WorldWideScience

Sample records for vervet monkey striatum

  1. Toxicokinetics of ochratoxin A in vervet monkeys (Cercopithecus aethiops).

    Science.gov (United States)

    Stander, M A; Nieuwoudt, T W; Steyn, P S; Shephard, G S; Creppy, E E; Sewram, V

    2001-07-01

    The toxicokinetics of ochratoxin A were investigated in vervet monkeys (Cercopithecus aethiops). Three female monkeys were treated intravenously with ochratoxin A at doses, respectively, of 0.8, 1.5 and 2 mg/ kg body weight (BW). Blood and urine samples were collected over a period of 21 days. Plasma and urine extracts were analysed by high-performance liquid chromatography (HPLC) with either fluorescence or negative ion electrospray ionization mass spectrometric detection. The clearance of ochratoxin A from plasma followed a two-compartment model. The elimination half-life of ochratoxin A in the monkeys was determined to be 19-21 days and the average total body clearance was 0.22 +/- 0.07 ml/h per kg and the average apparent distribution volume of the central compartment was 59 +/- 9 ml/kg and the peripheral compartment was 59 +/- 20 ml/kg. No evidence was found for any metabolic conversion of ochratoxin A.

  2. OBSERVATIONS ON THE BEHAVIOUR OF VERVET MONKEYS ...

    African Journals Online (AJOL)

    If on the other hand, the predator advances on the monkeys and comes so close as to be a serious source of danger, the whispered call changes rapidly into the loud and harsh high intensity version. The mouth position is the same, with pronounced lip-retraction, but the eyes are opened wider and the body hair bristles.

  3. Molecular detection of Yaba monkey tumour virus from a vervet monkey

    Directory of Open Access Journals (Sweden)

    Helene Brettschneider

    2013-02-01

    Full Text Available Yaba monkey tumour virus (YMTV was first diagnosed in a colony of captive rhesus monkeys (Macaca mulatta in Yaba, Nigeria. It has been implicated as the cause of cutaneous nodules in wild baboons (Papio species, rhesus monkeys (Macaca mulatta and cynomolgus monkeys (Macaca fascicularis. This article reports a case of cutaneous pox lesions caused by YMTV in a  free-ranging  adult  female  vervet  monkey  (Chlorocebus  pygerythrus  from  the  Umkomaas coastal area in South Africa. The virus was identified by molecular sequencing from fragments of the insulin metalloprotease-like protein and intracellular mature virion membrane protein as well as the DNA polymerase genes. Phylogenetic analyses of these gene regions revealed a 99% similarity of the sample to YMTV. Although human disease caused by YMTV is normally mild,  it  is  recommended  that  persons  in  contact  with  non-human  primates  in  the  area  of Umkomaas who develop cutaneous lesions should inform their doctors of the possibility of this infection. The extent and significance of the virus to human and non-human primates in South Africa are not known. To the authors’ knowledge, this is the first diagnosis of YMTV in South Africa and in vervet monkeys.

  4. Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas with Comparison to Vervet Monkeys (Cercopithecus aethiops

    Directory of Open Access Journals (Sweden)

    Adrienne L. Zihlman

    2013-01-01

    Full Text Available Patas monkeys (Erythrocebus patas living in African savanna woodlands and grassland habitats have a locomotor system that allows them to run fast, presumably to avoid predators. Long fore- and hindlimbs, long foot bones, short toes, and a digitigrade foot posture were proposed as anatomical correlates with speed. In addition to skeletal proportions, soft tissue and whole body proportions are important components of the locomotor system. To further distinguish patas anatomy from other Old World monkeys, a comparative study based on dissection of skin, muscle, and bone from complete individuals of patas and vervet monkeys (Cercopithecus aethiops was undertaken. Analysis reveals that small adjustments in patas skeletal proportions, relative mass of limbs and tail, and specific muscle groups promote efficient sagittal limb motion. The ability to run fast is based on a locomotor system adapted for long distance walking. The patas’ larger home range and longer daily range than those of vervets give them access to highly dispersed, nutritious foods, water, and sleeping trees. Furthermore, patas monkeys have physiological adaptations that enable them to tolerate and dissipate heat. These features all contribute to the distinct adaptation that is the patas monkeys’ basis for survival in grassland and savanna woodland areas.

  5. Vervet monkeys use paths consistent with context-specific spatial movement heuristics.

    Science.gov (United States)

    Teichroeb, Julie A

    2015-10-01

    Animal foraging routes are analogous to the computationally demanding "traveling salesman problem" (TSP), where individuals must find the shortest path among several locations before returning to the start. Humans approximate solutions to TSPs using simple heuristics or "rules of thumb," but our knowledge of how other animals solve multidestination routing problems is incomplete. Most nonhuman primate species have shown limited ability to route plan. However, captive vervets were shown to solve a TSP for six sites. These results were consistent with either planning three steps ahead or a risk-avoidance strategy. I investigated how wild vervet monkeys (Chlorocebus pygerythrus) solved a path problem with six, equally rewarding food sites; where site arrangement allowed assessment of whether vervets found the shortest route and/or used paths consistent with one of three simple heuristics to navigate. Single vervets took the shortest possible path in fewer than half of the trials, usually in ways consistent with the most efficient heuristic (the convex hull). When in competition, vervets' paths were consistent with different, more efficient heuristics dependent on their dominance rank (a cluster strategy for dominants and the nearest neighbor rule for subordinates). These results suggest that, like humans, vervets may solve multidestination routing problems by applying simple, adaptive, context-specific "rules of thumb." The heuristics that were consistent with vervet paths in this study are the same as some of those asserted to be used by humans. These spatial movement strategies may have common evolutionary roots and be part of a universal mental navigational toolkit. Alternatively, they may have emerged through convergent evolution as the optimal way to solve multidestination routing problems.

  6. Development of a safer laboratory vervet monkey model for the study of human African trypanosomiasis

    Directory of Open Access Journals (Sweden)

    Maxwell Waema

    2014-04-01

    Full Text Available Background: There are three subspecies of Trypanosoma brucei: T. b. gambiense, T. b. rhodesiense and T. b. brucei. The first two are infectious to humans, whilst T. b. brucei is not. Identifying an animal model of T. b. brucei that mimics human African trypanosomiasis (HAT would enable researchers to study HAT without subjecting themselves to undue risks such as accidental infection. Objectives: This study assessed the sequential clinical, parasitological and haematological changes in vervet monkeys infected with T. b. brucei.Methods: Three vervet monkeys were infected with a 104 inoculum of T. b. brucei (isolate GUTat 1. Late-stage disease was induced by subcurative treatment with diminazene aceturate 28 days post-infection. The animals were treated curatively with melarsoprol upon relapse. Parasitaemia and clinical signs were monitored daily and, at weekly intervals, the monkeys’ blood and cerebrospinal fluid (CSF were sampled for haematology and parasitosis assessments, respectively.Results: The first-peak parasitaemia was observed between seven and nine days post-infection. Clinical signs associated with the disease included fever, dullness, pallor of mucous membranes, lymphadenopathy, splenomegaly and oedema. Late-stage signs included stiffness of joints and lethargy. The monkeys developed a disease associated with microcytic hypochromic anaemia. There was an initial decline, followed by an increase, in total white blood cell counts from early- to late-stage disease. Trypanosomes were detected in the CSF and there was a significant increase in white cell counts in the CSF during late-stage disease. Infected vervet monkeys displayed classical clinical symptoms, parasitological and haematological trends that were similar to monkeys infected withT.b. rhodesiense.Conclusion: The T. b. brucei vervet monkey model can be used for studying HAT without putting laboratory technicians and researchers at high risk of accidental infection.

  7. A Deficit in Face-Voice Integration in Developing Vervet Monkeys Exposed to Ethanol during Gestation

    DEFF Research Database (Denmark)

    Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R

    2014-01-01

    monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We...... used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey....... However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face...

  8. Phytosociology and plant community utilisation by vervet monkeys of the Blydeberg Conservancy, Limpopo Province

    Directory of Open Access Journals (Sweden)

    A.S. Barret

    2006-12-01

    Full Text Available The plant communities of the Blydeberg Conservancy were investigated as part of a research project on the foraging ecology of vervet monkeys Cercopithecus aethiops pygerythrus (senso lato in mixed lowveld bushveld and sour lowveld bushveld areas. To date there are no formal management plans for vervet monkeys. This is attributed to the limited knowledge of vervets and their utilisation of and impacts on ecosystems. From a TWINSPAN classification refined by Braun-Blanquet procedures, ten plant communities that can be placed into four major groups were identified. A classification and description of these communities, including a vegetation map are presented. Diagnostic species as well as prominent and less conspicuous species of tree, shrub, herb and grass strata are outlined. Of the ten available plant communities, the vervets utilised only six during the study period. There was an abundant supply of various food sources throughout the year, with movement patterns mostly coinciding with the fruiting times of several tree and other plant species.

  9. Heterochrony and cross-species intersensory matching by infant vervet monkeys.

    Directory of Open Access Journals (Sweden)

    Shahin Zangenehpour

    Full Text Available Understanding the evolutionary origins of a phenotype requires understanding the relationship between ontogenetic and phylogenetic processes. Human infants have been shown to undergo a process of perceptual narrowing during their first year of life, whereby their intersensory ability to match the faces and voices of another species declines as they get older. We investigated the evolutionary origins of this behavioral phenotype by examining whether or not this developmental process occurs in non-human primates as well.We tested the ability of infant vervet monkeys (Cercopithecus aethiops, ranging in age from 23 to 65 weeks, to match the faces and voices of another non-human primate species (the rhesus monkey, Macaca mulatta. Even though the vervets had no prior exposure to rhesus monkey faces and vocalizations, our findings show that infant vervets can, in fact, recognize the correspondence between rhesus monkey faces and voices (but indicate that they do so by looking at the non-matching face for a greater proportion of overall looking time, and can do so well beyond the age of perceptual narrowing in human infants. Our results further suggest that the pattern of matching by vervet monkeys is influenced by the emotional saliency of the Face+Voice combination. That is, although they looked at the non-matching screen for Face+Voice combinations, they switched to looking at the matching screen when the Voice was replaced with a complex tone of equal duration. Furthermore, an analysis of pupillary responses revealed that their pupils showed greater dilation when looking at the matching natural face/voice combination versus the face/tone combination.Because the infant vervets in the current study exhibited cross-species intersensory matching far later in development than do human infants, our findings suggest either that intersensory perceptual narrowing does not occur in Old World monkeys or that it occurs later in development. We argue that these

  10. Immunospecific immunoglobulins and IL-10 as markers for Trypanosoma brucei rhodesiense late stage disease in experimentally infected vervet monkeys

    DEFF Research Database (Denmark)

    Ngotho, Maina; Kagira, J.M.; Jensen, Henrik Michael Elvang

    2009-01-01

    OBJECTIVE: To determine the usefulness of IL-10 and immunoglobulin M (IgM) as biomarkers for staging HAT in vervet monkeys, a useful pathogenesis model for humans. METHODS: Vervet monkeys were infected with Trypanosoma brucei rhodesiense and subsequently given sub-curative and curative treatment 28...

  11. Third-party ranks knowledge in wild vervet monkeys (Chlorocebus aethiops pygerythrus.

    Directory of Open Access Journals (Sweden)

    Christèle Borgeaud

    Full Text Available The Machiavellian/Social Intelligence Hypothesis proposes that a complex social environment selected for advanced cognitive abilities in vertebrates. In primates it has been proposed that sophisticated social strategies like obtaining suitable coalition partners are an important component of social intelligence. Knowing the rank relationships between group members is a basic requirement for the efficient use of coalitions and the anticipation of counter-coalitions. Experimental evidence for such knowledge currently exists in only few species. Here, we conducted rank reversal playback experiments on adult females belonging to three different groups of free-ranging vervet monkeys (Chlorocebus aethiops pygerythrus to test their knowledge of the female hierarchy. Playbacks simulating rank reversals (subordinate aggressing a dominant induced longer looking times than playbacks simulating a dominant aggressing a subordinate. Vervet monkey females therefore seem to compute the rank relationships between other females. Our results suggest that detailed social knowledge about rank relationships may be widespread in primates and potentially also in other species living in stable groups.

  12. Third-party ranks knowledge in wild vervet monkeys (Chlorocebus aethiops pygerythrus).

    Science.gov (United States)

    Borgeaud, Christèle; van de Waal, Erica; Bshary, Redouan

    2013-01-01

    The Machiavellian/Social Intelligence Hypothesis proposes that a complex social environment selected for advanced cognitive abilities in vertebrates. In primates it has been proposed that sophisticated social strategies like obtaining suitable coalition partners are an important component of social intelligence. Knowing the rank relationships between group members is a basic requirement for the efficient use of coalitions and the anticipation of counter-coalitions. Experimental evidence for such knowledge currently exists in only few species. Here, we conducted rank reversal playback experiments on adult females belonging to three different groups of free-ranging vervet monkeys (Chlorocebus aethiops pygerythrus) to test their knowledge of the female hierarchy. Playbacks simulating rank reversals (subordinate aggressing a dominant) induced longer looking times than playbacks simulating a dominant aggressing a subordinate. Vervet monkey females therefore seem to compute the rank relationships between other females. Our results suggest that detailed social knowledge about rank relationships may be widespread in primates and potentially also in other species living in stable groups.

  13. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  14. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Science.gov (United States)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Beierschmitt, Amy; Palmour, Roberta; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function. PMID:27069692

  15. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  16. Scales drive detection, attention, and memory of snakes in wild vervet monkeys (Chlorocebus pygerythrus).

    Science.gov (United States)

    Isbell, Lynne A; Etting, Stephanie F

    2017-01-01

    Predatory snakes are argued to have been largely responsible for the origin of primates via selection favoring expansion of the primate visual system, and even today snakes can be deadly to primates. Neurobiological research is now beginning to reveal the mechanisms underlying the ability of primates (including humans) to detect snakes more rapidly than other stimuli. However, the visual cues allowing rapid detection of snakes, and the cognitive and ecological conditions contributing to faster detection, are unclear. Since snakes are often partially obscured by vegetation, the more salient cues are predicted to occur in small units. Here we tested for the salience of snake scales as the smallest of potential visual cues by presenting four groups of wild vervet monkeys (Chlorocebus pytherythrus) with a gopher snake (Pituophis catenifer) skin occluded except for no more than 2.7 cm, in natural form and flat, the latter to control for even small curvilinear cues from their unusual body shape. Each of these treatments was preceded by a treatment without the snakeskin, the first to provide a baseline, and the second, to test for vigilance and memory recall after exposure to the snakeskin. We found that (1) vervets needed only a small portion of snakeskin for detection, (2) snake scales alone were sufficient for detection, (3) latency to detect the snakeskin was longer with more extensive and complex ground cover, and (4) vervets that were exposed to the snakeskin remembered where they last saw "snakes", as indicated by increased wariness near the occluding landmarks in the absence of the snakeskin and more rapid detection of the next presented snakeskin. Unexpectedly, adult males did not detect the snakeskin as well as adult females and juveniles. These findings extend our knowledge of the complex ecological and evolutionary relationships between snakes and primates.

  17. Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.

    Science.gov (United States)

    Melega, William P; Jorgensen, Matthew J; Laćan, Goran; Way, Baldwin M; Pham, Jamie; Morton, Grenvill; Cho, Arthur K; Fairbanks, Lynn A

    2008-05-01

    Methamphetamine (METH)-associated alterations in the human striatal dopamine (DA) system have been identified with positron emission tomography (PET) imaging and post-mortem studies but have not been well correlated with behavioral changes or cumulative METH intake. Animal studies that model some aspects of human long-term METH abuse can establish dose-dependency profiles of both behavioral changes and potential brain neurotoxicities for identifying consequences of particular cumulative exposures. Based on parameters from human and our monkey pharmacokinetic studies, we modeled a prevalent human METH exposure of daily multiple doses in socially housed vervet monkeys. METH doses were escalated over 33 weeks, with final dosages resulting in estimated peak plasma METH concentrations of 1-3 microM, a range measured in human abusers. With larger METH doses, progressive increases in abnormal behavior and decreases in social behavior were observed on 'injection' days. Anxiety increased on 'no injection' days while aggression decreased throughout the study. Thereafter, during 3 weeks abstinence, differences in baseline vs post-METH behaviors were not observed. Post-mortem analysis of METH brains showed 20% lower striatal DA content while autoradiography studies of precommissural striatum showed 35% lower [3H]WIN35428 binding to the DA transporter. No statistically significant changes were detected for [3H]dihydrotetrabenazine binding to the vesicular monoamine transporter (METH-lower by 10%) or for [3H]SCH 23390 and [3H]raclopride binding to DA D1 and D2 receptors, respectively. Collectively, this long-term, escalating dose METH exposure modeling a human abuse pattern, not associated with high-dose binges, resulted in dose-dependent behavioral effects and caused persistent changes in presynaptic striatal DA system integrity.

  18. The static allometry of sexual and non-sexual traits in vervet monkeys.

    Science.gov (United States)

    Rodríguez, Rafael L; Cramer, Jennifer Danzy; Schmitt, Christopher A; Gaetano, Tegan J; Grobler, J Paul; Freimer, Nelson B; Turner, Trudy R

    2015-03-01

    Sexual traits vary tremendously in static allometry. This variation may be explained in part by body size-related differences in the strength of selection. We tested this hypothesis with in two populations of vervet monkeys, using estimates of the level of condition dependence for different morphological traits as a proxy for body size-related variation in the strength of selection. In support of the hypothesis, we found that the steepness of allometric slopes increased with the level of condition dependence. One trait of particular interest, the penis, had shallow allometric slopes and low levels of condition dependence, in agreement with one of the most consistent patterns yet detected in the study of allometry, that of genitalia exhibitting shallow allometries.

  19. Prenatal alcohol exposure affects progenitor cell numbers in olfactory bulbs and dentate gyrus of vervet monkeys

    DEFF Research Database (Denmark)

    Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice

    2016-01-01

    Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed...... cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts...... vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years...

  20. Similarity in food cleaning techniques within matrilines in wild vervet monkeys.

    Directory of Open Access Journals (Sweden)

    Erica van de Waal

    Full Text Available Social learning and the formation of traditions rely on the ability and willingness to copy one another. A central question is under which conditions individuals adapt behaviour to social influences. Here, we demonstrate that similarities in food processing techniques emerge on the level of matrilines (mother-offspring but not on the group level in an experiment on six groups of wild vervet monkeys that involved grapes covered with sand. Monkeys regularly ate unclean grapes but also used four cleaning techniques more similarly within matrilines: rubbing in hands, rubbing on substrate, open with mouth, and open with hands. Individual cleaning techniques evolved over time as they converged within matrilines, stabilised at the end and remained stable in a follow-up session more than one year later. The similarity within matrilines persisted when we analyzed only foraging events of individuals in the absence of other matriline members and matriline members used more similar methods than adult full sisters. Thus, momentary conversion or purely genetic causation are unlikely explanations, favouring social learning as mechanism for within matriline similarities. The restriction of traditions to matriline membership rather than to the group level may restrict the development of culture in monkeys relative to apes or humans.

  1. Acoustic classification of alarm calls by vervet monkeys (Cercopithecus aethiops) and humans (Homo sapiens): I. Natural calls.

    Science.gov (United States)

    Owren, M J

    1990-03-01

    A 2-choice, operant-conditioning-based classification procedure was developed in which vervet monkeys (Cercopithecus aethiops) categorized species-typical snake and eagle alarm calls recorded from individually identified free-ranging animals. After preliminary training with a pair of calls from a single animal, 2 vervets were tested with novel exemplars produced by a variety of callers. Experiment 1 combined testing with continued training in routine classification of 14 new calls. In Experiment 2, the subjects were tested with 48 novel calls in rapid succession. Human (Homo sapiens) control subjects participated in the first study without extended preliminary training. Monkey and human subjects both showed immediate transfer to classification of unfamiliar alarm calls, despite variations both in voice characteristics and reproduction quality.

  2. Effects of heated hydrotherapy on muscle HSP70 and glucose metabolism in old and young vervet monkeys.

    Science.gov (United States)

    Kavanagh, Kylie; Davis, Ashely T; Jenkins, Kurt A; Flynn, D Mickey

    2016-07-01

    Increasing heat shock protein 70 (HSP70) in aged and/or insulin-resistant animal models confers benefits to healthspan and lifespan. Heat application to increase core temperature induces HSPs in metabolically important tissues, and preliminary human and animal data suggest that heated hydrotherapy is an effective method to achieve increased HSPs. However, safety concerns exist, particularly in geriatric medicine where organ and cardiovascular disease commonly will preexist. We evaluated young vervet monkeys compared to old, insulin-resistant vervet monkeys (Chlorocebus aethiops sabaeus) in their core temperatures, glucose tolerance, muscle HSP70 level, and selected safety biomarkers after 10 sessions of hot water immersions administered twice weekly. Hot water immersion robustly induced the heat shock response in muscles. We observed that heat-treated old and young monkeys have significantly higher muscle HSP70 than control monkeys and treatment was without significant adverse effects on organ or cardiovascular health. Heat therapy improved pancreatic responses to glucose challenge and tended to normalize glucose excursions. A trend for worsened blood pressure and glucose values in the control monkeys and improved values in heat-treated monkeys were seen to support further investigation into the safety and efficacy of this intervention for metabolic syndrome or diabetes in young or old persons unable to exercise.

  3. Arithmetic-Like Reasoning in Wild Vervet Monkeys: A Demonstration of Cost-Benefit Calculation in Foraging

    Directory of Open Access Journals (Sweden)

    Sayaka Tsutsumi

    2011-01-01

    Full Text Available Arithmetic-like reasoning has been demonstrated in various animals in captive and seminatural environments, but it is unclear whether such competence is practiced in the wild. Using a hypothetical foraging paradigm, we demonstrate that wild vervet monkeys spontaneously adjust their “foraging behavior” deploying arithmetic-like reasoning. Presented with arithmetic-like problems in artificially controlled feeding conditions, all the monkeys tested attempted to retrieve “artificial prey” according to the quantity of the remainder when the task involved one subtraction only (i.e., “2−1”, while one monkey out of four did so when it was sequentially subtracted twice (i.e., “2−1−1”. This monkey also adjusted his “foraging behavior” according to the quantity of the reminder for a task requiring stepwise mental manipulation (i.e., “(2−1−1”, though the results became less evident. This suggests that vervet monkeys are capable of spontaneously deploying mental manipulations of numerosity for cost-benefit calculation of foraging but that the extent of such capacity varies among individuals. Different foraging strategies might be deployed according to different levels of mental manipulation capacity in each individual in a given population. In addition to providing empirical data, the current study provides an easily adaptable field technique that would allow comparison across taxa and habitat using a uniform method.

