has been advanced yet. Here we propose a new, simple model of network landscape where it is possible to exhaustively characterize the breakdown of modularity in a well-defined way. Specifically, by considering the space of minimal Boolean feed-forward networks implementing the 256 Boolean functions with 3 inputs, we were able to relate functional characteristics with the breakdown of modularity. We found that evolution cannot reach maximally modular networks under the presence of functional and cost constraints, implying the breakdown of modularity is an adaptive feature.

  2. Extracellular Vesicles in Metabolic Syndrome.

    Science.gov (United States)

    Martínez, M Carmen; Andriantsitohaina, Ramaroson

    2017-05-12

    Metabolic syndrome defines a cluster of interrelated risk factors for cardiovascular disease and diabetes mellitus. These factors include metabolic abnormalities, such as hyperglycemia, elevated triglyceride levels, low high-density lipoprotein cholesterol levels, high blood pressure, and obesity, mainly central adiposity. In this context, extracellular vesicles (EVs) may represent novel effectors that might help to elucidate disease-specific pathways in metabolic disease. Indeed, EVs (a terminology that encompasses microparticles, exosomes, and apoptotic bodies) are emerging as a novel mean of cell-to-cell communication in physiology and pathology because they represent a new way to convey fundamental information between cells. These microstructures contain proteins, lipids, and genetic information able to modify the phenotype and function of the target cells. EVs carry specific markers of the cell of origin that make possible monitoring their fluctuations in the circulation as potential biomarkers inasmuch their circulating levels are increased in metabolic syndrome patients. Because of the mixed components of EVs, the content or the number of EVs derived from distinct cells of origin, the mode of cell stimulation, and the ensuing mechanisms for their production, it is difficult to attribute specific functions as drivers or biomarkers of diseases. This review reports recent data of EVs from different origins, including endothelial, smooth muscle cells, macrophages, hepatocytes, adipocytes, skeletal muscle, and finally, those from microbiota as bioeffectors of message, leading to metabolic syndrome. Depicting the complexity of the mechanisms involved in their functions reinforce the hypothesis that EVs are valid biomarkers, and they represent targets that can be harnessed for innovative therapeutic approaches. © 2017 American Heart Association, Inc.

  3. Impact of Machine Breakdowns on Productivity

    Directory of Open Access Journals (Sweden)

    Anwaruddin Tanwari

    2011-10-01

    Full Text Available This paper reports the machine breakdowns and their impact on the total productivity for the FMCGs (Fast Moving Consumer Goods industry because higher productivity rate is important factor on which the customer services largely depend in this competitive business world. This paper also suggests that the machine breakdowns and other related problems within the plant are due to improper care, keeping the plant operative for twenty four hours a day, seven days a week without any break and lack of management\\'s concentration towards these issues. These break-downs results in un-timely closure of the plant and very poor production performance is achieved in the plant that affects the service level at great level. Realising the importance of maintenance in improving productivity and service, an attempt has been made in this paper to study the scope of maintenance with the help of a case study.

  4. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina

    2016-12-01

    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  5. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) are used to evaluate the elastomers...... before and after electrical breakdown. It was shown the chemically very similar silicone elastomers broke down electrically in very different ways. These observations emphasize that the modification of the silicone backbone may open up for completely new possibilities for stabilizing the silicone...

  6. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  7. Thermally induced rock breakdown on asteroid Itokawa

    Science.gov (United States)

    Kitazato, Kohei; Hirata, Naru; Demura, Hirohide; Inasawa, Tomoki; Abe, Masanao; Yamamoto, Yukio; Miura, Akira; Kawaguchi, Jun'ichiro

    2017-10-01

    On airless bodies of the inner solar system, changes in surface temperature due to insolation yield thermal cracking of rocks. This has been considered as a leading cause of rock breakdown, crater degradation and regolith production. However, it is poorly understood what thermal conditions are actually required to cause damage in rocks. Here we present a new evidence of thermally induced rock breakdown found on asteroid Itokawa. We analyzed the visible and near-infrared spectra of Shirakami and Muses-C regio, both of which are located within the concave part of Itokawa, and found that less space weathered debris generated from Shirakami are deposited on Muses-C regio. In addition, we performed thermophysical analysis to calculate the thermal conditions of Itokawa surface, which indicates that the rock breakdown on Shirakami would be caused by rapid temperature changes related to shadowing.

  8. A two phase field model for tracking vesicle-vesicle adhesion.

    Science.gov (United States)

    Gu, Rui; Wang, Xiaoqiang; Gunzburger, Max

    2016-11-01

    A multi-phase-field model for simulating the adhesion between two vesicles is constructed. Two phase field functions are introduced to simulate each of the two vesicles. An energy model is defined which accounts for the elastic bending energy of each vesicle and the contact potential energy between the two vesicles; the vesicle volume and surface area constraints are imposed using a penalty method. Numerical results are provided to verify the efficacy of our model and to provide visual illustrations of the different types of contact. The method can be adjusted to solve endocytosis problems by modifying the bending rigidity coefficients of the two elastic bending energies. The method can also be extended to simulate multi-cell adhesions, one example of which is erythrocyte rouleaux. A comparison with laboratory observations demonstrates the effectiveness of the multi-phase field approach.

  9. Insights into the self-reproduction of oleate vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P [' Enrico Fermi' Centre, Compendio Viminale, 00184 Rome (Italy); Wehrli, E [Electron Microscopy Centre (EMEZ), Applied Physics Institute, ETH Hoenggerberg, 8093 Zurich (Switzerland); Luisi, P L [Biology Department, University of RomaTre, Viale Marconi 446, 00146 Rome (Italy)

    2006-08-23

    In view of the importance of vesicles as models for early cells, several groups have started work looking for conditions under which vesicles can undergo growth and division. Evidence for growth and division has been obtained with the help of ferritin-labelled vesicles; furthermore, it has been shown that in such processes the vesicle size distribution is largely conserved. In both cases, the data suggest that the process under study is mainly characterized by vesicle growth and eventually division into daughter vesicles. However, direct evidence for vesicle division has not been obtained. In this paper, mostly based on freeze-fracture electron microscopy, we describe conditions under which for the first time division intermediates can be trapped in the form of twin vesicles. This finding, together with supporting dynamic light scattering and fluorescence investigations, permits us to establish some additional points in the mechanism of vesicle self-reproduction.

  10. Mechanics of post-fusion exocytotic vesicle.

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-05-23

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  11. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  12. Mechanics of post-fusion exocytotic vesicle

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-06-01

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  13. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  14. Investigation of multipactor breakdown in communication satellite ...

    Indian Academy of Sciences (India)

    Abstract. Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some. RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions.

  15. Investigation of multipactor breakdown in communication satellite ...

    Indian Academy of Sciences (India)

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions.

  16. Functionally polymerized surfactant vesicles: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Kippenberger, D.J.; Klahn, P.L.; Prieto, N.E.; Fendler, J.H.

    1982-01-27

    Bis(2-(10-undecenoyloxycarbony bromide, bis(2-(10-undecenoyloxycarbony (2-hydroxyethyl)methylammonium bromide, bis(2-(10-undecenoyloxycarbony acid, bis(2-(10-undecenoyloxycarbony allylbis(2-dodecanoyloxycarbon bromide, and dimethyl-n-hexadecyl (10-(p-vin decyl)ammonium bromide have been synthesized. The predominantly single compartment bilayer vesicles formed from these surfactants could be polymerized either by exposure to ultraviolet irradiation or by the use of azoisobutyronitrile as an initiator. The presence of vesicles (unpolymerized and polymeric) has been demonstrated by electron micrography, H/sup 1/ NMR, gel filtration, phase transition, turbidity changes, substrate entrapment, and permeability. Polymerized vesicles are considerably more stable and less permeable and have reduced rates of turbidity changes compared to their unpolymerized counterparts. 19 references.

  17. Directed vesicle transport by diffusio-osmosis

    Science.gov (United States)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  18. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  19. Numerical Borehole Breakdown Investigations using XFEM

    Science.gov (United States)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  20. Electrohydrodynamics of a compound vesicle under an AC electric field.

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M

    2017-07-12

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius [Formula: see text], is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  1. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  2. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    Science.gov (United States)

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The role of extracellular vesicles in malaria biology and pathogenesis.

    Science.gov (United States)

    Sampaio, Natalia Guimaraes; Cheng, Lesley; Eriksson, Emily M

    2017-06-09

    In the past decade, research on the functions of extracellular vesicles in malaria has expanded dramatically. Investigations into the various vesicle types, from both host and parasite origin, has revealed important roles for extracellular vesicles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. Here, work relating to extracellular vesicles in malaria is reviewed, and the areas that remain unknown and require further investigations are highlighted.

  4. Adsorption of DOPC vesicles on hydrophobic substrates in the ...

    Indian Academy of Sciences (India)

    Administrator

    In the present study, the interaction between an intact DOPC vesicle and the hydropho- bic surface is mainly through van der Waals interac- tion. In presence of increasing concentrations of electrolytes, counter ions are present in the vicinity of the DOPC vesicle. As the vesicle approaches the solid substrate, the counter ions ...

  5. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  6. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Role of Outer Membrance Vesicles of Bacteria. M V Jagannadham M K Chattopadhyay. General Article Volume 20 Issue 8 ... Keywords. Outer membrane ves ic les (OMVs); secretion; communication; virulence; antibiotic resistance; vaccines.

  7. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    Directory of Open Access Journals (Sweden)

    David R Stevens

    2011-02-01

    Full Text Available The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP and a slowly releasable (SRP pool are followed by sustained release, due to maturation and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.

  8. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  9. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  10. Towards traceable size determination of extracellular vesicles

    NARCIS (Netherlands)

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. In this manuscript, the size distribution of an

  11. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  12. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  13. Characterization of Extracellular Vesicles using Raman Spectroscopy

    NARCIS (Netherlands)

    Lee, Wooje; Nanou, Afroditi; Terstappen, Leonardus Wendelinus Mathias Marie; Rho, Hoon Suk; le Gac, Severine; Offerhaus, Herman L.

    2017-01-01

    In this research, we aim to characterize extracellular vesicles(EVs) with Confocal Raman spectroscopy to reveal relevant spectral lines that signify differences between EVs derived from different cell lines. In the first stage we performed confocal Raman measurements on various EV samples. For these

  14. Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions.

    Directory of Open Access Journals (Sweden)

    Martin Krueger

    Full Text Available The term blood-brain barrier (BBB relates to the ability of cerebral vessels to hold back hydrophilic and large molecules from entering the brain, thereby crucially contributing to brain homeostasis. In fact, experimental opening of endothelial tight junctions causes a breakdown of the BBB evidenced as for instance by albumin leakage. This and similar observations led to the conclusion that BBB breakdown is predominantly mediated by damage to tight junction complexes, but evidentiary ultrastructural data are rare. Since functional deficits of the BBB contribute to an increased risk of hemorrhagic transformation and brain edema after stroke, which both critically impact on the clinical outcome, we studied the mechanism of BBB breakdown using an embolic model of focal cerebral ischemia in Wistar rats to closely mimic the essential human pathophysiology. Ischemia-induced BBB breakdown was detected using intravenous injection of FITC-albumin and tight junctions in areas of FITC-albumin extravasation were subsequently studied using fluorescence and electron microscopy. Against our expectation, 25 hours after ischemia induction the morphology of tight junction complexes (identified ultrastructurally and using antibodies against the transcellular proteins occludin and claudin-5 appeared to be regularly maintained in regions where FITC-albumin massively leaked into the neuropil. Furthermore, occludin signals along pan-laminin-labeled vessels in the affected hemisphere equaled the non-affected contralateral side (ratio: 0.966 vs. 0.963; P = 0.500. Additional ultrastructural analyses at 5 and 25 h after ischemia induction clearly indicated FITC-albumin extravasation around vessels with intact tight junctions, while the endothelium exhibited enhanced transendothelial vesicle trafficking and signs of degeneration. Thus, BBB breakdown and leakage of FITC-albumin cannot be correlated with staining patterns for common tight junction proteins alone

  15. Biological interaction of living cells with COSAN-based synthetic vesicles.

    Science.gov (United States)

    Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J

    2015-01-15

    Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.

  16. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led......Prototyping is often presented as a universal solution to many intractable information systems project problems. Prototyping is known to offer at least three advantages (1) provide users with a concrete understanding, (2) eliminate the confusion, (3) cope with uncertainty. On the other hand...

  17. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail: alessandro.degiacomo@ba.imip.cnr.it; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)

    2007-12-15

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)

  18. Fast Positive Breakdown, NBEs, and Lightning Initiation

    Science.gov (United States)

    Krehbiel, P. R.; Rison, W.; Stock, M.; Edens, H. E.; Shao, X. M.; Thomas, R. J.; Stanley, M. A.; Zhang, Y.

    2016-12-01

    High power narrrow bipolar events (NBEs) have been found to be produced by arelatively unknown type of discharge, called fast positive breakdown (Rison etal., 2016). The breakdown occurs with a wide range of strengths, both in terms of its broadband sferic and its VHF radiation, and is found to be theinitiating event of many and likely all lightning discharges inside storms. Itdoes not produce a conducting channel but instead appears to be produced by avolumetric system of repeated, cascading positive streamers in virgin air.That positive corona and streamers would be responsible for initiatinglightning was proposed in the 1960s by Loeb, Dawson and Winn. In the 1970sPhelps and Griffiths showed that the streamers would be self-intensifying,leading to negative breakdown being initiated back at their starting points.Petersen et al. (2008) described experimental results showing that thestreamers could be initiated by ice crystals at cold temperatures, and thephysical processes leading to the breakdown being fast has been reported inrecent modeling studies by Shi et al. (2016). In this paper we summarize the observational data in support of the abovefindings, and report on additional observations of NBEs and lightninginitiation currently being obtained at Kennedy Space Center, Florida. References: Rison W., P.R. Krehbiel M.G.Stock, H.E. Edens, X-M. Shao, R.J. Thomas,M.A. Stanley, Y. Zhang, Observations of narrow bipolar events revealhow lightning is initiated in thunderstorms, Nature Comms. 7, 2016.doi:10.1038/ncomms10721. Petersen, D., Bailey, M., Beasley, W. & Hallett, J. A brief review ofthe problem of lightning initiation and a hypothesis of initiallightning leader formation. J. Geophys. Res. 113, D17205 (2008). Shi, F., N. Liu, and H. K. Rassoul (2016), Properties of relativelylong streamers initiated from an isolated hydrometeor, J. Geophys.Res. Atmos., 121, 7284-7295, doi:10.1002/2015JD024580.

  19. City traffic flow breakdown prediction based on fuzzy rough set

    Science.gov (United States)

    Yang, Xu; Da-wei, Hu; Bing, Su; Duo-jia, Zhang

    2017-05-01

    In city traffic management, traffic breakdown is a very important issue, which is defined as a speed drop of a certain amount within a dense traffic situation. In order to predict city traffic flow breakdown accurately, in this paper, we propose a novel city traffic flow breakdown prediction algorithm based on fuzzy rough set. Firstly, we illustrate the city traffic flow breakdown problem, in which three definitions are given, that is, 1) Pre-breakdown flow rate, 2) Rate, density, and speed of the traffic flow breakdown, and 3) Duration of the traffic flow breakdown. Moreover, we define a hazard function to represent the probability of the breakdown ending at a given time point. Secondly, as there are many redundant and irrelevant attributes in city flow breakdown prediction, we propose an attribute reduction algorithm using the fuzzy rough set. Thirdly, we discuss how to predict the city traffic flow breakdown based on attribute reduction and SVM classifier. Finally, experiments are conducted by collecting data from I-405 Freeway, which is located at Irvine, California. Experimental results demonstrate that the proposed algorithm is able to achieve lower average error rate of city traffic flow breakdown prediction.

  20. A New Universal Gas Breakdown Theory for Classical Length Scales

    Science.gov (United States)

    Loveless, Amanda Mae

    While Paschen's law is commonly used to predict breakdown voltage, it fails at microscale gaps when field emission becomes important. Accurate breakdown voltage predictions at microscale are even more important as electronic device dimensions decrease. Developing analytic models to accurately predict breakdown at microscale is vital for understanding the underlying physics occurring within the system and to either prevent or produce a discharge, depending on the application. We first take a pre-existing breakdown model coupling field emission and Townsend breakdown and perform a matched asymptotic analysis to obtain analytic equations for breakdown voltage in argon at atmospheric pressure. Next, we extend this model to generalize for gas and further explore the independent contributions of field emission and Townsend discharge. Finally, we present analytic expressions for breakdown voltage valid for any gas at any pressure, and discuss the modified Paschen minimum at microscale. The presented models agree well with numerical simulations and experimental data when using the field enhancement factor as a fitting parameter. The work presented in this thesis is a first step in unifying gas breakdown across length scales and breakdown mechanisms. Future work will aim to incorporate other breakdown mechanisms, such as quantum effects and space charge, to provide a more complete unified model for gas breakdown.

  1. Comparative Studies of High-Gradient Rf and Dc Breakdowns

    CERN Document Server

    Kovermann, Jan Wilhelm; Wuensch, Walter

    2010-01-01

    The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...

  2. Vortex breakdown in gaseous swirling jets

    Science.gov (United States)

    Sanchez, Antonio L.; Carpio, Jaime; Williams, Forman A.

    2017-11-01

    Numerical integrations of the axisymmetric Navier-Stokes equations are employed to describe the structure of low-Mach-number gaseous swirling jets with jet-to-ambient density ratios ρj /ρa of order unity. The integrations consider moderately large values of the Reynolds number on the order of a few hundred and values of the swirl ratio S of order unity. Slender jets are found to exist for values of S below a critical value of order unity, at which vortex breakdown occurs. As in the case of constant density jets (Billant, Chomaz, and Huerre, JFM 1998), two different types of axisymmetric vortex breakdown are identified, namely, a bubble state and a cone configuration. The critical values of S characterizing the existence of the different solutions are determined as a function of ρj /ρa . Additional computations based on the quasicylindrical approximation are employed to describe slender subcritical jets. The results indicate that the breakdown of the quasicylindrical approximation provides an accurate prediction for the transition from the slender solution to the bubble state, whereas a prediction for the transition to the cone state can be obtained by consideration of the structure of the flow at small distances from the jet exit. This work was supported by the US AFOSR Grant No. FA9550-16-1-0443.

  3. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Alternating current breakdown voltage of ice electret

    Science.gov (United States)

    Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.

    2017-09-01

    Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.

  5. Runaway breakdown and electrical discharges in thunderstorms

    Science.gov (United States)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  6. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  7. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis.

    Science.gov (United States)

    Erne, Petra M; van Bezouwen, Laura S; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Boekema, Egbert J; Feringa, Ben L

    2015-12-07

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based flexible bilayers. When a hyperosmotic gradient is applied to these vesicle-capped nanotubes, the closed system loses water and the more flexible vesicle bilayer is pulled inwards. This leads to inclusion of vesicles inside the nanotubes without affecting the tube structure, showing controlled reorganization of the self-assembled multicomponent system upon a simple osmotic stimulus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coated vesicles as protein release mechanism in myeloma cells.

    Science.gov (United States)

    Trombetta, L D; Lazarus, S S

    An electron microscopic study was undertaken of the protein release mechanism within myeloma cells showing a very high degree of protein production. Smooth surfaced vesicles (50 millimicrons) were seen to originate from the outer margin of the perinuclear cistern. Similar vesicles were also associated with distended Golgi sacs. Possible function of these vesicles could not be determined. Coated vesicles (60 millimicrons) originated as evaginations from endoplasmic reticulum in the transitional region. They were present throughout the cytoplasm and were seen to fuse with the cell membrane discharging an electron dense material. These vesicles are, therefore, thought to transport protein from the rough endoplasmic reticulum and discharge it at the cell surface.

  9. Interaction of insulin with SDS/CTAB catanionic Vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Tah, Bidisha; Pal, Prabir; Talapatra, G.B., E-mail: spgbt@iacs.res.in

    2014-01-15

    In the present study, a novel method was used for entrapping the protein, insulin into the catanionic SDS/CTAB vesicle membrane. The anionic SDS and cationic CTAB formed catanionic vesicles at particular concentration (35:65 by volume). In this study, vesicle membrane can be considered as model membrane. The vesicle formation and entrapment efficiency depend on the pH of the aqueous solution. The insulin molecules have attached with the vesicular membrane at pH 7.0. However, at acidic pH, the vesicles were ruptured and the insulin did not entrap into the vesicle membrane, whereas at alkaline pH insulin became fibriller. The scanning electron microscope (SEM), Dynamic light scattering (DLS), and Zeta potential studies established the self-assembled structure formation of insulin and catanionic vesicles. To know the protein confirmations, Circular dichroism (CD) was also employed. The temperature dependent steady state and time resolved emission spectroscopy show that at room temperature (25 °C), apart from the 305 nm tyrosine fluorescence, a new emission peak at 450 nm was observed only in case of insulin-vesicle system, and was assigned as the tyrosine phosphorescence. This phosphorescence peak is the signature of the entrapment of insulin into the vesicle membrane. Highlights: • SDS-CTAB based catanionic vesicle has been fabricated. • Insulin has been successfully immobilized on these vesicles. • Immobilized insulin shows room temperature phosphorescence.

  10. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  11. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    Science.gov (United States)

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Soft vesicles in the synthesis of hard materials.

    Science.gov (United States)

    Dong, Renhao; Liu, Weimin; Hao, Jingcheng

    2012-04-17

    Vesicles of surfactants in aqueous solution have received considerable attention because of their use as simple model systems for biological membranes and their applications in various fields including colloids, pharmaceuticals, and materials. Because of their architecture, vesicles could prove useful as "soft" templates for the synthesis of "hard materials". The vesicle phase, however, has been challenging and difficult to work with in the construction of hard materials. In the solution-phase synthesis of various inorganic or macromolecular materials, templating methods provide a powerful strategy to control the size, morphology, and composition of the resulting micro- and nanostructures. In comparison with hard templates, soft templates are generally constructed using amphiphilic molecules, especially surfactants and amphiphilic polymers. These types of compounds offer advantages including the wide variety of available templates, simple fabrication processes under mild conditions, and easy removal of the templates with less damage to the final structures. Researchers have used many ordered molecular aggregates such as vesicles, micelles, liquid crystals, emulsion droplets, and lipid nanotubes as templates or structure-directing agents to control the synthesis or assembly hard micro- and nanomaterials composed from inorganic compounds or polymers. In addition to their range of sizes and morphologies, vesicles present unique structures that can simultaneously supply different microenvironments for the growth and assembly of hard materials: the inner chamber of vesicles, the outer surface of the vesicles, and the space between bilayers. Two main approaches for applying vesicles in the field of hard materials have been explored: (i) in situ synthesis of micro- or nanomaterials within a specific microenvironment by vesicle templating and (ii) the assembly or incorporation of guest materials during the formation of vesicles. This Account provides an in-depth look at

  13. Prochloraz-induced oocyte maturation in rainbow trout (Oncorhynchus mykiss), a molecular and functional analysis.

    Science.gov (United States)

    Rime, Hélène; Nguyen, Thaovi; Bobe, Julien; Fostier, Alexis; Monod, Gilles

    2010-11-01

    In the present study, we aimed at characterizing the effect of prochloraz, an imidazole fungicide, on the oocyte meiotic maturation process in a freshwater teleost species, the rainbow trout (Oncorhynchus mykiss). Full-grown post-vitellogenic ovarian follicles were incubated in vitro with prochloraz, Luteinizing Hormone (LH), or a combination of prochloraz and LH. The occurrence of oocyte maturation was assessed by monitoring germinal vesicle breakdown (GVBD) after 62-h in vitro incubation. Experiments were repeated in presence of actinomycin D, cycloheximide, or trilostane. The effect of prochloraz on the production of 17,20β-dihydroxy-4-pregnen-3-one (17,20βP), the natural maturation-inducing steroid, was quantified by radioimmunoassay. In addition, the effect of prochloraz on ovarian expression of 12 genes was monitored by real-time PCR. Prochloraz (10(-5)M) administered alone was able to induce 100% GVBD in the most responsive females. The occurrence of GVBD observed after prochloraz stimulation of follicles originating from various females was similar and highly correlated with the occurrence of GVBD observed after stimulation with low LH concentration. In addition, oocyte maturation induced by LH or prochloraz was totally inhibited by actinomycin D, cycloheximide, and trilostane. Similarly to LH, prochloraz was able to trigger 17,20βP production by the ovarian follicle. Finally, prochloraz induced the overexpression of genes participating in 17,20βP production, intercellular communication, and paracrine control of preovulatory follicular differentiation such as igf, igf2, connexin 43, and 20β hydroxysteroid dehydrogenase (hsbd20). Together, our results demonstrate that prochloraz administered alone is able to trigger oocyte maturation through the induction of specific genes, some of them being also triggered by LH. Finally, our results clearly indicate that the effects of prochloraz and LH on oocyte maturation are synergistic.