  4. High-fiber diet promotes weight loss and affects maternal behavior in vervet monkeys.

    Science.gov (United States)

    Fairbanks, Lynn A; Blau, Karin; Jorgensen, Matthew J

    2010-03-01

    The dramatic increase in obesity in western societies has shifted the emphasis in nutrition research from the problems of undernutrition to the adverse consequences of being overweight. As with humans, Old World monkeys are at increased risk for type II diabetes and other chronic diseases when they gain excessive weight. To prevent overweight and obesity, promote animal health, and provide a more natural level of fiber in the diet, the standard commercial monkey chow diet at a vervet monkey breeding colony was changed to a higher fiber formulation in 2004. The new diet was also higher in protein and lower in carbohydrate and energy density than the standard diet. Because maternal behavior is known to be sensitive to differences in resource availability, data on weight and mother-infant interactions for 147 mothers with 279 infants born from 2000 through 2006 were assessed for effects of the diet change. The results showed that, even though food was provided ad libitum, the mean body weight of breeding females was 10% lower after the transition to the high-fiber diet. Behaviorally, mothers on the high-fiber diet were significantly more rejecting to their infants, and their infants had to play a greater role in maintaining ventral contact in the first few months of their lives. The effects of the diet change on maternal rejection were significantly related to the mother's body weight, with lower-weight mothers scoring higher in maternal rejection. These results demonstrate that maternal behavior is responsive to changes in maternal condition, and that beneficial changes in the diet may have unintended consequences on behavior. 2009 Wiley-Liss, Inc.

  5. Using the stable carbon and nitrogen isotope compositions of vervet monkeys (Chlorocebus pygerythrus to examine questions in ethnoprimatology.

    Directory of Open Access Journals (Sweden)

    James E Loudon

    Full Text Available This study seeks to understand how humans impact the dietary patterns of eight free-ranging vervet monkey (Chlorocebus pygerythrus groups in South Africa using stable isotope analysis. Vervets are omnivores that exploit a wide range of habitats including those that have been anthropogenically-disturbed. As humans encroach upon nonhuman primate landscapes, human-nonhuman primate interconnections become increasingly common, which has led to the rise of the field of ethnoprimatology. To date, many ethnoprimatological studies have examined human-nonhuman primate associations largely in qualitative terms. By using stable carbon (δ13C and nitrogen (δ15N isotope analysis, we use quantitative data to understand the degree to which humans impact vervet monkey dietary patterns. Based on initial behavioral observations we placed the eight groups into three categories of anthropogenic disturbance (low, mid, and high. Using δ13C and δ15N values we estimated the degree to which each group and each anthropogenically-disturbed category was consuming C4 plants (primarily sugar cane, corn, or processed foods incorporating these crops. δ13C values were significantly different between groups and categories of anthropogenic-disturbance. δ15N values were significantly different at the group level. The two vervet groups with the highest consumption of C4 plants inhabited small nature reserves, appeared to interact with humans only sporadically, and were initially placed in the mid level of anthropogenic-disturbance. However, further behavioral observations revealed that the high δ13C values exhibited by these groups were linked to previously unseen raiding of C4 crops. By revealing these cryptic feeding patterns, this study illustrates the utility of stable isotopes analysis for some ethnoprimatological questions.

  6. Vervet monkeys solve a multiplayer "forbidden circle game" by queuing to learn restraint.

    Science.gov (United States)

    Fruteau, Cécile; van Damme, Eric; Noë, Ronald

    2013-04-22

    In social dilemmas, the ability of individuals to coordinate their actions is crucial to reach group optima. Unless exacted by power or force, coordination in humans relies on a common understanding of the problem, which is greatly facilitated by communication. The lack of means of consultation about the nature of the problem and how to solve it may explain why multiagent coordination in nonhuman vertebrates has commonly been observed only when multiple individuals react instantaneously to a single stimulus, either natural or experimentally simulated, for example a predator, a prey, or a neighboring group. Here we report how vervet monkeys solved an experimentally induced coordination problem. In each of three groups, we trained a low-ranking female, the "provider," to open a container holding a large amount of food, which the providers only opened when all individuals dominant to them ("dominants") stayed outside an imaginary "forbidden circle" around it. Without any human guidance, the dominants learned restraint one by one, in hierarchical order from high to low. Once all dominants showed restraint immediately at the start of the trial, the providers opened the container almost instantly, saving all individuals opportunity costs due to lost foraging time. Solving this game required trial-and-error learning based on individual feedback from the provider to each dominant, and all dominants being patient enough to wait outside the circle while others learned restraint. Communication, social learning, and policing by high-ranking animals played no perceptible role. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Social Behaviours and Networks of Vervet Monkeys Are Influenced by Gastrointestinal Parasites.

    Directory of Open Access Journals (Sweden)

    Colin A Chapman

    Full Text Available Substantial research has shown that while some parasite infections can be fatal to hosts, most infections are sub-clinical and non-lethal. Such sub-clinical infections can nonetheless have negative consequences for the long-term fitness of the host such as reducing juvenile growth and the host's ability to compete for food and mates. With such effects, infected individuals are expected to exhibit behavioural changes. Here we use a parasite removal experiment to quantify how gastrointestinal parasite infections affect the behaviour of vervet monkeys (Chlorocebus aethiops at Lake Nabugabo, Uganda. Behavioural profiles and the structure of nearest neighbour relationships varied significantly. As predicted, after deworming the duration of the resting events decreased, which is consistent with the idea that parasite infections are energetically costly. In contrast to what was predicted, we could not reject the null hypothesis and we observed no change in either the frequency or duration of grooming, but we found that the duration of travel events increased. A network analysis revealed that after deworming, individuals tended to have more nearest neighbours and hence probably more frequent interactions, with this effect being particularly marked for juveniles. The heightened response by juveniles may indicate that they are avoiding infected individuals more than other age classes because it is too costly to move energy away from growth. We consider that populations with high parasite burden may have difficulties developing social networks and behaviours that could have cascading effects that impact the population in general.

  8. Selective attention to philopatric models causes directed social learning in wild vervet monkeys

    Science.gov (United States)

    van de Waal, Erica; Renevey, Nathalie; Favre, Camille Monique; Bshary, Redouan

    2010-01-01

    Human behaviour is often based on social learning, a mechanism that has been documented also in a variety of other vertebrates. However, social learning as a means of problem-solving may be optimal only under specific conditions, and both theoretical work and laboratory experiments highlight the importance of a potential model's identity. Here we present the results from a social learning experiment on six wild vervet monkey groups, where models were either a dominant female or a dominant male. We presented ‘artificial fruit’ boxes that had doors on opposite, differently coloured ends for access to food. One option was blocked during the demonstration phase, creating consistent demonstrations of one possible solution. Following demonstrations we found a significantly higher participation rate and same-door manipulation in groups with female models compared to groups with male models. These differences appeared to be owing to selective attention of bystanders to female model behaviour rather than owing to female tolerance. Our results demonstrate the favoured role of dominant females as a source for ‘directed’ social learning in a species with female philopatry. Our findings imply that migration does not necessarily lead to an exchange of socially acquired information within populations, potentially causing highly localized traditions. PMID:20236972

  9. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure.

    Science.gov (United States)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R; Palmour, Roberta M

    2015-05-01

    Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally and persist through infancy (5 months) and juvenile (2 years) stages. Although the volumes of hippocampal subdivisions in FAE animals are not atypical at birth, by age 2, they are only 65-70% of those estimated in age-matched controls. These data suggest that moderate, naturalistic alcohol consumption during late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume. © 2015 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  10. Induced cooperation to access a shareable reward increases the hierarchical segregation of wild vervet monkeys.

    Directory of Open Access Journals (Sweden)

    Riccardo Pansini

    Full Text Available Until now cooperation experiments in primates have paid little attention to how cooperation can emerge and what effects are produced on the structure of a social group in nature. I performed field experiments with three groups of wild vervet monkeys in South Africa. I induced individuals to repeatedly approach and operate food containers. At least two individuals needed to operate the containers in order to get the reward. The recurrent partner associations observed before the experiment only partly predicted the forming of cooperative partnerships during the experiment. While most of the tested subjects cooperated with other partners, they preferred to do so with specific combinations of individuals and they tended not to mix with other group members outside these preferred partnerships. Cooperation therefore caused the relatively homogeneous networks I observed before the experiment to differentiate. Similar to a matching market, the food sharing partners selected each other limiting their choice. Interestingly neither sex nor age classes explained the specific partner matching. Kinship could not explain it either. Rather, higher ranking individuals cooperated with other higher ranking individuals, and lower ranking also matched among the same rank. This study reveals the key role dominance rank plays when food resources are patchy and can only be accessed through sharing with other individuals.

  11. Supply and demand determine the market value of food providers in wild vervet monkeys.

    Science.gov (United States)

    Fruteau, Cécile; Voelkl, Bernhard; van Damme, Eric; Noë, Ronald

    2009-07-21

    Animals neither negotiate verbally nor conclude binding contracts, but nevertheless regularly exchange goods and services without overt coercion and manage to arrive at agreements over exchange rates. Biological market theory predicts that such exchange rates fluctuate according to the law of supply and demand. Previous studies showed that primates pay more when commodities become scarcer: subordinates groomed dominants longer before being tolerated at food sites in periods of shortage; females groomed mothers longer before obtaining permission to handle their infants when there were fewer newborns and males groomed fertile females longer before obtaining their compliance when fewer such females were present. We further substantiated these results by conducting a 2-step experiment in 2 groups of free-ranging vervet monkeys in the Loskop Dam Nature Reserve, South Africa. We first allowed a single low-ranking female to repeatedly provide food to her entire group by triggering the opening of a container and measured grooming bouts involving this female in the hour after she made the reward available. We then measured the shifts in grooming patterns after we added a second food container that could be opened by another low-ranking female, the second provider. All 4 providers received more grooming, relative to the amount of grooming they provided themselves. As biological market theory predicts, the initial gain of first providers was partially lost again after the introduction of a second provider in both groups. We conclude that grooming was fine-tuned to changes in the value of these females as social partners.

  12. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Mark W. Burke

    2016-10-01

    Full Text Available Fetal alcohol exposure (FAE alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus to (1 investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2 determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years. Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.

  13. Experimental infections of baboons (Papio spp. and vervet monkeys (Cercopithecus aethiops with Trichinella zimbabwensis and successful treatment with ivermectin

    Directory of Open Access Journals (Sweden)

    S. Mukaratirwa

    2008-08-01

    Full Text Available Experimental Trichinella zimbabwensis infections were established in three baboons (Papios p.and four vervet monkeys (Cercopithecuase thiops and the clinical-pathological manifestations assessed. The infected animals showed clinical signs ranging from fever, diarrhoea, periorbitaol edema and muscular pain in varying degrees. One baboon became blind due to the infection. Levels of creatinine phosphokinase and lactated ehydrogenase increased to reach a peak on Day 42 post-infection(pifor both baboons and monkeys. Blood parameters such as packed cell volume, levels of red blood cells and white blood cells did not change significantly from the normal ranges except for the levels of eosinophils which peaked above the normal ranges at Day 28 and 56 pi in baboons and at Day 56 pi in monkeys.

  14. Population ecology of vervet monkeys in a high latitude, semi-arid riparian woodland

    Directory of Open Access Journals (Sweden)

    Graham Pasternak

    2013-02-01

    Full Text Available Narrow riparian woodlands along non-perennial streams have made it possible for vervet monkeys to penetrate the semi-arid karoo ecosystem of South Africa, whilst artificial water points have more recently allowed these populations to colonize much more marginal habitat away from natural water sources. In order to better understand the sequelae of life in these narrow, linear woodlands for historically ‘natural’ populations and to test the prediction that they are ecologically stressed, we determined the size of troops in relation to their reliance on natural and artificial water sources and collected detailed data from two river-centred troops on activity, diet and ranging behaviour over an annual cycle. In comparison to other populations, our data indicate that river-centred troops in the karoo were distinctive primarily both for their large group sizes and, consequently, their large adult cohorts, and in the extent of home range overlap in what is regarded as a territorial species. Whilst large group size carried the corollary of increased day journey length and longer estimated interbirth intervals, there was little other indication of the effects of ecological stress on factors such as body weight and foraging effort. We argue that this was a consequence of the high density of Acacia karroo, which accounted for a third of annual foraging effort in what was a relatively depauperate floristic habitat. We ascribed the large group size and home range overlap to constraints on group fission.Conservation implications: The distribution of group sizes, sampled appropriately across habitats within a conservation area, will be of more relevance to management than average values, which may be nothing more than a statistical artefact, especially when troop sizes are bimodally distributed.

  15. Specialization in pyramidal cell structure in the sensory-motor cortex of the Chacma baboon (Papio ursinus) with comparative notes on macaque and vervet monkeys.

    Science.gov (United States)

    Elston, Guy N; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R; Defelipe, Javier

    2005-09-01

    The systematic study of pyramidal cell structure has revealed new insights into specialization of the phenotype in the primate cerebral cortex. Regional specialization in the neuronal phenotype may influence patterns of connectivity and the computational abilities of the circuits they compose. The comparative study of pyramidal cells in homologous cortical areas is beginning to yield data on the evolution and development of such specialized circuitry in the primate cerebral cortex. Recently, we have focused our efforts on sensory-motor cortex. Based on our intracellular injection methodology, we have demonstrated a progressive increase in the size of, the branching structure in, and the spine density of the basal dendritic trees of pyramidal cells through somatosensory areas 3b, 1, 2, 5, and 7 in the macaque and vervet monkeys. In addition, we have shown that pyramidal cells in premotor area 6 are larger, more branched, and more spinous than those in the primary motor cortex (MI or area 4) in the macaque monkey, vervet monkey, and baboon. Here we expand the basis for comparison by studying the basal dendritic trees of layer III pyramidal cells in these same sensory-motor areas in the chacma baboon. The baboon was selected because it has a larger cerebral cortex than either the macaque or vervet monkeys; motor cortex has expanded disproportionately in these three species; and motor cortex in the baboon reportedly has differentiated to include a new cortical area not present in either the macaque or vervet monkeys. We found, as in monkeys, a progressive increase in the morphological complexity of pyramidal cells through areas 3b, 5, and 7, as well as from area 4 to area 6, suggesting that areal specialization in microcircuitry was likely to be present in a common ancestor of primates. In addition, we found subtle differences in the extent of the interareal differences in pyramidal cell structure between homologous cortical areas in the three species. Copyright 2005

  16. Specialization in pyramidal cell structure in the sensory-motor cortex of the vervet monkey (Cercopethicus pygerythrus).

    Science.gov (United States)

    Elston, G N; Benavides-Piccione, R; Elston, A; Defelipe, J; Manger, P R

    2005-01-01

    Recent studies have revealed systematic differences in the pyramidal cell structure between functionally related cortical areas of primates. Trends for a parallel in pyramidal cell structure and functional complexity have been reported in visual, somatosensory, motor, cingulate and prefrontal cortex in the macaque monkey cortex. These specializations in structure have been interpreted as being fundamental in determining cellular and systems function, endowing circuits in these different cortical areas with different computational power. In the present study we extend our initial finding of systematic specialization of pyramidal cell structure in sensory-motor cortex in the macaque monkey [Cereb Cortex 12 (2002) 1071] to the vervet monkey. More specifically, we investigated pyramidal cell structure in somatosensory and motor areas 1/2, 5, 7, 4 and 6. Neurones in fixed, flat-mounted, cortical slices were injected intracellularly with Lucifer Yellow and processed for a light-stable 3,3'-diaminobenzidine reaction product. The size of, number of branches in, and spine density of the basal dendritic arbors varied systematically such that there was a trend for increasing complexity in arbor structure with progression through 1/2, 5 and 7. In addition, cells in area 6 were larger, more branched, and more spinous than those in area 4.

  17. Trypanosoma brucei rhodesiense transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    John K Thuita

    Full Text Available We have investigated the pathogenicity of tsetse (Glossina pallidipes-transmitted cloned strains of Trypanosoma brucei rhodesiense in vervet monkeys. Tsetse flies were confirmed to have mature trypanosome infections by xenodiagnosis, after which nine monkeys were infected via the bite of a single infected fly. Chancres developed in five of the nine (55.6% monkeys within 4 to 8 days post infection (dpi. All nine individuals were successfully infected, with a median pre-patent period of 4 (range = 4-10 days, indicating that trypanosomes migrated from the site of fly bite to the systemic circulation rapidly and independently of the development of the chancre. The time lag to detection of parasites in cerebrospinal fluid (CSF was a median 16 (range = 8-40 days, marking the onset of central nervous system (CNS, late stage disease. Subsequently, CSF white cell numbers increased above the pre-infection median count of 2 (range = 0-9 cells/microl, with a positive linear association between their numbers and that of CSF trypanosomes. Haematological changes showed that the monkeys experienced an early microcytic-hypochromic anaemia and severe progressive thrombocytopaenia. Despite a 3-fold increase in granulocyte numbers by 4 dpi, leucopaenia occurred early (8 dpi in the monkey infection, determined mainly by reductions in lymphocyte numbers. Terminally, leucocytosis was observed in three of nine (33% individuals. The duration of infection was a median of 68 (range = 22-120 days. Strain and individual differences were observed in the severity of the clinical and clinical pathology findings, with two strains (KETRI 3741 and 3801 producing a more acute disease than the other two (KETRI 3804 and 3928. The study shows that the fly-transmitted model accurately mimics the human disease and is therefore a suitable gateway to understanding human African trypanosomiasis (HAT; sleeping sickness.

  18. The influence of diet and dimethylhydrazine on the large intestine of vervet monkeys: scanning and transmission electron microscope studies.

    Science.gov (United States)

    Jaskiewicz, K.; Kritchevsky, D.; Venter, F. S.; van Wyk, W. E.

    1987-01-01

    The study was designed to identify diet and carcinogen-dependent ultrastructural changes in the epithelium of macroscopically normal colonic mucosa in primates. Seventy adult female vervet monkeys were divided into seven equal treatment groups. Four received a Western high-fat low fibre diet (WD), two a prudent low-fat higher fibre diet (PD) and one a control low-fat high fibre diet (CD). Three groups (2 WD, 1 PD) received dimethylhydrazine intramuscularly at 14 day intervals. After 18 months, monkeys of two groups on the WD were transferred to the PD (WD----PD) and 30 months later all were killed. Mucosae of caecum, colon transversum and rectum were examined by scanning and transmission electron microscopy and showed close similarity to that of humans. Rectal mucosae showed increased surface goblet cell secretory activity, mucin production and microvillar changes related to WD and WD----PD. The enhancing effect of a carcinogen on ultrastructural changes such as cellular pleomorphism, cytoplasmic interbridging, nuclear and nucleolar irregularities and appearance of argentaffin cells in the free surface epithelium were noted predominantly in high-fat treated animals. Such changes observed in the upper part of crypt, orifice and free surface epithelium can be characteristic for precancerous change and could be utilised practically in the detection of precursor lesions of the colon. Images Fig. 9 Fig. 10 Figs. 11 & 12 Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Figs. 13 & 14 PMID:3620336

  19. Regional specialization in pyramidal cell structure in the limbic cortex of the vervet monkey (Cercopithecus pygerythrus): an intracellular injection study of the anterior and posterior cingulate gyrus.

    Science.gov (United States)

    Elston, Guy N; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul; Defelipe, Javier

    2005-12-01

    The pyramidal cell phenotype varies quite dramatically in structure among different cortical areas in the primate brain. Comparative studies in visual cortex, in particular, but also in sensorimotor and prefrontal cortex, reveal systematic trends for pyramidal cell specialization in functionally related cortical areas. Moreover, there are systematic differences in the extent of these trends between different primate species. Recently we demonstrated differences in pyramidal cell structure in the cingulate cortex of the macaque monkey; however, in the absence of other comparative data it remains unknown as to whether the neuronal phenotype differs in cingulate cortex between species. Here we extend the basis for comparison by studying the structure of the basal dendritic trees of layer III pyramidal cells in the posterior and anterior cingulate gyrus of the vervet monkey (Brodmann's areas 23 and 24, respectively). Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors were determined, and somal areas measured. As in the macaque monkey, we found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). In addition, the extent of the difference in pyramidal cell structure between these two cortical regions was less in the vervet monkey than in the macaque monkey.

  20. Rod photoreceptors express GPR55 in the adult vervet monkey retina.

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    Full Text Available Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R and cannabinoid CB2 receptor (CB2R. In recent years, the G-protein coupled receptor 55 (GPR55 was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol. Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells and CB2R in glial components (Müller cells. The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55 in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests a function of this receptor in scotopic vision that needs to be demonstrated.

  1. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    dissimilarities. Double labeling of CB2R and glutamine synthetase shows that CB2R is restricted to Müller cell processes, extending from the internal limiting membrane, with very low staining, to the external limiting membrane, with heavy labeling. We conclude that CB2R is indeed present in the retina...... but exclusively in the retinal glia, whereas CB1R is expressed only in the neuroretina. These results extend our knowledge on the expression and distribution of cannabinoid receptors in the monkey retina, although further experiments are still needed to clarify their role in retinal functions....

  2. Rod photoreceptors express GPR55 in the adult vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R) and cannabinoid CB2 receptor (CB2R). In recent years, the G-protein coupled receptor 55 (GPR55) was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol...... components (Müller cells). The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin......, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55...

  3. Inhibition of adaptive immune responses leads to a fatal clinical outcome in SIV-infected pigtailed macaques but not vervet African green monkeys.

    Directory of Open Access Journals (Sweden)

    Jörn E Schmitz

    2009-12-01

    Full Text Available African green monkeys (AGM and other natural hosts for simian immunodeficiency virus (SIV do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90 to infect vervet AGM and pigtailed macaques (PTM. This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4 and AGM (n = 4, and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.

  4. Specialization in pyramidal cell structure in the cingulate cortex of the Chacma baboon (Papio ursinus): an intracellular injection study of the posterior and anterior cingulate gyrus with comparative notes on the macaque and vervet monkeys.

    Science.gov (United States)

    Elston, Guy N; Benavides-Piccione, Ruth; Elston, Alejandra; DeFelipe, Javier; Manger, Paul

    2005-10-28

    This study forms part of an ongoing investigation of pyramidal cell structure in the cingulate cortex of primates. Recently we have demonstrated that layer III pyramidal cells in the anterior cingulate gyrus are considerably larger, more branched and more spinous than those in the posterior cingulate gyrus (areas 24 and 23, respectively) in the macaque and vervet monkeys. Moreover, the extent of the interareal difference in specialization in pyramidal cell structure differed between the two species. These data suggest that pyramidal cell circuitry may have evolved differently in these closely related species. Presently there are too few data to speculate on what is selecting for this specialization in structure. Here we extend the basis for comparison by studying pyramidal cell structure in cingulate gyrus of the Chacma baboon (Papio ursinus). Methodology used here is the same as that for our previous studies: intracellular injection of Lucifer Yellow in flat-mounted cortical slices. We found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). Moreover, the complexity in pyramidal cell structure in both the anterior and posterior cingulate gyrus of the baboon differed to that in the corresponding regions in either the macaque or vervet monkeys.

  5. The genome of the vervet (Chlorocebus aethiops sabaeus)

    Science.gov (United States)

    Warren, Wesley C.; Jasinska, Anna J.; García-Pérez, Raquel; Svardal, Hannes; Tomlinson, Chad; Rocchi, Mariano; Archidiacono, Nicoletta; Capozzi, Oronzo; Minx, Patrick; Montague, Michael J.; Kyung, Kim; Hillier, LaDeana W.; Kremitzki, Milinn; Graves, Tina; Chiang, Colby; Hughes, Jennifer; Tran, Nam; Huang, Yu; Ramensky, Vasily; Choi, Oi-wa; Jung, Yoon J.; Schmitt, Christopher A.; Juretic, Nikoleta; Wasserscheid, Jessica; Turner, Trudy R.; Wiseman, Roger W.; Tuscher, Jennifer J.; Karl, Julie A.; Schmitz, Jörn E.; Zahn, Roland; O'Connor, David H.; Redmond, Eugene; Nisbett, Alex; Jacquelin, Béatrice; Müller-Trutwin, Michaela C.; Brenchley, Jason M.; Dione, Michel; Antonio, Martin; Schroth, Gary P.; Kaplan, Jay R.; Jorgensen, Matthew J.; Thomas, Gregg W.C.; Hahn, Matthew W.; Raney, Brian J.; Aken, Bronwen; Nag, Rishi; Schmitz, Juergen; Churakov, Gennady; Noll, Angela; Stanyon, Roscoe; Webb, David; Thibaud-Nissen, Francoise; Nordborg, Magnus; Marques-Bonet, Tomas; Dewar, Ken; Weinstock, George M.; Wilson, Richard K.; Freimer, Nelson B.

    2015-01-01

    We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations. PMID:26377836

  6. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex.

    Science.gov (United States)

    Clarke, Hannah F; Robbins, Trevor W; Roberts, Angela C

    2008-10-22

    The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive-compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a prominent symptom. Although OFC dysfunction can occur in these disorders, there is considerable evidence for more widespread dysfunction within frontostriatal and frontoamygdalar circuitry. Because the contribution of these subcortical structures to behavioral flexibility is poorly understood, the present study compared the effects of excitotoxic lesions of the medial striatum (MS), amygdala, and OFC in the marmoset monkey on performance of the serial reversal task. All monkeys were able to learn a novel stimulus-reward association but, compared with both control and amygdala-lesioned monkeys, those with MS or OFC lesions showed a perseverative impairment in their ability to reverse this association. However, whereas both MS and OFC groups showed insensitivity to negative feedback, only OFC-lesioned monkeys showed insensitivity to positive feedback. These findings suggest that, for different reasons, both the MS and OFC support behavioral flexibility after changes in reward contingencies, and are consistent with the hypothesis that striatal and OFC dysfunction can contribute to pathological perseveration.

  7. A counter-current heat exchange system in the tail of the vervet ...

    African Journals Online (AJOL)

    Lightly anaesthetized vervet monkeys can maintain their body core-temperature by skin vasoconstriction and shivering when the environmental temperature is moderately lowered. Under such conditions the arterial blood supplying the tail skin is several degrees cooler than the core temperature and thus heat loss from the ...

  8. Reduction of dopamine D2/3receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys.

    Science.gov (United States)

    Hashimoto, Kenji; Kakiuchi, Takeharu; Ohba, Hiroyuki; Nishiyama, Shingo; Tsukada, Hideo

    2017-03-01

    R-ketamine appears to be a potent, long-lasting and safer antidepressant, relative to esketamine (S-ketamine), since it might be free of psychotomimetic side effects. Using [ 11 C]raclopride and positron emission tomography (PET), we investigated whether esketamine and R-ketamine can affect dopamine D 2/3 receptor binding in the conscious monkey brain. A single infusion of esketamine (0.5 mg/kg), but not R-ketamine (0.5 mg/kg), caused a reduction of binding availability of dopamine D 2/3 receptor in the monkey striatum. This study suggests that unlike to R-ketamine, esketamine can cause dopamine release in the striatum, and that its release might be associated with psychotomimetic effects of esketamine.

  9. GPS-identified, low-level nocturnal activity of vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) in Laikipia, Kenya.

    Science.gov (United States)

    Isbell, Lynne A; Bidner, Laura R; Crofoot, Margaret C; Matsumoto-Oda, Akiko; Farine, Damien R

    2017-09-01

    Except for owl monkeys (Aotus spp.), all anthropoid primates are considered strictly diurnal. Recent studies leveraging new technologies have shown, however, that some diurnal anthropoids also engage in nocturnal activity. Here we examine the extent to which vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) are active at night. We deployed GPS collars with tri-axial accelerometer data loggers on 18 free-ranging adult females: 12 vervets spread among 5 social groups, and 6 olive baboons spread among 4 groups. Their locations were recorded every 15 min, and their activity levels, for 3 s/min over 7.5 months. We also used camera traps that were triggered by heat and movement at seven sleeping sites. Travel was detected on 0.4% of 2,029 vervet-nights involving 3 vervets and 1.1% of 1,109 baboon-nights involving 5 baboons. Travel was mainly arboreal for vervets but mainly terrestrial for baboons. During the night, vervets and baboons were active 13% and 15% of the time, respectively. Activity varied little throughout the night and appeared unaffected by moon phase. Our results confirm the low nocturnality of vervets and olive baboons, which we suggest is related to living near the equator with consistent 12-hr days, in contrast to other anthropoids that are more active at night. Since anthropoid primates are thought to have evolved in northern latitudes, with later dispersal to tropical latitudes, our results may have implications for understanding the evolution of anthropoid diurnality. © 2017 Wiley Periodicals, Inc.

  10. Lesions of the Medial Striatum in Monkeys Produce Perseverative Impairments during Reversal Learning Similar to Those Produced by Lesions of the Orbitofrontal Cortex

    OpenAIRE

    Clarke, Hannah F.; Robbins, Trevor W; Roberts, Angela C.

    2008-01-01

    The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive–compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a promin...

  11. Relation between phylogeny of African green monkey CD4 genes and their respective simian immunodeficiency virus genes

    DEFF Research Database (Denmark)

    Fomsgaard, Anders; Müller-Trutwin, Michaela C.; Diop, Ousmane

    1997-01-01

    mangabeys, rhesus and pig-tail macaques, chimpanzees, and humans. Chimpanzees and humans consistently clustered together. Monkeys within the Cercopithecus genus formed a separate cluster which included pata monkeys, supporting its grouping as a member of Cercopithecus. Surprisingly, sooty mangabeys were......, tantalus, vervets, grivets, and sabaeus formed separate subgroups with BGM grouping closely with vervets. The branching order of the AGM species was related to that of their respective SIVagm env sequences. The study suggests a strong correlation between CD4 phylogeny and the susceptibility of the host...

  12. Resilience of experimentally seeded dietary traditions in wild vervets: Evidence from group fissions.

    Science.gov (United States)

    van de Waal, Erica; van Schaik, Carel P; Whiten, Andrew

    2017-10-01

    Controlled laboratory experiments have delivered extensive and compelling evidence for the diffusion and maintenance of socially learned behavior in primates and other animals. Such evidence is rarer in the wild, but we show that a behavior seeded in a majority of individuals within vervet monkey (Chlorocebus pygerythus) groups may be sustained across several years. Here, we report results of two natural fission events in such groups that offer novel evidence of the resilience of socially transmitted group norms of behavior. Before fission, high ranked females exhibited an almost exclusive adherence to a group preference among two food options, originally introduced through a distasteful additive in one option, but no longer present in repeated later tests. Because of rank-dependent competition, low-ranked females ate more of the formerly distasteful food and so discovered it was now as palatable as the alternative. Despite this experience, low ranked females who formed the splinter groups then expressed a 100% bias for the preferred option of their original parent group, revealing these preferences to be resilient. We interpret this effect as conformity to either the preferences of high rankers or of a majority in the parent group, or both. However, given fissioned individuals' familiarity with their habitat and experimental options, we question the adequacy of the informational function usually ascribed to conformity and discuss alternatives under a concept of "social conformity". © 2017 Wiley Periodicals, Inc.

  13. [Reinforcement learning by striatum].

    Science.gov (United States)

    Kunisato, Yoshihiko; Okada, Go; Okamoto, Yasumasa

    2009-04-01

    Recently, computational models of reinforcement learning have been applied for the analysis of neuroimaging data. It has been clarified that the striatum plays a key role in decision making. We review the reinforcement learning theory and the biological structures such as the brain and signals such as neuromodulators associated with reinforcement learning. We also investigated the function of the striatum and the neurotransmitter serotonin in reward prediction. We first studied the brain mechanisms for reward prediction at different time scales. Our experiment on the striatum showed that the ventroanterior regions are involved in predicting immediate rewards and the dorsoposterior regions are involved in predicting future rewards. Further, we investigated whether serotonin regulates both the reward selection and the striatum function are specialized reward prediction at different time scales. To this end, we regulated the dietary intake of tryptophan, a precursor of serotonin. Our experiment showed that the activity of the ventral part of the striatum was correlated with reward prediction at shorter time scales, and this activity was stronger at low serotonin levels. By contrast, the activity of the dorsal part of the striatum was correlated with reward prediction at longer time scales, and this activity was stronger at high serotonin levels. Further, a higher proportion of small reward choices, together with a higher rate of discounting of delayed rewards is observed in the low-serotonin condition than in the control and high-serotonin conditions. Further examinations are required in future to assess the relation between the disturbance of reward prediction caused by low serotonin and mental disorders related to serotonin such as depression.

  14. Vervet monkey solve a multi-player 'forbidden-circle' game by queuing to learn restraint

    NARCIS (Netherlands)

    Fruteau, C.; van Damme, E.E.C.; Noe, R.

    2013-01-01

    In social dilemmas, the ability of individuals to coordinate their actions is crucial to reach group optima. Unless exacted by power or force, coordination in humans relies on a common understanding of the problem, which is greatly facilitated by communication. The lack of means of consultation

  15. The endocannabinoid system within the dorsal lateral geniculate nucleus of the vervet monkey

    DEFF Research Database (Denmark)

    Javadi, P.; Bouskila, J.; Bouchard, J. -F.

    2015-01-01

    The endocannabinoid system mainly consists of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), their endogenous ligands termed endocannabinoids (eCBs), and the enzymes responsible for the synthesis and degradation of eCBs. These cannabinoid receptors have been well characterized in rodent a...

  16. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  17. Observations on the anatomy of the tail in the vervet monkey ...

    African Journals Online (AJOL)

    A long tail is characteristic of the Family Cercopithecidae but apart from a limited contribution to postural adjustment no other function seems obvious. The tail has a large proportion of skin which contributes significantly to the total body surface area. Because it has a widely adjustable blood flow rate and appears specially ...

  18. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves....... In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function....

  19. Basketball training increases striatum volume.

    Science.gov (United States)

    Park, In Sung; Lee, Kea Joo; Han, Jong Woo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah; Rhyu, Im Joo

    2011-02-01

    The striatum is associated with the learning and retention of motor skills. Several studies have shown that motor learning induces neuronal changes in the striatum. We investigated whether macroscopic change in striatum volume occurs in a segment of the human population who learned basketball-related motor skills and practiced them throughout their entire athletic life. Three-dimensional magnetic resonance imaging volumetry was performed in basketball players and healthy controls, and striatum volumes were compared based on basketball proficiency, region and side. We identified morphological enlargement in the striatum of basketball players in comparison with controls. Our results suggest that continued practice and repetitive performance of basketball-related motor skills may induce plastic structural changes in the human striatum. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    -adapted conditions. Thirteen vervet monkeys (Chlorocebus sabaeus) were used in this study: four controls (injected with the vehicle dimethyl sulfoxide, DMSO), four injected with LPG and five with CID. We analyzed amplitudes and latencies of the a-wave (photoreceptor responses) and the b-wave (rod and cone system...... responses) of the ERG. Our results showed that after injection of LPG, the amplitude of the scotopic b-wave was significantly higher, whereas after the injection of CID, it was significantly decreased, compared to the vehicle (DMSO). On the other hand, the a-wave amplitude, and the a-wave and b-wave...

  1. Histamine and the striatum.

    Science.gov (United States)

    Bolam, J Paul; Ellender, Tommas J

    2016-07-01

    The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.

    Science.gov (United States)

    Costa, Vincent D; Dal Monte, Olga; Lucas, Daniel R; Murray, Elisabeth A; Averbeck, Bruno B

    2016-10-19

    Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL, we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with an RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys' choice reaction times, which emphasized a speed-accuracy trade-off that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. Published by Elsevier Inc.

  3. Arteriviruses, Pegiviruses, and Lentiviruses Are Common among Wild African Monkeys.

    Science.gov (United States)

    Bailey, Adam L; Lauck, Michael; Ghai, Ria R; Nelson, Chase W; Heimbruch, Katelyn; Hughes, Austin L; Goldberg, Tony L; Kuhn, Jens H; Jasinska, Anna J; Freimer, Nelson B; Apetrei, Cristian; O'Connor, David H

    2016-08-01

    Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts. Copyright © 2016

  4. Real-time dopamine measurement in awake monkeys.

    Directory of Open Access Journals (Sweden)

    Erik W Schluter

    Full Text Available Fast-scan cyclic voltammetry (FSCV is often used to measure real-time dopamine (DA concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta using a mixture of techniques adapted from rodent, primate and brain slice work. We developed a long carbon fiber electrode to operate in the larger primate brain. This electrode was lowered into the striatum each day using a recording chamber and a detachable micromanipulator system. A manipulator also moved one or more tungsten stimulating electrodes into either the nearby striatum or the ventral tegmental area/substantia nigra pars compacta (VTA/SNc. We developed an electrical stimulation controller to reduce artifacts during electrical stimulation. We also introduce a stimulation-based methodology for estimating distances between electrodes in the brain. Dopamine responses within the striatum were evoked by either stimulation of the striatum near the FSCV electrode, or stimulation within the VTA/SNc. Unexpected juice rewards also evoked dopamine responses in the ventral striatum. Thus, we demonstrate that robust dopamine responses can be recorded from awake, behaving primates with FSCV. In addition, we describe how a stimulation technique borrowed from the neuroprosthetics field can activate the distributed monkey midbrain dopamine system in a way that mimics rodent VTA stimulation.

  5. Monkey Business

    Science.gov (United States)

    Blackwood, Christine Horvatis

    2012-01-01

    A ballerina, a gladiator, a camper, a baseball player, a surfer, and a shopper; these are just a few of the amazing monkeys that the author's seventh graders created from papier-mache. This project provided an opportunity for students to express themselves through the creation of sculptural characters based on their own interests, hobbies, and…

  6. IL-6 is Upregulated in Late-Stage Disease in Monkeys Experimentally Infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    Dawn Nyawira Maranga

    2013-01-01

    Full Text Available The management of human African trypanosomiasis (HAT is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P<0.05 elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness.

  7. IL-6 is Upregulated in Late-Stage Disease in Monkeys Experimentally Infected with Trypanosoma brucei rhodesiense

    Science.gov (United States)

    Nyawira Maranga, Dawn; Kagira, John Maina; Kinyanjui, Christopher Kariuki; Muturi Karanja, Simon; Wangari Maina, Naomi; Ngotho, Maina

    2013-01-01

    The management of human African trypanosomiasis (HAT) is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops) were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi) to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF) and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P < 0.05) elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness. PMID:24194772

  8. The striatum and pain modulation.

    Science.gov (United States)

    Barceló, Ana C; Filippini, Bárbara; Pazo, Jorge H

    2012-01-01

    The aim of this review was to give a general aspect of the sensorial function of the striatum related to pain modulation, which was intensively studied in our laboratory. We analyse the effect of electrical and chemical stimulation of the striatum on the orofacial pain, especially that produced by tooth pulp stimulation of the lower incisors. We demonstrated specific sites within the nucleus which electrical or chemical stimulation produced inhibition of the nociceptive jaw opening reflex. This analgesic action of the striatum was mediated by activation of its dopamine D(2) receptors and transmitted through the indirect pathways of the basal ganglia and the medullary dorsal reticular nucleus (RVM) to the sensorial nuclei of the trigeminal nerve. Its mechanism of action was by inhibition of the nociceptive response of the second order neurons of the nucleus caudalis of the V par.

  9. Learning and motivation in the human striatum.

    Science.gov (United States)

    Shohamy, Daphna

    2011-06-01

    The past decade has seen a dramatic change in our understanding of the role of the striatum in behavior. Early perspectives emphasized a role for the striatum in habitual learning of stimulus-response associations and sequences of actions. Recent advances from human neuroimaging research suggest a broader role for the striatum in motivated learning. New findings demonstrate that the striatum represents multiple learning signals and highlight the contribution of the striatum across many cognitive domains and contexts. Recent findings also emphasize interactions between the striatum and other specialized brain systems for learning. Together, these findings suggest that the striatum contributes to a distributed network that learns to select actions based on their predicted value in order to optimize behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Reward information encoded by power of local field potentials in the primate prefrontal cortex and striatum].

    Science.gov (United States)

    Chen, Yu-Ying; Pan, Xiao-Chuan; Wang, Ru-Bin; Sakagami, Masamichi

    2017-08-25

    Prefrontal cortex and striatum are two major areas in the brain. Some research reports suggest that both areas are involved in many advanced cognitive processes, such as learning and memory, reward processing, and behavioral decision. Single-unit recording experiments have found that neurons in the prefrontal cortex and striatum can represent reward information, but it remains elusive whether and how local field potentials (LFPs) in the two areas encode reward information. To investigate these issues, we recorded LFPs simultaneously in the prefrontal cortex and striatum of two monkeys by performing a reward prediction task (a large amount reward vs a small amount reward). Recorded LFP signals were transformed from the time domain to the time and frequency domain using the method of short-time Fourier transform (STFT). We calculated the power in each frequency and time, and examined whether they were different in the two reward conditions. The results showed that power of LFPs in both the prefrontal cortex and striatum distinguished one reward condition from the other one. And the power in small reward trials was greater than that in large reward trials. Furthermore, it was found that the LFPs better encoded reward information in the beta band (14-30 Hz) rather than other frequency bands. Our results suggest that the LFPs in the prefrontal cortex and striatum effectively represent reward information, which would help to further understand functional roles of LFPs in reward processing.

  11. Consul, the Educated Monkey.

    Science.gov (United States)

    Kolpas, Sidney J.; Massion, Gary R.

    2000-01-01

    Introduces a toy, the Educated Monkey, developed to help students learn multiplication tables and associated division, factoring, and addition tables and associated subtraction. Explains why the monkey works and reviews geometric, algebraic, and arithmetic concepts. (KHR)

  12. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.

    Science.gov (United States)

    Rothenhoefer, Kathryn M; Costa, Vincent D; Bartolo, Ramón; Vicario-Feliciano, Raquel; Murray, Elisabeth A; Averbeck, Bruno B

    2017-07-19

    Learning the values of actions versus stimuli may depend on separable neural circuits. In the current study, we evaluated the performance of rhesus macaques with ventral striatum (VS) lesions on a two-arm bandit task that had randomly interleaved blocks of stimulus-based and action-based reinforcement learning (RL). Compared with controls, monkeys with VS lesions had deficits in learning to select rewarding images but not rewarding actions. We used a RL model to quantify learning and choice consistency and found that, in stimulus-based RL, the VS lesion monkeys were more influenced by negative feedback and had lower choice consistency than controls. Using a Bayesian model to parse the groups' learning strategies, we also found that VS lesion monkeys defaulted to an action-based choice strategy. Therefore, the VS is involved specifically in learning the value of stimuli, not actions. SIGNIFICANCE STATEMENT Reinforcement learning models of the ventral striatum (VS) often assume that it maintains an estimate of state value. This suggests that it plays a general role in learning whether rewards are assigned based on a chosen action or stimulus. In the present experiment, we examined the effects of VS lesions on monkeys' ability to learn that choosing a particular action or stimulus was more likely to lead to reward. We found that VS lesions caused a specific deficit in the monkeys' ability to discriminate between images with different values, whereas their ability to discriminate between actions with different values remained intact. Our results therefore suggest that the VS plays a specific role in learning to select rewarded stimuli. Copyright © 2017 the authors 0270-6474/17/376902-13$15.00/0.