  14. Signaling by Extracellular Vesicles Advances Cancer Hallmarks.

    Science.gov (United States)

    Kanada, Masamitsu; Bachmann, Michael H; Contag, Christopher H

    2016-02-01

    Mammalian cells secrete various extracellular vesicles (EVs; exosomes, microvesicles, and apoptotic bodies) that differ in biogenesis, composition, and function. Each vesicle type can originate from normal or cancerous cells, transfer molecular cargo to both neighboring and distant cells, and modulate cellular behaviors involved in eubiology and pathology, such as tumor development. Here, we review evidence for the role of EVs in the establishment and maintenance of cancer hallmarks, including sustaining proliferative signaling, evading growth suppression, resisting cell death, reprogramming energy metabolism, acquiring genomic instability, and remodeling the tumor microenvironment. We also discuss how EVs are implicated in the induction of angiogenesis, control of cellular invasion, initiation of premetastatic niches, maintenance of inflammation, and evasion of immune surveillance. The deeper understanding of the biology of EVs and their contribution to the development and progression of tumors is leading to new opportunities in the diagnosis and treatment of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Seminal vesicle cystadenoma: a rare clinical perspective.

    Science.gov (United States)

    Lorber, Gideon; Pizov, Galina; Gofrit, Ofer N; Pode, Dov

    2011-08-01

    A 52-yr-old man presented with severe obstructive urinary symptoms. Ten years earlier, a digital rectal examination disclosed a small mass above the prostate, and a computed tomography (CT) scan showed a 3.5-cm cystic tumor of the right seminal vesicle. He had been followed conservatively elsewhere. Reevaluation of the mass with a CT scan and magnetic resonance imaging showed that the mass had grown to a maximal diameter of 14 cm. A transabdominal needle biopsy revealed benign fibromuscular tissue. The tumor was then resected by an open transvesical approach. Pathology was consistent with a benign seminal vesicle cystadenoma. The natural history, pathology, and surgical approach are described. Copyright © 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  16. Docking of secretory vesicles is syntaxin dependent.

    Directory of Open Access Journals (Sweden)

    Heidi de Wit

    Full Text Available Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.

  17. Vitrification of Germinal Vesicle Stage Oocytes

    OpenAIRE

    ABE, Yasuyuki; AONO, Nobuya; Hara, Kenshiro; Matsumoto, Hiromichi; BAKHTIYARI, Mehrdad; Sasada, Hiroshi; Sato, Eimei

    2004-01-01

    In order to cryopreserve germinal vesicle (GV) stage oocytes, we first need to develop a novel container for keeping large quantities of GV oocytes, because of collecting them as cumulus oocytes complexes (COCs) that have bigger size and larger volume than oocytes themselves, and second modify a protocol for optimizing vitrification of them. In this mini-review, we describe our recent progress for attaining these objectives. When 65 bovine COCs having GV oocytes could be placed on a sheet of ...

  18. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    Science.gov (United States)

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (inflammation in immune cells. © 2017 American Heart Association, Inc.

  19. A readily retrievable pool of synaptic vesicles

    OpenAIRE

    Hua, Y; Sinha, R.; Thiel, C.; Schmidt, R.; Hueve, J.; Martens, H.; Hell, S.; Egner, A.; Klingauf, J.

    2011-01-01

    Abstract Although clathrin-mediated endocytosis (CME) is thought to be the predominant mechanism of synaptic vesicle (SV) recycling, it seems to be too slow for fast recycling. Therefore, it was suggested that a pre-sorted and pre-assembled pool of SV proteins on the presynaptic membrane might support a first wave of fast CME. In this study we monitored the temporal dynamics of such a 'readily retrievable pool' of SV proteins in rat hippocampal neurons using a novel probe. Applying...

  20. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  1. ATP: The crucial component of secretory vesicles.

    Science.gov (United States)

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  2. Detection of platelet vesicles by flow cytometry.

    Science.gov (United States)

    Nolan, John P; Jones, Jennifer C

    2017-05-01

    The composition and function of platelet-derived extracellular vesicles (EVs) in health and in disease are a major topic of investigation in biomedical research. However, efforts to delineate specific molecular repertoires and roles for different types of EVs in the circulation are limited not only by the lack of flow cytometers capable of analyzing submicron- and nano-materials across the full size spectrum of plasma EVs, but also by the lack of standardized methods and reference materials that would permit inter-laboratory reproducibility for these analyses. In this review, we summarize the flow cytometry of EVs, with a focus on platelet vesicles in plasma. In addition to delineating the basic principles that govern what precautions must be considered when using flow cytometry for the analysis of platelet vesicles, we provide an overview for how to standardize, control, annotate, and report EV flow cytometry data reproducibly, while looking forward to a next generation of high sensitivity instruments for the analysis of EVs and other submicron biomaterials in the circulation.

  3. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  4. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers?

    Science.gov (United States)

    Erdbrügger, Uta; Le, Thu H

    2016-01-01

    Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles. Copyright © 2016 by the American Society of Nephrology.

  5. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith?

    Science.gov (United States)

    Osteikoetxea, Xabier; Németh, Andrea; Sódar, Barbara W; Vukman, Krisztina V; Buzás, Edit Irén

    2016-06-01

    In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Secondary threshold amplitudes for sinuous streak breakdown

    Science.gov (United States)

    Cossu, Carlo; Brandt, Luca; Bagheri, Shervin; Henningson, Dan S.

    2011-07-01

    The nonlinear stability of laminar sinuously bent streaks is studied for the plane Couette flow at Re = 500 in a nearly minimal box and for the Blasius boundary layer at Reδ*=700. The initial perturbations are nonlinearly saturated streamwise streaks of amplitude AU perturbed with sinuous perturbations of amplitude AW. The local boundary of the basin of attraction of the linearly stable laminar flow is computed by bisection and projected in the AU - AW plane providing a well defined critical curve. Different streak transition scenarios are seen to correspond to different regions of the critical curve. The modal instability of the streaks is responsible for transition for AU = 25%-27% for the considered flows, where sinuous perturbations of amplitude below AW ≈ 1%-2% are sufficient to counteract the streak viscous dissipation and induce breakdown. The critical amplitude of the sinuous perturbations increases when the streamwise streak amplitude is decreased. With secondary perturbations amplitude AW ≈ 4%, breakdown is induced on stable streamwise streaks with AU ≈ 13%, following the secondary transient growth scenario first examined by Schoppa and Hussain [J. Fluid Mech. 453, 57 (2002)]. A cross-over, where the critical amplitude of the sinuous perturbation becomes larger than the amplitude of streamwise streaks, is observed for streaks of small amplitude AU < 5%-6%. In this case, the transition is induced by an initial transient amplification of streamwise vortices, forced by the decaying sinuous mode. This is followed by the growth of the streaks and final breakdown. The shape of the critical AU - AW curve is very similar for Couette and boundary layer flows and seems to be relatively insensitive to the nature of the edge states on the basin boundary. The shape of this critical curve indicates that the stability of streamwise streaks should always be assessed in terms of both the streak amplitude and the amplitude of spanwise velocity perturbations.

  7. Ergodicity breakdown and scaling from single sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kalashyan, Armen K. [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Buiatti, Marco [Laboratoire de Neurophysique et Physiologie, CNRS UMR 8119 Universite Rene Descartes - Paris 5 45, rue des Saints Peres, 75270 Paris Cedex 06 (France); Cognitive Neuroimaging Unit - INSERM U562, Service Hospitalier Frederic Joliot, CEA/DRM/DSV, 4 Place du general Leclerc, 91401 Orsay Cedex (France); Grigolini, Paolo [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Dipartimento di Fisica ' E.Fermi' - Universita di Pisa and INFM, Largo Pontecorvo 3, 56127 Pisa (Italy); Istituto dei Processi Chimico, Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy)], E-mail: grigo@df.unipi.it

    2009-01-30

    In the ergodic regime, several methods efficiently estimate the temporal scaling of time series characterized by long-range power-law correlations by converting them into diffusion processes. However, in the condition of ergodicity breakdown, the same methods give ambiguous results. We show that in such regime, two different scaling behaviors emerge depending on the age of the windows used for the estimation. We explain the ambiguity of the estimation methods by the different influence of the two scaling behaviors on each method. Our results suggest that aging drastically alters the scaling properties of non-ergodic processes.

  8. Coaxial vacuum gap breakdown for pulsed power liners

    Science.gov (United States)

    Cordaro, S. W.; Bott-Suzuki, S. C.; Caballero Bendixsen, L. S.; Haas, D. M.; Meisenhelder, C.

    2014-12-01

    Recent work conducted at UC San Diego utilizes a high voltage system, up to 25kV, to study and analyze the vacuum breakdown mechanisms of a coaxial gap. An analysis of the coaxial gap has utilized laser interferometry for density profile, as well as magnetic field measurements via B-dot probes. Results show that breakdown is random about the azimuth, and that density of breakdown plasma is low (˜ne dl probe(s) closest to where breakdown occurs making it possible to triangulate the relative position breakdown occurred without the need for line of sight along the axis. Furthermore, diagnostic results coupled with the unpolished electrodes being at room temperature suggests that field emission is the dominant mechanism causing initial breakdown.

  9. Measuring protein breakdown in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjær, Michael

    2010-01-01

    be used to determine the breakdown rate of specific proteins and, therefore, do not keep up to the preceding methodological demands in physiological research. A newly developed approach to determine the fractional breakdown rate of single proteins seems promising. Its conceptual advantage......PURPOSE OF REVIEW: To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo. RECENT FINDINGS: None of the available methods for determining protein breakdown can...... is that the proteins of interest are the site of measurement. Hence, the application initially demands the proteins to be labeled with stable isotopically labeled amino acids. Subsequently, the loss of label from the proteins will be dependent on the protein breakdown rate when no labeled amino acids...

  10. Studies of RF Breakdown of Metals in Dense Gases

    CERN Document Server

    Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.

  11. NASA Work Breakdown Structure (WBS) Handbook

    Science.gov (United States)

    Fleming, Jon F.; Poole, Kenneth W.

    2016-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule and budget development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  12. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Human mammospheres secrete hormone-regulated active extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Esperanza Gonzalez

    Full Text Available Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.

  14. Gram-negative and Gram-positive bacterial extracellular vesicles.

    Science.gov (United States)

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lee, Jaewook; Kim, Si-Hyun; Choi, Dong-Sic; Lee, Jong Seok; Kim, Dae-Kyum; Go, Gyeongyun; Park, Seon-Min; Kim, Si Hyun; Shin, Jeong Hwan; Chang, Chulhun L; Gho, Yong Song

    2015-10-01

    The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC-MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 (http://proteomecentral.proteomexchange.org/dataset/PXD001160). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DNA-mediated self-assembly of artificial vesicles.

    Science.gov (United States)

    Hadorn, Maik; Eggenberger Hotz, Peter

    2010-03-26

    Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and

  17. Cellular phenotype and extracellular vesicles: basic and clinical considerations.

    Science.gov (United States)

    Quesenberry, Peter J; Goldberg, Laura R; Aliotta, Jason M; Dooner, Mark S; Pereira, Mandy G; Wen, Sicheng; Camussi, Giovanni

    2014-07-01

    Early work on platelet and erythrocyte vesicles interpreted the phenomena as a discard of material from cells. Subsequently, vesicles were studied as possible vaccines and, most recently, there has been a focus on the effects of vesicles on cell fate. Recent studies have indicated that extracellular vesicles, previously referred to as microvesicles or exosomes, have the capacity to change the phenotype of neighboring cells. Extensive work has shown that vesicles derived from either the lung or liver can enter bone marrow cells (this is a prerequisite) and alter their fate toward that of the originating liver and lung tissue. Lung vesicles interacted with bone marrow cells result in the bone marrow cells expressing surfactants A-D, Clara cell protein, and aquaporin-5 mRNA. In a similar vein, liver-derived vesicles induce albumin mRNA in target marrow cells. The vesicles contain protein, mRNA, microRNA, and noncoding RNA and variably some DNA. This genetic package is delivered to cells and alters the phenotype. Further studies have shown that initially the altered phenotype is due to the transfer of mRNA and a transcriptional modulator, but long-term epigenetic changes are induced through transfer of a transcriptional factor, and the mRNA is rapidly degraded in the cell. Studies on the capacity of vesicles to restore injured tissue have been quite informative. Mesenchymal stem cell-derived vesicles are able to reverse the injury to the damaged liver and kidney. Other studies have shown that mesenchymal stem cell-derived vesicles can reverse radiation toxicity of bone marrow stem cells. Extracellular vesicles offer an intriguing strategy for treating a number of diseases characterized by tissue injury.

  18. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  19. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  20. [Seminal vesicle cystadenoma as the cause of a retrovesical tumor].

    Science.gov (United States)

    Kaminsky, A; Kania, U; Ortloff, P; Sperling, H

    2014-04-01

    Tumors of the seminal vesicle are rare. Malignant tumors are more common than benign tumors. A seminal vesicle cystadenoma is a rarity. We report on a 41-year-old man with the incidental finding of an asymptomatic retrovesical tumor. The tumor, the seminal vesicle, and the abdominal part of the ductus deferens were surgically removed. The operative access is variable and surgical treatment is the method of choice. The patient's prognosis is good and there are no signs of recurrence.

  1. Dynamic properties of the alkaline vesicle population at hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Mareike Röther

    Full Text Available In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.

  2. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    Science.gov (United States)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  3. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  4. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  5. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  6. Role of extracellular vesicles in autoimmune diseases.

    Science.gov (United States)

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Symmetry breakdown and coupling constants of leptons

    Directory of Open Access Journals (Sweden)

    Gil C. Marques

    2007-06-01

    Full Text Available Based on a new approach to symmetries of the fundamental interactions we deal, in this paper, with the electroweak interactions of leptons. We show that the coupling constants, arising in the way leptons are coupled to intermediate bosons, can be understood as parameters associated to the breakdown of SU(2 and parity symmetries. The breakdown of both symmetries is characterized by a new parameter (the asymetry parameter of the electroweak interactions. This parameter gives a measure of the strength of breakdown of symmetries. We analyse the behaviour of the theory for three values of this parameter. The most relevant value is the one for which only the electromagnetic interactions do not break parity (the maximally allowed left-right asymetric theory. Maximamally allowed parity asymmetry is a requirement that is met for a value of Weinberg's theta-angle that is quite close to the experimental value of this parameter.Com base em uma formulação nova para simetrias das interações fundamentais nós lidamos, neste trabalho, com interações eletrofracas de leptons. Mostramos que as constantes do acoplamento, associadas aos acoplamentos de bósons intermediários, podem ser entendidas como parâmetros associados à quebra de simetrias SU(2 e paridade. A quebra de ambas as simetrias é caracterizada por um parâmetro novo (o parâmetro de assimetria das interações eletrofracas. Este parâmetro dá uma medida da intensidade com que a simetria é quebrada. Analisamos o comportamento da teoria para três valores deste parâmetro. O valor mais relevante é aquele para o qual apenas as interações eletromagnéticas não quebram a paridade (a teoria assimétrica esquerda-direita permitida da maneira máxima. A assimetria máxima permitida é uma exigência que leva a um ângulo de Weinberg cujo valor é próximo daquele observado experimentalmente.

  8. SIMULATION OF PULSED BREAKDOWN IN HELIUM BY ADAPTIVE METHODS

    Directory of Open Access Journals (Sweden)

    S. I. Eliseev

    2014-09-01

    Full Text Available The paper deals with the processes occurring during electrical breakdown in gases as well as numerical simulation of these processes using adaptive mesh refinement methods. Discharge between needle electrodes in helium at atmospheric pressure is selected for the test simulation. Physical model of the accompanying breakdown processes is based on self- consistent system of continuity equations for streams of charged particles (electrons and positive ions and Poisson equation for electric potential. Sharp plasma heterogeneity in the area of streamers requires the usage of adaptive algorithms for constructing of computational grids for modeling. The method for grid adaptive construction together with justification of its effectiveness for significantly unsteady gas breakdown simulation at atmospheric pressure is described. Upgraded version of Gerris package is used for numerical simulation of electrical gas breakdown. Software package, originally focused on solution of nonlinear problems in fluid dynamics, appears to be suitable for processes modeling in non-stationary plasma described by continuity equations. The usage of adaptive grids makes it possible to get an adequate numerical model for the breakdown development in the system of needle electrodes. Breakdown dynamics is illustrated by contour plots of electron densities and electric field intensity obtained in the course of solving. Breakdown mechanism of positive and negative (orientated to anode streamers formation is demonstrated and analyzed. Correspondence between adaptive building of computational grid and generated plasma gradients is shown. Obtained results can be used as a basis for full-scale numerical experiments on electric breakdown in gases.

  9. Communication Breakdown: Unraveling the Islamic States Media Efforts

    Science.gov (United States)

    2016-10-01

    Communication Breakdown: Unraveling the Islamic State’s Media Efforts Daniel Milton Communication Breakdown: Unraveling the Islamic State’s Media ...production arm of central media office).28 The high level of communication between the central media office and the satellite offices illustrates the tension...1 Examining Declassified Historical Media Documents (by Zach Schenk)...................2 The Media Organization’s Goal: Appeal to the

  10. Enzymatic Breakdown of Type II Collagen in the Human Vitreous

    NARCIS (Netherlands)

    van Deemter, Marielle; Pas, Hendri H.; Kuijer, Roel; van der Worp, Roelofje J.; Hooymans, Johanna M. M.; Los, Leonoor I.

    2009-01-01

    PURPOSE. To investigate whether enzymatic collagen breakdown is an active process in the human vitreous. METHODS. Human donor eyes were used for immunohistochemistry to detect the possible presence of the matrix metalloproteinase (MMP)-induced type II collagen breakdown product col2-3/4C-short in

  11. characteristics of structural breakdown in plastic concrete and their ...

    African Journals Online (AJOL)

    Dr Obe

    SUMMARY. The structural breakdown of plastic concrete when sheared in. a Couette-type rheometer is discussed with particular emphasis on the significant features of the resultant thixotropic break-down curve. A typical trace has four such significant features which characterise the mix. The significance of these features ...

  12. Characteristics of Structural Breakdown in Plastic Concrete and ...

    African Journals Online (AJOL)

    The structural breakdown of plastic concrete when sheared in. a Couette-type rheometer is discussed with particular emphasis on the significant features of the resultant thixotropic break-down curve. A typical trace has four such significant features which characterise the mix. The significance of these features are analysed ...

  13. Development of Electrical Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2006-01-01

    Full Text Available Power transformers are key equipment for transfer and distribution of the electric power. Considering the significance of the power transformers in the electric system, their price and possible damages occurred by accidents, it is necessary to pay attention to their higher prevention. To prevent failure states of transformers, we perform different types ofmeasurements. They shall illustrate a momentary state of the measured equipment and if necessary to draw attention in advance to changes of parameters, which have specific relationship to no-failure operation of the equipment. The conditions under which breakdown of composite liquid/ solid insulation can occur, e.g. in transformer, play an important role in designing such insulation. The liquid, mainly mineral oil, generally constitutes the weakest part of insulation and a great amount of work has been devoted to the study of streamers, which appear in the gaseous phase, and most often are triggering the failure of insulation.

  14. Vortex breakdown in simple pipe bends

    Science.gov (United States)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  15. Streamer parameters and breakdown in CO2

    Science.gov (United States)

    Seeger, M.; Avaheden, J.; Pancheshnyi, S.; Votteler, T.

    2017-01-01

    CO2 is a promising gas for the replacement of SF6 in high-voltage transmission and distribution networks due to its lower environmental impact. The insulation properties of CO2 are, therefore, of great interest. For this, the properties of streamers are important, since they determine the initial discharge propagation and possibly the transition to a leader. The present experimental investigation addresses the streamer inception and propagation at ambient temperature in the pressure range 0.05-0.5 MPa at both polarities. Streamer parameters, namely the stability field, radius and velocity, were deduced in uniform and in strongly non-uniform background fields. The measured breakdown fields can then be understood by streamer propagation and streamer-to-leader transition.

  16. Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa

    Directory of Open Access Journals (Sweden)

    Marcianò Vito

    2008-01-01

    Full Text Available Abstract Background The presence of small membranous particles characterizes the male genital fluids of different mammalian species. The influence of semen vesicles, denominated prostasomes, on sperm functional properties has been well documented in humans, but their biological activity is scarcely known in other species. The present work investigated prostasome-like vesicles in pig semen for their ability to interact with spermatozoa and to affect acrosome reaction. Methods Prostasome-like vesicles have been isolated from pig seminal plasma by high-speed centrifugation and Sephadex G-200 gel chromatography. Morphology of purified vesicles has been checked by scanning electron microscopy while their protein pattern has been investigated by SDS-PAGE. Then prostasome- like vesicles have been incubated with pig spermatozoa and their ability to interact with sperm has been tested by the aminopeptidase assay. In addition, the efficiency of vesicles to influence the acrosome reaction has been investigated by assessing the sperm acrosomal status by the PI/FITC-PNA (propidium iodide/fluorescein isothiocyanate-labeled peanut agglutinin stainings. Results Purified vesicles revealed a complex protein pattern with the occurrence of bands in the high, medium and low molecular weight range. However, the two major bands were observed at ~90 kDa and ~60 kDa. A vesicle-mediated transfer of aminopeptidase to sperm cells has been also detected. Furthermore, a significant increase of acrosome reaction extent has been revealed in spermatozoa incubated with prostasome-like vesicles in comparison to control sperm. Conclusion This is the first report demonstrating that pig prostasome-like vesicles are able, in vitro, to interact with spermatozoa and to stimulate the acrosome reaction. These findings lead to hypothesize a transfer of molecules from vesicles to sperm membrane, thus sensitizing male gametes to undergo the acrosome reaction

  17. Breakdown voltage of metal-oxide resistors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Bagby, L. F. [Fermilab; Gollapinni, S. [Kansas State U.; James, C. C. [Fermilab; Jones, B. J.P. [MIT; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Naples, D. [Pittsburgh U.; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Schukraft, A. [Fermilab; Strauss, T. [Bern U., LHEP; Weber, M. S. [Bern U., LHEP; Wolbers, S. A. [Fermilab

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  18. Bioinformatics Tools for Extracellular Vesicles Research.

    Science.gov (United States)

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Gho, Yong Song; Mathivanan, Suresh

    2017-01-01

    Extracellular vesicles (EVs) are a class of membranous vesicles that are released by multiple cell types into the extracellular environment. This unique class of extracellular organelles which play pivotal role in intercellular communication are conserved across prokaryotes and eukaryotes. Depending upon the cell origin and the functional state, the molecular cargo including proteins, lipids, and RNA within the EVs are modulated. Owing to this, EVs are considered as a subrepertoire of the host cell and are rich reservoirs of disease biomarkers. In addition, the availability of EVs in multiple bodily fluids including blood has created significant interest in biomarker and signaling research. With the advancement in high-throughput techniques, multiple EV studies have embarked on profiling the molecular cargo. To benefit the scientific community, existing free Web-based resources including ExoCarta, EVpedia, and Vesiclepedia catalog multiple datasets. These resources aid in elucidating molecular mechanism and pathophysiology underlying different disease conditions from which EVs are isolated. Here, the existing bioinformatics tools to perform integrated analysis to identify key functional components in the EV datasets are discussed.

  19. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  20. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion...

  1. IN-VITRO FUSION OF RETICULOCYTE ENDOCYTIC VESICLES WITH LIPOSOMES

    NARCIS (Netherlands)

    VIDAL, M; HOEKSTRA, D

    1995-01-01

    Since reticulocytes have a high demand for iron, which is required for heme biosynthesis, these cells are highly specialized in the endocytosis of the iron carrier transferrin (Tf). From the resulting endocytic vesicles (EVs), iron is released and the vesicles rapidly return to the cell membrane

  2. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  3. Vesicle transport and photoreceptor death: fishing for molecular links.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2013-06-10

    Intracellular vesicle transport defects can induce retinal degeneration and photoreceptor cell death, but the molecular connections between these processes remains poorly understood. Reporting in Developmental Cell, Nishiwaki et al. (2013) suggest that a vesicle fusion cis-SNARE complex component translates vesicular transport defects into photoreceptor cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Formation and structural properties of multi-block copolymer vesicles

    Science.gov (United States)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  5. Slow Sedimentation and Deformability of Charged Lipid Vesicles

    Science.gov (United States)

    Rey Suárez, Iván; Leidy, Chad; Téllez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity. PMID:23874582

  6. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles

    DEFF Research Database (Denmark)

    Raj, Akanksha; Wang, Min; Zander, Thomas

    2017-01-01

    with the outer shell of dipalmitoylphophatidylcholine (DPPC) vesicles in bulk solution. Further, we follow adsorption to silica from mixed hyaluronan/DPPC vesicle solution by Quartz Crystal Microbalance with Dissipation measurements. Atomic Force Microscope imaging visualises the adsorbed layer structure...... and partly removed from between the surfaces under high loads. These layers offer very low friction coefficient (

  7. Block-Copolymer Vesicles as Nanoreactors for Enzymatic Reactions

    NARCIS (Netherlands)

    Chen, Qi; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    The impact of the spatial confinement of polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer (BCP) vesicles on the reactivity of encapsulated bovine pancreas trypsin is studied. Enzymes, as well as small molecules, are encapsulated with loading efficiencies up to 30% in BCP vesicles with

  8. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

    NARCIS (Netherlands)

    Kalra, Hina; Simpson, Richard J.; Ji, Hong; Aikawa, Elena; Altevogt, Peter; Askenase, Philip; Bond, Vincent C.; Borràs, Francesc E.; Breakefield, Xandra; Budnik, Vivian; Buzas, Edit; Camussi, Giovanni; Clayton, Aled; Cocucci, Emanuele; Falcon-Perez, Juan M.; Gabrielsson, Susanne; Gho, Yong Song; Gupta, Dwijendra; Harsha, H. C.; Hendrix, An; Hill, Andrew F.; Inal, Jameel M.; Jenster, Guido; Krämer-Albers, Eva-Maria; Lim, Sai Kiang; Llorente, Alicia; Lötvall, Jan; Marcilla, Antonio; Mincheva-Nilsson, Lucia; Nazarenko, Irina; Nieuwland, Rienk; Nolte-'t Hoen, Esther N. M.; Pandey, Akhilesh; Patel, Tushar; Piper, Melissa G.; Pluchino, Stefano; Prasad, T. S. Keshava; Rajendran, Lawrence; Raposo, Graca; Record, Michel; Reid, Gavin E.; Sánchez-Madrid, Francisco; Schiffelers, Raymond M.; Siljander, Pia; Stensballe, Allan; Stoorvogel, Willem; Taylor, Douglas; Thery, Clotilde; Valadi, Hadi; van Balkom, Bas W. M.; Vázquez, Jesús; Vidal, Michel; Wauben, Marca H. M.; Yáñez-Mó, María; Zoeller, Margot; Mathivanan, Suresh

    2012-01-01

    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These

  9. The freezing process of small lipid vesicles at molecular resolution

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    At present very little is known about the kinetic barriers which a small vesicle will face during the transformation from the liquid-crystalline to the gel phase, and what the structure of frozen vesicles looks like at the molecular level. The formation of gel domains in the strongly curved bilayer

  10. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    Artificial vesicles have been used for decades as model systems of biological cells to investigate scientific questions in simulacra. In recent years, the significance of artificial vesicles further increased because they represent ideal candidates to become the building block of a de novo...... construction of a cell in a bottom-up manner. Numerous efforts to build an artificial cell that bridge the living and non-living world will most presumably represent one of the main goals of science in the 21st century. It was shown that artificial genetic programs and the required cellular machinery can...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  11. Recognition and tethering of transport vesicles at the Golgi apparatus.

    Science.gov (United States)

    Witkos, Tomasz M; Lowe, Martin

    2017-08-01

    The Golgi apparatus occupies a central position within the secretory pathway where it is a hub for vesicle trafficking. Distinct classes of transport vesicles traffic diverse cargoes into and out of this organelle, as well as between the different Golgi subcompartments. A key feature of Golgi trafficking is the specific recognition of transport vesicles at the different regions of the Golgi apparatus, required for the correct cargo delivery. Specificity is ensured by coiled-coil golgins and multi-subunit tethering complexes (MTCs), which act together to capture vesicles and promote their subsequent fusion with the Golgi membrane. In this review we discuss our current understanding of how golgins and MTCs function together to mediate the specific recognition of vesicles at the Golgi apparatus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  13. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  14. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    Science.gov (United States)

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Placental Extracellular Vesicles and Feto-Maternal Communication

    Science.gov (United States)

    Tong, M.; Chamley, L.W.

    2015-01-01

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. PMID:25635060

  16. Aceclofenac encapsulated ethanolic nano-vesicles for effective treatment of osteoarthritis

    National Research Council Canada - National Science Library

    Kaur, Arvinder; Jain, Sunil K; Pandey, Ravi S

    2012-01-01

    .... Ethanolic nano-vesicles were prepared by solvent dispersion method. Vesicles were characterized for vesicular size, surface morphology, size and size distribution, zeta potential, entrapment efficiency...

  17. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  18. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    Science.gov (United States)

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles ? about microvesicles, exosomes, ectosomes and other extracellular vesicles

    OpenAIRE

    L?tvall, Jan; Rajendran, Lawrence; Gho, Yong-Song; Thery, Clotilde; Wauben, Marca; Raposo, Graca; Sj?strand, Margareta; Taylor, Douglas; Telemo, Esbj?rn; Breakefield, Xandra O.

    2012-01-01

    In 2011, researchers around the world interested in extracellular vesicles (EV) joined forces and founded the International Society for Extracellular Vesicles (ISEV). Membership has grown to approximately 750 in eight months, and the Society’s first meeting will take place in Gothenburg, Sweden, on 18-21 April 2012. Already approximately 500 participants have been attracted to this event. These are signs of rapid expansion in global research in the field of EV.(Published: 16 April 2012)Citati...

  20. A Perspective on Extracellular Vesicles Proteomics

    Directory of Open Access Journals (Sweden)

    Livia Rosa-Fernandes

    2017-11-01

    Full Text Available Increasing attention has been given to secreted extracellular vesicles (EVs in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  1. Versatile roles of extracellular vesicles in cancer

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  2. Role of extracellular vesicles in rheumatoid arthritis.

    Science.gov (United States)

    Fu, Haitao; Hu, Die; Zhang, Licheng; Tang, Peifu

    2018-01-01

    Cell-derived extracellular vesicles (EVs) are involved in the pathogenesis of rheumatoid arthritis (RA), playing important roles in antigen presentation, inflammation, angiogenesis, cell-cell signal communication, thrombosis, and articular cartilage extracellular matrix degradation. Understanding the pathogenic mechanism of RA is important for developing therapies. The pathogenic indicators of RA, such as submicron-sized EVs, represent promising biomarkers for evaluating RA activity. This review summarizes the recent advances in understanding the pathogenesis of RA, and sheds light on the pathogenic as well as anti-inflammatory or immunosuppressive roles of EVs. We suggest that EVs could be harnessed as tools for drug delivery or targets for RA therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Isolation of Platelet-Derived Extracellular Vesicles.

    Science.gov (United States)

    Aatonen, Maria; Valkonen, Sami; Böing, Anita; Yuana, Yuana; Nieuwland, Rienk; Siljander, Pia

    2017-01-01

    Platelets participate in several physiological functions, including hemostasis, immunity, and development. Additionally, platelets play key roles in arterial thrombosis and cancer progression. Given this plethora of functions, there is a strong interest of the role of platelet-derived (extracellular) vesicles (PDEVs) as functional mediators and biomarkers. Moreover, the majority of the blood-borne EVs are thought to originate from either platelets or directly from the platelet precursor cells, the megakaryocytes, which reside in the bone marrow. To circumvent confusion, we use the term PDEVs for both platelet-derived and/or megakaryocyte-derived EVs. PDEVs can be isolated from blood or from isolated platelets after activation. In this chapter, we describe all commonly used PDEV isolation methods from blood and prepurified platelets.

  4. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  5. A Perspective on Extracellular Vesicles Proteomics.

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  6. Scaling laws for AC gas breakdown and implications for universality

    Science.gov (United States)

    Loveless, Amanda M.; Garner, Allen L.

    2017-10-01

    The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.

  7. Work Breakdown Structures The Foundation for Project Management Excellence

    CERN Document Server

    Norman, Eric S; Fried, Robert T

    2011-01-01

    Understand and apply new concepts regarding Work Breakdown Structures The Work Breakdown Structure (WBS) has emerged as a foundational concept and tool in Project Management. It is an enabler that ensures clear definition and communication of project scope while performing a critical role as a monitoring and controlling tool. Created by the three experts who led the development of PMI's Practice Standard for Work Breakdown Structures, Second Edition, this much-needed text expands on what the standard covers and describes how to go about successfully implementing the WBS within the project life

  8. Biological reference materials for extracellular vesicle studies.

    Science.gov (United States)

    Valkonen, S; van der Pol, E; Böing, A; Yuana, Y; Yliperttula, M; Nieuwland, R; Laitinen, S; Siljander, P R M

    2017-02-15

    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Extracellular vesicles in obesity and diabetes mellitus.

    Science.gov (United States)

    Pardo, Fabián; Villalobos-Labra, Roberto; Sobrevia, Bastián; Toledo, Fernando; Sobrevia, Luis

    2017-11-24

    Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In vitro toxicology studies of extracellular vesicles.

    Science.gov (United States)

    Maji, Sayantan; Yan, Irene K; Parasramka, Mansi; Mohankumar, Swathi; Matsuda, Akiko; Patel, Tushar

    2017-03-01

    Extracellular vesicles (EVs) are membrane-bound vesicles released from cells into the extracellular environment. There is emerging interest in the use of EVs as potential therapeutic interventions. We sought to evaluate the safety of EVs that may be therapeutically used by performing in vitro toxicological assessments. EVs were obtained from mesenchymal stem cells (MSC-EV) or from bovine milk (BM-EV) by differential ultracentrifugation, and quantitated using nanoparticle tracking analysis. Genotoxic effects, hematological effects, immunological effects and endotoxin production were evaluated at two dose levels. Neither MSC-EVs nor BM-EVs elicited detectable genotoxic effects using either the alkaline comet assay or micronucleus assay. Hemolysis was observed with BM-EVs but not with MSC-EVs. MSC-EVs did not have any significant effect on either spontaneous or collagen-induced platelet aggregation. In contrast, BM-EVs were noted to increase collagen-induced platelet aggregation, even though no spontaneous increase in platelet aggregation was noted. Both types of EVs induced leukocyte proliferation, which was greater with BM-EV. Neither MSC-EVs nor BM-EVs induced HL-60 phagocytosis, although BM-EVs decreased zymosan-induced phagocytosis. Furthermore, neither MSC-EVs nor BM-EVs induced nitric oxide production. Unlike MSC-EVs, BM-EVs tested positive for endotoxin and induced complement activation. There are significant differences in toxicological profiles between MSC-EVs and BM-EVs that may reflect variations in techniques for EV isolation, EV content or cross-species differences. The safety of MSC-EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM-EVs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Spontaneous breakdown and the scalar nonet

    Energy Technology Data Exchange (ETDEWEB)

    Scadron, M.D.

    1982-07-01

    In the context of the QCD quark model and on the basis of dynamical Bethe-Salpeter ladder graphs, we suggest that (i) the existence of the scalar q-barq hadron multiplet, like the pseudoscalar q-barq multiplet, is a direct consequence of dynamical spontaneous breakdown of chiral symmetry with a chiral-limiting nonstrange mass scale of m/sub sigmaNS//sup CL/ = 2m/sub dyn/ roughly-equal630 MeV, (ii) the lifting of the nonstrange sigma-delta degeneracy is expected from the s-wave quark-gluon annihilation diagram, and (iii) the observed sigma-S* mixing follows from the existence of the p-wave scalar quark-annihilation diagram. The resulting predicted 0q-barq nonet is then sigma(750 MeV), kappa(800), S*(980), and delta(985), in agreement with data for the resonant masses, the mixing angle, and also decay widths except for the kappa(800).

  12. A Computational Model for Predicting Gas Breakdown

    Science.gov (United States)

    Gill, Zachary

    2017-10-01

    Pulsed-inductive discharges are a common method of producing a plasma. They provide a mechanism for quickly and efficiently generating a large volume of plasma for rapid use and are seen in applications including propulsion, fusion power, and high-power lasers. However, some common designs see a delayed response time due to the plasma forming when the magnitude of the magnetic field in the thruster is at a minimum. New designs are difficult to evaluate due to the amount of time needed to construct a new geometry and the high monetary cost of changing the power generation circuit. To more quickly evaluate new designs and better understand the shortcomings of existing designs, a computational model is developed. This model uses a modified single-electron model as the basis for a Mathematica code to determine how the energy distribution in a system changes with regards to time and location. By analyzing this energy distribution, the approximate time and location of initial plasma breakdown can be predicted. The results from this code are then compared to existing data to show its validity and shortcomings. Missouri S&T APLab.

  13. High-temperature enzymatic breakdown of cellulose.

    Science.gov (United States)

    Wang, Hongliang; Squina, Fabio; Segato, Fernando; Mort, Andrew; Lee, David; Pappan, Kirk; Prade, Rolf

    2011-08-01

    Cellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. Three TCel enzymes preferentially hydrolyzed soluble cellulose, while two preferred insoluble cellulose such as cotton linters and filter paper. TCel enzymes had temperature optima ranging from 85°C to 102°C. TCel enzymes were stable, retaining 80% of initial activity after 120 h at 85°C. Two modes of cellulose breakdown, i.e., with endo- and exo-acting glucanases, were detected, and with two-enzyme combinations at 85°C, synergistic cellulase activity was observed for some enzyme combinations.

  14. Vortex breakdown in a truncated conical bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Adnan; Brøns, Morten [DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Herrada, Miguel A [E.S.I, Universidad de Sevilla, Camino de los Descubrimientos s/n, E-41092 (Spain); Shtern, Vladimir N, E-mail: mobr@dtu.dk [Shtern Research and Consulting, Houston, TX 77096 (United States)

    2015-12-15

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H{sub w}, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as H{sub w} varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H{sub w}, the AMF effect dominates. As H{sub w} increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors. (paper)

  15. Medical Applications of Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  16. Electrical Breakdown in a Martian Gas Mixture

    Science.gov (United States)

    Buhler, C. R.; Calle, C. I.; Nelson, E.

    2003-01-01

    The high probability for dust interactions during Martian dust storms and dust devils combined with the cold, dry climate of Mars most likely result in airborne dust that is highly charged. On Earth, potential gradients up to 5 kV/m have been recorded and in some cases resulted in lightning. Although the Martian atmosphere is not conducive to lightning generation, it is widely believed that electrical discharge in the form of a corona occurs. In order to understand the breakdown of gases, Paschen measurements are taken which relate the minimum potential required to spark across a gap between two electrodes. The minimum potential is plotted versus the pressure-distance value for electrodes of a given geometry. For most gases, the potential decreases as the pressure decreases. For CO2, the minimum in the curve happens to be at Mars atmospheric pressures (5-7 mm Hg) for many distances and geometries. However, a very small amount (mixing gases radically changes the curve, as noted by Leach. Here, we present the first experimental results of a Paschen curve for a Mars gas mixture compared with 100% pure CO2.

  17. Fire Whirls, Vortex Breakdown(?), and Blue Whirls

    Science.gov (United States)

    Oran, Elaine; Xiao, Huahua; Gollner, Michael

    2016-11-01

    As we were investigating the efficiency of fire-whirl burning on water, we observed the usual transformation of a pool fire to a fire whirl, and then suddenly, we saw the fire undergo a third transition. A blue cup appeared around the base of the fire whirl, surrounding the yellow flame, the yellow flame receded into the cup and finally disappeared. What remained was a small, rapidly spinning blue flame that burned until the fuel on the water was consumed. The blue whirl was shaped like a spinning cup, closed at the bottom near the water surface, and spreading in radius moving upwards towards the rim. Above the blue cup lip, there was a purple cone-shaped mist. The fuel was usually n-heptane, but at one point it was crude oil, and still the blue whirl formed naturally. The height of the fire whirl on the laboratory pan was larger than a half meter, and this evolved into a blue whirl about 4-8 cm high. Occasionally the blue whirl would become "unstable" and revert to a transitional state of blue cup holding a yellow flame. When the blue whirl formed, turbulence seemed to disappear, and the flame became quiet. We will show videos of how this happened and discuss the evolution of the fire whirl to the blue whirl in vortex-breakdown concepts. This work was supported by and EAGER award from NSF and Minta Martin Endowment Funds in the Department of Aerospace Engineering at the University of Maryland.

  18. Mott transition by an impulsive dielectric breakdown

    Science.gov (United States)

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Terashige, T.; Yada, H.; Kida, N.; Suda, M.; Yamamoto, H. M.; Kato, R.; Miyagawa, K.; Kanoda, K.; Okamoto, H.

    2017-11-01

    The transition of a Mott insulator to metal, the Mott transition, can occur via carrier doping by elemental substitution, and by photoirradiation, as observed in transition-metal compounds and in organic materials. Here, we show that the application of a strong electric field can induce a Mott transition by a new pathway, namely through impulsive dielectric breakdown. Irradiation of a terahertz electric-field pulse on an ET-based compound, κ-(ET) 2Cu[N(CN) 2]Br (ET:bis(ethylenedithio)tetrathiafulvalene), collapses the original Mott gap of ~30 meV with a ~0.1 ps time constant after doublon-holon pair productions by quantum tunnelling processes, as indicated by the nonlinear increase of Drude-like low-energy spectral weights. Additionally, we demonstrate metallization using this method is faster than that by a femtosecond laser-pulse irradiation and that the transition dynamics are more electronic and coherent. Thus, strong terahertz-pulse irradiation is an effective approach to achieve a purely electronic Mott transition, enhancing the understanding of its quantum nature.

  19. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  20. Removal of Vesicle Structures From Transmission Electron Microscope Images

    Science.gov (United States)

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  1. [EXTRACELLULAR VESICLES: INTERCELLULAR INFORMATION FLOW AND MEDICAL APPLICATIONS].

    Science.gov (United States)

    Pupyshev, A B

    2015-01-01

    The major features of extracellular vesicles secreted by mammalian cells are considered. Cell activation caused by formation of pathology stimulates the secretion acutely. The vesicles (exosomes, microvesicles) are enriched with annexin V, tetraspanin, miRNA. Exosomes are enriched especially by integrins, heat shock proteins. Microvesicles contain elevated amounts of tissue factors, phosphatidylserine, mRNA. The vesicles carry information about the pathological process, and microvesicles contain more proteins characteristic of inflammation and death than exosomes. They are important mediators of inflammation and infection in the body, have different effects on the immune system and the processes of carcinogenesis and neurodegeneration. However, antigenic profiles of extracellular vesicles differ not profoundly in various pathologies and so far they help diagnostics limitedly. The vesicles carry signals of genetic reprogramming of the cells and epigenetic stimulation, connected with both protein factors and mRNA and miRNA. Profiles of miRNA vesicles produced by the various pathological sources are studied actively and are useful as indicators of source and stage of cancer. Some ways of therapeutic use of the vesicles are also considered.

  2. Placenta-derived extracellular vesicles: their cargo and possible functions.

    Science.gov (United States)

    Familari, Mary; Cronqvist, Tina; Masoumi, Zahra; Hansson, Stefan R

    2017-03-01

    The literature on extracellular vesicles consists of rapidly expanding and often contradictory information. In this paper we attempt to review what is currently known regarding extracellular vesicles released specifically from human placental syncytiotrophoblast cells with a focus on the common but complex pregnancy-associated syndrome pre-eclampsia, where the level of syncytiotrophoblast extracellular vesicle release is significantly increased. We review common methods for syncytiotrophoblast extracellular vesicle derivation and isolation and we discuss the cargo of syncytiotrophoblast extracellular vesicles including proteins, RNA and lipids and their possible functions. A meta-analysis of available trophoblast-derived extracellular vesicle proteomic datasets revealed only three proteins in common: albumin, fibronectin-1 and plasminogen activator inhibitor-1, suggesting some variability in vesicle cargo, most likely reflecting stage and cell type of origin. We discuss the possible sources of variability that may have led to the low number of common markers, which has led us to speculate that markers and density in common use may not be strict criteria for identifying and isolating placenta-derived exosomes.

  3. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    Science.gov (United States)

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  4. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2006-07-01

    Full Text Available Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.

  5. Leukocytospermia and function of the seminal vesicles on seminal quality.

    Science.gov (United States)

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1992-05-01

    To determine possible relationships between number of leukocytes, function of seminal vesicles, and seminal quality. The study was carried out on men who consecutively attended an infertility clinic between June 1989 to June 1991. This study was conducted in a private immunological center for infertility, a tertiary care center, The Centro Immunológico-Sección Esterilidad y Reproducción. Semen samples from 280 infertility patients attending an Immunological Center for Infertility were analyzed. We evaluated the effect of leukocytospermia in the presence of normal or abnormal function of seminal vesicles on seminal quality. Sperm count, percent of motile sperm, and percent of sperm vitality were significantly reduced when both leukocytospermia and hypofunction of seminal vesicles were present (P less than 0.01). Leukocytospermic subjects with normal function of seminal vesicles showed similar seminal parameters to those nonleukocytspermics. The incidence of subjects with antisperm antibodies measured by direct immunobeads was significantly higher in leukocytospermic men with hypofunction of seminal vesicles. No differences in the incidence of antisperm antibodies with nonleukocytospermic samples were observed in those with both leukocytospermia and normal function of seminal vesicles. These data provide evidence that white blood cells were deleterious for seminal quality when seminal vesicles were also affected.

  6. Concurrent imaging of synaptic vesicle recycling and calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Haiyan eLi

    2011-11-01

    Full Text Available Synaptic transmission involves the calcium-dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2, and a presynaptically-localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3 with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Re-acidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real-time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.

  7. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  8. Dynamics of multicomponent vesicles in a viscous fluid

    Science.gov (United States)

    Sohn, Jin Sun; Tseng, Yu-Hau; Li, Shuwang; Voigt, Axel; Lowengrub, John S.

    2010-01-01

    We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small. PMID:20808718

  9. Extracellular Vesicles in Luminal Fluid of the Ovine Uterus

    Science.gov (United States)

    Burns, Gregory; Brooks, Kelsey; Wildung, Mark; Navakanitworakul, Raphatphorn; Christenson, Lane K.; Spencer, Thomas E.

    2014-01-01

    Microvesicles and exosomes are nanoparticles released from cells and can contain small RNAs, mRNA and proteins that affect cells at distant sites. In sheep, endogenous beta retroviruses (enJSRVs) are expressed in the endometrial epithelia of the uterus and can be transferred to the conceptus trophectoderm. One potential mechanism of enJSRVs transfer from the uterus to the conceptus is via exosomes/microvesicles. Therefore, studies were conducted to evaluate exosomes in the uterine luminal fluid (ULF) of sheep. Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Transmission electron microscopy and nanoparticle tracking analysis found the isolates contained vesicles that ranged from 50 to 200 nm in diameter. The isolated extracellular vesicles were positive for two common markers of exosomes (CD63 and HSP70) by Western blot analysis. Proteins in the extracellular vesicles were determined by mass spectrometry and Western blot analysis. Extracellular vesicle RNA was analyzed for small RNAs by sequencing and enJSRVs RNA by RT-PCR. The ULF extracellular vesicles contained a large number of small RNAs and miRNAs including 81 conserved mature miRNAs. Cyclic and pregnant ULF extracellular vesicles contained enJSRVs env and gag RNAs that could be delivered to heterologous cells in vitro. These studies support the hypothesis that ULF extracellular vesicles can deliver enJSRVs RNA to the conceptus, which is important as enJSRVs regulate conceptus trophectoderm development. Importantly, these studies support the idea that extracellular vesicles containing select miRNAs, RNAs and proteins are present in the ULF and likely have a biological role in conceptus-endometrial interactions important for the establishment and maintenance of pregnancy. PMID:24614226

  10. Optimal Rules for Single Machine Scheduling with Stochastic Breakdowns

    Directory of Open Access Journals (Sweden)

    Jinwei Gu

    2014-01-01

    Full Text Available This paper studies the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns, where jobs have to be restarted if preemptions occur because of breakdowns. The breakdown process of the machine is independent of the jobs processed on the machine. The processing times required to complete the jobs are constants if no breakdown occurs. The machine uptimes are independently and identically distributed (i.i.d. and are subject to a uniform distribution. It is proved that the Longest Processing Time first (LPT rule minimizes the expected makespan. For the large-scale problem, it is also showed that the Shortest Processing Time first (SPT rule is optimal to minimize the expected total completion times of all jobs.

  11. Surface of Alumina Films after Prolonged Breakdowns in Galvanostatic Anodization

    Directory of Open Access Journals (Sweden)

    Christian Girginov

    2011-01-01

    Full Text Available Breakdown phenomena are investigated at continuous isothermal (20∘C and galvanostatic (0.2–5 mA cm−2 anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF electrolyte. From the kinetic (-curves, the breakdown voltage ( values are estimated, as well as the frequency and amplitude of oscillations of formation voltage ( at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM. Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2, was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.

  12. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  13. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  14. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. Published by Elsevier Ltd.