  13. Motor Planning under Unpredictable Reward: Modulations of Movement Vigor and Primate Striatum Activity

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2011-05-01

    Full Text Available Although reward probability is an important factor that shapes animal behavior, it is not well understood however, how the primate brain translates reward expectation into the vigor of movement (reaction time and speed. To address this question, we trained two monkeys in a reaction time task that required wrist movements in response to vibrotactile and visual stimuli, with a variable reward schedule. Correct performance was rewarded in 75 % of the trials. Monkeys were certain that they would be rewarded only in the trials immediately following withheld rewards. In these trials, the animals responded sooner and moved faster. Single-unit recordings from the dorsal striatum revealed that modulations in striatal neurons reflected such modulations of movement vigor. First, in the trials with certain rewards, striatal neurons modulated their firing rates earlier. Second, magnitudes of changes in neuronal firing rates depended on whether or not monkeys were certain about the reward. Third, these modulations depended on the sensory modality of the cue (visual vs. vibratory and/or movement direction (flexions vs. extensions. We conclude that dorsal striatum may be a part of the mechanism responsible for the modulation of movement vigor in response to changes of reward predictability.

  14. Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys

    Directory of Open Access Journals (Sweden)

    Alex G. Lee

    2016-06-01

    Full Text Available Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping in a process called stress inoculation. Stress inoculation also enhances cognitive control and response inhibition of impulsive motivated behavior. Cognitive control and motivation have been linked to striatal dopamine D2 and/or D3 receptors (DRD2/3 in rodents, monkeys, and humans. Here, we study squirrel monkeys randomized early in life to stress inoculation with or without maternal companionship and a no-stress control treatment condition. Striatal DRD2/3 availability in adulthood was measured in vivo by [11C]raclopride binding using positron emission tomography (PET. DRD2/3 availability was greater in caudate and putamen compared to ventral striatum as reported in PET studies of humans and other non-human primates. DRD2/3 availability in ventral striatum was also consistently greater in stress inoculated squirrel monkeys compared to no-stress controls. Squirrel monkeys exposed to stress inoculation in the presence of their mother did not differ from squirrel monkeys exposed to stress inoculation without maternal companionship. Similar effects in different social contexts extend the generality of our findings and together suggest that stress inoculation increases striatal DRD2/3 availability as a correlate of cognitive control in squirrel monkeys.

  15. Distribution of collateral fibers in the monkey cervical spinal cord detected with diffusion-weighted magnetic resonance imaging

    DEFF Research Database (Denmark)

    Lundell, Henrik; Nielsen, Jens Bo; Ptito, Maurice

    2011-01-01

    techniques. We calculate the diffusion tensor and the persistent angular structure (PAS), a multi-fiber reconstruction technique, from high quality post mortem data of a perfusion-fixed vervet monkey cervical spinal cord sample and simulated crossing fiber data. Our results show that (i) cylindrical geometry......Diffusion anisotropy monitored with diffusion-weighted magnetic resonance imaging (DWMRI) is a sensitive marker to monitor developmental or pathological microstructural changes in spinal cord. The white matter is often treated as a unidirectional axonal bundle but collateral fibers branching off...... in the white matter of the spinal cord is an invalid assumption due to collateral fibers. We also demonstrate that (ii) collateral fibers can be resolved as distinct peaks in the water diffusion propagator in white matter using multi-fiber models. Finally, we show that (iii) crossing fibers are mainly located...

  16. Different time courses of learning-related activity in the prefrontal cortex and striatum.

    Science.gov (United States)

    Pasupathy, Anitha; Miller, Earl K

    2005-02-24

    To navigate our complex world, our brains have evolved a sophisticated ability to quickly learn arbitrary rules such as 'stop at red'. Studies in monkeys using a laboratory test of this capacity--conditional association learning--have revealed that frontal lobe structures (including the prefrontal cortex) as well as subcortical nuclei of the basal ganglia are involved in such learning. Neural correlates of associative learning have been observed in both brain regions, but whether or not these regions have unique functions is unclear, as they have typically been studied separately using different tasks. Here we show that during associative learning in monkeys, neural activity in these areas changes at different rates: the striatum (an input structure of the basal ganglia) showed rapid, almost bistable, changes compared with a slower trend in the prefrontal cortex that was more in accordance with slow improvements in behavioural performance. Also, pre-saccadic activity began progressively earlier in the striatum but not in the prefrontal cortex as learning took place. These results support the hypothesis that rewarded associations are first identified by the basal ganglia, the output of which 'trains' slower learning mechanisms in the frontal cortex.

  17. Rhesus monkey platelets

    Energy Technology Data Exchange (ETDEWEB)

    Harbury, C.B.

    1986-03-01

    The purpose of this abstract is to describe the adenine nucleotide metabolism of Rhesus monkey platelets. Nucleotides are labelled with /sup 14/C-adenine and extracted with EDTA-ethanol (EE) and perchlorate (P). Total platelet ATP and ADP (TATP, TADP) is measured in the Holmsen Luciferase assay, and expressed in nanomoles/10/sup 8/ platelets. TR=TATP/TADP. Human platelets release 70% of their TADP, with a ratio of released ATP/ADP of 0.7. Rhesus platelets release 82% of their TADP, with a ratio of released ATP/ADP of 0.33. Thus, monkey platelets contain more ADP than human platelets. Thin layer chromatography of EE gives a metabolic ratio of 11 in human platelets and 10.5 in monkey platelets. Perchlorate extracts metabolic and actin bound ADP. The human and monkey platelets ratios were 5, indicating they contain the same proportion of actin. Thus, the extra ADP contained in monkey platelets is located in the secretory granules.

  18. Predeliberation activity in prefrontal cortex and striatum and the prediction of subsequent value judgment

    Directory of Open Access Journals (Sweden)

    Uri eMaoz

    2013-11-01

    Full Text Available Rational, value-based decision-making mandates selecting the option with highest subjective expected value after appropriate deliberation. We examined activity in the dorsolateral prefrontal cortex (DLPFC and striatum of monkeys deciding between smaller, immediate rewards and larger, delayed ones. We previously found neurons that modulated their activity in this task according to the animal’s choice, while it deliberated (choice neurons. Here we found neurons whose spiking activities were predictive of the spatial location of the selected target (spatial-bias neurons or the size of the chosen reward (reward-bias neurons before the onset of the cue presenting the decision-alternatives, and thus before rational deliberation could begin. Their predictive power increased as the values the animals associated with the two decision alternatives became more similar. The ventral striatum (VS preferentially contained spatial-bias neurons; the caudate nucleus (CD preferentially contained choice neurons. In contrast, the DLPFC contained significant numbers of all three neuron types, but choice neurons were not preferentially also bias neurons of either kind there, nor were spatial-bias neurons preferentially also choice neurons, and vice versa. We suggest a simple winner-take-all circuit model to account for the dissociation of choice and bias neurons. The model reproduced our results and made additional predictions that were borne out empirically. Our data are compatible with the hypothesis that the DLPFC and striatum harbor dissociated neural populations that represent choices and predeliberation biases that are combined after cue onset; the bias neurons have a weaker effect on the ultimate decision than the choice neurons, so their influence is progressively apparent for trials where the values associated with the decision alternatives are increasingly similar.

  19. MONITORING EXTRACELLULAR PH, OXYGEN, AND DOPAMINE DURING REWARD DELIVERY IN THE STRIATUM OF PRIMATES

    Directory of Open Access Journals (Sweden)

    Jennifer L Ariansen

    2012-07-01

    Full Text Available Dopamine projections that extend from the ventral tegmental area to the striatum have been implicated in the biological basis for behaviors associated with reward and addiction. Until recently, it has been difficult to evaluate the complex balance of energy utilization and neural activity in the striatum. Many techniques such as electrophysiology, functional magnetic resonance imaging (fMRI, and fast-scan cyclic voltammetry have been employed to monitor these neurochemical and neurophysiological changes. In this brain region, physiological responses to cues and rewards cause local, transient pH changes. Oxygen and pH are coupled in the brain through a complex system of blood flow and metabolism as a result of transient neural activity. Indeed, this balance is at the heart of imaging studies such as fMRI. To this end, we measured pH and O2 changes with fast-scan cyclic voltammetry in the striatum as indices of changes in metabolism and blood flow in vivo in three Macaca mulatta monkeys. The animals were presented with Pavlovian conditioned cues that predicted different probabilities of liquid reward. They also received free reward without predictive cues. The primary change consisted of pH shifts in the striatal extracellular environment following the reward predicting cues or the free reward. We observed three types of cue responses which consisted of purely basic pH shifts, basic pH shifts followed by acidic pH shifts, and purely acidic pH shifts. These responses increased with reward probability. The pH changes were accompanied by increases in extracellular O2. The changes in pH and extracellular O2 are consistent with current theories of metabolism and blood flow. The findings suggest a role of these chemical responses in neuronal reward processing

  20. Chemotherapy of second stage human African trypanosomiasis: comparison between the parenteral diamidine DB829 and its oral prodrug DB868 in vervet monkeys

    National Research Council Canada - National Science Library

    Thuita, John K; Wolf, Kristina K; Murilla, Grace A; Bridges, Arlene S; Boykin, David W; Mutuku, James N; Liu, Qiang; Jones, Susan K; Gem, Charles O; Ching, Shelley; Tidwell, Richard R; Wang, Michael Z; Paine, Mary F; Brun, Reto

    2015-01-01

    ... (central nervous system [CNS]) of infection. In response to this largely unmet need for new treatments, the Consortium for Parasitic Drug Development developed novel parenteral diamidines and corresponding oral prodrugs that have shown cure...

  1. On the role of the striatum in response inhibition.

    Directory of Open Access Journals (Sweden)

    Bram B Zandbelt

    Full Text Available BACKGROUND: Stopping a manual response requires suppression of the primary motor cortex (M1 and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC and right inferior frontal cortex (rIFC during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. CONCLUSIONS/SIGNIFICANCE: The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC.

  2. Cooperation between the Hippocampus and the Striatum during Episodic Encoding

    Science.gov (United States)

    Sadeh, Talya; Shohamy, Daphna; Levy, Dana Rubi; Reggev, Niv; Maril, Anat

    2011-01-01

    The hippocampus and the striatum are thought to play distinct roles in learning and memory, each supporting an independent memory system. A fundamental question is whether, and how, these systems interact to jointly contribute to learning and memory. In particular, it remains unknown whether the striatum contributes selectively to implicit,…

  3. [The role of the striatum in addiction].

    Science.gov (United States)

    Toda, Shigenobu

    2012-08-01

    Addiction is a notorious treatment-resistant psychiatric disorder characterized by the impairment of self-monitoring, loss of interest in other targets of pleasure, and uncorrectable impulsive/compulsive drug-seeking behaviors. The striatum, particularly the ventral striatum (= the nucleus accumbens) is deeply involved in the acquisition and expression of addiction. Although only few pharmacotherapeutic approaches against addiction are available, the currently used animal models of addiction are sophisticated enough to mimic most of the representative phenotypes observed in human addicts. In addition, recent advances in neuroimaging techniques, such as positron emission tomography or functional magnetic resonance imaging, as well as computational neuroscience approaches have promoted our understanding of addiction, particularly at the circuitry level. In this review, I introduce some pivotal topics regarding addiction for discussion. First, I outline the updated concept regarding how dopamine is involved in addiction by focusing on 2 seemingly uncompromising hypotheses, prediction-error theory and incentive salience theory. Second, after providing a brief introduction to unmanageable maladaptive behaviors in addiction that may be attributable to the impairments of the medial prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex, I emphasize the roles of glutamatergic inputs projecting from these frontal areas to the nucleus accumbens in cue-primed reinstatement of drug-seeking and impaired neuronal plasticity. Third, on the basis of the complementary or counterbalancing relationship between goal-directed behaviors and habits, I discuss the foresights and pitfalls of the current concept of "addiction as a pathological habit." Lastly, I conclude my discussion with an integrated (but a rough) circuitry model of addiction.

  4. Efficient gene transfer into neurons in monkey brain by adeno-associated virus 8.

    Science.gov (United States)

    Masamizu, Yoshito; Okada, Takashi; Ishibashi, Hidetoshi; Takeda, Shin'ichi; Yuasa, Shigeki; Nakahara, Kiyoshi

    2010-04-21

    Although the adeno-associated virus (AAV) vector is a promising tool for gene transfer into neurons, especially for therapeutic purposes, neurotropism in primate brains is not fully elucidated for specific AAV serotypes. Here, we injected AAV serotype 8 (AAV8) vector carrying the enhanced green fluorescent protein (EGFP) gene under a ubiquitous promoter into the cerebral cortex, striatum and substantia nigra of common marmosets. Robust neuronal EGFP expression was observed at all injected sites. Cell typing with immunohistochemistry confirmed efficient AAV8-mediated gene transfer into the pyramidal neurons in the cortex, calbindin-positive medium spiny neurons in the striatum and dopaminergic neurons in the substantia nigra. The results indicate a preferential tropism of AAV8 for subsets of neurons, but not for glia, in monkey brains.

  5. Native valve endocarditis caused by an organism resembling Corynebacterium striatum.

    OpenAIRE

    Markowitz, S M; Coudron, P E

    1990-01-01

    An organism resembling Corynebacterium striatum was isolated from the blood of a patient with acute aortic valvular insufficiency and no history of valvular heart disease. At autopsy, histopathologic examination of the aortic valve revealed pleomorphic gram-positive bacilli and destruction of valvular tissue. Our isolate differed from other nondiphtherial corynebacteria, including the type strain of C. striatum (ATCC 6940), in its ability to reduce nitrite. Nitrite reduction may be useful for...

  6. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  7. Functional Connectivity of the Dorsal Striatum in Female Musicians.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective.

  8. Monkeys Match and Tally Quantities across Senses

    Science.gov (United States)

    Jordan, Kerry E.; MacLean, Evan L.; Brannon, Elizabeth M.

    2008-01-01

    We report here that monkeys can actively match the number of sounds they hear to the number of shapes they see and present the first evidence that monkeys sum over sounds and sights. In Experiment 1, two monkeys were trained to choose a simultaneous array of 1-9 squares that numerically matched a sample sequence of shapes or sounds. Monkeys…

  9. Differential Encoding of Losses and Gains in the Human Striatum

    Science.gov (United States)

    Seymour, Ben; Daw, Nathaniel; Dayan, Peter; Singer, Tania; Dolan, Ray

    2009-01-01

    Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional and anatomical consistencies with primary aversive outcomes such as pain. PMID:17475790

  10. Septic arthritis in a native knee due to Corynebacterium striatum.

    Science.gov (United States)

    Molina Collada, Juan; Rico Nieto, Alicia; Díaz de Bustamante Ussia, Macarena; Balsa Criado, Alejandro

    2017-03-07

    We describe a case of septic arthritis in a native knee due to Corynebacterium striatum, gram-positive bacilli that are usually commensal organisms of skin and mucosal membranes, but are seldom implicated in native septic arthritis. An 84-year-old man with Corynebacterium striatum septic arthritis of his native left knee and no response to conventional antibiotic therapy. Thus, the patient was allowed to take dalbavancin for compassionate use, with an excellent clinical outcome. This case emphasizes de role of Corynebacterium striatum in native joint infections and highlights the importance of early detection and appropriate treatment in improving the clinical outcome. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  11. Spiraling dopaminergic circuitry from the ventral striatum to dorsal striatum is an effective feed-forward loop.

    Science.gov (United States)

    Ikeda, H; Saigusa, T; Kamei, J; Koshikawa, N; Cools, A R

    2013-06-25

    Central dopamine systems are key players in the cerebral organization of behavior and in various neurological and psychiatric diseases. We demonstrate the presence of a neurochemical feed-forward loop characterized by region-specific changes in dopamine efflux in serially connected striatal regions, providing evidence in favor of the existence of so-called spiraling striato-nigro-striatal connections. Using in vivo microdialysis of rats, we show that simultaneous stimulation of dopamine D1 and D2 receptors in the accumbal shell decreased dorsal striatal dopamine efflux via a direct or indirect feed-forward loop involving shell, core, ventrolateral and dorsal part of the striatum: simultaneous stimulation of dopamine D1 and D2 receptors in the shell decreased dopamine efflux in the core; flupenthixol-induced inhibition of dopamine D1 and D2 receptors in the core increased dopamine efflux in the ventrolateral part of the striatum, and simultaneous stimulation of dopamine D1 and D2 receptors in the ventrolateral part of the striatum decreased dopamine efflux in the dorsal part of the striatum. Finally, simultaneous stimulation of dopamine D1 and D2 receptors in the shell decreased dopamine efflux in the dorsal part of the striatum. Thus, distinct striatal regions act also in series, providing a better understanding of the neural mechanisms underlying dopamine-dependent behaviors and the progression of dopamine-dependent disorders such as depression, schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Ventral Striatum Connectivity During Reward Anticipation in Adolescent Smokers

    Science.gov (United States)

    Jollans, Lee; Zhipeng, Cao; Icke, Ilknur; Greene, Ciara; Kelly, Clare; Banaschewski, Tobias; Bokde, Arun L.W.; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J.; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Artiges, Eric; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Paus, Tomáš; Smolka, Michael N.; Walter, Henrik; Schumann, Gunter; Whelan, Robert

    2017-01-01

    Substance misusers, including adolescent smokers, often have reduced reward system activity during processing of non-drug rewards. Using a psychophysiological interaction approach, we examined functional connectivity with the ventral striatum during reward anticipation in a large (n=206) sample of adolescent smokers. Increased smoking frequency was associated with 1) increased connectivity with regions involved in saliency and valuation, including the orbitofrontal cortex; 2) reduced connectivity between the ventral striatum and regions associated with inhibition and risk aversion, including the right inferior frontal gyrus. These results demonstrate that functional connectivity during reward processing is relevant to adolescent addiction. PMID:27074029

  13. Formal monkey linguistics : The debate

    NARCIS (Netherlands)

    Schlenker, Philippe; Chemla, Emmanuel; Schel, Anne M.; Fuller, James; Gautier, Jean Pierre; Kuhn, Jeremy; Veselinović, Dunja; Arnold, Kate; Cäsar, Cristiane; Keenan, Sumir; Lemasson, Alban; Ouattara, Karim; Ryder, Robin; Zuberbühler, Klaus

    2016-01-01

    We explain why general techniques from formal linguistics can and should be applied to the analysis of monkey communication - in the areas of syntax and especially semantics. An informed look at our recent proposals shows that such techniques needn't rely excessively on categories of human language:

  14. Ventral striatum lesions enhance stimulus and response encoding in dorsal striatum.

    Science.gov (United States)

    Burton, Amanda C; Bissonette, Gregory B; Lichtenberg, Nina T; Kashtelyan, Vadim; Roesch, Matthew R

    2014-01-15

    The development of addiction is thought to reflect a transition from goal-directed to stimulus-response driven behavior, functions attributed to ventral (VS) and dorsal striatum (DS), respectively. In line with this theory, neuroadaptations that occur during prolonged drug use progress from VS to DS. Here we ask if VS dysfunction alone, independent of drug use, can affect neural selectivity in DS. To address this issue, we recorded from single neurons in DS while rats performed an odor-guided choice task for differently valued rewards in rats with and without unilateral VS lesions. In a separate group of animals, we used bilateral VS lesions to determine if VS was critical for performance on this task. We describe data showing that unilateral lesions of VS enhance neural representations in DS during performance of a task that is dependent on VS. Furthermore, we show that VS is critical for reward-guided decision-making initially, but that rats regain function after several days. These results suggest that loss of VS function, independent of chronic drug use, can trigger stronger encoding in DS in a reward-guided decision-making task and that the transition from VS to DS governed behavior observed in addiction might be due, in part, to initial loss of VS function. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification

    Science.gov (United States)

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…

  16. DRD3 gene and striatum in autism spectrum disorder

    NARCIS (Netherlands)

    Staal, W.G.; Langen, M.; Dijk, S. van; Mensen, V.T.; Durston, S.

    2015-01-01

    A single-nucleotide polymorphism (SNP) of the DRD3 gene (rs167771) was recently associated with autism spectrum disorders (ASD). Different polymorphisms of rs167771 corresponded to varying degrees of stereotyped behaviour. As DRD3 receptors are relatively overexpressed in the striatum, we

  17. Immunization with a recombinant fowlpox virus expressing a hepatitis C virus core-E1 polyprotein variant, protects mice and African green monkeys (Chlorocebus aethiops sabaeus) against challenge with a surrogate vaccinia virus.

    Science.gov (United States)

    Alvarez-Lajonchere, Liz; Amador-Cañizares, Yalena; Frías, Roberto; Milian, Yoamel; Musacchio, Alexis; Guerra, Ivis; Acosta-Rivero, Nelson; Martínez, Gillian; Castro, Jorge; Puentes, Pedro; Cosme, Karelia; Dueñas-Carrera, Santiago

    2008-10-01

    HCV (hepatitis C virus) is a worldwide health problem nowadays. No preventive vaccine is available against this pathogen, and therapeutic treatments currently in use have important drawbacks, including limited efficacy. In the present work a recombinant fowlpox virus, FPCoE1, expressing a truncated HCV core-E1 polyprotein, was generated. FPCoE1 virus generally failed to elicit a humoral immune response against HCV antigens in BALB/c mice. By contrast, mice inoculated with FPCoE1 elicited a positive interferon-gamma secretion response against HCV core in ex-vivo ELISPOT (enzyme-linked immunospot) assays. Remarkably, mice inoculated with FPCoE1 significantly controlled viraemia in a surrogate challenge model with vvRE, a recombinant vaccinia virus expressing HCV structural antigens. In fact, 40% of the mice had no detectable levels of vvRE in their ovaries. Administration of FPCoE1 in vervet monkeys [Chlorocebus (formerly Cercophitecus) aethiops sabaeus] induced lymphoproliferative response against HCV core and E1 proteins in 50% of immunized animals. Monkeys immunized with FPCoE1 had no detectable levels of vvRE in their blood, whereas monkeys inoculated with FP9, the negative control virus, had detectable levels of vvRE in blood up to 7 days after challenge. In conclusion, recombinant fowlpox virus FPCoE1 is able to induce an anti-HCV immune response in mice and monkeys. This ability could be rationally employed to develop effective strategies against HCV infection by using FPCoE1 in combination with other vaccine candidates or antiviral treatments.

  18. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol reinforcement

    NARCIS (Netherlands)

    Spoelder, M.; Hesseling, P.; Styles, M.; Baars, A.M.; Lozeman-van 't Klooster, J.G.; Lesscher, H.M.; Vanderschuren, L.J.