  15. Mating-reactive membrane vesicles from cilia of Paramecium caudatum

    Science.gov (United States)

    1976-01-01

    Membrane vesicles with a high mating reactivity were obtained from cilia of Paramecium caudatum by treatment with a solution containing 2 M urea and 0.1 mM Na2-EDTA. All processes of conjugation were induced in cells of the complementary mating type by approximately 10 mug/ml proteins of the vesicles. Electron microscope observation showed that the membrane vesicles have a diameter of 100-150 nm. Electrophoretic analysis on SDS polyacrylamide gel revealed no significant difference in polypeptide patterns of the particles from the two complementary mating types. PMID:818093

  16. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  17. Comparative study of experimental signals for multipactor and breakdown.

    CERN Document Server

    Dehler, Micha; Wuensch, Walter; Faus-Golfe, Angeles; Gimeno Martinez, Benito; Kovermann, Jan; Boria, Vicente; Raboso, David

    2012-01-01

    Performance limiting high-power rf phenomenon occur in both transmitter systems in satellites and high-gradient accelerating structures in particle accelerators. In satellites the predominant effect is multipactor while in accelerators it is breakdown. Both communities have studied their respective phenomena extensively and developed particular simulation tools and experimental techniques. A series of experiments to directly compare measurements made under multipactor and breakdown conditions has been initiated with the objective to crosscheck and compare the physics, simulation tools and measurement techniques.

  18. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  19. Electric breakdown during the pulsed current spreading in the sand

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-03-15

    Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.

  20. Ionizing potential waves and high-voltage breakdown streamers.

    Science.gov (United States)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  1. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis.

    Science.gov (United States)

    Petrie, Matt; Esquibel, Joseph; Kabachinski, Greg; Maciuba, Stephanie; Takahashi, Hirohide; Edwardson, J Michael; Martin, Thomas F J

    2016-09-30

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca 2+ -triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P 2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P 2 -triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. S-Layered Aneurinibacillus and Bacillus spp. Are Susceptible to the Lytic Action of Pseudomonas aeruginosa Membrane Vesicles

    Science.gov (United States)

    Kadurugamuwa, J. L.; Mayer, A.; Messner, P.; Sára, M.; Sleytr, U. B.; Beveridge, T. J.

    1998-01-01

    When S-layered strains of Bacillus stearothermophilus and Aneurinibacillus thermoaerophilus, possessing S-layers of different lattice type and lattice constant as well as S-(glyco)protein chemistry, and isogenic S-layerless variants were subjected to membrane vesicles (MVs) from P. aeruginosa during plaque assays on plates or CFU measurements on cell suspensions, all bacterial types lysed. Electron microscopy of negative stains, thin sections, and immunogold-labelled MV preparations revealed that the vesicles adhered to all bacterial surfaces, broke open, and digested the underlying peptidoglycan-containing cell wall of all cell types. Reassembled S-layer did not appear to be affected by MVs, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the S-(glyco)proteins remained intact. meso-Diaminopimelic acid, as a peptidoglycan breakdown product, was found in all culture supernatants after MV attack. These results suggest that even though MVs are much larger than the channels which penetrate these proteinaceous arrays, S-layers on gram-positive bacteria do not form a defensive barrier against the lytic action of MVs. The primary mode of attack is by the liberation from the MVs of a peptidoglycan hydrolase, which penetrates through the S-layer to digest the underlying peptidoglycan-containing cell wall. The S-layer is not affected by MV protease. PMID:9573179

  3. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced...... by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non...

  4. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  5. Pre-breakdown and Breakdown Mechanisms of an Inhibited Gas to Liquid Hydrocarbon Transformer Oil under Negative Lightning Impulse Voltage

    OpenAIRE

    Lu, Wu; Liu, Qian; Wang, Z.D

    2017-01-01

    In this paper, streamer and breakdown phenomena and their mechanisms of an inhibited Gas-To-Liquid (GTL) transformer oil under standard negative lightning impulse voltages were studied. A conventional inhibited mineral oil was also tested as the benchmark. Experiments were carried out in 25 mm and 50 mm point-plane gaps. Streamer and breakdown phenomena of both oils were observed from the streamer inception voltage level up to the voltage level at which fast streamer appears with velocity ove...

  6. Visualization of peptide secretory vesicles in living nerve cells.

    Science.gov (United States)

    Park, Joshua J; Loh, Y Peng

    2011-01-01

    Analysis of real-time movements of peptidergic vesicles in live neurons provides insight into molecular mechanism(s) supporting the activity-dependent secretion of neurotrophins and neuropeptides. We examined the effect of overexpression of exogenous peptides comprising of the cytoplasmic tail sequence of vesicular carboxypeptidase E (CPE), proposed to be involved in the mechanism of trafficking of peptidergic secretory vesicles, in live hippocampal neurons. E16 rat hippocampal neurons were transfected with the peptidergic vesicle markers, CPE C-terminally tagged with red or green fluorescent protein, or brain-derived neurotrophic factor (BDNF) tagged with green fluorescent protein, and grown on dishes specialized for real-time live cell visualization. Movements of peptidergic vesicles were imaged in a temperature-controlled chamber on a confocal inverted microscope and analyzed with respect to their velocity, displacement distance, and processivity.

  7. Tension-induced fusion of bilayer membranes and vesicles

    Science.gov (United States)

    Shillcock, Julian C.; Lipowsky, Reinhard

    2005-03-01

    Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 × 50 nm2 planar membrane patches over 2 μs. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.

  8. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  9. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  10. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  11. Theory of dielectric response of charged-bilayer-vesicle solutions

    Science.gov (United States)

    Lu, C.-Y. D.

    1996-10-01

    The dielectric response is calculated for a solution containing charged bilayer vesicles and simple electrolyte. The solution is assumed to contain a high salt concentration so that the Debye screening length is small compared to the size of the vesicles. The presence of two (electric) double layers, one on each side of the bilayer, gives low-frequency salt relaxations (kHz for 1 μm vesicles) that explain the experimentally observed α relaxations which are known to appear only for charged vesicles. The double layers also modify the high-frequency β relaxations which have been previously modeled by using the Maxwell-Wagner theory. The calculation method can be easily extended to other bilayer geometries.

  12. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  13. Yeast Membrane Vesicles: Isolation and General Characteristics1

    Science.gov (United States)

    Christensen, Michael S.; Cirillo, Vincent P.

    1972-01-01

    Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848

  14. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates.

    Science.gov (United States)

    Sotillo, Javier; Pearson, Mark; Potriquet, Jeremy; Becker, Luke; Pickering, Darren; Mulvenna, Jason; Loukas, Alex

    2016-01-01

    Herein we show for the first time that Schistosoma mansoni adult worms secrete exosome-like extracellular vesicles ranging from 50 to 130nm in size. Extracellular vesicles were collected from the excretory/secretory products of cultured adult flukes and purified by Optiprep density gradient, resulting in highly pure extracellular vesicle preparations as confirmed by transmission electron microscopy and Nanosight tracking analysis. Extracellular vesicle proteomic analysis showed numerous known vaccine candidates, potential virulence factors and molecules implicated in feeding. These findings provide new avenues for the exploration of host-schistosome interactions and offer a potential mechanism by which some vaccine antigens exert their protective efficacy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Large Deformation Mechanics of Plasma Membrane Chained Vesicles in Cells

    Science.gov (United States)

    Kosawada, Tadashi; Sanada, Kouichi; Takano, Tetsuo

    The clathrin-coated pits, vesicles and chained vesicles on the inner surface of the plasma membrane facilitate the cell to transport specific extracellular macromolecules. This cellular process is strongly involved with large mechanical deformations of the plasma membrane accompanied by changes in membrane curvature. The assembly of the clathrin coat is thought to provide curvature into the membrane. Hence, effects of in-plane shear elasticity due to these coat structure may be significant on the vesicular mechanics. In this study, large deformation mechanics of plasma membrane chained vesicles in cells have been formulated based on minimization of bending and in-plane shear strain energy of the membrane. Effects of outer surrounding cytoplasmic flat membrane upon mechanically stable shapes of the vesicles were revealed, while effects of in-plane shear elasticity were partly discussed.

  16. Assembly of cells and vesicles for organ engineering

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tetsushi, E-mail: taguchi.tetsushi@nims.go.jp [Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-12-15

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  17. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain...... obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...... regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation...

  18. Assembly of cells and vesicles for organ engineering

    Science.gov (United States)

    Taguchi, Tetsushi

    2011-12-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.

  19. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  20. Extracellular vesicles in human follicular fluid do not promote coagulation.

    Science.gov (United States)

    Franz, Cordula; Böing, Anita N; Montag, Markus; Strowitzki, Thomas; Markert, Udo R; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-11-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an observational study, follicular fluid from women undergoing IVF/intracytoplasmic sperm injection (ICSI) was analysed by fluorescence-activated cell sorting (FACS), electron microscopy, resistive pulse sensing (RPS), nanoparticle-tracking analysis (NTA) and fibrin generation tests (FGT). The presence of extracellular vesicles, especially CD9-positive extracellular vesicles in follicular fluid, was proven. However, clotting tests revealed no procoagulant properties of the detected extracellular vesicles. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Unilamellar Vesicle Formation and Encapsulation by Microfluidic Jetting

    National Research Council Canada - National Science Library

    Jeanne C. Stachowiak; David L. Richmond; Thomas H. Li; Allen P. Liu; Sapun H. Parekh; Daniel A. Fletcher

    2008-01-01

    ...) using a pulsed microfluidic jet. Akin to blowing a bubble, the microfluidic jet deforms a planar lipid bilayer into a vesicle that is filled with solution from the jet and separates from the planar bilayer...

  2. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  3. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    OpenAIRE

    Yuana, Yuana; Koning, Roman I.; Maxim E. Kuil; Rensen, Patrick C.N.; Koster, Abraham J.; Bertina, Rogier M.; Osanto, Susanne

    2013-01-01

    Introduction: Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited.Objectives: To image EV and determine the morphology, ...

  4. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  5. Luminescent functionalized vesicles: synthesis, characterization and analytical applications

    OpenAIRE

    Balk, Stefan

    2014-01-01

    This work describes the membrane functionalization of small unilamellar phospholipid vesicles by incorporation of artificial amphiphiles. The presented investigations demonstrate a fast and simple approach for sensing molecular recognition events at the membrane-water interface. Chapter 1 describes the dynamic recognition of multivalent ligands by receptor recruiting in fluid vesicle membranes. Two amphiphilic metal-complexes with attached FRET-pair labels were prepared and embedded into D...

  6. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative...... vesicles. Pulse-chase and intravital imaging experiments suggested EVs liberated by exercise have a propensity to localize in the liver and can transfer their protein cargo. Moreover, by employing arteriovenous balance studies across the contracting human limb, we identified several novel candidate...

  7. TNF-? promotes extracellular vesicle release in mouse astrocytes through glutaminase

    OpenAIRE

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C.

    2017-01-01

    Background Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-? promotes glutaminase expression in neurons. However, the expressio...

  8. Adsorption and encapsulation of flexible polyelectrolytes in charged spherical vesicles

    Science.gov (United States)

    Shojaei, H. R.; Muthukumar, M.

    2017-06-01

    We present a theory of adsorption of flexible polyelectrolytes on the interior and exterior surfaces of a charged vesicle in an electrolyte solution. The criteria for adsorption and the density profiles of the adsorbed polymer chain are derived in terms of various characteristics of the polymer, vesicle, and medium, such as the charge density and length of the polymer, charge density and size of the vesicle, electrolyte concentration and dielectric constant of the medium. For adsorption inside the vesicle, the competition between the loss of conformational entropy and gain in adsorption energy results in two kinds of encapsulated states, depending on the strength of the polymer-vesicle interaction. By considering also the adsorption from outside the vesicle, we derive the entropic and energy contributions to the free energy change to transfer an adsorbed chain in the interior to an adsorbed chain on the exterior. In this paper, we have used the Wentzel-Kramers-Brillouin (WKB) method to solve the equation for the probability distribution function of the chain. The present WKB results are compared with the previous results based on variational methods. The WKB and variational results are in good agreement for both the interior and exterior states of adsorption, except in the zero-salt limit for adsorption in the exterior region. The adsorption criteria and density profiles for both the interior and exterior states are presented in terms of various experimentally controllable variables. Calculation of the dependencies of free energy change to transfer an adsorbed chain from the interior to the exterior surface on salt concentration and vesicle radius shows that the free energy penalty to expel a chain from a vesicle is only of the order of thermal energy.

  9. Melanoma affects the composition of blood cell-derived extracellular vesicles

    OpenAIRE

    Nina Koliha; Ute Heider; Tobias Ozimkowski; Martin Wiemann; Andreas Bosio; Stefan Wild

    2016-01-01

    Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of...

  10. Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision

    OpenAIRE

    Jernej Zupanc; Barbara Drašler; Sabina Boljte; Veronika Kralj-Iglič; Aleš Iglič; Deniz Erdogmus; Damjana Drobne

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their ...

  11. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  12. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    Science.gov (United States)

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.

  13. Extracellular Vesicles and Autophagy in Osteoarthritis

    Science.gov (United States)

    Guo, Weimin; Chen, Mingxue; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Li, Penghao; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Zhang, Li; Xu, Wenjing; Lu, Shibi

    2016-01-01

    Osteoarthritis (OA) is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs) are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies. PMID:28078284

  14. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  15. Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.

    Science.gov (United States)

    Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang

    2017-09-04

    During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.

  16. Asymmetric osmotic water permeation through a vesicle membrane

    Science.gov (United States)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  17. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  18. Formation of asymmetric vesicles via phospholipase D-mediated transphosphatidylation.

    Science.gov (United States)

    Takaoka, Rina; Kurosaki, Haruko; Nakao, Hiroyuki; Ikeda, Keisuke; Nakano, Minoru

    2018-02-01

    Most biomembranes have an asymmetric structure with regard to phospholipid distribution between the inner and outer leaflets of the lipid bilayers. Control of the asymmetric distribution plays a pivotal role in several cellular functions such as intracellular membrane fusion and cell division. The mechanism by which membrane asymmetry and its alteration function in these transformation processes is not yet clear. To understand the significance of membrane asymmetry on trafficking and metabolism of intracellular vesicular components, a system that experimentally reproduces the asymmetric nature of biomembranes is essential. Here, we succeeded in obtaining asymmetric vesicles by means of transphosphatidylation reactions with phospholipase D (PLD), which acts exclusively on phosphatidylcholine (PC) present in the outer leaflet of vesicles. By treating PC vesicles with PLD in the presence of 1.7M serine and 0.3M ethanolamine, we obtained asymmetric vesicles that are topologically similar to intracellular vesicles containing phosphatidylserine and phosphatidylethanolamine in the cytosolic leaflet. PLD and other unwanted compounds could be removed by trypsin digestion followed by dialysis. Our established technique has a great advantage over conventional methods in that asymmetric vesicles can be provided at high yield and high efficiency, which is requisite for most physicochemical assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  20. Biogenesis and function of ESCRT-dependent extracellular vesicles.

    Science.gov (United States)

    Juan, Thomas; Fürthauer, Maximilian

    2018-02-01

    From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure.

    Science.gov (United States)

    Peters, K R; Carley, W W; Palade, G E

    1985-12-01

    Capillary endothelial cells have a large population of small (65-80 nm diameter in transmission electron microscopy) vesicles of which a large fraction is associated with the plasmalemma of the luminal and abluminal side. We studied the fine structure and distribution of these plasmalemmal vesicles by high resolution scanning electron microscopy in cultured endothelial cells obtained from bovine adrenal cortical capillaries. Cell monolayers were covered with polylysine-coated silicon chips, split in high potassium buffer, fixed in aldehyde mixtures, and then treated with OsO4 and thiocarbohydrazide. After critical point drying, the specimens were coated with a thin (less than 2 nm) continuous film of chromium. On the cytoplasmic aspect of the dorsal plasmalemmal fragments seen in such specimens, plasmalemmal vesicles appear as uniform vesicular protrusions approximately 70-90 nm in diameter, preferentially concentrated in distinct large fields in which they occur primarily as single units. Individual plasmalemmal vesicles exhibit a striped surface fine structure which consists of ridges approximately 10 nm in diameter, separated by furrows and oriented as meridians, often ending at two poles on opposite sides of the vesicles in a plane parallel to the plasmalemma. This striped surface structure is clearly distinct from the cage structure of coated pits found, at low surface density, on the same specimens. The cytoplasmic aspect of the plasmalemma proper is covered by a fibrillar infrastructure which does not extend over plasmalemmal vesicles but on which the latter appear to be anchored by fine filaments.

  2. Minimal experimental requirements for definition of extracellular vesicles and their functions : a position statement from the International Society for Extracellular Vesicles

    NARCIS (Netherlands)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently

  3. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  4. Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii.

    Science.gov (United States)

    Knitsch, Regine; Schneefeld, Marie; Weitzel, Kerstin; Pfeifer, Felicitas

    2017-09-12

    Gas vesicles are proteinaceous, gas-filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in-silico 3D-model of GvpA of the predicted coil-α1-β1-β2-α2-coil structure is available and implies that the two β-chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac(+) phenotype). In most cases, an alanine substitution of a non-polar residue did not abolish gas vesicle formation, but the replacement of single non-polar by charged residues in β1 or β2 resulted in Vac(-) transformants. A replacement of residues near the β-turn altered the spindle-shape to a cylindrical morphology of the gas vesicles. Vac(-) transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt-bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac(-) transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid-state NMR. © 2017 John Wiley & Sons Ltd.

  5. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  6. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles.

    Science.gov (United States)

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-02-06

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  7. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  8. Breakdown resistance of refractory metals compared to copper

    CERN Document Server

    Taborelli, M; Kildemo, M

    2004-01-01

    The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field without breakdown and the field enhancement factor, beta have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are compared with RF breakdown experiments [1] performed on prototype 30 GHz...

  9. Dramatically enhanced electrical breakdown strength in cellulose nanopaper

    Directory of Open Access Journals (Sweden)

    Jianwen Huang

    2016-09-01

    Full Text Available Electrical breakdown behaviors of nanopaper prepared from nanofibrillated cellulose (NFC were investigated. Compared to conventional insulating paper made from micro softwood fibers, nanopaper has a dramatically enhanced breakdown strength. Breakdown field of nanopaper is 67.7 kV/mm, whereas that of conventional paper is only 20 kV/mm. Air voids in the surface of conventional paper are observed by scanning electron microscope (SEM. Further analyses using mercury intrusion show that pore diameter of conventional paper is around 1.7 μm, while that of nanopaper is below 3 nm. Specific pore size of nanopaper is determined to be approximately 2.8 nm by the gas adsorption technique. In addition, theoretical breakdown strengths of nanopaper and conventional paper are also calculated to evaluate the effect of pore size. It turns out that theoretical values agree well with experimental data, indicating that the improved strength in nanopaper is mainly attributed to the decreased pore size. Due to its outstanding breakdown strength, this study indicates the suitability of nanopaper for electrical insulation in ultra-high voltage convert transformers and other electrical devices.

  10. Dramatically enhanced electrical breakdown strength in cellulose nanopaper

    Science.gov (United States)

    Huang, Jianwen; Zhou, Yuanxiang; Zhou, Zhongliu; Liu, Rui

    2016-09-01

    Electrical breakdown behaviors of nanopaper prepared from nanofibrillated cellulose (NFC) were investigated. Compared to conventional insulating paper made from micro softwood fibers, nanopaper has a dramatically enhanced breakdown strength. Breakdown field of nanopaper is 67.7 kV/mm, whereas that of conventional paper is only 20 kV/mm. Air voids in the surface of conventional paper are observed by scanning electron microscope (SEM). Further analyses using mercury intrusion show that pore diameter of conventional paper is around 1.7 μ m , while that of nanopaper is below 3 nm. Specific pore size of nanopaper is determined to be approximately 2.8 nm by the gas adsorption technique. In addition, theoretical breakdown strengths of nanopaper and conventional paper are also calculated to evaluate the effect of pore size. It turns out that theoretical values agree well with experimental data, indicating that the improved strength in nanopaper is mainly attributed to the decreased pore size. Due to its outstanding breakdown strength, this study indicates the suitability of nanopaper for electrical insulation in ultra-high voltage convert transformers and other electrical devices.

  11. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  12. AVALANCHE BREAKDOWN OF p-n-JUNCTION IN RADIOTECHNICS

    Directory of Open Access Journals (Sweden)

    A. S. Shashkina

    2016-09-01

    Full Text Available The paper presents research results of fractal properties of microplasma noise at LED avalanche breakdown in the visible spectrum (λ= 660; 700 nm. The breakdown type of p-n-junctionwas determined as a result of measured current-voltage characteristics at room temperature, at the temperature of 100-105 °C and after cooling down to room temperature. It was shown that the breakdown of avalanche type is realized in the majority of LEDs. It was established that the partial avalanche breakdown mode may be realized in LEDs, when a small current flows in pulses through the device. By increasing the voltage, pulse amplitude increases, closely spaced pulses merge, and time intervals between them are reduced. To interpret experimental results we applied model of processes occurring in microplasma, and noise model of partial and advanced avalanche breakdown (by A.S. Tager. The study revealed previously non-described features of microplasma noise – the fractal nature of microplasma noise. The algorithm for fractal dimension calculating was implemented in MATLAB. The dependence of fractal dimension on the reverse voltage applied to the LEDs was found out. Obtained fractal signal can be applied in optical communication systems for noise free and confidential information transmission.

  13. An immunoassay for urinary extracellular vesicles.

    Science.gov (United States)

    Salih, Mahdi; Fenton, Robert A; Knipscheer, Jeroen; Janssen, Joost W; Vredenbregt-van den Berg, Mirella S; Jenster, Guido; Zietse, Robert; Hoorn, Ewout J

    2016-04-15

    Although nanosized urinary extracellular vesicles (uEVs) are increasingly used for biomarker discovery, their isolation currently relies on time-consuming techniques hindering high-throughput application. To navigate this problem, we designed an immunoassay to isolate, quantify, and normalize uEV proteins. The uEV immunoassay consists of a biotinylated CD9 antibody to isolate uEVs, an antibody against the protein of interest, and two conjugated antibodies to quantify the protein of interest and CD9. As a proof of principle, the immunoassay was developed to analyze the water channel aquaporin-2 (AQP2) and the sodium-chloride cotransporter (NCC). CD9 was used as a capture antibody because immunoprecipitation showed that anti-CD9 antibody, but not anti-CD63 antibody, isolated AQP2 and NCC. CD9 correlated strongly with urine creatinine, allowing CD9 to be used for normalization of spot urines. The uEV immunoassay detected AQP2 and NCC with high sensitivity, low coefficients of variance, and stability in dilution series. After water loading in healthy subjects, the uEV immunoassay detected decreases in AQP2 and NCC equally well as the traditional method using ultracentrifugation and immunoblot. The uEV immunoassay also reliably detected lower and higher AQP2 or NCC levels in uEVs from patients with pathological water or salt reabsorption, respectively. In summary, we report a novel approach to analyze uEVs that circumvents existing isolation and normalization issues, requires small volumes of urine, and detects anticipated changes in physiological responses and clinical disorders. Copyright © 2016 the American Physiological Society.

  14. Procoagulant extracellular vesicles in amniotic fluid.

    Science.gov (United States)

    Hell, Lena; Wisgrill, Lukas; Ay, Cihan; Spittler, Andreas; Schwameis, Michael; Jilma, Bernd; Pabinger, Ingrid; Altevogt, Peter; Thaler, Johannes

    2017-06-01

    Embolization of amniotic fluid (AF) into the blood circulation leads to disseminated intravascular coagulation (DIC). Procoagulant phosphatidylserine (PS)- and tissue factor (TF)-exposing extracellular vesicles (EVs) might play an important role in AF embolism-induced DIC. It was the aim of the present study to perform analyses of the procoagulant properties of AF with a panel of functional coagulation assays and flow cytometry. We applied a prothrombinase assay (that quantifies PS exposure on EVs), an EV-associated TF activity assay, a fibrin generation assay, a thrombin generation assay, a whole blood clotting model, and flow cytometry in AF and control plasma. We found that PS exposure on EVs was 21-fold increased in AF compared with plasma. Also, EV-associated TF activity was highly increased in AF compared with plasma. AF-derived EVs activated the blood coagulation cascade via PS and TF in the fibrin and thrombin generation assays. In a whole blood clotting model, AF-derived EVs significantly shortened the clotting time from 734 ± 139 seconds in the presence to 232 ± 139 seconds in the absence of an anti-TF antibody. The contact activation pathway via factor XII (FXII) was not affected. Applying flow cytometry, a subpopulation of PS+ and TF+ EVs was identified in AF but not in control plasma. In conclusion, we investigated the effect of AF on blood coagulation and found that PS+ and TF+ EVs determine their procoagulant potential. Taken together, our data further delineate the pathomechanisms underlying AF-induced coagulopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  16. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  17. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    Dielectric elastomers (DE) are used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. For many applications, one of the major factors that limits the DE performance is premature electrical breakdown. There are many approaches that have been...... their long-term mechanical reliability as they are susceptible to Mullins effects as the results of pre-stretching. Therefore, two strategies are developed in this thesis in order to produce DEs with high electrical performance and long-term electromechanical reliability. The first strategy is to study...... the mechanisms behind the electrical breakdown of DEs and the second strategy is to investigate the long-term electromechanical reliability of DEs. In the first strategy, the electrothermal breakdown in polydimethylsiloxane (PDMS) elastomers was modelled in order to evaluate the thermal mechanisms behind...