    2017-01-01

    Dopaminergic neurotransmission in the striatum has been widely implicated in the reinforcing properties of substances of abuse. However, the striatum is functionally heterogeneous, and previous work has mostly focused on psychostimulant drugs. Therefore, we investigated how dopamine within striatal

  19. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol Reinforcement

    NARCIS (Netherlands)

    Spoelder, Marcia; Hesseling, Peter; Styles, Matthew; Baars, Annemarie M; Lozeman-van 't Klooster, José G; Lesscher, Heidi M B; Vanderschuren, Louk J M J

    Dopaminergic neurotransmission in the striatum has been widely implicated in the reinforcing properties of substances of abuse. However, the striatum is functionally heterogeneous, and previous work has mostly focused on psychostimulant drugs. Therefore, we investigated how dopamine within striatal

  20. File list: His.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Corpus_Striatum mm9 Histone Neural Corpus Striatum SRX686034,SRX68...686038,SRX686037 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Corpus_Striatum.bed ...

  1. File list: Oth.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148355,SRX148352,SRX148353 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Corpus_Striatum.bed ...

  2. File list: His.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Corpus_Striatum mm9 Histone Neural Corpus Striatum SRX323783,SRX68...686034,SRX686033 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Corpus_Striatum.bed ...

  3. File list: Oth.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148353,SRX148355,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Corpus_Striatum.bed ...

  4. File list: Oth.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148355,SRX148353,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Corpus_Striatum.bed ...

  5. File list: InP.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686031...,SRX686032,SRX657170,SRX657175 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Corpus_Striatum.bed ...

  6. File list: ALL.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX323783,...034,SRX686033,SRX148353,SRX657175,SRX657170,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Corpus_Striatum.bed ...

  7. File list: Pol.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...4,SRX657179,SRX657173,SRX657178 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Corpus_Striatum.bed ...

  8. File list: InP.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686031...,SRX686032,SRX657170,SRX657175 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Corpus_Striatum.bed ...

  9. File list: Unc.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Corpus_Striatum.bed ...

  10. File list: Unc.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Corpus_Striatum.bed ...

  11. File list: Pol.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...3,SRX657178,SRX657174,SRX657179 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Corpus_Striatum.bed ...

  12. File list: InP.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686031...,SRX686032,SRX657175,SRX657170 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Corpus_Striatum.bed ...

  13. File list: Oth.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148355,SRX148353,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Corpus_Striatum.bed ...

  14. File list: Pol.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...4,SRX657179,SRX657178,SRX657173 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Corpus_Striatum.bed ...

  15. File list: Pol.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...3,SRX657178,SRX657179,SRX657174 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Corpus_Striatum.bed ...

  16. File list: ALL.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX686038,...356,SRX148353,SRX148355,SRX657170,SRX657175,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Corpus_Striatum.bed ...

  17. File list: Unc.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Corpus_Striatum.bed ...

  18. File list: Unc.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Corpus_Striatum.bed ...

  19. File list: InP.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686032...,SRX686031,SRX657170,SRX657175 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Corpus_Striatum.bed ...

  20. File list: ALL.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX686034,...355,SRX657170,SRX657175,SRX148352,SRX686037,SRX148353 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Corpus_Striatum.bed ...

  1. File list: ALL.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX686035,...033,SRX148353,SRX657170,SRX657175,SRX323781,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Corpus_Striatum.bed ...

  2. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum.

    Science.gov (United States)

    Grondin, Richard; Kaytor, Michael D; Ai, Yi; Nelson, Peter T; Thakker, Deepak R; Heisel, Jennifer; Weatherspoon, Marcy R; Blum, Janelle L; Burright, Eric N; Zhang, Zhiming; Kaemmerer, William F

    2012-04-01

    Huntington's disease is caused by expression of a mutant form of Huntingtin protein containing an expanded polyglutamine repeat. One possible treatment for Huntington's disease may be to reduce expression of mutant Huntingtin in the brain via RNA interference. Unless the therapeutic molecule is designed to be allele-specific, both wild-type and mutant protein will be suppressed by an RNA interference treatment. A key question is whether suppression of wild-type as well as mutant Huntingtin in targeted brain regions can be tolerated and result in a net benefit to patients with Huntington's disease. Whether Huntingtin performs essential functions in the adult brain is unclear. Here, we tested the hypothesis that the adult primate brain can tolerate moderately reduced levels of wild-type Huntingtin protein for an extended period of time. A serotype 2 adeno-associated viral vector encoding for a short hairpin RNA targeting rhesus huntingtin messenger RNA (active vector) was bilaterally injected into the striatum of four adult rhesus monkeys. Four additional animals received a comparable vector encoding a scrambled control short hairpin RNA (control vector). General health and motor behaviour were monitored for 6 months. Upon termination, brain tissues were sampled and assessed blindly for (i) huntingtin messenger RNA knockdown; (ii) Huntingtin protein expression; and (iii) neuropathological changes. Reduction in wild-type huntingtin messenger RNA levels averaging ∼30% was measured in the striatum of active vector recipients 6 months post-injection. A widespread reduction in Huntingtin protein levels was also observed by immunohistochemistry in these animals, with an average protein reduction of ∼45% relative to controls measured by western blot analysis in the putamen of active vector recipients. As with control vector recipients, no adverse effects were observed behaviourally, and no neurodegeneration was found on histological examination of active vector

  3. Preferential reactivation of motivationally relevant information in the ventral striatum.

    Science.gov (United States)

    Lansink, Carien S; Goltstein, Pieter M; Lankelma, Jan V; Joosten, Ruud N J M A; McNaughton, Bruce L; Pennartz, Cyriel M A

    2008-06-18

    Spontaneous "off-line" reactivation of neuronal activity patterns may contribute to the consolidation of memory traces. The ventral striatum exhibits reactivation and has been implicated in the processing of motivational information. It is unknown, however, whether reactivating neuronal ensembles specifically recapitulate information relating to rewards that were encountered during wakefulness. We demonstrate a prolonged reactivation in rat ventral striatum during quiet wakefulness and slow-wave but not rapid eye movement sleep. Reactivation of reward-related information processed in this structure was particularly prominent, and this was primarily attributable to spike trains temporally linked to reward sites. It was accounted for by small, strongly correlated subgroups in recorded cell assemblies and can thus be characterized as a sparse phenomenon. Our results indicate that reactivated memory traces may not only comprise feature- and context-specific information but also contain a value component.

  4. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    suggest a dopaminergic basis of monetary losses in pathological gambling, which might explain loss-chasing behavior. The findings may have implications for the understanding of dopamine dysfunctions and impaired decision-making in pathological gambling and substance-related addictions.......Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...

  5. Hematology and Clinical Chemistry Measures During and After Pregnancy and Age- and Sex-Specific Reference Intervals in African Green Monkeys (Chlorocebus aethiops sabaeus).

    Science.gov (United States)

    Chichester, Lee; Gee, Melaney K; Jorgensen, Matthew J; Kaplan, Jay R

    2015-07-01

    Clinical decisions and experimental analyses often involve the assessment of hematology and clinical chemistry. Using clinical pathology to assess the health status of NHP in breeding colonies or data from studies than involve pregnancy can often be complicated by pregnancy status. This study had 2 objectives regarding the hematology and clinical chemistry of African green monkeys (AGM, Chlorocebus aethiops sabaeus): 1) to compare pregnant or recently postpartum animals with nonpregnant, nonlactating animals and 2) to create age- and sex-specific reference intervals. Subjects in this study were 491 AGM from the Vervet Research Colony of the Wake Forest University Primate Center. Results indicated that changes in BUN, serum total protein, albumin, ALP, GGT, calcium, phosphorus, sodium, potassium, cholesterol, total CO2, globulins, lipase, amylase, WBC, neutrophils, lymphocytes, platelets, RBC, Hgb, and Hct occur during pregnancy and the postpartum period. Age- and sex-specific reference intervals consistent with guidelines from the American Society for Veterinary Clinical Pathology were established and further expand the understanding of how to define health in AGM on the basis of clinical pathology. The combination of understanding the changes that occur in pregnancy and postpartum and expansive reference intervals will help guide clinical and experimental decisions.

  6. Nicotine increases stress-induced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum.

    Science.gov (United States)

    Takahashi, H; Takada, Y; Nagai, N; Urano, T; Takada, A

    1998-03-01

    We used a microdialysis technique to analyze the effects of footshock stress on the release of serotonin (5-hydroxytryptamine: 5-HT) in the striatum or prefrontal cortex (PFC) in rats that were pretreated with nicotine. Neither nicotine administration alone nor stress application alone changed 5-HT release. During stress application, however, both chronic nicotine administration and local infusion of nicotine to the striatum significantly increased 5-HT release in the striatum, though not in the PFC. These increases in 5-HT release were eradicated by a local infusion of mecamylamine. Release of 5-HT increased in the striatum during stress application when nicotine was injected to the striatum, while nicotinic injection to the dorsal raphe nucleus did not increase 5-HT release in the striatum. The present study demonstrates that nicotine induced a release of 5-HT upon stress application by stimulating presynaptic nicotinic receptors in the striatum.

  7. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  8. Modeling influences of dopamine on synchronization behavior of striatum.

    Science.gov (United States)

    Çakir, Yüksel

    2017-01-01

    A network model of striatum that comprises medium spiny neurons (MSNs) and fast spiking interneurons (FSIs) is constructed following the work of Humphries et al. (2009). The dynamic behavior of striatum microcircuit is investigated using a dopamine-modulated modified Izhikevich neuron model. The influences of dopamine on the synchronization behavior of the striatal microcircuit and the dependence on receptor type are investigated with and without time delay. To investigate the role of two types of dopamine receptors, D1 and D2, on the overall activity of the striatum microcircuit, the activities of two groups are considered as disconnected and connected. When the connection exists between D1 and D2 sub-networks with zero dopamine and time delay, neuronal activity decreases because of an inhibitory effect of the connected neurons of the other sub-network. In the presence of dopamine, an increase in the activity of D1 type MSNs and quiescent behavior of D2 type MSNs are observed when the time delay is zero. However, the diversity in synchronization of D1 and D2 type MSNs is observed for different synaptic time delays and synaptic strengths in the case that dopamine is present.

  9. Different dorsal striatum circuits mediate action discrimination and action generalization

    Science.gov (United States)

    Hilario, Mónica; Holloway, Terrell; Jin, Xin; Costa, Rui M.

    2012-01-01

    Generalization is an important process that allows animals to extract rules from regularities of past experience and apply them to analogous situations. In particular, the generalization of previously learned actions to novel instruments allows animals to use past experience to act faster and more efficiently in an ever-changing environment. However, generalization of actions to a dissimilar instrument or situation may also be detrimental. In this study, we investigate the neural bases of action generalization and discrimination in mice trained on a lever-pressing task. Using specific schedules of reinforcement known to bias animals towards habitual or goal-directed behaviors, we confirmed that action generalization is more prominent in animals using habitual rather than goal-directed strategies. We uncovered that selective excitotoxic lesions of the dorsolateral and dorsomedial striatum have opposite effects on the generalization of a previously learned action to a novel lever. While lesions of the dorsolateral striatum impair action generalization, dorsomedial striatum lesions affect action discrimination and bias subjects towards action generalization. Importantly, these lesions do not affect the ability of animals to explore or match their lever-pressing rate to the reinforcement rate, or the ability to distinguish between different levers. The data presented here reveal that dorsolateral and dorsomedial striatal circuits have opposing roles in the generalization of previously learned actions to novel instruments, and suggest that these circuits compete for the expression of generalization in novel situations. PMID:22487040

  10. The Crossed Projection to the Striatum in Two Species of Monkey and in Humans: Behavioral and Evolutionary Significance

    DEFF Research Database (Denmark)

    Innocenti, Giorgio M.; Dyrby, Tim Bjørn; Andersen, Kasper Winther

    2017-01-01

    -striatal projections originate from prefrontal, premotor, and motor areas. In humans, we discovered a new projection originating from superior parietal lobule, supramarginal, and superior temporal gyrus, regions engaged in language processing. This projection crosses in the isthmus the lesion of which was reported...

  11. [The striatum and the organization of forced swimming in rats].

    Science.gov (United States)

    Batrurin, V A; Shchetinin, E V; Arushanian, E B; Manzhikova, G I

    1989-01-01

    Prolonged repeated electric stimulation of rats striatum causes stable behavioural depression and reorganization of temporal dynamics of forced swimming. Simultaneously increases the depression index offered by us as ratio of the number of immobilization cycles shorter than 6 s to the total number of active swimming cycles. Striatectomy and amphetamine administration (1 mg/kg) uniformly change the rhythmic structure of swimming with an increase of animals general motor activity without change of the depression index. It is suggested to use striatal inactivation as a model of depression state.

  12. Fatal attraction: ventral striatum predicts costly choice errors in humans.

    Science.gov (United States)

    Chumbley, J R; Tobler, P N; Fehr, E

    2014-04-01

    Animals approach rewards and cues associated with reward, even when this behavior is irrelevant or detrimental to the attainment of these rewards. Motivated by these findings we study the biology of financially-costly approach behavior in humans. Our subjects passively learned to predict the occurrence of erotic rewards. We show that neuronal responses in ventral striatum during this Pavlovian learning task stably predict an individual's general tendency towards financially-costly approach behavior in an active choice task several months later. Our data suggest that approach behavior may prevent some individuals from acting in their own interests. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Role of the striatum in language: Syntactic and conceptual sequencing.

    Science.gov (United States)

    Chan, Shiao-Hui; Ryan, Lee; Bever, Thomas G

    2013-06-01

    The basal ganglia (BG) have long been associated with cognitive control, and it is widely accepted that they also subserve an indirect, control role in language. Nevertheless, it cannot be completely ruled out that the BG may be involved in language in some domain-specific manner. The present study aimed to investigate one type of cognitive control-sequencing, a function that has long been connected with the BG-and to test whether the BG could be specifically implicated in language. Participants were required to rearrange materials sequentially based on linguistic (syntactic or conceptual) or non-linguistic (order switching) rules, or to repeat a previously ordered sequence as a control task. Functional magnetic resonance imaging (fMRI) data revealed a strongly active left-lateralized corticostriatal network, encompassing the anterior striatum, dorsolaterial and ventrolateral prefrontal cortex and presupplementary motor area, while the participants were sequencing materials using linguistic vs. non-linguistic rules. This functional network has an anatomical basis and is strikingly similar to the well-known associative loop implicated in sensorimotor sequence learning. We concluded that the anterior striatum has extended its original sequencing role and worked in concert with frontal cortical regions to subserve the function of linguistic sequencing in a domain-specific manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Respiratory infection by Corynebacterium striatum: epidemiological and clinical determinants

    Directory of Open Access Journals (Sweden)

    F. Renom

    2014-07-01

    Full Text Available The increasing prevalence of advanced chronic respiratory disease, with frequent exposure to broad-spectrum antibiotics for repeated and prolonged hospitalizations, favours the emergence of nosocomial respiratory infection by Gram-positive bacteria, such as outbreaks of Corynebacterium striatum. There is little evidence about patterns of respiratory infection, transmission and adaptive ability of this pathogen. Seventy-two C. striatum isolates from 51 advanced respiratory patients, mainly chronic obstructive pulmonary disease, were studied during 38 months. Patients were 74.8 ± 8.6 years old and 81.9% were men, who had required an average of 2.2 hospitalizations and 63.5 days in the hospital in the previous year. Of 49 isolates from 42 patients we were able to identify 12 clones by multilocus sequence analysis (MLSA, nine phenotypic variants and 22 antibiotic susceptibility patterns, and we determined their clinical and epidemiological determinants. MLSA allows identification of the existence of nosocomial outbreaks by transmission of the same or different clones, the persistence of the same clone in the environment or in patient airways for months. The study showed the high variability and adaptive capacity of the isolates, the antibiotic multidrug-resistance in all of them, and their contribution to a high morbidity and mortality (41% during the study period.

  15. Metacognition in monkeys during an oculomotor task.

    Science.gov (United States)

    Middlebrooks, Paul G; Sommer, Marc A

    2011-03-01

    This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn maximum reward, they had to monitor their decision and use that information to bet advantageously. Two monkeys learned to base their bets on their decisions within a few weeks. We implemented an operational definition of metacognitive behavior that relied on trial-by-trial analyses and signal detection theory. Both monkeys exhibited metacognition according to these quantitative criteria. Neither external visual cues nor potential reaction time cues explained the betting behavior; the animals seemed to rely exclusively on internal traces of their decisions. We documented the learning process of one monkey. During a 10-session transition phase, betting switched from random to a decision-based strategy. The results reinforce previous findings of metacognitive ability in monkeys and may facilitate the neurophysiological investigation of metacognitive functions. 2011 APA, all rights reserved

  16. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    NARCIS (Netherlands)

    Willuhn, Ingo; Burgeno, Lauren M; Groblewski, Peter A; Phillips, Paul E M

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured

  17. Language Processing within the Striatum: Evidence from a PET Correlation Study in Huntington's Disease

    Science.gov (United States)

    Teichmann, Marc; Gaura, Veronique; Demonet, Jean-Francois; Supiot, Frederic; Delliaux, Marie; Verny, Christophe; Renou, Pierre; Remy, Philippe; Bachoud-Levi, Anne-Catherine

    2008-01-01

    The role of sub-cortical structures in language processing, and more specifically of the striatum, remains controversial. In line with psycholinguistic models stating that language processing implies both the recovery of lexical information and the application of combinatorial rules, the striatum has been claimed to be involved either in the…

  18. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    NARCIS (Netherlands)

    Willuhn, Ingo; Burgeno, Lauren M.; Groblewski, Peter A.; Phillips, Paul E. M.

    2014-01-01

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured

  19. Response inhibition signals and miscoding of direction in dorsomedial striatum

    Directory of Open Access Journals (Sweden)

    Daniel W Bryden

    2012-09-01

    Full Text Available The ability to inhibit action is critical for everyday behavior and is affected by a variety of disorders. Behavioral control and response inhibition is thought to depend on a neural circuit that includes the dorsal striatum, yet the neural signals that lead to response inhibition and its failure are unclear. To address this issue, we recorded from neurons in rat dorsomedial striatum (mDS in a novel task in which rats responded to a spatial cue that signaled that reward would be delivered either to the left or to the right. On 80% of trials rats were instructed to respond in the direction cued by the light (GO. On 20% of trials a second light illuminated instructing the rat to refrain from making the cued movement and move in the opposite direction (STOP. Many neurons in mDS encoded direction, firing more or less strongly for GO movements made ipsilateral or contralateral to the recording electrode. Neurons that fired more strongly for contralateral GO responses were more active when rats were faster, showed reduced activity on STOP trials, and miscoded direction on errors, suggesting that when these neurons were overly active, response inhibition failed. Neurons that decreased firing for contralateral movement were excited during trials in which the rat was required to stop the ipsilateral movement. For these neurons activity was reduced when errors were made and was negatively correlated with movement time suggesting that when these neurons were less active on STOP trials, response inhibition failed. Finally, the activity of a significant number of neurons represented a global inhibitory signal, firing more strongly during response inhibition regardless of response direction. Breakdown by cell type suggests that putative medium spiny neurons tended to fire more strongly under STOP trials, whereas putative interneurons exhibited both activity patterns. 

  20. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Delay of gratification in capuchin monkeys (Cebus apella) and squirrel monkeys (Saimiri sciureus).

    Science.gov (United States)

    Anderson, James R; Kuroshima, Hika; Fujita, Kazuo

    2010-05-01

    In two separate series of experiments four capuchin monkeys (Cebus apella) and four squirrel monkeys (Saimiri sciureus) were given demonstration trials in which a human transferred six pieces of food, one by one, from out of each monkey's reach to within reach. On test trials the monkey could reach for the transferred food at any time, an action that ended the trial. Therefore, it was in the monkey's interest to allow food items to accumulate before reaching for food. No capuchin monkey showed delay of gratification in the first phase of testing. An attempt to facilitate performance by presenting a single free food item immediately before the transfer failed (Phase 2). In Phase 3, when the transferred food items increased progressively in size, two capuchins maintained delays, and frequently waited for all 6 items to accumulate. One squirrel monkey started to delay gratification in Phase 1, and another did so in Phase 3. A return to single-sized food items did not impair the monkeys' ability to delay. Short (1 s) interitem delays were generally easier to maintain than longer delays (3 or 5 s). In both species the delaying individuals bridged the delays idiosyncratically. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  2. An Infectious Clone of Woolly Monkey Hepatitis B Virus

    OpenAIRE

    Lanford, Robert E.; Chavez, Deborah; Barrera, Azeneth; Brasky, Kathleen M.

    2003-01-01

    Members of the Hepadnaviridae family have been isolated from birds, rodents, and primates. A new hepadnavirus isolated from the woolly monkey, a New World primate, is phylogenetically distinct from other primate isolates. An animal model has been established for woolly monkey hepatitis B virus (WMHBV) by using spider monkeys, since woolly monkeys are endangered. In this study, a greater-than-genome length construct was prepared without amplification by using covalently closed circular DNA ext...

  3. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio

    2017-05-01

    The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Monkey Bites among US Military Members, Afghanistan, 2011

    Science.gov (United States)

    Baker, Katheryn A.

    2012-01-01

    Bites from Macaca mulatta monkeys, native to Afghanistan, can cause serious infections. To determine risk for US military members in Afghanistan, we reviewed records for September–December 2011. Among 126 animal bites and exposures, 10 were monkey bites. Command emphasis is vital for preventing monkey bites; provider training and bite reporting promote postexposure treatment. PMID:23017939

  5. Experimental infection of squirrel monkeys with nipah virus.

    Science.gov (United States)

    Marianneau, Philippe; Guillaume, Vanessa; Wong, Thong; Badmanathan, Munisamy; Looi, Ren Yih; Murri, Severine; Loth, Philippe; Tordo, Noel; Wild, Fabian; Horvat, Branka; Contamin, Hugues

    2010-03-01

    We infected squirrel monkeys (Saimiri sciureus) with Nipah virus to determine the monkeys' suitability for use as primate models in preclinical testing of preventive and therapeutic treatments. Infection of squirrel monkeys through intravenous injection was followed by high death rates associated with acute neurologic and respiratory illness and viral RNA and antigen production.

  6. Basic math in monkeys and college students.

    Science.gov (United States)

    Cantlon, Jessica F; Brannon, Elizabeth M

    2007-12-01

    Adult humans possess a sophisticated repertoire of mathematical faculties. Many of these capacities are rooted in symbolic language and are therefore unlikely to be shared with nonhuman animals. However, a subset of these skills is shared with other animals, and this set is considered a cognitive vestige of our common evolutionary history. Current evidence indicates that humans and nonhuman animals share a core set of abilities for representing and comparing approximate numerosities nonverbally; however, it remains unclear whether nonhuman animals can perform approximate mental arithmetic. Here we show that monkeys can mentally add the numerical values of two sets of objects and choose a visual array that roughly corresponds to the arithmetic sum of these two sets. Furthermore, monkeys' performance during these calculations adheres to the same pattern as humans tested on the same nonverbal addition task. Our data demonstrate that nonverbal arithmetic is not unique to humans but is instead part of an evolutionarily primitive system for mathematical thinking shared by monkeys.

  7. Physiology responses of Rhesus monkeys to vibration

    Science.gov (United States)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  8. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation

    Directory of Open Access Journals (Sweden)

    Todd M. Mowery

    2017-06-01

    Full Text Available Corticostriatal circuits play a fundamental role in regulating many behaviors, and their dysfunction is associated with many neurological disorders. In contrast, sensory disorders, like hearing loss (HL, are commonly linked with processing deficits at or below the level of the auditory cortex (ACx. However, HL can be accompanied by non-sensory deficits, such as learning delays, suggesting the involvement of regions downstream of ACx. Here, we show that transient developmental HL differentially affected the ACx and its downstream target, the sensory striatum. Following HL, both juvenile ACx layer 5 and striatal neurons displayed an excitatory-inhibitory imbalance and lower firing rates. After hearing was restored, adult ACx neurons recovered balanced excitatory-inhibitory synaptic gain and control-like firing rates, but striatal neuron synapses and firing properties did not recover. Thus, a brief period of abnormal cortical activity may induce cellular impairments that persist into adulthood and contribute to neurological disorders that are striatal in origin.

  9. Nutrition of flexor tendons in monkeys.

    Science.gov (United States)

    Manske, P R; Bridwell, K; Whiteside, L A; Lesker, P A

    1978-10-01

    The hydrogen washout technique was used to investigate the role of synovial diffusion versus vascular perfusion in the nutrition of monkey flexor tendons within the digital sheath. There was no significant difference in the uptake and washout of hydrogen tracer by tendons in contact with synovium but detached from the surrounding vasculature, compared to control tendons. However, there was insignificant uptake of tracer by tendons with intact vasculature, but separated from synovium. Synovial diffusion is a primary nutrient pathway of monkey flexor tendons within the digital sheath.

  10. Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory.

    Science.gov (United States)

    Akhlaghpour, Hessameddin; Wiskerke, Joost; Choi, Jung Yoon; Taliaferro, Joshua P; Au, Jennifer; Witten, Ilana B

    2016-09-16

    Several lines of evidence suggest that the striatum has an important role in spatial working memory. The neural dynamics in the striatum have been described in tasks with short delay periods (1-4 s), but remain largely uncharacterized for tasks with longer delay periods. We collected and analyzed single unit recordings from the dorsomedial striatum of rats performing a spatial working memory task with delays up to 10 s. We found that neurons were activated sequentially, with the sequences spanning the entire delay period. Surprisingly, this sequential activity was dissociated from stimulus encoding activity, which was present in the same neurons, but preferentially appeared towards the onset of the delay period. These observations contrast with descriptions of sequential dynamics during similar tasks in other brains areas, and clarify the contribution of the striatum to spatial working memory.

  11. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction.

    Science.gov (United States)

    Brand, Matthias; Snagowski, Jan; Laier, Christian; Maderwald, Stefan

    2016-04-01

    One type of Internet addiction is excessive pornography consumption, also referred to as cybersex or Internet pornography addiction. Neuroimaging studies found ventral striatum activity when participants watched explicit sexual stimuli compared to non-explicit sexual/erotic material. We now hypothesized that the ventral striatum should respond to preferred pornographic compared to non-preferred pornographic pictures and that the ventral striatum activity in this contrast should be correlated with subjective symptoms of Internet pornography addiction. We studied 19 heterosexual male participants with a picture paradigm including preferred and non-preferred pornographic materials. Subjects had to evaluate each picture with respect to arousal, unpleasantness, and closeness to ideal. Pictures from the preferred category were rated as more arousing, less unpleasant, and closer to ideal. Ventral striatum response was stronger for the preferred condition compared to non-preferred pictures. Ventral striatum activity in this contrast was correlated with the self-reported symptoms of Internet pornography addiction. The subjective symptom severity was also the only significant predictor in a regression analysis with ventral striatum response as dependent variable and subjective symptoms of Internet pornography addiction, general sexual excitability, hypersexual behavior, depression, interpersonal sensitivity, and sexual behavior in the last days as predictors. The results support the role for the ventral striatum in processing reward anticipation and gratification linked to subjectively preferred pornographic material. Mechanisms for reward anticipation in ventral striatum may contribute to a neural explanation of why individuals with certain preferences and sexual fantasies are at-risk for losing their control over Internet pornography consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Corynebacterium striatum: An emerging nosocomial pathogen in a case of laryngeal carcinoma

    OpenAIRE

    I Biswal; Mohapatra, S.; M Deb; Dawar, R.; Gaind, R.

    2014-01-01

    Corynebacterium striatum is an emerging nosocomial pathogen associated with wound infections, pneumonia and meningitis. It is also a multidrug-resistant pathogen causing high morbidity. This is a report of an unusual case of wound infection in a patient with laryngeal carcinoma. Accurate diagnosis of the infection and prompt management helped in a favourable outcome for the patient. This case highlights the role of C. striatum as an important nosocomial pathogen in immunocompromised patients.

  13. Corynebacterium striatum: an emerging nosocomial pathogen in a case of laryngeal carcinoma.

    Science.gov (United States)

    Biswal, I; Mohapatra, S; Deb, M; Dawar, R; Gaind, R

    2014-01-01

    Corynebacterium striatum is an emerging nosocomial pathogen associated with wound infections, pneumonia and meningitis. It is also a multidrug-resistant pathogen causing high morbidity. This is a report of an unusual case of wound infection in a patient with laryngeal carcinoma. Accurate diagnosis of the infection and prompt management helped in a favourable outcome for the patient. This case highlights the role of C. striatum as an important nosocomial pathogen in immunocompromised patients.

  14. Corynebacterium striatum: An emerging nosocomial pathogen in a case of laryngeal carcinoma

    Directory of Open Access Journals (Sweden)

    I Biswal

    2014-01-01

    Full Text Available Corynebacterium striatum is an emerging nosocomial pathogen associated with wound infections, pneumonia and meningitis. It is also a multidrug-resistant pathogen causing high morbidity. This is a report of an unusual case of wound infection in a patient with laryngeal carcinoma. Accurate diagnosis of the infection and prompt management helped in a favourable outcome for the patient. This case highlights the role of C. striatum as an important nosocomial pathogen in immunocompromised patients.

  15. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks.

    Science.gov (United States)

    Shivkumar, Sabyasachi; Muralidharan, Vignesh; Chakravarthy, V Srinivasa

    2017-01-01

    Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks.

  16. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks

    Directory of Open Access Journals (Sweden)

    Sabyasachi Shivkumar

    2017-06-01

    Full Text Available Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks.

  17. In vivo evidence of neurophysiological maturation of the human adolescent striatum

    Directory of Open Access Journals (Sweden)

    Bart Larsen

    2015-04-01

    Full Text Available Maturation of the striatum has been posited to play a primary role in observed increases in adolescent sensation-seeking. However, evidence of neurophysiological maturation in the human adolescent striatum is limited. We applied T2*-weighted imaging, reflecting indices of tissue–iron concentration, to provide direct in vivo evidence of neurophysiological development of the human adolescent striatum. Multivariate pattern analysis (MVPA of striatal T2*-weighted signal generated age predictions that accounted for over 60% of the sample variance in 10–25 year olds, using both task-related and resting state fMRI. Dorsal and ventral striatum showed age related increases and decreases respectively of striatal neurophysiology suggesting qualitative differences in the maturation of limbic and executive striatal systems. In particular, the ventral striatum was found to show the greatest developmental differences and contribute most heavily to the multivariate age predictor. The relationship of the T2*-weighted signal to the striatal dopamine system is discussed. Together, results provide evidence for protracted maturation of the striatum through adolescence.

  18. Dorsal striatum is necessary for stimulus-value but not action-value learning in humans.

    Science.gov (United States)

    Vo, Khoi; Rutledge, Robb B; Chatterjee, Anjan; Kable, Joseph W

    2014-12-01

    Several lines of evidence implicate the striatum in learning from experience on the basis of positive and negative feedback. However, the necessity of the striatum for such learning has been difficult to demonstrate in humans, because brain damage is rarely restricted to this structure. Here we test a rare individual with widespread bilateral damage restricted to the dorsal striatum. His performance was impaired and not significantly different from chance on several classic learning tasks, consistent with current theories regarding the role of the striatum. However, he also exhibited remarkably intact performance on a different subset of learning paradigms. The tasks he could perform can all be solved by learning the value of actions, while those he could not perform can only be solved by learning the value of stimuli. Although dorsal striatum is often thought to play a specific role in action-value learning, we find surprisingly that dorsal striatum is necessary for stimulus-value but not action-value learning in humans. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Analysis of prostate-specific antigen transcripts in chimpanzees, cynomolgus monkeys, baboons, and African green monkeys.

    Directory of Open Access Journals (Sweden)

    James N Mubiru

    Full Text Available The function of prostate-specific antigen (PSA is to liquefy the semen coagulum so that the released sperm can fuse with the ovum. Fifteen spliced variants of the PSA gene have been reported in humans, but little is known about alternative splicing in nonhuman primates. Positive selection has been reported in sex- and reproductive-related genes from sea urchins to Drosophila to humans; however, there are few studies of adaptive evolution of the PSA gene. Here, using polymerase chain reaction (PCR product cloning and sequencing, we study PSA transcript variant heterogeneity in the prostates of chimpanzees (Pan troglodytes, cynomolgus monkeys (Macaca fascicularis, baboons (Papio hamadryas anubis, and African green monkeys (Chlorocebus aethiops. Six PSA variants were identified in the chimpanzee prostate, but only two variants were found in cynomolgus monkeys, baboons, and African green monkeys. In the chimpanzee the full-length transcript is expressed at the same magnitude as the transcripts that retain intron 3. We have found previously unidentified splice variants of the PSA gene, some of which might be linked to disease conditions. Selection on the PSA gene was studied in 11 primate species by computational methods using the sequences reported here for African green monkey, cynomolgus monkey, baboon, and chimpanzee and other sequences available in public databases. A codon-based analysis (dN/dS of the PSA gene identified potential adaptive evolution at five residue sites (Arg45, Lys70, Gln144, Pro189, and Thr203.

  20. Relative density and distribution of Tantalus monkey ...

    African Journals Online (AJOL)

    An analysis of data was conducted using the software package DISTANCE 6.0 to determine population density estimate. Kwada, Yuwe, Jeltere and Balda are the four ranges within the reserve. Considering the number of species sighted, Tantalus monkey is widespread throughout the reserve where it was sighted in all the ...

  1. Accommodative lens refilling in rhesus monkeys

    NARCIS (Netherlands)

    Koopmans, SA; Terwee, T; Glasser, A; Wendt, M; Vilipuru, AS; van Kooten, TG; Norrby, S; Haitjema, HJ; Kooijman, AC

    PURPOSE. Accommodation can be restored to presbyopic human eyes by refilling the capsular bag with a soft polymer. This study was conducted to test whether accommodation, measurable as changes in optical refraction, can be restored with a newly developed refilling polymer in a rhesus monkey model. A

  2. Nutritional and health status of woolly monkeys

    NARCIS (Netherlands)

    Ange-van Heugten, K.D.; Timmer, S.; Jansen, W.L.; Verstegen, M.W.A.

    2008-01-01

    Woolly monkeys (Lagothrix lagotricha and L. flavicauda) are threatened species in the wild and in captivity. Numerous zoological institutions have historically kept Lagothrix lagotricha spp., but only a few of them have succeeded in breeding populations. Therefore the majority of institutions that

  3. Author Details

    African Journals Online (AJOL)

    Observations on the anatomy of the tail in the vervet monkey, cercopithecus, which bear on thermoregulatory function in the organ (Primata: Cercopithecidae) Abstract PDF · Vol 12, No 2 (1977) - Articles A counter-current heat exchange system in the tail of the vervet monkey, Cercopithecus pygerythrus (Primata ...

  4. Agonism and dominance in female blue monkeys.

    Science.gov (United States)

    Klass, Keren; Cords, Marina

    2015-12-01

    Agonistic behavior features prominently in hypotheses that explain how social variation relates to ecological factors and phylogenetic constraints. Dominance systems vary along axes of despotism, tolerance, and nepotism, and comparative studies examine cross-species patterns in these classifications. To contribute to such studies, we present a comprehensive picture of agonistic behavior and dominance relationships in wild female blue monkeys (Cercopithecus mitis), an arboreal guenon, with data from 9 groups spanning 18 years. We assessed where blue monkeys fall along despotic, tolerant, and nepotistic spectra, how their dominance system compares to other primates, primarily cercopithecines, and whether their agonistic behavior matches socioecological model predictions. Blue monkeys showed low rates of mainly low-intensity agonism and little counter-aggression. Rates increased with rank and group size. Dominance asymmetry varied at different organizational levels, being more pronounced at the level of interactions than dyad or group. Hierarchies were quite stable, had moderate-to-high linearity and directional consistency and moderate steepness. There was clear maternal rank inheritance, but inconsistent adherence to Kawamura's rules. There was little between-group variation, although hierarchy metrics showed considerable variation across group-years. Overall, blue monkeys have moderately despotic, moderately tolerant, and nepotistic dominance hierarchies. They resemble other cercopithecines in having significantly linear and steep hierarchies with a generally stable, matriline-based structure, suggesting a phylogenetic basis to this aspect of their social system. Blue monkeys most closely match Sterck et al.'s [1997] Resident-Nepotistic-Tolerant dominance category, although they do not fully conform to predictions of any one socioecological model. Our results suggest that socioecological models might better predict variation within than across clades, thereby

  5. Head Rotation Detection in Marmoset Monkeys

    Science.gov (United States)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  6. Ventromedial Prefrontal Cortex Damage Is Associated with Decreased Ventral Striatum Volume and Response to Reward.

    Science.gov (United States)

    Pujara, Maia S; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2016-05-04

    The ventral striatum and ventromedial prefrontal cortex (vmPFC) are two central nodes of the "reward circuit" of the brain. Human neuroimaging studies have demonstrated coincident activation and functional connectivity between these brain regions, and animal studies have demonstrated that the vmPFC modulates ventral striatum activity. However, there have been no comparable data in humans to address whether the vmPFC may be critical for the reward-related response properties of the ventral striatum. In this study, we used fMRI in five neurosurgical patients with focal vmPFC lesions to test the hypothesis that the vmPFC is necessary for enhancing ventral striatum responses to the anticipation of reward. In support of this hypothesis, we found that, compared with age- and gender-matched neurologically healthy subjects, the vmPFC-lesioned patients had reduced ventral striatal activity during the anticipation of reward. Furthermore, we observed that the vmPFC-lesioned patients had decreased volumes of the accumbens subregion of the ventral striatum. Together, these functional and structural neuroimaging data provide novel evidence for a critical role for the vmPFC in contributing to reward-related activity of the ventral striatum. These results offer new insight into the functional and structural interactions between key components of the brain circuitry underlying human affective function and decision-making. Maladaptive decision-making is a common problem across multiple mental health disorders. Developing new pathophysiologically based strategies for diagnosis and treatment thus requires a better understanding of the brain circuits responsible for adaptive decision-making and related psychological subprocesses (e.g., reward valuation, anticipation, and motivation). Animal studies provide evidence that these functions are mediated through direct interactions between two key nodes of a posited "reward circuit," the ventral striatum and the ventromedial prefrontal

  7. [Drug susceptibility and homologous analysis on Corynebacterium striatum strains isolated from inpatients].

    Science.gov (United States)

    Wang, Junrui; Du, Xiaoli; Cui, Jinghua; Guo, Sufang; Fu, Quan; Wang, Yanyan; Fan, Wenbing; Han, Yanqiu

    2014-08-26

    To explore the molecular epidemiological features and in vitro susceptibility profile of Corynebacterium striatum strains isolated from different sites of inpatients, and further provide new data and idea for clinicians to better get knowledge of the clinical significance of Corynebacterium striatum. Fourty-five strains of Corynebacterium striatum isolated from different sites of inpatients from November, 2013 to March, 2014 in Affiliated hospital of Inner Mongolian medical university, and microdilution method was employed to do in vitro antibiotics susceptibility test. Saline-cotton swab method was used to sample the surrounding environmental surfaces for Corynebacterium striatum carrying patients, and suspected colonies were further identified and in vitro drug susceptibility test were performed. Pulsed Field Gel Electrophoresis(PFGE) method was used to do molecular typing for 41 isolates of Corynebacterium striatum. Fourty-five isolates of Corynebacterium striatum strains were mainly isolated from neurosurgical unit(21 isolates), respiratory unit(8 isolates) and intensive care unit(8 isolates), 39 isolates of which were isolated from lower respiratory tract. The 45 isolates presented an aggregate distribution in the following 3 months, which were December 2013, January 2014 and February 2014.In vitro antibiotics susceptibility test showed that MIC90 for penecillin, erythromycin, tetracycline, ciprofloxacin and clindamycin were 64 µg/ml or higher and the MIC90 for gentamicin, vancomycin and rifampicin were all 0.5 µg/ml. Only one isolate was sensitive to all of the antibiotics tested, except clindamycin. PFGE typing results showed that 41 isolates were divided into 7 genotypes, among which 0002 type and 0006 type were the predominant types and accounted for 63% (26/41) and 22% (9/41), respectively. The isolates from different patients showed high homology, which were isolated from the same unit during the same periods.For surrounding surfaces sampling

  8. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-09-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production.

  9. Effects of nicotine and footshock stress on dopamine release in the striatum and nucleus accumbens.

    Science.gov (United States)

    Takahashi, H; Takada, Y; Nagai, N; Urano, T; Takada, A

    1998-01-01

    We have used a microdialysis technique to analyze the effects of nicotine administration on the release of dopamine in the striatum and the nucleus accumbens (NAC) in rats under footshock stress. In the striatum, neither chronic systemic nicotine administration alone nor stress alone changed the extent of dopamine release. During stress application, however, chronic nicotine administration significantly increased dopamine release. In the NAC, stress did not induce increase in dopamine release in rats given nicotine chronically. However, in rats subjected to stress alone, dopamine release in the NAC was significantly increased after stress. In the striatum, the local infusion of 1.0 mM nicotine increased dopamine release. Furthermore, stress significantly increased nicotine-induced dopamine release. The local infusion of 1.0 mM nicotine into the NAC significantly increased dopamine release, but the levels returned to the baseline 30 min later. On the other hand, stress alone induced the release of dopamine 30 min later and the combination of stress and nicotine induced the release of dopamine during the stress and the effects lasted for 30 min. These results suggest that the responses of nicotine-induced dopamine release were different in the striatum and in the NAC under the stress. Stress and nicotine (systematically or locally administered) induced an immediate effect on dopamine release in the striatum, but in the nucleus accumbens stress alone and the combination of stress and nicotine induced a lasting release of dopamine (DA).

  10. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  11. Dynamic Changes in Acetylcholine Output in the Medial Striatum During Place Reversal Learning

    Science.gov (United States)

    Ragozzino, Michael E.; Choi, Daniel

    2004-01-01

    The present studies explored the role of the medial striatum in learning when taskcontingencies change. Experiment 1 examined whether the medial striatum is involved in place reversal learning. Testing occurred in a modified cross-maze across two consecutive sessions. Injections of the local anesthetic, bupivacaine, into the medial striatum, did not impair place acquisition, but impaired place reversal learning. The reversal-learning deficit was due to an inability to maintain the new choice pattern following the initial shift. Experiment 2 determined whether changes in acetylcholine (ACh) output occur during the acquisition or reversal learning of a place discrimination. Extracellular ACh output from the medial striatum was assessed in samples collected at 6-min intervals using in vivo microdialysis during behavioral testing. ACh output did not change from basal levels during place acquisition. During reversal learning, ACh output significantly increased as rats began to learn the new choice pattern, and returned to near basal levels as a rat reliably executed the new place strategy. The present results suggest that the medial striatum may be critical for flexible adaptations involving spatial information, and that ACh actions in this area enable the shifting of choice patterns when environmental conditions change. PMID:14747519

  12. Multidrug-Resistant Corynebacterium striatum Associated with Increased Use of Parenteral Antimicrobial Drugs

    Science.gov (United States)

    Hahn, William O.; Werth, Brian J.; Butler-Wu, Susan M.