  18. Magnetotransport phenomena in layered conductors under magnetic breakdown

    Science.gov (United States)

    Galbova, O.; Peschansky, V. G.; Stepanenko, D. I.

    2017-06-01

    We study the transport phenomena in layered conductors with rather general electron energy spectrum placed in a high magnetic field H, under conditions when the distance between various sheets of the Fermi surface (FS) may become small under the external effects, such as hydrostatic pressure or impurity atom doping, and electrons can transfer from one sheet of the FS to another due to magnetic breakdown. We calculate the dependence of the in-plane electrical conductivity and magnetoresistance on magnetic field and probability of magnetic breakdown and show that the field-induced quadratic increase of the in-plane resistance in the absence of magnetic breakdown is changed by a linear dependence on H. With a further reduction of the energy gap between FS sheets, the in-plane resistance is saturated.

  19. Breakdown Limit Studies in High Rate Gaseous Detectors

    CERN Document Server

    Ivaniouchenkov, Yu; Peskov, Vladimir; Ramsey, B D

    1998-01-01

    We report results from a systematic study of breakdown limits for novel high rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable gain, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the backgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.

  20. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  1. New phenomenology of gas breakdown in DC and RF fields

    Science.gov (United States)

    Petrović, Zoran Lj; Sivoš, Jelena; Savić, Marija; Škoro, Nikola; Radmilović Radenović, Marija; Malović, Gordana; Gocić, Saša; Marić, Dragana

    2014-05-01

    This paper follows a review lecture on the new developments in the field of gas breakdown and low current discharges, usually covered by a form of Townsend's theory and phenomenology. It gives an overview of a new approach to identifying which feedback agents provide breakdown, how to model gas discharge conditions and reconcile the results with binary experiments and how to employ that knowledge in modelling gas discharges. The next step is an illustration on how to record volt-ampere characteristics and use them on one hand to obtain the breakdown voltage and, on the other, to identify the regime of operation and model the secondary electron yields. The second aspect of this section concerns understanding the different regimes, their anatomy, how those are generated and how free running oscillations occur. While temporal development is the most useful and interesting part of the new developments, the difficulty of presenting the data in a written form precludes an easy publication and discussion. Thus, we shall only mention some of the results that stem from these measurements. Most micro discharges operate in DC albeit with complex geometries. Thus, parallel plate micro discharge measurements were needed to establish that Townsend's theory, with all its recent extensions, is still valid until some very small gaps. We have shown, for example, how a long-path breakdown puts in jeopardy many experimental observations and why a flat left-hand side of the Paschen curve often does not represent good physics. We will also summarize a kinetic representation of the RF breakdown revealing a somewhat more complex picture than the standard model. Finally, we will address briefly the breakdown in radially inhomogeneous conditions and how that affects the measured properties of the discharge. This review has the goal of summarizing (rather than developing details of) the current status of the low-current DC discharges formation and operation as a discipline which, in spite of

  2. Electrical breakdown detection system for dielectric elastomer actuators

    Science.gov (United States)

    Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico

    2017-04-01

    Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.

  3. Melanoma affects the composition of blood cell-derived extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-07-01

    Full Text Available Extracellular vesicles are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of extracellular vesicles reflects the type and status of the originating cell and extracellular vesicles in melanoma patient’s plasma could be indicative for the tumor. Likewise, extracellular vesicles might influence tumor progression by regulating immune responses. We performed a broad protein characterization of extracellular vesicles from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer cells, monocytes, monocyte-derived dendritic cells and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on extracellular vesicles. Hierarchal clustering of protein intensity patterns grouped extracellular vesicles according to their originating cell type. The analysis of extracellular vesicles from stimulated B cells and monocyte-derived dendritic cells revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of extracellular vesicles from platelets, antigen presenting cells and natural cells as shown by platelet markers, costimulatory proteins, and a natural killer cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers indicating a changed vesicle secretion or protein loading of extracellular vesicles by platelets and a lower CD8 signal that might be associated with a diminished activity of natural killer cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of extracellular vesicles in melanoma plasma, but rather argue

  4. α-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling

    Directory of Open Access Journals (Sweden)

    Audrey T. Medeiros

    2017-12-01

    Full Text Available α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV trafficking. In Parkinson’s disease (PD and several other neurodegenerative disorders, aberrant oligomerization and aggregation of α-synuclein lead to synaptic dysfunction and neurotoxicity. Despite evidence that α-synuclein oligomers are generated within neurons under physiological conditions, and that altering the balance of monomers and oligomers contributes to disease pathogenesis, how each molecular species of α-synuclein impacts SV trafficking is currently unknown. To address this, we have taken advantage of lamprey giant reticulospinal (RS synapses, which are accessible to acute perturbations via axonal microinjection of recombinant proteins. We previously reported that acute introduction of monomeric α-synuclein inhibited SV recycling, including effects on the clathrin pathway. Here, we report the effects of α-synuclein dimers at synapses. Similar to monomeric α-synuclein, both recombinant α-synuclein dimers that were evaluated bound to small liposomes containing anionic lipids in vitro, but with reduced efficacy. When introduced to synapses, the α-synuclein dimers also induced SV recycling defects, which included a build up of clathrin-coated pits (CCPs with constricted necks that were still attached to the plasma membrane, a phenotype indicative of a vesicle fission defect. Interestingly, both α-synuclein dimers induced longer necks on CCPs as well as complex, branching membrane tubules, which were distinct from the CCPs induced by a dynamin inhibitor, Dynasore. In contrast, monomeric α-synuclein induced a buildup of free clathrin-coated vesicles (CCVs, indicating an inhibition of clathrin-mediated endocytosis at a later stage during the clathrin uncoating process. Taken together, these data further support the conclusion that excess α-synuclein impairs SV recycling. The data additionally reveal that monomeric and dimeric α-synuclein produce

  5. End-capping of amphiphilic nanotubes with phospholipid vesicles: impact of the phospholipid on the cap formation and vesicle loading under osmotic conditions.

    Science.gov (United States)

    Erne, Petra M; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Feringa, Ben L

    2016-09-22

    Soft amphiphilic nanotubes are capped with vesicles comprised of either overall neutral, zwitterionic phospholipids, or those that carry a net charge. The phase transition temperature of the zwitterionic phospholipids plays a crucial role in the phase separation that leads to the end-capped nanotubes. The cationic vesicle caps can be loaded into the nanotubes via osmosis whereas the anionic vesicle caps are stable under hyper-osmotic conditions. Furthermore, no additional salt needs to be added for the cationic vesicle caps to induce the loading of the vesicles into the nanotubes due to the presence of counterions.

  6. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown......, healthy male subjects performed a bout of resistance exercise with one leg, followed 17–21 h later by in vivo skeletal muscle sampling by microdialysis in exercised (EX) and control (CON) legs. Microdialysis reliably predicted [OHP] in vitro (R2=0.90). Analysis with GC–MS was strongly correlated...... to traditional analysis methods (CON: slope=1.03, R2=0.896, and Pskeletal muscle...

  7. Time-lags before breakdown in the DC spark system

    CERN Document Server

    Descoeudres, A

    2008-01-01

    The voltage time evolution in the DC spark system has been measured together with the current signal during a discharge. The voltage rise-time, given by the circuitry and the HV relay is measured to be of the order of 100 ns. Measurement of the time-lags for breakdown reveals a material dependent behaviour; two populations centered at 0.1 s and at 1.3 ms are detected on stainless steel whereas on tungsten carbide only fast occurring sparks with sharp distribution around 0.1 s are found. The two populations indicate the presence of two different breakdown mechanisms.

  8. The dielectric breakdown limit of silicone dielectric elastomer actuators

    Science.gov (United States)

    Gatti, Davide; Haus, Henry; Matysek, Marc; Frohnapfel, Bettina; Tropea, Cameron; Schlaak, Helmut F.

    2014-02-01

    Soft silicone elastomers are used in a generation of dielectric elastomer actuators (DEAs) with improved actuation speed and durability compared to the commonly used, highly viscoelastic polyacrylate 3M VHB™ films. The maximum voltage-induced stretch of DEAs is ultimately limited by their dielectric breakdown field strength. We measure the dependence of dielectric breakdown field strength on thickness and stretch for a silicone elastomer, when voltage-induced deformation is prevented. The experimental results are combined with an analytic model of equi-biaxial actuation to show that accounting for variable dielectric field strength results in different values of optimal pre-stretch and thickness that maximize the DEA actuation.

  9. Dielectric breakdown in AlO{sub x} tunnelling barriers

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D M; Carara, M; Schelp, L F; Dorneles, L S [Universidade Federal de Santa Maria, Departamento de Fisica, Av. Roraima, 1000, Santa Maria 97105-900, RS (Brazil); Fichtner, P F P, E-mail: lsdorneles@gmail.com [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Av. Bento Goncalves, 9500, Caixa Postal 15051, Porto Alegre 91501-970, RS (Brazil)

    2011-04-06

    We studied the dielectric breakdown in tunnelling barriers produced by plasma-assisted oxidation of an aluminium surface. The barrier mean height, thickness and the effective tunnelling area were extracted from current versus voltage curves measured at room temperature. The effective tunnelling area ranged from 10{sup -10} to 10{sup -5} cm{sup 2}, corresponding to less than 1% of the geometrical surface of the samples. The estimated electrical field to breakdown agreed with predictions from thermochemical models, and decreased exponentially with the effective tunnelling area.

  10. Discovering vesicle traffic network constraints by model checking.

    Science.gov (United States)

    Shukla, Ankit; Bhattacharyya, Arnab; Kuppusamy, Lakshmanan; Srivas, Mandayam; Thattai, Mukund

    2017-01-01

    A eukaryotic cell contains multiple membrane-bound compartments. Transport vesicles move cargo between these compartments, just as trucks move cargo between warehouses. These processes are regulated by specific molecular interactions, as summarized in the Rothman-Schekman-Sudhof model of vesicle traffic. The whole structure can be represented as a transport graph: each organelle is a node, and each vesicle route is a directed edge. What constraints must such a graph satisfy, if it is to represent a biologically realizable vesicle traffic network? Graph connectedness is an informative feature: 2-connectedness is necessary and sufficient for mass balance, but stronger conditions are required to ensure correct molecular specificity. Here we use Boolean satisfiability (SAT) and model checking as a framework to discover and verify graph constraints. The poor scalability of SAT model checkers often prevents their broad application. By exploiting the special structure of the problem, we scale our model checker to vesicle traffic systems with reasonably large numbers of molecules and compartments. This allows us to test a range of hypotheses about graph connectivity, which can later be proved in full generality by other methods.

  11. Vesicle shape, molecular tilt, and the suppression of necks

    Science.gov (United States)

    Jiang, Hongyuan; Huber, Greg; Pelcovits, Robert A.; Powers, Thomas R.

    2007-09-01

    Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of +2 are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.

  12. Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis

    Science.gov (United States)

    Riedel, Dietmar; Schomburg, Christoph; Cerdà, Joan; Vollack, Nadine; Dosch, Roland

    2014-01-01

    During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research. PMID:24967841

  13. Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis.

    Directory of Open Access Journals (Sweden)

    Palsamy Kanagaraj

    2014-06-01

    Full Text Available During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP gene SPASTIZIN (SPG15. We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.

  14. Overall energy conversion efficiency of a photosynthetic vesicle.

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  15. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods.

    Science.gov (United States)

    Song, Jibin; Pu, Lu; Zhou, Jiajing; Duan, Bo; Duan, Hongwei

    2013-11-26

    We have developed surface-initiated organocatalytic ring-opening polymerization on functional nanocrystals and synthesized amphiphilic gold nanorods carrying well-defined mixed polymer brushes of poly(ethylene glycol) and polylactide. Self-assembly of the amphiphilic gold nanorods affords biodegradable plasmonic vesicles that can be destructed by both enzymatic degradation and near-infrared photothermal heating. When tagged with Raman probes, strongly coupled gold nanorods in the self-assembled vesicles give rise to highly active SERS signals. The biodegradable plasmonic vesicles exhibit a unique combination of optical and structural properties that are of particular interest for theranostic applications. We have demonstrated that bioconjugated SERS-active plasmonic vesicles can specifically target EpCAM-positive cancer cells, leading to ultrasensitive spectroscopic detection of cancer cells. Furthermore, integration of photothermal effect of gold nanorods and large loading capacity of the vesicles provides opportunities for localized synergistic photothermal ablation and photoactivated chemotherapy, which have shown higher efficiency in killing targeted cancer cells than either single therapeutic modality. The versatile chemistry of organocatalytic ring-opening polymerization, in conjugation with recent development in synthesizing functional nanocrystals with tailored optical, electronic, and magnetic properties opens the possibilities for constructing multifunctional biodegradable platforms for clinical translation.

  16. A Combined Electro-Thermal Breakdown Model for Oil-Impregnated Paper

    Directory of Open Access Journals (Sweden)

    Meng Huang

    2017-12-01

    Full Text Available The breakdown property of oil-impregnated paper is a key factor for converter transformer design and operation, but it is not well understood. In this paper, breakdown voltages of oil-impregnated paper were measured at different temperatures. The results showed that with the increase of temperature, electrical, electro-thermal and thermal breakdown occurred successively. An electro-thermal breakdown model was proposed based on the heat equilibrium and space charge transport, and negative differential mobility was introduced to the model. It was shown that carrier mobility determined whether it was electrical or thermal breakdown, and the model can effectively explain the temperature-dependent breakdown.

  17. Characteristic spatial scale of vesicle pair interactions in a plane linear flow.

    Science.gov (United States)

    Levant, Michael; Deschamps, Julien; Afik, Eldad; Steinberg, Victor

    2012-05-01

    We report the experimental studies on interaction of two vesicles trapped in a microfluidic four-roll mill, where a plane linear flow is realized. We found that the dynamics of a vesicle in tank-treading motion is significantly altered by the presence of another vesicle at separation distances up to 3.2-3.7 times of the vesicle effective radius. This result is supported by measurement of a single vesicle back-reaction on the velocity field. Thus the experiment provides the upper bound for the volume fraction φ = 0.08-0.13 of noninteracting vesicle suspensions.

  18. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-09

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Immobilization of stable thylakoid vesicles in conductive nanofibers by electrospinning.

    Science.gov (United States)

    Bedford, Nicholas M; Winget, G Douglas; Punnamaraju, Srikoundinya; Steckl, Andrew J

    2011-03-14

    Electrospun fibers consisting of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS) and poly(ethylene oxide) (PEO) have been used to successfully encapsulate and stabilize thylakoid membrane vesicles isolated from spinach. Light-driven electronic properties were measured. Fibers with immobilized thylakoids show higher electrical conductivity compared with fibers without thylakoids under white light conditions. This is attributed to the electron-generating photosynthetic reactions from the thylakoids. Electron and optical microscopy show the presence of thylakoid vesicles within the fibers using lipid-specific stains. After electrospinning into fibers, the thylakoid vesicles still exhibit an ability to produce a light-driven electron gradient, indicating that activity is preserved during the electrospinning process. These electrospun fibers provide an excellent example of incorporating photosynthetic function into an artificial system.

  20. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...

  1. Exosomes and other extracellular vesicles in host–pathogen interactions

    Science.gov (United States)

    Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L

    2015-01-01

    An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940

  2. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  3. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  4. A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking.

    Science.gov (United States)

    Cole, Andy A; Chen, Xiaobing; Reese, Thomas S

    2016-03-16

    Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release. Copyright © 2016 the authors 0270-6474/16/363222-09$15.00/0.

  5. Cryo-electron microscopy of extracellular vesicles in fresh plasma.

    Science.gov (United States)

    Yuana, Yuana; Koning, Roman I; Kuil, Maxim E; Rensen, Patrick C N; Koster, Abraham J; Bertina, Rogier M; Osanto, Susanne

    2013-12-31

    Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25-260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  6. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2013-12-01

    Full Text Available Introduction: Extracellular vesicles (EV are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives: To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM. Methods: Fresh citrate- and ethylenediaminetetraacetic acid (EDTA-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results: EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles. In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm. The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET was employed to determine the 3D structure of platelet secretory granules. Conclusions: Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV.

  7. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  8. Vortex Breakdown under Laminar Flow of Pseudoplastic Fluid

    Science.gov (United States)

    Kadyirov, A. I.; Abaydullin, B. R.

    2017-09-01

    The numerical investigation was carried out to study vortex breakdown for pseudoplastic fluid flow in circular pipe with twisted tape inserts. 0.67%, 1.5% and 3% aqueous solutions of Na-CMC are chosen as a pseudoplastic fluid. The numerical results are compared with available data in literature.

  9. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  10. Marital Breakdown, Shame, and Suicidality in Men: A Direct Link?

    Science.gov (United States)

    Kolves, Kairi; Ide, Naoko; De Leo, Diego

    2011-01-01

    The influence of feelings of shame originating from marital breakdown on suicidality is examined. The role of mental health problems as probable mediating factors is also considered. Internalized shame, state (related to separation) shame, and mental health problems were significantly correlated with the score for suicidality during separation in…

  11. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  12. Electron cyclotron resonance breakdown studies in a linear plasma ...

    Indian Academy of Sciences (India)

    Abstract. Electron cyclotron resonance (ECR) plasma breakdown is studied in a small linear cylindrical system with four different gases – hydrogen, helium, argon and nitrogen. Microwave power in the experimental system is delivered by a magnetron at 2.45 ± 0.02. GHz in TE10 mode and launched radially to have ...

  13. An active flow control theory of the vortex breakdown process

    Science.gov (United States)

    Rusak, Zvi; Granat, Joshua; Wang, Shixiao

    2013-11-01

    An active flow control theory of the vortex breakdown process in incompressible swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet-outlet conditions. A long-wave asymptotic analysis results in a nonlinear model problem for the dynamics and control of both inviscid and high Reynolds number flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. In addition, an energy analysis of the controlled flow dynamics suggests a feedback control law which relates the flow injection to the evolving maximum radial velocity at the inlet. The feedback control cuts the natural feed forward mechanism of the breakdown process. Computed examples based on the full Euler and NS formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl, up to 30 percent above critical.

  14. Application of laser-induced breakdown spectroscopy in carbon ...

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time ... This work details the laboratory scale experiments to measure carbon contents in soil, aqueous, and air samples.

  15. Local late Amazonian boulder breakdown and denudation rate on Mars

    NARCIS (Netherlands)

    de Haas, T.; Hauber, E.; Kleinhans, M.G.

    2013-01-01

    Inactive fan surfaces become smoother and develop desert pavement over time by weathering and erosion. We use this mechanism to estimate late Amazonian boulder breakdown and surface denudation rates on a young (∼1.25 Ma) (Schon et al., 2009) fan on Mars. This is done by comparing boulder size and

  16. Recovering from trust breakdowns in large system Implementations

    DEFF Research Database (Denmark)

    Schlichter, Bjarne Rerup; Andersen, Povl Erik Rostgård

    On the basis of experiences from the Faroese large-scale implementation of integrated healthcare information systems and insights into dynamic aspects of trust, we offer the following lessons learned for the successful management and recovery of trust (breakdowns) in large system implementations...

  17. Recovering from trust breakdowns in large system implementations

    DEFF Research Database (Denmark)

    Rerup Schlichter, Bjarne Rerup; Andersen, Povl Erik Rostgård

    2011-01-01

    On the basis of experiences from the Faroese large-scale implementation of integrated healthcare information systems and insights into dynamic aspects of trust, we offer the following lessons learned for the successful management and recovery of trust (breakdowns) in large system implementations...

  18. Efficient estimation of overflow probabilities in queues with breakdowns

    NARCIS (Netherlands)

    Kroese, Dirk; Nicola, V.F.

    1999-01-01

    Efficient importance sampling methods are proposed for the simulation of a single server queue with server breakdowns. The server is assumed to alternate between the operational and failure states according to a continuous time Markov chain. Both, continuous (fluid flow) and discrete (single

  19. characteristics of structural breakdown in plastic concrete and their ...

    African Journals Online (AJOL)

    Dr Obe

    approach is very sound theoretically and therefore. Ideal for research .... of deformation, flow of the plastic concrete commencing as the peak ... before the incidence of structural breakdown. This feature can therefore be used as an index of the capacity of the mix for plastic deformation. It may be termed the deformability of.

  20. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  1. Laser-induced breakdown spectroscopy and inductively coupled ...

    African Journals Online (AJOL)

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North ...

  2. Problems with spontaneous breakdown in Reggeon field theories

    CERN Document Server

    Ellis, Jonathan Richard

    1976-01-01

    It is proved that if a Reggeon field theory undergoes spontaneous breakdown as a result of the Pomeron intercept being above one, then the shifted Lagrangian must, in general, develop terms which are non- canonical from the point of view of Reggeon Lagrangians. The interpretation of these terms and some of the problems associated with them, are discussed. (18 refs).

  3. Localization of rf breakdowns in a standing wave cavity

    Directory of Open Access Journals (Sweden)

    Faya Wang

    2009-04-01

    Full Text Available At SLAC, a five-cell, normal-conducting, L-band (1.3 GHz, standing-wave (SW cavity was built as a prototype positron capture accelerator for the ILC. The structure met the ILC gradient goal but required extensive rf processing. When rf breakdowns occurred, a large variation was observed in the decay rate of the stored energy in the cavity after the input power was shut off. It appeared that the breakdowns were isolating sections of the cavity, and that the trapped energy in those sections was then partitioned among its natural modes, producing a distinct beating pattern during the decay. To explore this phenomenon further, an equivalent circuit model of cavity was created that reproduces well its normal operating characteristics. The model was then used to compute the spectra of trapped energy for different numbers of isolated cells. The resulting modal patterns agree well with those of the breakdown data, and thus such a comparison appears to provide a means of identifying the irises on which the breakdowns occurred.

  4. Breakdown of Modulational Approximations in Nonlinear Wave Interaction

    CERN Document Server

    Gerhardt, L; Barbedo-Rizzato, F; Lopes, S R

    1999-01-01

    In this work we investigate the validity limits of the modulational approximation as a method to describe the nonlinear interaction of conservative wave fields. We focus on a nonlinear Klein-Gordon equation and suggest that the breakdown of the approximation is accompanied by a transition to regimes of spatiotemporal chaos.

  5. Direct relationship between breakdown strength and tracking index of composites

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Henriksen, Mogens; Holbøll, Joachim

    2006-01-01

    The following paper shows a clear correlation between the measured tracking index and the breakdown field strength for noncoated glass fibre reinforced polymers (GFRP) with either a polyester or an epoxy based resin. 17 types of specimens have been tested according to IEC Publication 60587...

  6. Using Work Breakdown Structure Models to Develop Unit Treatment Costs

    Science.gov (United States)

    This article presents a new cost modeling approach called work breakdown structure (WBS), designed to develop unit costs for drinking water technologies. WBS involves breaking the technology into its discrete components for the purposes of estimating unit costs. The article dem...

  7. Investigation of oral gels breakdown using image analysis

    NARCIS (Netherlands)

    Tournier, Carole; Devezeaux de Lavergne, Marine; Velde, van de Fred; Stieger, Markus; Salles, Christian; Bertrand, Dominique

    2017-01-01

    Characterizing the dynamics of food oral breakdown is of interest to understand the temporal perception of food products. The present work aimed at studying the possible contribution of artificial vision for studying bolus formation. Four emulsion-filled gels were prepared from two concentrations

  8. Postcoital Hemorrhage of a Recurrent Seminal Vesicle Cyst Requiring Embolization

    Directory of Open Access Journals (Sweden)

    Eric Royston

    2014-09-01

    Full Text Available Herein is a case of a 23-year-old man with recurrence of a seminal vesicle cyst after percutaneous drainage and laparoscopic excision complicated by hemorrhage requiring embolization. He presented to the emergency department for pain after ejaculation. Computed tomographic scan of his pelvis revealed extravasation of contrast near his cyst and pelvic fluid collection suspicious for a hematoma. The patient had steadily decreasing hemoglobin and hematocrit levels. An interventional radiologist performed an embolization of the left seminal vesicle cystic arteries. Hemoglobin and hematocrit values improved and he was discharged. Hemorrhage resolved with embolization procedure and pain dissipated over the course of follow up care.

  9. Potentials and capabilities of the Extracellular Vesicle (EV Array

    Directory of Open Access Journals (Sweden)

    Malene Møller Jørgensen

    2015-04-01

    Full Text Available Extracellular vesicles (EVs and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10 has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes for up to 60 antigens without any enrichment or purification prior to analysis.

  10. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.

    Science.gov (United States)

    Chiasserini, Davide; van Weering, Jan R T; Piersma, Sander R; Pham, Thang V; Malekzadeh, Arjan; Teunissen, Charlotte E; de Wit, Heidi; Jiménez, Connie R

    2014-06-25

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in conjunction with bioinformatics. We report an extensive catalog of 1315 proteins identified in EVs isolated from two different CSF pools by ultracentrifugation, including 230 novel EV proteins. Out of 1315 proteins, 760 were identified in both CSF pools and about 30% of those were also quantitatively enriched in the EV fraction versus the soluble CSF fraction. The proteome of CSF EVs was enriched in exosomal markers such as alix and syntenin-1, heat shock proteins and tetraspanins and contained a high proportion of brain-derived proteins (n=373). Interestingly, several known biomarkers for neurodegenerative diseases such as the amyloid precursor protein, the prion protein and DJ-1 were identified in the EV fractions. Our dataset represents the first comprehensive inventory of the EV proteome in CSF, underscoring the biomarker potential of this organelle. Further comparative studies on CSF EVs isolated from patients diagnosed with neurological disorders are warranted. Data are available via ProteomeXchange with identifier PXD000608. Biological significance In this study we analyzed the protein composition of extracellular vesicles isolated from pooled samples of human cerebrospinal fluid (CSF). CSF is a colorless fluid surrounding the brain and the spinal cord, important for the physiology of the central nervous system, ensuing mechanical protection, regulation of brain blood flow and elimination of byproducts of the brain. Since brain (patho)physiology is reflected in CSF, this biological fluid represents an ideal source of soluble and vesicle-based biomarkers for neurological diseases. Here we confirm the presence of exosome-like extracellular vesicles in CSF, underscoring

  11. Erythrocyte-derived optical nano-vesicles as theranostic agents

    Science.gov (United States)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  12. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma

    OpenAIRE

    Matsuzaki, Kyosuke; Fujita, Kazutoshi; Jingushi, Kentaro; Kawashima, Atsunari; Ujike, Takeshi; Nagahara, Akira; Ueda, Yuko; Tanigawa, Go; Yoshioka, Iwao; Ueda, Koji; Hanayama, Rikinari; Uemura, Motohide; Miyagawa, Yasushi; Tsujikawa, Kazutake; Nonomura, Norio

    2017-01-01

    Background Extracellular vesicles are lipid bilayer vesicles containing protein, messengerRNA and microRNA. Cancer cell-derived extracellular vesicles may be diagnostic and therapeutic targets. We extracted extracellular vesicles from urine of urothelial carcinoma patients and the control group to identify cancer-specific microRNAs in urinary extracellular vesicles as new biomarkers. Materials and methods microRNA from urinary extracellular vesicles extracted from 6 urothelial carcinoma patie...

  13. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development.

    Science.gov (United States)

    Wu, B J; Dong, F L; Ma, X S; Wang, X G; Lin, F; Liu, H L

    2014-08-07

    Epigenetic modifications of the genome, such as histone H2A variants, ensure appropriate gene activation or silencing during oogenesis and preimplantation embryo development. We examined global localization and expression of the histone H2A variants, including H2A.Bbd, H2A.Z and H2A.X, during mouse oogenesis and preimplantation embryo development. Immunocytochemistry with specific antibodies against various histone H2A variants showed their localization and changes during oogenesis and preimplantation development. H2A.Bbd and H2A.Z were almost absent from nuclei of growing oocytes (except 5-day oocyte), whereas H2A.X was deposited in nuclei throughout oogenesis and in preimplantation embryos. In germinal vesicle (GV) oocyte chromatin, H2A.Bbd was detected as a weak signal, whereas no fluorescent signal was detected in GV breakdown (GVBD) or metaphase II (MII) oocytes; H2A.Z showed intense signals in chromatin of GV, GVBD and MII oocytes. H2A. Bbd showed very weak signals in both pronucleus and 2-cell embryo nuclei, but intense signals were detected in nuclei from 4-cell embryo to blastula. The H2A.Z signal was absent from pronucleus to morula chromatin, whereas a fluorescent signal was detected in blastula nuclei. Our results suggest that histone H2A variants are probably involved in reprogramming of genomes during oocyte meiosis or after fertilization.

  14. Hormone-induced cortical maturation ensures the slow block to polyspermy and does not couple with meiotic maturation in starfish.

    Science.gov (United States)

    Hirohashi, Noritaka; Harada, Kaori; Chiba, Kazuyoshi

    2008-06-01

    Meiotic progression in starfish oocytes is reinitiated by a maturation-inducing hormone called 1-methyladenine (1-MeAde). In addition to meiotic maturation, 1-MeAde induces cortical maturation in which cortical granules become competent to discharge in response to fusion of a single sperm, which results in the formation of the fertilization envelope. We found that subthreshold concentrations of 1-MeAde induce cortical maturation without germinal vesicle breakdown (GVBD). During cortical maturation, the IP3 sensitivity of calcium stores was increased as well as during meiotic maturation. When oocytes were exposed with 1-MeAde only on a hemisphere of oocytes, the IP3 sensitivity of the cortical region was increased only in the exposed hemisphere, suggesting that signals and components involved in cortical maturation do not readily spread in the cytoplasm. Although a specific inhibitor of phosphatidylinositol-3 kinase, LY294002 blocked both GVBD and cortical maturation, a Cdc2 kinase inhibitor, roscovitine did not block cortical maturation. Inhibition of Akt activation by injecting the competitors for Akt phosphorylation and membrane recruitment also blocked cortical maturation. These results suggest that the signaling pathway leading to Akt activation is common in cortical maturation and meiotic maturation, and Cdc2 activation was not required for cortical maturation.

  15. Breakdown of teenage placements in Danish out-of-home care

    DEFF Research Database (Denmark)

    Egelund, Tine; Olsson, Martin; Høst, Anders

    2012-01-01

    This study deals with the problem of breakdown in out-of-home placements for Danish teenagers. How often are these placements prematurely terminated against the requests and intentions of the child welfare authorities? Which factors seem to increase and decrease placement breakdown? The sample co...... that no child welfare system yet have found a method to reduce breakdown substantially.......This study deals with the problem of breakdown in out-of-home placements for Danish teenagers. How often are these placements prematurely terminated against the requests and intentions of the child welfare authorities? Which factors seem to increase and decrease placement breakdown? The sample...... to breakdown. However, while the logistic regression model was significant, it explained only 6% of the variance. Earlier studies have indicated that breakdown is a substantial problem of child welfare in several other western countries, Denmark is no exception. These corresponding breakdown rates point out...

  16. Experimental study of vortex breakdown in a cylindrical, swirling flow

    Science.gov (United States)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.

  17. Polymer/TiO₂ hybrid vesicles for excellent UV screening and effective encapsulation of antioxidant agents.

    Science.gov (United States)

    Du, Jianzhong; Sun, Hui

    2014-08-27

    Presented in this paper is a hybrid polymer/titanium dioxide (TiO2) vesicle that has excellent UV-screening efficacy and strong capacity to encapsulate antioxidant agents. Poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-polystyrene (PEO-b-PDMAEMA-b-PS) triblock terpolymer was synthesized by atom transfer radical polymerization (ATRP) and then self-assembled into vesicles. Those vesicles showed excellent UV-screening property due to the scattering by vesicles and the absorption by PS vesicle membrane. The selective deposition of solvophobic tetrabutyl titanate in the PDMAEMA shell and the PS membrane of the vesicles led to the formation of polymer/TiO2 hybrid vesicles, resulting in an enhanced UV-screening property by further reflecting and scattering UV radiation. The vesicles can effectively encapsulate antioxidant agents such as ferulic acid (up to 57%), showing a rapid antioxidant capability (within 1 min) and a long-lasting antioxidant effect.

  18. Matrix-dependent local retention of secretory vesicle cargo in cortical neurons

    NARCIS (Netherlands)

    de Wit, J.; Toonen, R.F.G.; Verhage, M.

    2009-01-01

    Neurons secrete many diffusible signals from synaptic and other secretory vesicles. We characterized secretion of guidance cues, neuropeptides, neurotrophins, and proteases from single secretory vesicles using pHluorin-tagged cargo in cortical neurons. Stimulation triggered transient and persistent

  19. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

    Science.gov (United States)

    Abels, Erik R; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.

  1. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta

    NARCIS (Netherlands)

    Pieters, B.C.; Arntz, O.J.; Bennink, M.B.; Broeren, M.G.; Caam, A.P.M. van; Koenders, M.I.; Lent, P.L. van; Berg, W.B. van den; Vries, M. de; Kraan, P.M. van der; Loo, F.A.J. van de

    2015-01-01

    SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in

  2. Kinesin 5B (KIF5B is required for progression through female meiosis and proper chromosomal segregation in mitotic cells.

    Directory of Open Access Journals (Sweden)

    Dawit Kidane

    Full Text Available The fidelity of chromosomal segregation during cell division is important to maintain chromosomal stability in order to prevent cancer and birth defects. Although several spindle-associated molecular motors have been shown to be essential for cell division, only a few chromosome arm-associated motors have been described. Here, we investigated the role of Kinesin 5b (Kif5b during female mouse meiotic cell development and mitotic cell division. RNA interference (RNAi-mediated silencing of Kif5b in mouse oocytes induced significant delay in germinal vesicle breakdown (GVBD and failure in extrusion of the first polar body (PBE. In mitotic cells, knockdown of Kif5b leads to centrosome amplification and a chromosomal segregation defect. These data suggest that KIF5B is critical in suppressing chromosomal instability at the early stages of female meiotic cell development and mitotic cell division.

  3. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    OpenAIRE

    Böing, Anita N.; van der Pol, Edwin; Anita E. Grootemaat; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively.Aim: To develop a single-step protocol to isolate vesicles from human body fluids.Methods: Platelet-free supernatant, derived from platelet...

  4. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca2+ + Mg2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca2+ + Mg2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca2+ mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization.

  5. Impulse breakdown of small air gap in electric field Part II: Statistical ...

    African Journals Online (AJOL)

    The patterns of shot distribution and maximum coverage at impulse breakdown voltage for positive point electr-odes (needle and cone electrodes) in small air gaps in non-uniform electric fields were investigated. During the breakdown test, a sheet of paper was placed on the plate electrode (-ve), and each breakdown shot ...

  6. Calculation of Spark Breakdown or Corona Starting Voltages in Nonuniform Fields

    DEFF Research Database (Denmark)

    Pedersen, A.

    1967-01-01

    The processes leading to a spark breakdown or corona discharge are discussed very briefly. A quantitative breakdown criterion for use in high-voltage design is derived by which spark breakdown or corona starting voltages in nonuniform fields can be calculated. The criterion is applied to the sphere...

  7. Conversation Breakdowns in the Audiology Clinic: The Importance of Mutual Gaze

    Science.gov (United States)

    Ekberg, Katie; Hickson, Louise; Grenness, Caitlin

    2017-01-01

    Background: Conversational breakdowns are a persistent concern for older adults with hearing impairment (HI). Previous studies in experimental settings have investigated potential causes of breakdowns in conversations with a person with HI, and effective strategies for repairing these breakdowns. However, little research has explored the causes of…

  8. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    Science.gov (United States)

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  9. Studies of matrix vesicle-induced mineralization in a gelatin gel

    Science.gov (United States)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  10. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  11. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    Science.gov (United States)

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  12. Molecular Recognition of Vesicles : Host-Guest Interactions Combined with Specific Dimerization of Zwitterions

    NARCIS (Netherlands)

    Voskuhl, Jens; Fenske, Tassilo; Stuart, Marc C. A.; Wibbeling, Birgit; Schmuck, Carsten; Ravoo, Bart Jan

    2010-01-01

    The aggregation of beta-cyclodextrin vesicles can be induced by an adamantyl-substituted zwitterionic guanidiniocarbonylpyrrole carboxylate guest molecule (1). Upon addition of 1 to the cyclodextrin vesicles at neutral pH, the vesicles aggregate (but do not fuse), as shown by using UV/Vis and

  13. The function of vesicles in the actinomycete Frankia

    NARCIS (Netherlands)

    Meesters, T.

    1988-01-01

    The actinomycete Frankia is a symbiotic nitrogen fixer, living in root nodules of many non-leguminous plants. A typical characteristic of this endophytic organism is the formation of specialized swollen cell structures, called vesicles. Frankia

  14. Ultrasound-guided seminal vesicle biopsies in prostate cancer

    NARCIS (Netherlands)

    Wymenga, LFA; Duisterwinkel, FJ; Groenier, K; Mensink, HJA

    2000-01-01

    Invasion of prostatic adenocarcinoma into the seminal vesicles (SV) is generally accepted as an index of poor prognosis. The pre-operative identification of SV invasion is an important element in staging since it may alter subsequent treatment decisions. We studied the possibility of diagnosing SV

  15. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  16. Swinging of two-domains vesicles in shear flow

    Science.gov (United States)

    Viallat, Annie; Tusch, Simon; Khelloufi, Kamel; Leonetti, Marc

    2014-11-01

    Giant lipid vesicles and red blood cells in shear flow at low shear rates tank tread (TT) at small viscosity ratio between the inner particle volume and the external fluid, and flip or tumble (T) at large viscosity ratio. The phase diagram of motion of red blood cells is however much more complex. Swinging superimposes to TT, cells wobble and roll rather than tumble with increasing shear rate and present a shear-rate driven transition between TT to T. These features are attributed to the shear elasticity and the non spherical stress-free shape of the cell membrane, which stores shear elastic energy as a function of the relative position of its elements. We have created vesicles with a phase diagram of motion comparable to that of red blood cells by preparing membranes with two lipids and cholesterol. These membranes present two domains separated by a contact line. The line has a tension energy that depends on its relative position on the vesicle. Similarly to red blood cells, two-domains vesicles swing and wobble. An analytical model where line tension energy is added to the Keller and Skalak's model fits our experimental data without any adjustable parameter. Our experiments and model shed light on the motion of deformable particles in shear flow.

  17. Dimensional characterization of extracellular vesicles using atomic force microscopy

    NARCIS (Netherlands)

    Sebaihi, N.; de Boeck, B.; Yuana, Y.; Nieuwland, R.; Petry, J.

    2017-01-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from

  18. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  19. Effect of sodium deoxycholate and sodium cholate on DPPC vesicles

    Indian Academy of Sciences (India)

    TECS

    monitor different stages of interaction of bile salts with DPPC vesicles. NaDC induced significant changes in the ... more hydrophilic NaC does not interact with the membrane efficiently. Complete solubilisation of phos- pholipids .... the temperature was controlled by circulating water through a jacketted cuvette holder from a ...

  20. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  1. Patterns of Surface Immobilized Block Copolymer Vesicle Nanoreactors

    NARCIS (Netherlands)

    Chen, Qi; de Groot, G.W.; Schönherr, Holger; Vancso, Gyula J.

    2011-01-01

    The immobilization and positioning of ultra small reaction vessels on solid supports open new pathways in applications such as lab-on-a-chip, sensors, microanalyses and microreactors. In our work block copolymer vesicles made from polystyrene-block-polyacrylic acid (PS-b-PAA) were immobilized from

  2. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  3. Response of midpiece vesicles on human sperm to osmotic stress

    DEFF Research Database (Denmark)

    Abraham-Peskir, Joanna V; Chantler, Eric; Uggerhøj, Erik

    2002-01-01

    BACKGROUND: We investigated the osmotic response of midpiece vesicles (MPV) on human sperm. METHODS: Light microscopy, transmission X-ray microscopy and computer-aided semen analysis was used to investigate sperm in normozoospermic semen from healthy donors, separated from semen and suspended...

  4. Packing states of multilamellar vesicles in a nonionic surfactant system

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2001-01-01

    under shear. Here, we focused only in the MLV region, L-alpha(*), of a temperature sensitive surfactant system (C12E4-water) to investigate the packing of multilamellar vesicles as a function of temperature under constant shear. Two sets of temperature scan experiments were performed in the L...

  5. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle

    Directory of Open Access Journals (Sweden)

    P.F. Wong

    2014-09-01

    Conclusion: The results demonstrated that the inhibitory action of IMD on NE-induced seminal vesicle contraction was mediated via the ADM receptor(s and the nitric oxide production pathway, partially by the IMD receptor, but not by the CGRP receptor and the cAMP-PKA pathway.

  6. Glucose-oxidase based self-destructing polymeric vesicles

    NARCIS (Netherlands)

    Napoli, A.; Boerakker, M.J.; Tirelli, N.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.; Hubbell, J.A.

    2004-01-01

    We have designed oxidation-responsive vesicles from synthetic amphiphilic block copolymers ("polymersomes") of ethylene glycol and propylene sulfide. Thioethers in the hydrophobic poly(propylene sulfide) block are converted into the more hydrophilic sulfoxides and sulfones upon exposure to an

  7. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset

    NARCIS (Netherlands)

    Chiasserini, D.; van Weering, J.R.T.; Piersma, S.R.; Pham, T.V.; Malekzadeh, A.; Teunissen, C.E.; de Wit, H.; Jimenez, C.R.

    2014-01-01

    Extracellular vesicles (EVs) are present in human cerebrospinal fluid (CSF), yet little is known about their protein composition. The aim of this study is to provide a comprehensive analysis of the proteome of CSF EVs by electron microscopy and high resolution tandem mass spectrometry (MS/MS) in

  8. Cell-derived vesicles exposing coagulant tissue factor in saliva

    NARCIS (Netherlands)

    Berckmans, René J.; Sturk, Auguste; van Tienen, Laurens M.; Schaap, Marianne C. L.; Nieuwland, Rienk

    2011-01-01

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is non-coagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism

  9. Cell-derived vesicles exposing coagulant tissue factor in saliva.

    Science.gov (United States)

    Berckmans, René J; Sturk, Auguste; van Tienen, Laurens M; Schaap, Marianne C L; Nieuwland, Rienk

    2011-03-17

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.

  10. Extracellular vesicles in human follicular fluid do not promote coagulation

    NARCIS (Netherlands)

    Franz, Cordula; Böing, Anita N.; Montag, Markus; Strowitzki, Thomas; Markert, Udo R.; Mastenbroek, Sebastiaan; Nieuwland, Rienk; Toth, Bettina

    2016-01-01

    Body fluids contain extracellular vesicles expressing tissue factor on their surface and serve as an additional trigger for coagulation. During the menstrual cycle ovarian tissue restoration is mandatory and it is unknown whether follicular fluid might provide procoagulant substances. Within an

  11. The role of extracellular vesicles in neurodegenerative diseases.

    Science.gov (United States)

    Quek, Camelia; Hill, Andrew F

    2017-02-19

    Extracellular vesicles, including exosomes, are small membranous vesicles released from many biotypes, contributing to the disease progression and spreading. These extracellular vesicles provide an important mode of cell-to-cell communication by delivering proteins, lipids and RNA to target cells. Exosomes are found associated with neurodegenerative diseases, which are characterised by progressive degeneration of neurons and often associated with misfolded protein. The common diseases include Parkinson's disease (PD), Alzheimer's diseases (AD), amyotrophic lateral sclerosis (ALS), and the prion diseases. Of all neurodegenerative diseases, prion diseases are classified as the distinctive group owing to its transmissible and infectious nature of misfolded prion protein. The infectious prion particles have been demonstrated to be present in exosomes to spread prion infectivity within cells. Similarly, misfolded proteins involved in other neurodegenerative diseases such as Amyloid-β and tau in AD, α-synuclein in PD, and superoxide dismutase 1 in ALS have been demonstrated to exploit exosomes for induced spreading of misfolded proteins in a prion-like mechanism. Furthermore, RNA molecules can be taken up by the recipient cells as cargo in exosomes. These RNAs can module the expression of the target genes by repressing or inhibiting protein translation. Here we review the role of exosomes in prion diseases and other common neurodegenerative diseases, and discuss the potential of these vesicles for disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Transmembrane topology of the acetylcholine receptor examined in reconstituted vesicles

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, P.D.

    1987-01-01

    Each of the five acetylcholine receptor (AChR) subunits, ..cap alpha../sub 2/..beta..-..gamma..delta, is believed to have the same number of transmembrane crossing and to share the same general folding pattern. AChR isolated from the electric organ of electric fish is predominantly dimeric. We have used this bridge as a marker for the C-terminus of the delta subunit, and presumably that of the other subunits in addition. The disulfide's accessibility to hydrophilic reductants, principally glutathione (GSH), was tested in a reconstituted vesicle system. The reduction of the delta-delta desulfide, as evidenced by the transition of AChrR dimers to monomers, was quantitatively monitored on velocity sedimentation sucrose gradients. Alternatively, the reduction of delta/sub 2/ to delta was followed by employing non-reducing SDS-PAGE. Reductants such as GSH were able to access the bridge in intact right-side-out vesicles. No acceleration of this process was evident when the vesicles were disrupted by freeze-thaw or by detergents. Control experiments which determined the rate of reduction of entrapped diphtheria toxin, or that of /sup 3/H-GSH efflux, demonstrated that intact reconstituted vesicles provide an adequate permeability barrier to GSH access of their intravesicular space.

  13. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.

    Science.gov (United States)

    Tanner, Pascal; Baumann, Patric; Enea, Ramona; Onaca, Ozana; Palivan, Cornelia; Meier, Wolfgang

    2011-10-18

    One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes. Polymeric vesicles--structures similar to lipid vesicles but created using synthetic block copolymers--represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to enhance their target specificity. The optimization of these properties will allow researchers to design smart compartments that can co-encapsulate sensitive molecules, such as RNA, enzymes, and proteins, and their membranes allow insertion of membrane proteins rather than simply serving as passive carriers. In this Account, we illustrate the advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles. Polymeric vesicles generated by the self-assembly of amphiphilic copolymers (polymersomes) offer the advantage of simultaneous encapsulation of hydrophilic compounds in their aqueous cavities and the insertion of fragile, hydrophobic compounds in their membranes. This strategy has permitted us and others to design and develop new systems such as nanoreactors and artificial organelles in which active compounds are simultaneously protected and allowed to

  14. Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations

    Directory of Open Access Journals (Sweden)

    René Buchet

    2013-03-01

    Full Text Available The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM, or

  15. Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin

    Science.gov (United States)

    1979-01-01

    A mixture of HVJ (Sendai virus) spike proteins, the nontoxic fragment A of diphtheria toxin, lecithin, and cholesterol was solubilized in sucrose solution containing a nonionic neutral detergent. The liposomal vesicles which formed on removal of the detergent by dialysis were purified by gel filtration and centrifugation on a sucrose gradient. The resulting purified vesicles had hemagglutinating activity, hemolytic activity and, after solubilization, the enzymic activity of fragment A. The vesicles had no cell fusion activity. Electron microscopy showed that both the outside and inside of membranes of the vesicles were associated with the spikes. When the vesicles were freeze- fractured, no large aggregates of particles were seen on either face. Such fragment A-containing lipid vesicles (liposomes) with HVJ spikes bound to mamalian cell membrane and released their fragment A into the cytoplasm causing cell death. Neither fragment A-containing liposomes without spikes nor empty liposomes with spikes were toxic. PMID:217880

  16. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  17. Breakdown in traffic networks fundamentals of transportation science

    CERN Document Server

    Kerner, Boris S

    2017-01-01

    This book offers a detailed investigation of breakdowns in traffic and transportation networks. It shows empirically that transitions from free flow to so-called synchronized flow, initiated by local disturbances at network bottlenecks, display a nucleation-type behavior: while small disturbances in free flow decay, larger ones grow further and lead to breakdowns at the bottlenecks. Further, it discusses in detail the significance of this nucleation effect for traffic and transportation theories, and the consequences this has for future automatic driving, traffic control, dynamic traffic assignment, and optimization in traffic and transportation networks. Starting from a large volume of field traffic data collected from various sources obtained solely through measurements in real world traffic, the author develops his insights, with an emphasis less on reviewing existing methodologies, models and theories, and more on providing a detailed analysis of empirical traffic data and drawing consequences regarding t...

  18. Gas breakdown and plasma impedance in split-ring resonators

    Science.gov (United States)

    Hoskinson, Alan R.; Parsons, Stephen; Hopwood, Jeffrey

    2016-02-01

    The appearance of resonant structures in metamaterials coupled to plasmas motivates the systematic investigation of gas breakdown and plasma impedance in split-ring resonators over a frequency range of 0.5-9 GHz. In co-planar electrode gaps of 100 μm, the breakdown voltage amplitude decreases from 280 V to 225 V over this frequency range in atmospheric argon. At the highest frequency, a microplasma can be sustained using only 2 mW of power. At 20 mW, we measure a central electron density of 2 × 1020 m-3. The plasma-electrode overlap plays a key role in the microplasma impedance and causes the sheath impedance to dominate the plasma resistance at very low power levels. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  19. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  20. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification.