    2016-01-01

    Corynebacterium striatum is an emerging multidrug-resistant bacteria. We retrospectively identified 179 isolates in a clinical database. Clinical relevance, in vitro susceptibility, and length of parenteral antimicrobial drug use were obtained from patient records. For patients with hardware- or device-associated infections, those with C. striatum infections were matched with patients infected with coagulase-negative staphylococci for case–control analysis. A total of 87 (71%) of 121 isolates were resistant to all oral antimicrobial drugs tested, including penicillin, tetracycline, clindamycin, erythromycin, and ciprofloxacin. When isolated from hardware or devices, C. striatum was pathogenic in 38 (87%) of 44 cases. Patients with hardware-associated C. striatum infections received parenteral antimicrobial drugs longer than patients with hardware-associated coagulase-negative staphylococci infections (mean ± SD 69 ± 5 days vs. 25 ± 4 days; p<0.001). C. striatum commonly shows resistance to antimicrobial drugs with oral bioavailability and is associated with increased use of parenteral antimicrobial drugs. PMID:27767926

  13. A freely-moving monkey treadmill model

    Science.gov (United States)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic

  14. Competitive control of cognition in rhesus monkeys.

    Science.gov (United States)

    Kowaguchi, Mayuka; Patel, Nirali P; Bunnell, Megan E; Kralik, Jerald D

    2016-12-01

    The brain has evolved different approaches to solve problems, but the mechanisms that determine which approach to take remain unclear. One possibility is that control progresses from simpler processes, such as associative learning, to more complex ones, such as relational reasoning, when the simpler ones prove inadequate. Alternatively, control could be based on competition between the processes. To test between these possibilities, we posed the support problem to rhesus monkeys using a tool-use paradigm, in which subjects could pull an object (the tool) toward themselves to obtain an otherwise out-of-reach goal item. We initially provided one problem exemplar as a choice: for the correct option, a food item placed on the support tool; for the incorrect option, the food item placed off the tool. Perceptual cues were also correlated with outcome: e.g., red, triangular tool correct, blue, rectangular tool incorrect. Although the monkeys simply needed to touch the tool to register a response, they immediately pulled it, reflecting a relational reasoning process between themselves and another object (Rself-other), rather than an associative one between the arbitrary touch response and reward (Aresp-reward). Probe testing then showed that all four monkeys used a conjunction of perceptual features to select the correct option, reflecting an associative process between stimuli and reward (Astim-reward). We then added a second problem exemplar and subsequent testing revealed that the monkeys switched to using the on/off relationship, reflecting a relational reasoning process between two objects (Rother-other). Because behavior appeared to reflect Rself-other rather than Aresp-reward, and Astim-reward prior to Rother-other, our results suggest that cognitive processes are selected via competitive control dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Trial Outcome and Associative Learning Signals in the Monkey Hippocampus

    National Research Council Canada - National Science Library

    Wirth, Sylvia; Avsar, Emin; Chiu, Cindy C; Sharma, Varun; Smith, Anne C; Brown, Emery; Suzuki, Wendy A

    2009-01-01

    .... To study how hippocampal neurons convey information about reward and trial outcome during new associative learning, we recorded hippocampal neurons as monkeys learned novel object-place associations...

  16. Pertussis toxin treatment modifies opiate action in the rat brain striatum.

    Science.gov (United States)

    Abood, M E; Law, P Y; Loh, H H

    1985-03-15

    In this report we present evidence that a guanine nucleotide regulatory protein, Gi, mediates opiate action in the rat brain striatum. Opiates inhibit basal adenylate cyclase activity in rat brain striatum. This effect on adenylate cyclase is dose-dependently attenuated by pretreatment of membranes with pertussis toxin, which ADP-ribosylates a protein with a molecular mass of 41,000 daltons. This protein co-migrates with the GTP-binding subunit of Gi, which mediates inhibition of adenylate cyclase. Several brain regions were compared for the extent of radiolabeling and effects on adenylate cyclase activity. Although Gi was found in each region examined, opiate inhibition of adenylate cyclase is clearly seen only in the striatum.

  17. The role of the striatum in implicit learning: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Reiss, Jeffrey P; Campbell, Darren W; Leslie, William D; Paulus, Martin P; Stroman, Patrick W; Polimeni, Joseph O; Malcolmson, Kelly A; Sareen, Jitender

    2005-08-22

    Previous research has posited striatal involvement in implicit learning. However, imaging studies have not directly compared learners with non-learners. Using functional magnetic resonance imaging with 15 study participants, we used an implicit learning task previously associated with striatal recruitment. Dorsal and ventral striatum activation was observed in the eight participants who demonstrated implicit learning. Ventral striatum activations occurred to a greater extent in implicit learning versus non-implicit learning participants, and were correlated with the degree of reaction time advantage in implicit learning participants, even after controlling for general decreases in reaction time over time. These findings strengthen the specificity of the striatum in implicit learning and are suggestive of a dissociation of striatal regions relative to elements of implicit learning performance.

  18. A Micro-Silicon Chip for in Vivo Cerebral Imprint in Monkey

    Science.gov (United States)

    2012-01-01

    Access to cerebral tissue is essential to better understand the molecular mechanisms associated with neurodegenerative diseases. In this study, we present, for the first time, a new tool designed to obtain molecular and cellular cerebral imprints in the striatum of anesthetized monkeys. The imprint is obtained during a spatially controlled interaction of a chemically modified micro-silicon chip with the brain tissue. Scanning electron and immunofluorescence microscopies showed homogeneous capture of cerebral tissue. Nano-liquid chromatography–tandem mass spectrometry (nano-LC-MS/MS) analysis of proteins harvested on the chip allowed the identification of 1158 different species of proteins. The gene expression profiles of mRNA extracted from the imprint tool showed great similarity to those obtained via the gold standard approach, which is based on post-mortem sections of the same nucleus. Functional analysis of the harvested molecules confirmed the spatially controlled capture of striatal proteins implicated in dopaminergic regulation. Finally, the behavioral monitoring and histological results establish the safety of obtaining repeated cerebral imprints in striatal regions. These results demonstrate the ability of our imprint tool to explore the molecular content of deep brain regions in vivo. They open the way to the molecular exploration of brain in animal models of neurological diseases and will provide complementary information to current data mainly restricted to post-mortem samples. PMID:23509975

  19. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-09-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatumMethods:The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze.Results:In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups.Discussion:Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  20. Glucocorticoid administration into the dorsolateral but not dorsomedial striatum accelerates the shift from a spatial toward procedural memory

    NARCIS (Netherlands)

    Siller-Perez, C.; Serafin, N.; Prado-Alcala, R.A.; Roozendaal, B.; Quirarte, G.L.

    2017-01-01

    Glucocorticoid stress hormones are known to enhance the consolidation of hippocampus-dependent spatial and contextual memory. Recent findings indicate that glucocorticoids also enhance the consolidation of procedural memory that relies on the dorsal striatum. The dorsal striatum can be functionally

  1. Monkeying around: Use of Survey Monkey as a Tool for School Social Work

    Science.gov (United States)

    Massat, Carol Rippey; McKay, Cassandra; Moses, Helene

    2009-01-01

    This article describes the use of an online survey tool called Survey Monkey, which can be used by school social workers and school social work educators for evaluation of practice, needs assessment, and program evaluation. Examples of questions are given. Principles of writing good survey questions are described. (Contains 2 tables and 1…

  2. Evaluation of diabetes determinants in woolly monkeys (Lagothrix lagotricha)

    NARCIS (Netherlands)

    Ange-van Heugten, K.D.; Burns, R.; Verstegen, M.W.A.; Jansen, W.L.; Ferket, P.R.; Heugten, E.

    2007-01-01

    Woolly monkeys (Lagothrix lagotricha) are a threatened specie in the wild with limited successful management in captivity due to diagnosed hypertension and suspected diabetic conditions. Six woolly monkeys with known hypertension problems were tested to determine if diabetes mellitus and current

  3. Serum Chemistry concentrations of captive Woolly Monkeys (Lagothrix Lagotricha)

    NARCIS (Netherlands)

    Ange-van Heugten, K.D.; Verstegen, M.W.A.; Ferket, P.; Stoskopf, M.; Heugten, van E.

    2008-01-01

    Woolly monkeys (Lagothrix sp.) are threatened species and numerous zoos have failed to sustain successful populations. The most common causes of death in captive woolly monkeys are related to pregnancy and hypertension. The objective of this retrospective study was to evaluate serum concentrations

  4. Sequential responding and planning in capuchin monkeys (Cebus apella).

    Science.gov (United States)

    Beran, Michael J; Parrish, Audrey E

    2012-11-01

    Previous experiments have assessed planning during sequential responding to computer generated stimuli by Old World nonhuman primates including chimpanzees and rhesus macaques. However, no such assessment has been made with a New World primate species. Capuchin monkeys (Cebus apella) are an interesting test case for assessing the distribution of cognitive processes in the Order Primates because they sometimes show proficiency in tasks also mastered by apes and Old World monkeys, but in other cases fail to match the proficiency of those other species. In two experiments, eight capuchin monkeys selected five arbitrary stimuli in distinct locations on a computer monitor in a learned sequence. In Experiment 1, shift trials occurred in which the second and third stimuli were transposed when the first stimulus was selected by the animal. In Experiment 2, mask trials occurred in which all remaining stimuli were masked after the monkey selected the first stimulus. Monkeys made more mistakes on trials in which the locations of the second and third stimuli were interchanged than on trials in which locations were not interchanged, suggesting they had already planned to select a location that no longer contained the correct stimulus. When mask trials occurred, monkeys performed at levels significantly better than chance, but their performance exceeded chance levels only for the first and the second selections on a trial. These data indicate that capuchin monkeys performed very similarly to chimpanzees and rhesus monkeys and appeared to plan their selection sequences during the computerized task, but only to a limited degree.

  5. Perceptual Learning: 12-Month-Olds' Discrimination of Monkey Faces

    Science.gov (United States)

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-01-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following…

  6. Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity

    NARCIS (Netherlands)

    Kalenscher, T.; Lansink, C.S.; Lankelma, J.V.; Pennartz, C.M.A.

    2010-01-01

    Oscillations of local field potentials (LFPs) in the gamma range are found in many brain regions and are supposed to support the temporal organization of cognitive, perceptual, and motor functions. Even though gamma oscillations have also been observed in ventral striatum, one of the brain's most

  7. Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity.

    Science.gov (United States)

    Kalenscher, Tobias; Lansink, Carien S; Lankelma, Jan V; Pennartz, Cyriel M A

    2010-03-01

    Oscillations of local field potentials (LFPs) in the gamma range are found in many brain regions and are supposed to support the temporal organization of cognitive, perceptual, and motor functions. Even though gamma oscillations have also been observed in ventral striatum, one of the brain's most important structures for motivated behavior and reward processing, their specific function during ongoing behavior is unknown. Using a movable tetrode array, we recorded LFPs and activity of neural ensembles in the ventral striatum of rats performing a reward-collection task. Rats were running along a triangle track and in each round collected one of three different types of rewards. The gamma power of LFPs on subsets of tetrodes was modulated by reward-site visits, discriminated between reward types, between baitedness of reward locations and was different before versus after arrival at a reward site. Many single units in ventral striatum phase-locked their discharge pattern to the gamma oscillations of the LFPs. Phase-locking occurred more often in reward-related than in reward-unrelated neurons and LFPs. A substantial number of simultaneously recorded LFPs correlated poorly with each other in terms of gamma rhythmicity, indicating that the expression of gamma activity was heterogeneous and regionally differentiated. The orchestration of LFPs and single-unit activity by way of gamma rhythmicity sheds light on the functional architecture of the ventral striatum and the temporal coordination of ventral striatal activity for modulating downstream areas and regulating synaptic plasticity.

  8. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    Science.gov (United States)

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  9. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    Science.gov (United States)

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  10. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, Susanne; Klumpers, Floris; Schroeder, Tobias Navarro; Oplaat, Krista T.; Krugers, Harm J.; Oitzl, Melly S.; Joels, Marian; Doeller, Christian F.; Fernandez, Guillen

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  11. Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer Hougaard; Siebner, Hartwig

    2011-01-01

    In this paper we investigate how the Infinite Relational Model can be used to infer functional groupings of the human striatum using resting state fMRI data from 30 healthy subjects. The Infinite Relational Model is a non-parametric Bayesian method for infering community structure in complex...

  12. Neurotrophin-3 restores synaptic plasticity in the striatum of a mouse model of Huntington's disease.

    Science.gov (United States)

    Gómez-Pineda, Victor G; Torres-Cruz, Francisco M; Vivar-Cortés, César I; Hernández-Echeagaray, Elizabeth

    2018-02-17

    Neurotrophin-3 (NT-3) is expressed in the mouse striatum; however, it is not clear the NT-3 role in striatal physiology. The expression levels of mRNAs and immune localization of the NT-3 protein and its receptor TrkC are altered in the striatum following damage induced by an in vivo treatment with 3-nitropropionic acid (3-NP), a mitochondrial toxin used to mimic the histopathological hallmarks of Huntington's disease (HD). The aim of this study was to evaluate the role of NT-3 on corticostriatal synaptic transmission and its plasticity in both the control and damaged striatum. Corticostriatal population spikes were electrophysiologically recorded and striatal synaptic plasticity was induced by high-frequency stimulation. Further, the phosphorylation status of Trk receptors was tested under conditions that imitated electrophysiological experiments. NT-3 modulates both synaptic transmission and plasticity in the striatum; nonetheless, synaptic plasticity was modified by the 3-NP treatment, where instead of producing striatal long-term depression (LTD), long-term potentiation (LTP) was obtained. Moreover, the administration of NT-3 in the recording bath restored the plasticity observed under control conditions (LTD) in this model of striatal degeneration. NT-3 modulates corticostriatal transmission through TrkB stimulation and restores striatal LTD by signaling through its TrkC receptor. © 2018 John Wiley & Sons Ltd.

  13. The Regulation of Endogenous Glutamate and GABA Release from In Vitro Preparations of Rat Striatum

    Science.gov (United States)

    1997-09-19

    Butcher SP~ JW Lazarewicz and A Hamberger, In vivo microdialysis studies on the effects of decortication and excitotoxic lesions on kainic acid-induced...striatum and cerebral cortex of guinea pig and rat. Neurosci. 31 (1989). 313-25. Lapper SR and JP Bolam. Input from the frontal cortex and the papafascicuIar

  14. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Directory of Open Access Journals (Sweden)

    Kevin D. Alloway

    2017-07-01

    Full Text Available The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD and related neurological disorders.

  15. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    Science.gov (United States)

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P Calculus Bovis group was higher than combination group (P Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  16. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum

    Science.gov (United States)

    Tanaka, Tomoko; Takano, Yuji; Tanaka, Satoshi; Hironaka, Naoyuki; Kobayashi, Kazuto; Hanakawa, Takashi; Watanabe, Katsumi; Honda, Manabu

    2013-01-01

    Background: Transcranial direct-current stimulation (tDCS) is a non-invasive procedure that achieves polarity-dependent modulation of neuronal membrane potentials. It has recently been used as a functional intervention technique for the treatment of psychiatric and neurological diseases; however, its neuronal mechanisms have not been fully investigated in vivo. Objective/Hypothesis: To investigate whether the application of cathodal or anodal tDCS affects extracellular dopamine and serotonin levels in the rat striatum. Methods: Stimulation and in vivo microdialysis were carried out under urethane anesthesia, and microdialysis probes were slowly inserted into the striatum. After the collection of baseline fractions in the rat striatum, cathodal or anodal tDCS was applied continuously for 10 min with a current intensity of 800 μA from an electrode placed on the skin of the scalp. Dialysis samples were collected every 10 min until at least 400 min after the onset of stimulation. Results: Following the application of cathodal, but not anodal, tDCS for 10 min, extracellular dopamine levels increased for more than 400 min in the striatum. There were no significant changes in extracellular serotonin levels. Conclusion: These findings suggest that tDCS has a direct and/or indirect effect on the dopaminergic system in the rat basal ganglia. PMID:23596399

  17. Increased Intrinsic Brain Activity in the Striatum Reflects Symptom Dimensions in Schizophrenia

    Science.gov (United States)

    Sorg, Christian; Manoliu, Andrei; Neufang, Susanne; Myers, Nicholas; Peters, Henning; Schwerthöffer, Dirk; Scherr, Martin; Mühlau, Mark; Zimmer, Claus; Drzezga, Alexander; Förstl, Hans; Bäuml, Josef; Eichele, Tom; Wohlschläger, Afra M.; Riedl, Valentin

    2013-01-01

    Striatal dysfunction is thought to be a fundamental element in schizophrenia. Striatal dopamine dysfunction impacts on reward processing and learning and is present even at rest. Here, we addressed the question whether and how spontaneous neuronal activity in the striatum is altered in schizophrenia. We therefore assessed intrinsic striatal activity and its relation with disorder states and symptom dimensions in patients with schizophrenia. We performed resting-state functional (rs-fMRI) and structural magnetic resonance imaging as well as psychometric assessment in 21 schizophrenic patients during psychosis. On average 9 months later, we acquired follow-up data during psychotic remission and with comparable levels of antipsychotic medication. Twenty-one age- and sex-matched healthy controls were included in the study. Independent component analysis of fMRI data yielded spatial maps and time-courses of coherent ongoing blood-oxygen-level-dependent signal fluctuations, which were used for group comparisons and correlation analyses with scores of the positive and negative syndrome scale. During psychosis, coherent intrinsic activity of the striatum was increased in the dorsal part and correlated with positive symptoms such as delusion and hallucination. In psychotic remission of the same patients, activity of the ventral striatum was increased and correlated with negative symptoms such as emotional withdrawal and blunted affect. Results were controlled for volumetric and medication effects. These data provide first evidence that in schizophrenia intrinsic activity is changed in the striatum and corresponds to disorder states and symptom dimensions. PMID:22241165

  18. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder

    NARCIS (Netherlands)

    Holz, N.E.; Boecker-Schlier, R.; Buchmann, A.F.; Blomeyer, D.; Jennen-Steinmetz, C.; Baumeister, S.; Plichta, M.M.; Cattrell, A.; Schumann, G.; Esser, G.; Schmidt, M.; Buitelaar, J.K.; Meyer-Lindenberg, A.; Banaschewski, T.; Brandeis, D.; Laucht, M.

    2017-01-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At

  19. The roles of the medial prefrontal cortex and striatum in reputation processing.

    Science.gov (United States)

    Izuma, Keise; Saito, Daisuke N; Sadato, Norihiro

    2010-01-01

    How we are viewed by other individuals-our reputation-has a considerable influence on our everyday behaviors and is considered an important concept in explaining altruism, a uniquely human trait. Previously it has been proposed that processing one's own reputation requires a reputation representation in the medial prefrontal cortex (mPFC) and a value representation in the striatum. Here, we directly tested this idea using functional magnetic resonance imaging (fMRI). Subjects disclosed their behavioral tendencies with reference to social norms in the presence or absence of other people, a manipulation that is known to greatly affect an individual's concern for their reputation. The mPFC showed strong activation during self-referential processing, and this activity was enhanced by the mere presence of observers. Moreover, the striatum was also strongly activated when subjects responded in front of observers. Thus, the present study demonstrated that the mPFC and striatum were automatically recruited when the task placed a high demand on processing how one is viewed by others. Taken together, our findings suggest that the mPFC and the striatum play a key role in regulating human social behaviors, and these results provide valuable insight into the neural basis of human altruism.

  20. Susceptibility to Aminoglycosides and Distribution of aph and aac(3)-XI Genes among Corynebacterium striatum Clinical Isolates.

    Science.gov (United States)

    Navas, Jesús; Fernández-Martínez, Marta; Salas, Carlos; Cano, María Eliecer; Martínez-Martínez, Luis

    2016-01-01

    Corynebacterium striatum is an opportunistic pathogen, often multidrug-resistant, which has been associated with serious infections in humans. Aminoglycosides are second-line or complementary antibiotics used for the treatment of Corynebacterium infections. We investigated the susceptibility to six aminoglycosides and the molecular mechanisms involved in aminoglycoside resistance in a collection of 64 Corynebacterium striatum isolated in our laboratory during the period 2005-2009. Antimicrobial susceptibility was determined using E-test. The mechanisms of aminoglycoside resistance were investigated by PCR and sequencing. The 64 C. striatum were assessed for the possibility of clonal spreading by Pulsed-field Gel Electrophoresis (PFGE). Netilmicin and amikacin were active against the 64 C. striatum isolates (MICs90 = 0.38 and 0.5 mg/L, respectively). Twenty-seven of the 64 C. striatum strains showed a MIC90 for kanamycin > 256 mg/L, and 26 out the 27 were positive for the aph(3')-Ic gene. Thirty-six out of our 64 C. striatum were streptomycin resistant, and 23 out of the 36 carried both the aph(3")-Ib and aph(6)-Id genes. The gene aac(3)-XI encoding a new aminoglycoside 3-N acetyl transferase from C. striatum was present in 44 out of the 64 isolates, all of them showing MICs of gentamicin and tobramycin > 1 mg/L. CS4933, a C. striatum showing very low susceptibility to kanamycin and streptomycin, contains an aminoglycoside resistance region that includes the aph(3')-Ic gene, and the tandem of genes aph(3")-Ib and aph(6)-Id. Forty-six major PFGE types were identified among the 64 C. striatum isolates, indicating that they were mainly not clonal. Our results showed that the 64 clinical C. striatum were highly resistant to aminoglycosides and mostly unrelated.

  1. A cortical-subcortical syntax pathway linking Broca's area and the striatum.

    Science.gov (United States)

    Teichmann, Marc; Rosso, Charlotte; Martini, Jean-Baptiste; Bloch, Isabelle; Brugières, Pierre; Duffau, Hugues; Lehéricy, Stéphane; Bachoud-Lévi, Anne-Catherine

    2015-06-01

    Combinatorial syntax has been shown to be underpinned by cortical key regions such as Broca's area and temporal cortices, and by subcortical structures such as the striatum. The cortical regions are connected via several cortico-to-cortical tracts impacting syntactic processing (e.g., the arcuate) but it remains unclear whether and how the striatum can be integrated into this cortex-centered syntax network. Here, we used a systematic stepwise approach to investigate the existence and syntactic function of an additional deep Broca-striatum pathway. We first asked 15 healthy controls and 12 patients with frontal/striatal lesions to perform three syntax tests. The results obtained were subjected to voxel-based lesion-symptom mapping (VLSM) to provide an anatomo-functional approximation of the pathway. The significant VLSM clusters were then overlapped with the probability maps of four cortico-cortical language tracts generated for 12 healthy participants (arcuate, extreme capsule fiber system, uncinate, aslant), including a probabilistic Broca-striatum tract. Finally, we carried out quantitative analyses of the relationship between the lesion load along the tracts and syntactic processing, by calculating tract-lesion overlap for each patient and analyzing the correlation with syntactic data. Our findings revealed a Broca-striatum tract linking BA45 with the left caudate head and overlapping with VLSM voxel clusters relating to complex syntax. The lesion load values for this tract were correlated with complex syntax scores, whereas no such correlation was observed for the other tracts. These results extend current syntax-network models, by adding a deep "Broca-caudate pathway," and are consistent with functional accounts of frontostriatal circuits. © 2015 Wiley Periodicals, Inc.