    Science.gov (United States)

    New, Sophie E P; Aikawa, Elena

    2013-08-01

    Extracellular vesicles are membrane micro/nanovesicles secreted by many cell types into the circulation and the extracellular milieu in physiological and pathological conditions. Evidence suggests that extracellular vesicles, known as matrix vesicles, play a role in the mineralization of skeletal tissue, but emerging ultrastructural and in vitro studies have demonstrated their contribution to cardiovascular calcification as well. Cells involved in the progression of cardiovascular calcification release active vesicles capable of nucleating hydroxyapatite on their membranes. This review discusses the role of extracellular vesicles in cardiovascular calcification and elaborates on this additional mechanism of calcification as an alternative pathway to the currently accepted mechanism of biomineralization via osteogenic differentiation.

  1. Proteomic Analysis of Blood Extracellular Vesicles in Cardiovascular Disease by LC-MS/MS Analysis.

    Science.gov (United States)

    Baldan-Martin, Montserrat; de la Cuesta, Fernando; Alvarez-Llamas, Gloria; Ruiz-Hurtado, Gema; Ruilope, Luis M; Barderas, Maria G

    2017-01-01

    Extracellular vesicles are membrane vesicles related to cell communication. These vesicles consist of proteins, RNA, and microRNA and are an interesting and important tool to understand the processes taking place in the secreting cell, especially in diseases in which its release is often enhanced. The used of blood extracellular vesicles in cardiovascular disease as a low invasive, easily accessible source of circulating markers could give us important information related to pathological process even more with the use of proteomic analysis. In this chapter, we describe a protocol to isolate and proteomic analyze extracellular vesicles from blood associated with cardiovascular disease.

  2. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Science.gov (United States)

    Hill, Andrew F.; Hochberg, Fred; Buzás, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs. PMID:25536934

  3. Breakdown curves of carbon-based molecules for astrochemistry

    OpenAIRE

    Chabot, Marin; Béroff, K.; Gratier, P.; Jallat, A.; Wakelam, V.; Sanchez, J.P.; Aguirre, N.; Diaz-Tendero, S.; Alcami, M.; Martin, F.; Hervieux, P.A.

    2015-01-01

    Breakdown curves (BDC), which are energy dependent fragmentation branching ratios, constitute a kind of "identity card" of an excited molecule or cluster. We developed a method for constructing semi-empirical BDC, based on fragmentation measurements and structural known quantities of the considered species. Calculations of BDC have been performed within the statistical M3C theory. We will present a comparison of the two methods for some species and discuss application of these results to astr...

  4. Understanding and preventing cascading breakdown in complex clustered networks.

    Science.gov (United States)

    Huang, Liang; Lai, Ying-Cheng; Chen, Guanrong

    2008-09-01

    Complex clustered networks are ubiquitous in natural and technological systems. Understanding the physics of the security of such networks in response to attacks is of significant value. We develop a model, based on physical analysis and numerical computations, for the key ingredients of load dynamics in typical clustered networks. With this understanding, an effective strategy is proposed for preventing cascading breakdown, one of the most disastrous events that can happen to a complex networked system.

  5. Breakdown of Gallavotti-Cohen symmetry for stochastic dynamics

    Science.gov (United States)

    Harris, R. J.; Rákos, A.; Schütz, G. M.

    2006-07-01

    We consider the behaviour of current fluctuations in the one-dimensional partially asymmetric zero-range process with open boundaries. Significantly, we find that the distribution of large current fluctuations does not satisfy the Gallavotti-Cohen symmetry and that such a breakdown can generally occur in systems with unbounded state space. We also discuss the dependence of the asymptotic current distribution on the initial state of the system.

  6. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  7. Determining the Optimal Work Breakdown Structure for Defense Acquisition Contracts

    Science.gov (United States)

    2016-03-24

    reported in a format consistent with governing regulations and guidelines (DoD, 2011; Fitzpatrick, Meyer , & Stubbs, 2016). These programs can be...Fitzpatrick, Meyer , & Stubbs, 2016), a metric that can be applied reactively to a program’s Work Breakdown Structure, highlighting those leaf elements that...Hicks, 2008), program rebaselining (Ruter & Philip , 2007), and technological difficulties causing cost and schedule delays (Blickstein et al, 2011

  8. Breakdown of Leaf Litter in a Neotropical Stream

    OpenAIRE

    Mathuriau, Catherine; Chauvet, Eric

    2002-01-01

    International audience; We investigated the breakdown of 2 leaf species, Croton gossypifolius (Euphorbiaceae) and Clidemia sp. (Melastomataceae), in a 4th-order neotropical stream (Andean Mountains, southwestern Colombia) using leaf bags over a 6-wk period. We determined the initial leaf chemical composition and followed the change in content of organic matter, C, N, and ergosterol, the sporulation activity of aquatic hyphomy cetes, and the structure and composition of leaf-associated aquatic...

  9. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  10. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  11. Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking

    Science.gov (United States)

    Li, Dongdong; Hérault, Karine; Zylbersztejn, Kathleen; Lauterbach, Marcel A; Guillon, Marc; Oheim, Martin; Ropert, Nicole

    2015-01-01

    Key points Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca2+-independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. Abstract Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca2+-regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca2+-independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes. PMID:25864578

  12. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  13. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    Science.gov (United States)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  14. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  15. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients.

    Science.gov (United States)

    Bryzgunova, Olga E; Zaripov, Marat M; Skvortsova, Tatyana E; Lekchnov, Evgeny A; Grigor'eva, Alina E; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Ryabchikova, Elena I; Yurchenko, Yuri B; Voitsitskiy, Vladimir E; Laktionov, Pavel P

    2016-01-01

    Recent studies suggest that extracellular vesicles may be the key to timely diagnosis and monitoring of genito-urological malignancies. In this study we investigated the composition and content of extracellular vesicles found in the urine of healthy donors and prostate cancer patients. Urine of 14 PCa patients and 20 healthy volunteers was clarified by low-speed centrifugation and total extracellular vesicles fraction was obtain by high-speed centrifugation. The exosome-enriched fraction was obtained by filtration of total extracellular vesicles through a 0.1 μm pore filter. Transmission electron microscopy showed that cell-free urine in both groups contained vesicles from 20 to 230 nm. Immunogold staining after ultrafiltration demonstrated that 95% and 90% of extracellular vesicles in healthy individuals and cancer patients, respectively, were exosomes. Protein, DNA and RNA concentrations as well as size distribution of extracellular vesicles in both fractions were analyzed. Only 75% of the total protein content of extracellular vesicles was associated with exosomes which amounted to 90-95% of all vesicles. Median DNA concentrations in total extracellular vesicles and exosome-enriched fractions were 18 pg/ml and 2.6 pg/ml urine, correspondingly. Urine extracellular vesicles carried a population of RNA molecules 25 nt to 200 nt in concentration of no more than 290 pg/ml of urine. Additionally, concentrations of miR-19b, miR-25, miR-125b, and miR-205 were quantified by qRT-PCR. MiRNAs were shown to be differently distributed between different fractions of extracellular vesicles. Detection of miR-19b versus miR-16 in total vesicles and exosome-enriched fractions achieved 100%/93% and 95%/79% specificity/sensitivity in distinguishing cancer patients from healthy individuals, respectively, demonstrating the diagnostic value of urine extracellular vesicles.

  16. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kobæk Larsen, Morten; Tuck, Simon; Færgeman, Nils J.

    2006-01-01

    The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydro...

  17. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes.

    Science.gov (United States)

    Jin, Haibao; Zhou, Yongfeng; Huang, Wei; Zheng, Yongli; Zhu, Xinyuan; Yan, Deyue

    2014-06-11

    Large-scale and robust vesicle aggregates were obtained through molecular recognition among cell-sized polymer vesicles, carbon nanotubes and AuNPs, driven by adhesion interactions between Au and polydopamine. Vesicle fusion was effectively avoided in this three-component vesicle aggregation process.

  18. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan

    DEFF Research Database (Denmark)

    Nesgaard, Lise W.; Vad, Brian; Christiansen, Gunna

    2009-01-01

    changed to serines to emulate the reduced peptide. SerADan aggregates rapidly at pH 5.0 and 7.5 in a series of conformational transitions to form beta-sheet rich fibril-like structures, which nevertheless do not bind amyloid-specific dyes, probably due to the absence of organized beta-sheet contacts....... Aggregation is prevented at neutral/acidic pH and low ionic strength by anionic lipid vesicles. These vesicles are permeabilized by monomeric SerADan assembling on the membrane to form stable beta-sheet structures which are different from the solution aggregates. In contrast, solution ageing of SerADan first......-fibrillar aggregates can assemble in a series of steps to form a hierarchy of higher-order assemblies, where rapid formation of stable local beta-sheet structure may prevent rearrangement to amyloid proper....

  19. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Kosaka

    2016-02-01

    Full Text Available One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs. EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs, are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer.

  20. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Science.gov (United States)

    Kosaka, Nobuyoshi

    2016-01-01

    One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408

  1. Complex motions of vesicles and capsules in flow

    Science.gov (United States)

    Vlahovska, Petia; Young, Yuan-Nan; Misbah, Chaouqi

    2009-11-01

    Membrane-bound particles exhibit rich dynamics when placed in flow. For example, in simple shear flow, vesicles made of lipid bilayers tank-tread or tumble. Capsules and red blood cells also show oscillations in the tank-treading inclination angle, called swinging. This motion originates from membrane shear--elasticity and non--spherical unstressed shape. We develop an analytical theory that quantitatively describes the swinging dynamics. Our analysis takes into account that the membrane is deformable, incompressible, and resists bending and shearing. Analytical results for the shape evolution are derived by considering a nearly-spherical particle shape. The phase diagram is constructed and compared to previous models which assume fixed ellipsoidal shape. Dynamics in quadratic and time-dependent flows is also discussed. Floquet analysis is conducted to investigate the vesicle dynamics and conditions for chaotic shape and flow dynamics are established.

  2. Significance of Extracellular Vesicles: Pathobiological Roles in Disease.

    Science.gov (United States)

    Yamamoto, Seiji; Azuma, Erika; Muramatsu, Masashi; Hamashima, Takeru; Ishii, Yoko; Sasahara, Masakiyo

    2016-11-25

    Over the past decade, many studies have been conducted on extracellular vesicles (EVs) in the fields of basic and clinical research. EVs are small sized membranous vesicles generated from many type of cells upon activation by environmental stresses such as heat, hypoxia, and irradiation. EVs theoretically consist of microparticles/microvesicles, exosomes, and apoptotic bodies by different productive mechanisms. Clinically, EVs are observed in the blood stream of patients suffering from acute and chronic inflammation evoked by various diseases, and number of EVs in blood flow is often dependent on the inflammatory status and severity of the diseases. To date, it has been reported that small molecules such as RNAs and proteins are encapsulated in EVs; however, the functions of EVs are still unclear in the biological, pathological, and clinical aspects. In this review, we summarize and discuss the biogenesis-based classification, expected function, and pathobiological activities of EVs.

  3. Emerging roles of extracellular vesicles in cellular senescence and aging.

    Science.gov (United States)

    Takasugi, Masaki

    2018-02-01

    Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Perez-Hernandez, Javier; Redon, Josep; Cortes, Raquel

    2017-03-28

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell types, carry nucleic acids, proteins and lipids and play a crucial role in cell-to-cell communication. EVs can stimulate or suppress the immune responses depending on the context. In SLE, EVs can work as autoadjuvants, enhance immune complex formation and maintaining inflammation state. Over the last years, EVs derived from mesenchymal stem cells and antigen presenting cells have emerged as cell-free therapeutic agents to treat autoimmune and inflammatory diseases. In this review, we summarize the current therapeutic applications of extracellular vesicles to regulate immune responses and to ameliorate disease activity in SLE and other autoimmune disorders.

  5. Understanding the biosynthesis of platelets-derived extracellular vesicles.

    Science.gov (United States)

    Antwi-Baffour, Samuel; Adjei, Jonathan; Aryeh, Claudia; Kyeremeh, Ransford; Kyei, Foster; Seidu, Mahmood A

    2015-09-01

    Platelet-derived extracellular vesicles (PEVs) are described as sub-cellular vesicles released into circulation upon platelets shear stress, activation, injury, or apoptosis. They are considered as universal biomarkers in a wide range of physiological and pathological processes. They are of tremendous significance for the prediction, diagnosis, and observation of the therapeutic success of many diseases. Understanding their biosynthesis and therefore functional properties would contribute to a better understanding of the pathological mechanisms leading to various diseases in which their levels are raised and they are implicated. The review takes a critical look at the historical background of PEVs, their structural components, the mechanism of their formation, physiological, and exogenous stimuli inducing their release and their detection. It concludes by highlighting on the importance of undertaking in-depth studies into PEVs biosynthesis and subsequently gaining a better understanding of their biological role in general.

  6. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  7. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles.

    Science.gov (United States)

    Bahrami, Amir Houshang; Weikl, Thomas R

    2018-01-08

    Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

  8. Extracellular vesicles: small bricks for tissue repair/regeneration.

    Science.gov (United States)

    Taverna, Simona; Pucci, Marzia; Alessandro, Riccardo

    2017-02-01

    Extracellular vesicles (EVs) are nano-sized membrane vesicles involved in intercellular communication. EVs have pleiotropic actions in physiological and pathological conditions. The ability of EVs to transports proteins, drugs and nucleic acid, to target specific cells and to increase the stability of therapeutic cargo, make EVs interesting as new devices for the treatment of human disease. In a recently published issue of European journal of pharmaceutical sciences, Silva and colleagues reviewed the ability of EVs to modulate tissue repair and regeneration, focusing on their roles and therapeutic potential as immunomodulatory messengers. In this perspective, we discussed the open questions regarding the dual role of EVs in immune system, as well as the technical limitation of the procedure for EVs isolation and administration in clinical practices. EV-based therapies require further studies to consider EVs as promising candidate for a novel cell-free therapy in the context of regeneration medicine.

  9. Morphological and topological transformations of lipid bilayer vesicles

    Science.gov (United States)

    Nomura, Fumimasa; Honda, Makoto; Takeda, Shuichi; Umeda, Tamiki; Takiguchi, Kingo; Hotani, Hirokazu

    2000-06-01

    Liposomes are the micro compartments made of lipid bilayer membrane of which characteristics are quite similar to those of biological membrane. To form artificial cell-like structure, we made liposomes that contained subunit of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shape by mechanical force generated by the polymerization of encapsulated subunits of microtubules. Disk or dumbbell shape was generated by the polymerization of encapsulated action. Dynamic processes of morphological transformations of liposomes were visualized by the high intensity dark-field light microscopy. Topological changes such as fusion and division of membrane vesicles also play an essential role in cellular activities. We investigated the mechanism of these topological transformations by visualizing their real-time processes. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles. .

  10. Numerical computations of the dynamics of fluidic membranes and vesicles

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2015-01-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behaviour of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier--)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier--)Stokes equations. We introduce a parametric finite element method to solve this complex free boundary problem, and present the first three dimensional numerical computations based on the full (Navier--)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosit...

  11. CAPS and Munc13: CATCHRs that SNARE vesicles

    Directory of Open Access Journals (Sweden)

    Declan J James

    2013-12-01

    Full Text Available Abstract. CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS and Munc13 (Mammalian Unc-13 proteins function to prime vesicles for Ca2+-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with CATCHR (Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes have been reported. Multi-subunit tethering complexes coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

  12. Production and Characterization of Extracellular Vesicles in Malaria.

    Science.gov (United States)

    Mbagwu, Smart; Walch, Michael; Filgueira, Luis; Mantel, Pierre-Yves

    2017-01-01

    Growing attention is drawn toward the role of extracellular vesicles (EVs) in infectious diseases. EVs, which are small vesicles released by cells, are involved in cellular communication, immune regulation, and pathogenesis. EVs act as messenger carrying functional cargoes, including RNA, DNA, lipids and proteins from a donor cell to regulate the function of a recipient cell. In malaria, EVs play a key role in regulating the progression from the blood to the transmission stage by promoting the switch between asexual and sexual stages that are taken up by mosquitoes. In addition to their role in parasite communication, EVs modulate the immune system and regulate endothelial cell function.In this chapter, we describe protocols to isolate, purify and characterize EVs derived from Plasmodium falciparum infected red blood cell culture.

  13. Shear-Induced Deformation of Surfactant Multilamellar Vesicles

    Science.gov (United States)

    Pommella, Angelo; Caserta, Sergio; Guida, Vincenzo; Guido, Stefano

    2012-03-01

    Surfactant multilamellar vesicles (SMLVs) play a key role in the formulation of many industrial products, such as detergents, foodstuff, and cosmetics. In this Letter, we present the first quantitative investigation of the flow behavior of single SMLVs in a shearing parallel plate apparatus. We found that SMLVs are deformed and oriented by the action of shear flow while keeping constant volume and exhibit complex dynamic modes (i.e., tumbling, breathing, and tank treading). This behavior can be explained in terms of an excess area (as compared to a sphere of the same volume) and of microstructural defects, which were observed by 3D shape reconstruction through confocal microscopy. Furthermore, the deformation and orientation of SMLVs scale with radius R in analogy with emulsion droplets and elastic capsules (instead of R3, such as in unilamellar vesicles). A possible application of the physical insight provided by this Letter is in the rationale design of processing methods of surfactant-based systems.

  14. New insight into the role of phosphodiesterase 3A in porcine oocyte maturation

    Directory of Open Access Journals (Sweden)

    Richard François J

    2006-10-01

    Full Text Available Abstract Background The ovulatory surge of gonadotropins triggers oocyte maturation and rupture of the ovarian follicle. The resumption of nuclear maturation in the oocyte from the prophase stage is characterized by germinal vesicle breakdown (GVBD. It has previously been shown that specific inhibition of cAMP degradation by PDE3 prevents the resumption of oocyte meiosis. However, no report has characterized the activity of PDE3 in the porcine oocyte, or the implication of the cAMP-PDE3 pathway in the entire nuclear maturation process. In this study, PDE3 activity in the oocyte was assessed during in vitro maturation (IVM and the possible roles of the cAMP-PDE3 pathway in the resumption and progression of meiosis were investigated in terms of different models of oocyte maturation. Results Cyclic AMP-degrading PDE activity was detected in the cumulus-oocyte complex (COC and was partially inhibited by a specific PDE3 inhibitor, cilostamide. When measured only in the denuded oocyte, PDE activity was almost completely inhibited by cilostamide, suggesting that cAMP-PDE3 activity is the major cAMP-PDE in porcine oocytes. PDE3A mRNA was detected by RT-PCR. PDE3 activity did not vary significantly during the early hours of IVM, but a maximum was observed at 13 hours. In cumulus-oocyte complexes, meiosis resumed after 20.81 hours of culture. PDE3 inhibition no longer maintained meiotic arrest if sustained beyond 17.65 hours of IVM, 3 hours prior to resumption of meiosis. Thereafter, PDE3 inhibition progressively lost its efficacy in GVBD. When the protein phosphatase 1 and 2A inhibitor okadaic acid was continuously or transiently (3 hours present during IVM, meiosis resumed prematurely; PDE3 inhibition was unable to prevent GVBD. However, PDE3 inhibition in COC treated with OA for 3 hours significantly delayed meiosis at the intermediate stage. Conclusion The present investigation has demonstrated that PDE3A is the major cAMP-degrading PDE in the oocyte

  15. Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation

    OpenAIRE

    Wahlund, Casper J. E.; Eklund, Anders; Grunewald, Johan; Gabrielsson, Susanne

    2017-01-01

    Cells of the airways are constantly exposed to environmental hazards including cigarette smoke, irritants, pathogens, and mechanical insults. Maintaining barrier integrity is vital, and mounting responses to threats depends on intercellular communication. Extracellular vesicles (EVs), including exosomes and microvesicles, are major signal mediators between cells, shuttling cargo in health and disease. Depending on the state of the originating cells, EVs are capable of inducing proinflammatory...

  16. Isolation and characterization of platelet-derived extracellular vesicles

    OpenAIRE

    Aatonen, Maria T.; Öhman, Tiina; Nyman, Tuula A.; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R.-M.

    2014-01-01

    Background: Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs indu...

  17. Association of Randall's Plaques with Collagen Fibers and Membrane Vesicles

    Science.gov (United States)

    Khan, Saeed R.; Rodriguez, Douglas E.; Gower, Laurie B.; Monga, Manoj

    2013-01-01

    Background Idiopathic calcium oxalate (CaOx) kidney stones develop by deposition of CaOx crystals on Randall's plaques (RP). Mechanisms involved in RP formation are still unclear. Objective It is our hypotheses that RP formation is similar to vascular calcification involving components of extracellular matrix including membrane bound vesicles (MV) and collagen fibers. In order to verify our hypothesis we critically examined renal papillary tissue from stone patients. Methods 4 mm cold-cup biopies of renal papillae were performed on fifteen idiopathic stone patients undergoing PCNL. Tissue was immediately fixed and processed for analyses by various light and electron microscopic techniques. Results and Limitations Spherulitic CaP crystals, the hallmark of RP's, were seen in all samples examined. They were seen in interstitium as well as laminated basement membrane of tubular epithelia. Large crystalline deposits comprised of dark elongated strands mixed with spherulites. Strands showed banded patterns similar to collagen. Crystal deposits were surrounded by collagen fibers and membrane bound vesicles. Energy dispersive x-ray microanalyses (EDX) and electron diffraction identified the crystals as hydroxyapatite. The number of kidneys examined is small and urinary data was not available for all the patients. Conclusions Results presented here show that crystals in the Randall's plaques are associated with both the collagen as well as MV. Collagen fibers appeared calcified and vesicles contained crystals. We conclude that crystal deposition in renal papillae may have started with membrane vesicle induced nucleation and grew by addition of crystals on the periphery within a collagen framework. PMID:22266007

  18. Isolation and Characterization of Chick Epiphyseal Cartilage Matrix Vesicle Proteolipid

    Science.gov (United States)

    1988-01-01

    initial calcification in dentine and enamel . J. Ultrastr. Res., 41: 1-17. Bernard GW and Pease DC. 1969. An electron microscopic study of initial...characterization of matrix vesicle protease. Bone, 6: 470. ----------- -40 IT 7, T 7 69 Ketenjian AY and Arsenis C. 1975. Morphological and...J. Biol. Chem., 258: 8601-8607. Siska RF and Provenza DV. 1972. Initial dentin formation in human deciduous teeth . An electron microscopic study

  19. Dimensional characterization of extracellular vesicles using atomic force microscopy

    Science.gov (United States)

    Sebaihi, N.; De Boeck, B.; Yuana, Y.; Nieuwland, R.; Pétry, J.

    2017-03-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ~30 nm high and ~90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement.

  20. Preparation of PVP hydrogel nanoparticles using lecithin vesicles

    Directory of Open Access Journals (Sweden)

    Vânia Blasques Bueno

    2010-01-01

    Full Text Available Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.

  1. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics

    Science.gov (United States)

    Dhara, Madhurima; Yarzagaray, Antonio; Schwarz, Yvonne; Dutta, Soumyajit; Grabner, Chad; Moghadam, Paanteha K.; Bost, Anneka; Schirra, Claudia; Rettig, Jens; Reim, Kerstin; Brose, Nils; Mohrmann, Ralf

    2014-01-01

    ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus. PMID:24687280

  2. Extracellular Vesicles and Their Convergence with Viral Pathways

    Directory of Open Access Journals (Sweden)

    Thomas Wurdinger

    2012-01-01

    Full Text Available Extracellular vesicles (microvesicles, such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.

  3. Thin shell vesicles composed of hydrophilic plate-like nanoparticles

    Science.gov (United States)

    Subramaniam, Anand; Wan, Jiandi; Gopinath, Arvind; Stone, Howard

    2011-03-01

    Nanopowders of graphene oxide, montmorillonite and laponite spontaneously delaminate into ultrathin nanoscopic plates when dispersed in water. These plates, which are typically ~ 1 nm thick and microns in lateral dimension, have found many uses as precursors to graphene, ceramics, layer-by-layer structures, and as structural modifiers of nanocomposites. Here we show that mechanical forces due to shear in a narrow gap can assemble hydrophilic plate-like particles on air bubbles, forming stable nanoplated armored bubbles. Translucent inorganic vesicles (vesicles defined here as closed thin-shelled structures with the same liquid inside and outside) of these particles are produced when the nanoplated armored bubbles are exposed to common water-miscible organic liquids and surfactants. These inorganic vesicles are mechanically robust, have walls that are about six nanometres thick, and are perforated with pores of submicron dimensions. We characterize the phenomenon and find that a wetting transition at the scale of the nanoparticles is the primary mechanism of formation. The discovery of these novel inorganic structures raises a wealth of questions of fundamental interest in materials and surface science.

  4. Isolation and characterization of platelet-derived extracellular vesicles.

    Science.gov (United States)

    Aatonen, Maria T; Ohman, Tiina; Nyman, Tuula A; Laitinen, Saara; Grönholm, Mikaela; Siljander, Pia R-M

    2014-01-01

    Platelet-derived extracellular vesicles (EVs) participate, for example, in haemostasis, immunity and development. Most studies of platelet EVs have targeted microparticles, whereas exosomes and EV characterization under various conditions have been less analyzed. Studies have been hampered by the difficulty in obtaining EVs free from contaminating cells and platelet remnants. Therefore, we optimized an EV isolation protocol and compared the quantity and protein content of EVs induced by different agonists. Platelets isolated with iodixanol gradient were activated by thrombin and collagen, lipopolysaccharide (LPS) or Ca(2+) ionophore. Microparticles and exosomes were isolated by differential centrifugations. EVs were quantitated by nanoparticle tracking analysis (NTA) and total protein. Size distributions were determined by NTA and electron microscopy. Proteomics was used to characterize the differentially induced EVs. The main EV populations were 100-250 nm and over 90% were vesicle subpopulations. Although platelets constitutively release EVs, vesiculation can be increased, and the activation pathway determines the number and the cargo of the formed EVs. These activation-dependent variations render the use of protein content in sample normalization invalid. Since most platelet EVs are 100-250 nm, only a fraction has been analyzed by previously used methods, for example, flow cytometry. As the EV subpopulations could not be distinguished and large vesicle populations may be lost by differential centrifugation, novel methods are required for the isolation and the differentiation of all EVs.

  5. Durable vesicles for reconstitution of membrane proteins in biotechnology.

    Science.gov (United States)

    Beales, Paul A; Khan, Sanobar; Muench, Stephen P; Jeuken, Lars J C

    2017-02-08

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. © 2017 The Author(s).

  6. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    Science.gov (United States)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  7. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  8. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Charged copolypeptide vesicles with controlled size for intracellular drug delivery

    Science.gov (United States)

    Holowka, Eric Peter

    Much focus has been given to the synthesis of polypeptidic based materials due to their unique structural features. These polypeptides commonly are amphiphilic in character that benefit from secondary structural features associated with one of the polymer blocks. These features, such as alpha-helix and beta-sheet conformations, allow for control over nanoscale ordering through self-assembly for use in biological sensors and therapeutic drug delivery. We report the preparation and characterization of charged amphiphilic block copolypeptide vesicle formers using transition metal mediated living ring-opening polymerization of N-carboxyanhydrides (NCAs). The vesicle membranes show fluidic properties suggested by dynamic physical behavior allowing for fine size adjustments using liposomal extrusion methods. This extrusion also allows for a facile mode of encapsulation of biomolecules for drug delivery. Modification of the charged residues has shown vesicle stability under osmotic and thermal stress, in pH buffers, and serum cell media, as well as the ability for lipid interaction and cellular interactions.

  10. Quantitative and qualitative analysis of nano-sized vesicles released by dendritic cells and T cells. Towards deciphering the role of extracellular vesicles in immune cell communication

    NARCIS (Netherlands)

    van der Vlist, E.J.|info:eu-repo/dai/nl/314640908

    2013-01-01

    Many cell types release nano-sized vesicles, which can be found in body fluids as well as in cell culture-conditioned medium. These extracellular vesicles (EV) have been identified as vehicles for intercellular communication and are thought to be involved in many (patho)physiological processes. They

  11. Spermatozoa as a transport system of large unilamellar lipid vesicles into the oocyte.

    Science.gov (United States)

    Geerts, N; McGrath, J; Stronk, J N; Vanderlick, T K; Huszar, G

    2014-04-01

    In addition to their role as man-made membranes, vesicles continue to be investigated as carriers for drug delivery. While most research focuses on their injectable properties, here a new delivery strategy is proposed. It is shown that spermatozoa can transport vesicles of variable composition. For human spermatozoa, the vesicles started to show binding after 20 mol% of the nonbinding vesicle backbone lipids were substituted with positive, negative, cerebroside or ganglioside lipids. Vesicle binding is a dynamic process with constant 'on' and 'off' binding. The physiological and motility attributes of the spermatozoa are not affected by the attached vesicles. Sperm swimming characteristics changed only marginally. Also, the activation status of the acrosomal membrane, tested with the fluorescent probe Pisum sativum agglutinin, was not affected by vesicle binding. Moreover, the hyaluronic acid-binding test showed that viable, fully developed spermatozoa will attach and remain bound to hyaluronic acid-coated slides regardless of vesicle binding. Therefore a new 'hybrid' delivery system was created with human spermatozoa, and tested with a mouse IVF system. Large unilamellar vesicles physisorbed to mouse spermatozoa can not only penetrate the mouse oocytes in these proof-of-principle experiments, but also deliver the cargo placed within the vesicles. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks.

    Science.gov (United States)

    Gho, Yong Song; Lee, Changjin

    2017-06-27

    Shedding of nano-sized bilayered extracellular vesicles and extracellular vesicle-mediated intercellular communication are evolutionarily conserved biological processes. Communication between cells and the environment is an essential process in living organisms and dysregulation of intercellular communication leads to various diseases. Thus, systematic studies on extracellular vesicles, also known as exosomes, microvesicles, and outer membrane vesicles, are critical for a deeper understanding of intercellular communication networks that are crucial for decoding the exact causes of various difficult-to-cure diseases. Recent progress in this emerging field reveals that extracellular vesicles are endogenous carriers of specific subsets of proteins, mRNAs, miRNAs, and other bioactive materials, as well as play diverse pathophysiological roles. However, certain issues regarding diverse subtypes and the complex pathophysiological roles of extracellular vesicles are not yet clearly elucidated. In this review, we first briefly introduce the complexity of extracellular vesicles in terms of their vesicular cargos and protein-protein interaction networks, their diverse subtypes, and multifaceted pathophysiological functions. Then, we introduce the limitation of reductionist approaches in understanding the complexity of extracellular vesicles. We finally suggest that molecular systems biology approaches based on the concept of emergent properties are essential for a comprehensive understanding of the complex pathophysiological functions of heterogeneous extracellular vesicles, either at the single vesicle level or at a systems level as a whole.

  13. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications.

    Science.gov (United States)

    Jiang, Wenfeng; Zhou, Yongfeng; Yan, Deyue

    2015-06-21

    Vesicles, including lipid vesicles, surfactant vesicles, as well as polymer vesicles, have been extensively investigated over the past fifty years. Among them, polymer vesicles have attracted more and more attention because of their low permeability, superior stability and toughness, in addition to the numerous possibilities for tailoring physical, chemical and biological properties. Polymer vesicles are generally fabricated through the self-assembly of amphiphilic polymers with a linear architecture. Recently, as representative polymers with a highly branched three-dimensional architecture, hyperbranched polymers have also exhibited great potential for preparing vesicles. The resultant hyperbranched polymer vesicles, defined as branched-polymersomes (BPs), have shown unique properties, such as giant and easily tuned vesicle sizes, facile functionalization, a special formation mechanism, and appealing solution behaviours. In this tutorial review, ten years of advances in BPs have been summarized since their first discovery in the year 2004, including the syntheses of vesicle-forming hyperbranched polymers, self-assembly methods, self-assembly mechanisms, as well as the special properties. In addition, the cytomimetic, biomedical and other initiatory applications of BPs are also included.

  14. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles

    Science.gov (United States)

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P.; Osorio-Fuentealba, Cesar; Antonescu, Costin N.; Bayer, K. Ulrich; Bilan, Philip J.; Klip, Amira

    2012-01-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding–deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  15. Effect of surfactant counterion and organic modifier on the properties of surfactant vesicles in electrokinetic chromatography.

    Science.gov (United States)

    Schuster, Stephanie A; Foley, Joe P

    2005-08-01

    Counterion and organic modifier are two parameters in EKC that can be varied in order to obtain improved solubility, selectivity, and efficiency. The effect of changing surfactant counterion and/or organic modifier on the chromatographic and electrophoretic properties of cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfate (SOS) vesicles is examined in EKC. The vesicles are prepared in a 1:3.66 cationic/ anionic mole ratio for a total surfactant concentration of 69 mM. The cationic CTAB is replaced by cetyltrimethylammonium chloride (CTAC) and the first use of CTAC/SOS vesicles is reported. The mean diameter of the CTAC/SOS vesicles is 96 nm while that of the CTAB/SOS vesicles is 85 nm. A class I modifier (2-amino-1-butanol) and a class II modifier (acetonitrile) have similar effects on the EOF, elution range, methylene selectivity, and the efficiency of the CTAB/SOS vesicles and the CTAC/SOS vesicles. Upon addition of 10% ACN, there is roughly a 10-fold increase in the efficiency of heptanophenone, a model hydrophobic compound, compared to the efficiency using unmodified vesicles. Linear free energy relationship (LFER) analysis using the Abraham solvation model is employed to characterize solute-vesicle interactions. The results suggest that organic modifier-vesicle interactions depend somewhat on the counterion.

  16. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter vesicles remains challenging. Thus far, vesicles vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (nvesicles vesicle-based clinical applications.

  17. Extracellular Vesicles and Their Role in Urologic Malignancies.

    Science.gov (United States)

    Junker, Kerstin; Heinzelmann, Joana; Beckham, Carla; Ochiya, Takahiro; Jenster, Guido

    2016-08-01

    Research has increased significantly on small vesicles secreted by healthy and diseased cells. Recent discoveries have revealed their functional and biomarker roles in urologic diseases. Whether and how this knowledge of extracellular vesicles (EVs) affects translational research and clinical practices have become pertinent questions. To provide an overview of the currently available literature on the rising field of EVs, focusing on function and pathogenesis in urologic cancers and the usefulness of EVs as biomarkers. A systematic literature search was conducted using PubMed to identify original articles, review articles, and editorials regarding EVs in different types of urologic tumor diseases. Articles published between 2005 and 2015 were reviewed and selected with the consensus of all authors. Besides soluble factors, different types of EVs are involved in the complex cross talk between different cell types. EVs regulate normal physiologic processes like spermatogenesis and renal function, as well as disease-specific processes including bladder, kidney, and prostate cancer. The content of EVs is derived from the cytoplasm of the donor cell. The proteins and RNAs within these EVs can be isolated from body fluids (eg, urine and blood) and represent potential diagnostic and prognostic biomarkers. EVs are also candidate therapeutic targets and potentially useful as therapeutic vehicles. The current data suggest that EVs are important regulators of cell-cell communication. The growing knowledge about their roles in urologic malignancies provides the basis for novel therapeutic strategies. In addition, nucleic acid and the protein content of EVs holds promise for the discovery of urine- or serum-based biomarkers for kidney, bladder, and prostate cancer. Normal and cancer cells secrete small vesicles that contain proteins and RNAs from the cell of origin. Changes in the diseased cells can be detected by examining the altered content of these vesicles when secreted in

  18. Leaf breakdown in a natural open tropical stream

    Directory of Open Access Journals (Sweden)

    Elisa A.C.C. Alvim

    2014-09-01

    Full Text Available Leaf breakdown is a primary process of nutrient cycling and energy flow, contributing to the functioning of aquatic ecosystems. In the present study, leaves of Baccharis platypoda and Coccoloba cereifera were incubated in a high-altitude stream in a rupestrian field. Two hypotheses were tested: i intrinsic factors (quality of detritus are more important than extrinsic factors (decomposer communities in decomposition; and ii low detritus quality hinders microbial colonization, thereby altering the composition and structure of the associated invertebrate community and slowing leaf breakdown. The breakdown coefficients of B. platypoda and C. cereifera leaves were low (k = -0.0019 day-1 and k = -0.0008 day-1, respectively and the proportions of structural compounds were high, delaying the remobilization of energy and nutrients into the aquatic ecosystem. Fungal biomass was higher at the end of the experiment, suggesting favorable conditions for colonization. The densities of invertebrates associated with the detritus increased coincident with the peak concentration of ergosterol, with the trophic groups collector-gatherer and scraper having the highest densities. The distribution of these groups was likely related to the growth of biofilm on the surface of the litters. As described for tropical streams, shredders had the lowest densities of any invertebrate group, suggesting a reduced participation of these invertebrates in leaf processing. The results suggest that slow decomposing species are important to both invertebrates and microorganisms as substrates and sources of particulate organic matter. The low palatability and nutritional quality of the detritus in the present study, associated with low dissolved nutrient concentrations in water, delayed the leaf conditioning process by microorganisms. Decomposition rates and invertebrate participation were reduced as a result, leading to major physical decomposition. Headwater tropical streams have

  19. PHENIX Work Breakdown Structure. Cost and schedule review copy

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  20. The work breakdown structure in software project management

    Science.gov (United States)

    Tausworthe, R. C.

    1980-01-01

    A work breakdown structure (WBS) is defined as an enumeration of all work activities in hierarchic refinement of detail which organizes work to be done into short manageable tasks with quantifiable inputs, outputs, schedules, and assigned responsibilities. Some of the characteristics and benefits of the WBS are reviewed, and ways in which these can be developed and applied in software implementation projects are discussed. Although the material is oriented principally toward new-software production tasks, many of the concepts are applicable to continuing maintenance and operations tasks.

  1. Breakdown of thermalization in finite one-dimensional systems.

    Science.gov (United States)

    Rigol, Marcos

    2009-09-04

    We use quantum quenches to study the dynamics and thermalization of hard core bosons in finite one-dimensional lattices. We perform exact diagonalizations and find that, far away from integrability, few-body observables thermalize. We then study the breakdown of thermalization as one approaches an integrable point. This is found to be a smooth process in which the predictions of standard statistical mechanics continuously worsen as the system moves toward integrability. We establish a direct connection between the presence or absence of thermalization and the validity or failure of the eigenstate thermalization hypothesis, respectively.

  2. Theoretical and experimental investigation of vortex breakdown in diverging streamtubes

    Science.gov (United States)

    Judd, Kyle Peter

    1999-11-01

    The structure and instability of incompressible inviscid and viscous swirling flow in a diverging streamtube and its relation to the onset of vortex breakdown are studied. Flows of this type have technological applications ranging from the design of combustion chambers in gas turbine systems to the control of leading-edge vortices over slender wings of airplanes. The study is based on an analytical investigation of the axisymmetric Euler equations and complemented by experiments performed on a 67° swept back delta wing. Asymptotic expansions, in terms of streamtube divergence, are constructed for swirling flows in a finite-length domain. As the swirl level is increased to the critical swirl, the regular asymptotic expansion becomes misordered, implying that large amplitude disturbances may be induced by a small but finite amount of flow divergence. This leads to an alternate set of expansions for studying the interactions of these types of near-critical swirling flows. It is found that a small but finite streamtube divergence breaks the transcritical bifurcation of flow states to a straight tube into two branches of solutions. These branches fold at limit swirl levels near the critical swirl with a finite gap separating them. This means that no near-columnar axisymmetric state can exist in a finite range of incoming swirl around the critical swirl level; the flow must develop large disturbances in this swirl range. Beyond this range, two steady states may exist under the same inlet/outlet conditions. However, when the streamtube divergence is further increased this special behavior uniformly changes and only a single branch of states with no fold exits. The stability of these steady state non-columnar solutions around the critical swirl is also investigated. This analysis indicates that the critical swirl is a point of exchange of stability and that the large-amplitude states are unstable and not physically realizable flow states. Therefore, a transition process

  3. INCREASING THE BREAKDOWN VOLTAGE OF BJT'S AS SWITCHING DEVICES

    Directory of Open Access Journals (Sweden)

    Mustafa SÖNMEZ

    1997-03-01

    Full Text Available The electrical parameters of the transistor must be taken into account in the designing of electronic circuit. One parameter, VCBO, is one of the most important parameter for the designer. Using transistor which has the breakdown voltage of 50 V, it is not possible to obtain 80 V pulse output since the output voltage can not exceed the supply voltage. In this work, a new method is presented to obtain output voltage bigger than supply voltage by using more than one transistor.

  4. Individual breakdown of pension rights and end of contract

    CERN Multimedia

    2015-01-01

    As in previous years, members of the CERN Pension Fund will shortly receive their “Individual breakdown of pension rights” by e-mail.   In this respect, we would like to remind members that according to Articles II 1.11 - II 1.12 (calculation and payment of the transfer value) and II 2.02 (retirement pension), several options are possible at the end of their contract (depending on their length of service in the Fund): payment of the transfer value into a personal bank account, payment of the transfer value into a new pension scheme, pension (deferred, anticipated or retirement). Benefits Service CERN Pension Fund

  5. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  6. Relativistic runaway breakdown in low-frequency radio

    DEFF Research Database (Denmark)

    Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.

    2011-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which...... at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...

  7. Intestinal homeostasis and its breakdown in inflammatory bowel disease.

    Science.gov (United States)

    Maloy, Kevin J; Powrie, Fiona

    2011-06-15

    Intestinal homeostasis depends on complex interactions between the microbiota, the intestinal epithelium and the host immune system. Diverse regulatory mechanisms cooperate to maintain intestinal homeostasis, and a breakdown in these pathways may precipitate the chronic inflammatory pathology found in inflammatory bowel disease. It is now evident that immune effector modules that drive intestinal inflammation are conserved across innate and adaptive leukocytes and can be controlled by host regulatory cells. Recent evidence suggests that several factors may tip the balance between homeostasis and intestinal inflammation, presenting future challenges for the development of new therapies for inflammatory bowel disease.

  8. First ionization potential measurements using laser-induced breakdown spectroscopy

    OpenAIRE

    Sherbini, Ahsraf M. EL; Faham, Mohamed M. EL; Parigger, Christian G.

    2016-01-01

    The first ionization potential of neutral atoms is determined from thresholds of laser-induced optical breakdown. Bulk material ablation plasma of aluminum, silver, lead, indium and copper is created in laboratory air with focused, 5-ns pulsed Nd:YAG, 1064 nm IR radiation. At fixed spot size of 2 $\\pm$ 0.1 mm, the laser fluence is varied from 16 to 3 J/cm$^2$. The first ionization potentials of the lines Al I 396.2, Ag I 520.9, Pb I 405.8 and 406.2, In I 410.2 and Cu I 515.3 nm are measured t...

  9. Reconfigurable photonic crystal using self-initiated gas breakdown

    Science.gov (United States)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2017-02-01

    We present a resonant photonic crystal for which transmission is time-modulated by a self-initiated gaseous plasma. A resonant cavity in the photonic crystal is used to amplify an incoming microwave field to intensities where gas breakdown is possible. The presence of the plasma in the resonant cavity alters the transmission spectrum of the device. We investigate both transient and steady-state operation with computational simulations using a time-domain model that couples Maxwell’s equations and plasma fluid equations. The predicted plasma ignition and stability are then experimentally verified.

  10. The Nature of Emission from Optical Breakdown Induced by Pulses of fs and ns Duration

    Energy Technology Data Exchange (ETDEWEB)

    Carr, C W; Feit, M D; Rubenchik, A M; Demange, P; Kucheyev, S; Shirk, M D; Radousky, H B; Demos, S G

    2004-11-09

    Spectral emission from optical breakdown in the bulk of a transparent dielectric contains information about the nature of the breakdown medium. We have made time resolved measurements of the breakdown induced emission caused by nanosecond and femtosecond infrared laser pulses. We previously demonstrated that the emission due to ns pulses is blackbody in nature allowing determination of the fireball temperature and pressure during and after the damage event. The emission due to femtosecond pulse breakdown is not blackbody in nature; two different spectral distributions being noted. In one case, the peak spectral distribution occurs at the second harmonic of the incident radiation, in the other the distribution is broader and flatter and presumably due to continuum generation. The differences between ns and fs breakdown emission can be explained by the differing breakdown region geometries for the two pulse durations. The possibility to use spectral emission as a diagnostic of the emission region morphology will be discussed.

  11. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  12. DC high voltage to drive helium plasma jet comprised of repetitive streamer breakdowns

    CERN Document Server

    Wang, Xingxing

    2016-01-01

    This paper demonstrates and studies helium atmospheric pressure plasma jet comprised of series of repetitive streamer breakdowns, which is driven by a pure DC high voltage (auto-oscillations). Repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV/cm. Repetition frequency of the streamer breakdowns excited using this principle can be simply tuned by reconfiguring the discharge electrode geometry. This custom-designed type of the helium plasma jet, which operates on the DC high voltage and is comprised of the series of the repetitive streamer breakdowns at frequency about 13 kHz, is demonstrated.

  13. Noise Parameter Analysis of SiGe HBTs for Different Sizes in the Breakdown Region

    Directory of Open Access Journals (Sweden)

    Chie-In Lee

    2016-01-01

    Full Text Available Noise parameters of silicon germanium (SiGe heterojunction bipolar transistors (HBTs for different sizes are investigated in the breakdown region for the first time. When the emitter length of SiGe HBTs shortens, minimum noise figure at breakdown decreases. In addition, narrower emitter width also decreases noise figure of SiGe HBTs in the avalanche region. Reduction of noise performance for smaller emitter length and width of SiGe HBTs at breakdown resulted from the lower noise spectral density resulting from the breakdown mechanism. Good agreement between experimental and simulated noise performance at breakdown is achieved for different sized SiGe HBTs. The presented analysis can benefit the RF circuits operating in the breakdown region.

  14. Breakdown characteristics in DC spark experiments of copper focusing on purity and hardness

    CERN Document Server

    Yokoyama, Kazue; Higashi, Yasuo; Higo, Toshi; Matsumoto, Shuji; Santiago-Kern, Ana Rocia; Pasquino, Chiara; Calatroni, Sergio; Wuensch, Walter

    2010-01-01

    The breakdown characteristics related to the differences in purity and hardness were investigated for several types of copper using a DC spark test system. Three types of oxygen-free copper (OFC) materials, usual class 1 OFC 7-nine large-grain copper and 6-nine hot-isotropic-pressed (HIP) copper with/without diamond finish, were tested with the DC spark test system. The measurements of the beta, breakdown fields, and breakdown probability are presented and discussed in this paper.

  15. Growth and instability of a phospholipid vesicle in a bath of fatty acids

    Science.gov (United States)

    Dervaux, J.; Noireaux, V.; Libchaber, A. J.

    2017-06-01

    Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

  16. Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Soraya Taabache

    2017-07-01

    Full Text Available The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic—from the environment on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size.

  17. Salt, shake, fuse--giant hybrid polymer/lipid vesicles through mechanically activated fusion.

    Science.gov (United States)

    Henderson, Ian M; Paxton, Walter F

    2014-03-24

    Large (200 nm) poly(ethylene oxide)-b-poly(butadiene) polymer vesicles fuse into giant (>1 μm) vesicles with mild agitation in dilute aqueous NaCl solutions. This unusual effect is attributed to the salt-induced contraction of the poly(ethylene oxide) corona, reducing steric resistance between vesicles and, with agitation, increasing the probability of contact between the hydrophobic cores of adjacent membranes. In addition, NaCl and agitation facilitated the creation of giant hybrid vesicles from much smaller homogeneous polymersomes and liposomes. Whereas lipid vesicles do not readily fuse with each other under the same circumstances, they did fuse with polymersomes to produce hybrid polymer/lipid vesicles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins.

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Cho

    Full Text Available Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site.

  19. The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment.

    Science.gov (United States)

    Qian, Zhongrun; Shen, Qi; Yang, Xi; Qiu, Yongming; Zhang, Wenbin

    2015-01-01

    Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer.

  20. The biology and function of extracellular vesicles in nasopharyngeal carcinoma (Review).

    Science.gov (United States)

    You, Bo; Shan, Ying; Bao, Lili; Chen, Jing; Yang, Liu; Zhang, Qicheng; Zhang, Wei; Zhang, Zhenxin; Zhang, Jie; Shi, Si; You, Yiwen

    2018-01-01

    Extracellular vesicles are a heterogeneous group of membrane-enclosed vesicles, which play an important role in intercellular communication. Increasing number of studies have shown that tumor-derived extracellular vesicles might be involved in the transfer of oncogenic cargo (proteins, lipids, messenger RNA, microRNA, non-coding RNAs and DNA) through which cancer cells could shape the tumor microenvironment and influence tumor progression. Nasopharyngeal carcinoma-derived extracellular vesicles have also reported to facilitate tumor proliferation, metastasis and immune escape. Moreover, nasopharyngeal carcinoma-derived extracellular vesicles might serve as biomarkers for early diagnosis and therapeutic targets. The present review provides information on the biological and clinical significance of extracellular vesicles in tumors, especially in nasopharyngeal carcinoma.