  2. The role of the dorsoanterior striatum in implicit motivation: The case of the need for power

    Directory of Open Access Journals (Sweden)

    Oliver C Schultheiss

    2013-04-01

    Full Text Available Implicit motives like the need for power (nPower scale affective responses to need-specific rewards or punishments and thereby influence activity in motivational-brain structures. In this paper, we review evidence specifically supporting a role of the striatum in nPower. Individual differences in nPower predict (a enhanced implicit learning accuracy, but not speed, on serial-response tasks that are reinforced by power-related incentives (e.g., winning or losing a contest; dominant or submissive emotional expressions in behavioral studies and (b activation of the anterior caudate in response to dominant emotional expressions in brain imaging research. We interpret these findings on the basis of Hikosaka, Nakamura, Sakai, and Nakahara's (2002; Current Opinion in Neurobiology, 12(2, 217-222 model of central mechanisms of motor skill learning. The model assigns a critical role to the dorsoanterior striatum in dopamine-driven learning of spatial stimulus sequences. Based on this model, we suggest that the dorsoanterior striatum is the locus of nPower-dependent reinforcement. However, given the centrality of this structure in a wide range of motivational pursuits, we also propose that activity in the dorsoanterior striatum may not only reflect individual differences in nPower, but also in other implicit motives, like the need for achievement or the need for affiliation, provided that the proper incentives for these motives are present during reinforcement learning. We discuss evidence in support of such a general role of the dorsoanterior striatum in implicit motivation.

  3. Glucocorticoid-cholinergic interactions in the dorsal striatum in memory consolidation of inhibitory avoidance training

    Science.gov (United States)

    Sánchez-Resendis, Oscar; Medina, Andrea C.; Serafín, Norma; Prado-Alcalá, Roberto A.; Roozendaal, Benno; Quirarte, Gina L.

    2012-01-01

    Extensive evidence indicates that glucocorticoid hormones act in a variety of brain regions to enhance the consolidation of memory of emotionally motivated training experiences. We previously reported that corticosterone, the major glucocorticoid in the rat, administered into the dorsal striatum immediately after inhibitory avoidance training dose-dependently enhances memory consolidation of this training. There is also abundant evidence that the intrinsic cholinergic system of the dorsal striatum is importantly involved in memory consolidation of inhibitory avoidance training. However, it is presently unknown whether these two neuromodulatory systems interact within the dorsal striatum in the formation of long-term memory. To address this issue, we first investigated in male Wistar rats whether the muscarinic receptor agonist oxotremorine administered into the dorsal striatum immediately after inhibitory avoidance training enhances 48 h retention of the training. Subsequently, we examined whether an attenuation of glucocorticoid signaling by either a systemic administration of the corticosterone-synthesis inhibitor metyrapone or an intra-striatal infusion of the glucocorticoid receptor (GR) antagonist RU 38486 would block the memory enhancement induced by oxotremorine. Our findings indicate that oxotremorine dose-dependently enhanced 48 h retention latencies, but that the administration of either metyrapone or RU 38486 prevented the memory-enhancing effect of oxotremorine. In the last experiment, corticosterone was infused into the dorsal striatum together with the muscarinic receptor antagonist scopolamine immediately after inhibitory avoidance training. Scopolamine blocked the enhancing effect of corticosterone on 48 h retention performance. These findings indicate that there are mutual interactions between glucocorticoids and the striatal cholinergic system in enhancing the consolidation of memory of inhibitory avoidance training. PMID:22737110

  4. Inequity responses of monkeys modified by effort

    Science.gov (United States)

    van Wolkenten, Megan; Brosnan, Sarah F.; de Waal, Frans B. M.

    2007-01-01

    Without joint benefits, joint actions could never have evolved. Cooperative animals need to monitor closely how large a share they receive relative to their investment toward collective goals. This work documents the sensitivity to reward division in brown, or tufted, capuchin monkeys (Cebus apella). In addition to confirming previous results with a larger subject pool, this work rules out several alternative explanations and adds data on effort sensitivity. Thirteen adult monkeys exchanged tokens for rewards, showing negative reactions to receiving a less-favored reward than their partner. Because their negative reaction could not be attributed to the mere visibility of better rewards (greed hypothesis) nor to having received such rewards in the immediate past (frustration hypothesis), it must have been caused by seeing their partner obtain the better reward. Effort had a major effect in that by far the lowest level of performance in the entire study occurred in subjects required to expend a large effort while at the same time seeing their partner receive a better reward. It is unclear whether this effort–effect was based on comparisons with the partner, but it added significantly to the intensity of the inequity response. These effects are as expected if the inequity response evolved in the context of cooperative survival strategies. PMID:18000045

  5. Nuclear DNA variation in spider monkeys (Ateles).

    Science.gov (United States)

    Collins, A C; Dubach, J M

    2001-04-01

    Phylogenetic relationships based on DNA sequence variation for the aldolase A intron V nuclear genomic region were evaluated and compared to phylogenies based on mitochondrial DNA sequence variation among spider monkeys (Ateles). Samples of Ateles ranging from Central America throughout the Amazon Basin were sequenced to determine phylogenetic relationships among geographically widely distributed populations. Analysis of nuclear DNA sequences using parsimony, maximum-likelihood, and genetic distance analyses produced similar phylogenies. Four previously proposed monophyletic species of spider monkeys were: (1) Ateles paniscus, composed of haplotypes from the northeastern Amazon Basin; (2) A. belzebuth, found in the western and southern Amazon Basin; (3) A. hybridus, located primarily along the Magdalena River valley of Colombia; and (4) A. geoffroyi, including all haplotypes found in the Choco region of South America and throughout Central America. The nuclear phylograms were analyzed based on associated bootstrap support and confidence probabilities. Support from the nuclear DNA genome was less robust than support from the mitochondrial DNA data, most likely due to a level of sequence variation, which was 90% less than that of the mitochondrial DNA genome. Nuclear DNA congruencies with mitochondrial DNA-based phylogenies, as supported by the incongruence length difference and winning sites tests, provide further support for the suggested revisions in Ateles taxonomy that are contradictory to long-held taxonomies based on pelage variation. Copyright 2001 Academic Press.

  6. Can Rhesus Monkey Learn Executive Attention?

    Directory of Open Access Journals (Sweden)

    Jessica Bramlett-Parker

    2016-06-01

    Full Text Available A growing body of data indicates that, compared to humans, rhesus monkeys perform poorly on tasks that assess executive attention, or voluntary control over selection for processing, particularly under circumstances in which attention is attracted elsewhere by competing stimulus control. In the human-cognition literature, there are hotly active debates about whether various competencies such as executive attention, working memory capacity, and fluid intelligence can be improved through training. In the current study, rhesus monkeys (Macaca mulatta completed an attention-training intervention including several inhibitory-control tasks (a Simon task, numerical Stroop task, global/local interference task, and a continuous performance task to determine whether generalized improvements would be observed on a version of the Attention Network Test (ANT of controlled attention, which was administered before and after the training intervention. Although the animals demonstrated inhibition of prepotent responses and improved in executive attention with practice, this improvement did not generalize to the ANT at levels consistently better than were observed for control animals. Although these findings fail to encourage the possibility that species differences in cognitive competencies can be ameliorated through training, they do advance our understanding of the competition between stimulus-control and cognitive-control in performance by nonhuman and human primates.

  7. Scleral Biomechanics in the Aging Monkey Eye

    Science.gov (United States)

    Girard, Michaël J. A.; Suh, J-K. Francis; Bottlang, Michael; Burgoyne, Claude F.; Downs, J. Crawford

    2010-01-01

    Purpose To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 ± 5.3 years) and young (1.5 ± 0.7 years) rhesus monkeys. Methods The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mmHg while the 3D displacements of the scleral surface were measured using speckle interferometry. Each scleral shell geometry was digitally reconstructed from data generated by a 3D digitizer (topography) and 20 MHz ultrasounds (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. Results The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (p = 0.038), and tangent modulus and structural stiffness were significantly higher in old monkeys (p biomechanics, and potentially contribute to age-related susceptibility to glaucomatous vision loss. PMID:19494203

  8. Experimental thromboembolic stroke in cynomolgus monkey.

    Science.gov (United States)

    Kito, G; Nishimura, A; Susumu, T; Nagata, R; Kuge, Y; Yokota, C; Minematsu, K

    2001-01-30

    To develop an experimental model of thromboembolic stroke without intracranial surgery, an autologous blood clot was delivered to the middle cerebral artery (MCA) via the internal carotid artery in cynomolgus monkeys. Male cynomolgus monkeys, in which a chronic catheter had been earlier implanted in the left internal carotid artery, were used. The clot was flushed into the internal carotid artery under sevofluorane anesthesia. A neurologic deficit score was assigned after MCA embolization. After 24 h, cerebral infarct size and location were determined by the TTC staining method. Cerebral blood flow (CBF) was measured prior to and after MCA embolization, using positron emission tomography (PET). After embolization, long-lasting and profound extensor hypotonia of the contralateral upper and lower limbs, and mild to severe incoordination were observed. Contralateral hemiplegia was observed over the following 24 h. In gross morphologic observation of the brain, the lesions involved mostly the caudate nucleus, putamen, globus pallidus and insular cortex. CBF was maximally reduced in the left MCA territory, but not in the right MCA territory. This model is relevant to thromboembolic stroke in human in neurologic dysfunction and histopathologic brain damage.

  9. Explicit information reduces discounting behavior in monkeys

    Directory of Open Access Journals (Sweden)

    John ePearson

    2010-12-01

    Full Text Available Animals are notoriously impulsive in common laboratory experiments, preferring smaller, sooner rewards to larger, delayed rewards even when this reduces average reward rates. By contrast, the same animals often engage in natural behaviors that require extreme patience, such as food caching, stalking prey, and traveling long distances to high quality food sites. One possible explanation for this discrepancy is that standard laboratory delay discounting tasks artificially inflate impulsivity by subverting animals’ common learning strategies. To test this idea, we examined choices made by rhesus macaques in two variants of a standard delay discounting task. In the conventional variant, post-reward delays were uncued and adjusted to render total trial length constant; in the second, all delays were cued explicitly. We found that measured discounting was significantly reduced in the cued task, with discount rates well below those reported in studies using the standard uncued design. When monkeys had complete information, their decisions were more consistent with a strategy of reward rate maximization. These results indicate that monkeys, and perhaps other animals, are more patient than is normally assumed, and that laboratory measures of delay discounting may overstate impulsivity.

  10. Short poly-glutamine repeat in the androgen receptor in New World monkeys.

    Science.gov (United States)

    Hiramatsu, Chihiro; Paukner, Annika; Kuroshima, Hika; Fujita, Kazuo; Suomi, Stephen J; Inoue-Murayama, Miho

    2017-12-01

    The androgen receptor mediates various physiological and developmental functions and is highly conserved in mammals. Although great intraspecific length polymorphisms in poly glutamine (poly-Q) and poly glycine (poly-G) regions of the androgen receptor in humans, apes and several Old World monkeys have been reported, little is known about the characteristics of these regions in New World monkeys. In this study, we surveyed 17 species of New World monkeys and found length polymorphisms in these regions in three species (common squirrel monkeys, tufted capuchin monkeys and owl monkeys). We found that the poly-Q region in New World monkeys is relatively shorter than that in catarrhines (humans, apes and Old World monkeys). In addition, we observed that codon usage for poly-G region in New World monkeys is unique among primates. These results suggest that the length of polymorphic regions in androgen receptor genes have evolved uniquely in New World monkeys.

  11. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    Science.gov (United States)

    Matamales, Miriam; Götz, Jürgen; Bertran-Gonzalez, Jesus

    2016-01-01

    Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum.

  12. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    Full Text Available Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17% aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the

  13. Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink.

    Science.gov (United States)

    Slagter, Heleen A; Mazaheri, Ali; Reteig, Leon C; Smolders, Ruud; Figee, Martijn; Mantione, Mariska; Schuurman, P Richard; Denys, Damiaan

    2017-02-01

    The brain is limited in its capacity to consciously process information, necessitating gating of information. While conscious perception is robustly associated with sustained, recurrent interactions between widespread cortical regions, subcortical regions, including the striatum, influence cortical activity. Here, we examined whether the ventral striatum, given its ability to modulate cortical information flow, contributes to conscious perception. Using intracranial EEG, we recorded ventral striatum activity while 7 patients performed an attentional blink task in which they had to detect two targets (T1 and T2) in a stream of distractors. Typically, when T2 follows T1 within 100-500 ms, it is often not perceived (i.e., the attentional blink). We found that conscious T2 perception was influenced and signaled by ventral striatal activity. Specifically, the failure to perceive T2 was foreshadowed by a T1-induced increase in α and low β oscillatory activity as early as 80 ms after T1, indicating that the attentional blink to T2 may be due to very early T1-driven attentional capture. Moreover, only consciously perceived targets were associated with an increase in θ activity between 200 and 400 ms. These unique findings shed new light on the mechanisms that give rise to the attentional blink by revealing that conscious target perception may be determined by T1 processing at a much earlier processing stage than traditionally believed. More generally, they indicate that ventral striatum activity may contribute to conscious perception, presumably by gating cortical information flow. What determines whether we become aware of a piece of information or not? Conscious access has been robustly associated with activity within a distributed network of cortical regions. Using intracranial electrophysiological recordings during an attentional blink task, we tested the idea that the ventral striatum, because of its ability to modulate cortical information flow, may contribute to

  14. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle

    Science.gov (United States)

    Gadziola, Marie A.

    2016-01-01

    The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we

  15. Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning.

    Science.gov (United States)

    Hopper, Lm; Holmes, An; Williams, LE; Brosnan, Sf

    2013-01-01

    Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran "open diffusion" tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the "Slide-box"). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a 'ghost' display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys' learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those

  16. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  17. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses.

    Science.gov (United States)

    Wendler, Etieli; Gaspar, Jessica C C; Ferreira, Tatiana L; Barbiero, Janaína K; Andreatini, Roberto; Vital, Maria A B F; Blaha, Charles D; Winn, Philip; Da Cunha, Claudio

    2014-03-01

    This study examined the effects of bilateral excitotoxic lesions of the nucleus accumbens core (NAc-co), dorsomedial striatum (DMS) or dorsolateral striatum (DLS) of rats on the learning and extinction of Pavlovian and instrumental components of conditioned avoidance responses (CARs). None of the lesions caused sensorimotor deficits that could affect locomotion. Lesions of the NAc-co, but not DMS or DLS, decreased unconditioned and conditioned freezing. The NAc-co and DLS lesioned rats learned the 2-way active avoidance task more slowly. These results suggest: (i) CARs depend on both Pavlovian and instrumental learning; (ii) learning the Pavlovian component of CARs depends on the NAc-co; learning the instrumental component of CARs depends on the DLS, NAc and DMS; (iii) although the NAc-co is also needed for learning the instrumental component, it is not clear whether it plays a role in learning the instrumental component per se or if it simply allows learning of the Pavlovian component which is a pre-condition for learning the instrumental component; (iv) we did not find evidence that the DMS and DLS play the same roles in habit and goal-directed aspects of the instrumental component of CARs as observed in appetitive motivated instrumental responding. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Corynebacterium striatum infecting a malignant cutaneous lesion: the emergence of an opportunistic pathogen Corynebacterium striatum infectando lesão cutânea maligna: a emergência de um patógeno oportunista

    Directory of Open Access Journals (Sweden)

    Silvana Vargas Superti

    2009-04-01

    Full Text Available We described a case of a 27-year old male patient with skin and soft tissue infection of a neoplastic lesion caused by Corynebacterium striatum, an organism which has been rarely described as a human pathogen. Identification was confirmed by DNA sequencing. Successful treatment with penicillin was achieved. The role of the C. striatum as an emerging opportunistic pathogen is discussed.Descrevemos infecção de lesão neoplásica em paciente masculino de 27 anos, envolvendo pele e partes moles, causada por Corynebacterium striatum, um microrganismo raramente descrito como patógeno humano. A identificação foi confirmada por seqüenciamento de DNA. O paciente foi tratado com penicilina, com sucesso. O papel do C. striatum como patógeno oportunista é discutido.

  19. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa

    2014-01-01

    , therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model...... on Tarlov's scale and our established behavioral tests for monkeys. CONCLUSION: Our findings have indicated that mNSCs can facilitate recovery in contusion SCI models in rhesus macaque monkeys. Additional studies are necessary to determine the im- provement mechanisms after cell transplantation....

  20. Calcium-binding protein, secretagogin, characterizes novel groups of interneurons in the rat striatum.

    Science.gov (United States)

    Kosaka, Toshio; Yasuda, Seiko; Kosaka, Katsuko

    2017-06-01

    In the rat striatum numerous secretagogin (SCGN) positive neurons were scattered. They were heterogeneous in their morphological and chemical properties. We examined the colocalization of SCGN with known four interneuron markers, parvalbumin (PV), calretinin (CR), nitric oxide synthase (NOS) and choline acetyl transferase (ChAT). 60-70% of SCGN positive striatal neurons contained either PV or CR or ChAT, but none contained NOS. On the other hand the remaining 30-40% expressed none of these markers, most of which were GAD positive. The present study indicates that there are hitherto unknown groups of striatal interneurons in the rat striatum. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  1. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    DEFF Research Database (Denmark)

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul

    2010-01-01

    Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D(2/3) receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability....... The simplest explanation of these findings is an inverted-U-shaped correlation between ratings of sensation seeking on the Zuckerman scale and dopamine D(2/3) receptor availability. To test the claim of an inverted-U-shaped relation between ratings of the sensation-seeking personality and measures of dopamine....... The inverted-U shape is consistent with a negative correlation between sensation seeking and the reactivity ("gain") of dopaminergic neurotransmission to dopamine. The correlation reflects Zuckerman scores that are linearly linked to dopamine receptor densities in the striatum but nonlinearly linked...

  2. A Possible Role for the Striatum in the Pathogenesis of the Cognitive Symptoms of Schizophrenia

    Science.gov (United States)

    Simpson, Eleanor H.; Kellendonk, Christoph; Kandel, Eric

    2016-01-01

    The cognitive symptoms of schizophrenia are largely resistant to current treatment and are thus a life-long burden of the illness. Studies of cognitive symptoms have commonly focused on prefrontal cortex because of its demonstrated importance for executive function and working memory—key components of the deficit. The role of striatal-cortical circuitry and therefore the striatum itself has received much less attention. Here we review longstanding evidence that the striatum and its cortical connections are critical for complex cognition and discuss emerging evidence of the striatum’s potential involvement in cognitive symptoms. Finally, we suggest how mouse models might test ideas about the contribution of early striatal dysfunction to the cognitive symptoms of schizophrenia. PMID:20223196

  3. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    Directory of Open Access Journals (Sweden)

    Paola Fuentes-Claramonte

    Full Text Available Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  4. Neurometabolic profiles of the substantia nigra and striatum of MPTP-intoxicated common marmosets: An in vivo proton MRS study at 9.4 T.

    Science.gov (United States)

    Heo, Hwon; Ahn, Jae-Bum; Lee, Hyeong Hun; Kwon, Euna; Yun, Jun-Won; Kim, Hyeonjin; Kang, Byeong-Cheol

    2017-02-01

    Given the strong coupling between the substantia nigra (SN) and striatum (STR) in the early stage of Parkinson's disease (PD), yet only a few studies reported to date that have simultaneously investigated the neurochemistry of these two brain regions in vivo, we performed longitudinal metabolic profiling in the SN and STR of 1-methyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated common marmoset monkey models of PD (n = 10) by using proton MRS ((1) H-MRS) at 9.4 T. T2 relaxometry was also performed in the SN by using MRI. Data were classified into control, MPTP_2weeks, and MPTP_6-10 weeks groups according to the treatment duration. In the SN, T2 of the MPTP_6-10 weeks group was lower than that of the control group (44.33 ± 1.75 versus 47.21 ± 2.47 ms, p glutathione to tCr ratio (GSH/tCr) was correlated with T2 for the MPTP_6-10 weeks group (r = 0.83, p = 0.04). In the STR, however, GABA/tCr of the MPTP_6-10 weeks group was higher than that of the control group (0.25 ± 0.10 versus 0.16 ± 0.05, p < 0.05). These findings may be an in vivo depiction of the altered basal ganglion circuit in PD brain resulting from the degeneration of nigral dopaminergic neurons and disruption of nigrostriatal dopaminergic projections. Given the important role of non-human primates in translational studies, our findings provide better understanding of the complicated evolution of PD. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com [BioMarin Pharmaceutical Inc., Novato, CA (United States); Kennedy, Derek [BioMarin Pharmaceutical Inc., Novato, CA (United States); Reed, Randall P.; Boyd, Robert B. [Northern Biomedical Research, Inc., Muskegon, MI (United States); Butt, Mark T. [Tox Path Specialists, LLC, Hagerstown, MD (United States); Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O' Neill, Charles A. [BioMarin Pharmaceutical Inc., Novato, CA (United States)

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  6. Looming biases in monkey auditory cortex.

    Science.gov (United States)

    Maier, Joost X; Ghazanfar, Asif A

    2007-04-11

    Looming signals (signals that indicate the rapid approach of objects) are behaviorally relevant signals for all animals. Accordingly, studies in primates (including humans) reveal attentional biases for detecting and responding to looming versus receding signals in both the auditory and visual domains. We investigated the neural representation of these dynamic signals in the lateral belt auditory cortex of rhesus monkeys. By recording local field potential and multiunit spiking activity while the subjects were presented with auditory looming and receding signals, we show here that auditory cortical activity was biased in magnitude toward looming versus receding stimuli. This directional preference was not attributable to the absolute intensity of the sounds nor can it be attributed to simple adaptation, because white noise stimuli with identical amplitude envelopes did not elicit the same pattern of responses. This asymmetrical representation of looming versus receding sounds in the lateral belt auditory cortex suggests that it is an important node in the neural network correlate of looming perception.

  7. Keep children away from macaque monkeys!

    Science.gov (United States)

    Bréhin, Camille; Debuisson, Cécile; Mansuy, Jean-Michel; Niphuis, Henk; Buitendijk, Hester; Mengelle, Catherine; Grouteau, Erick; Claudet, Isabelle

    2016-03-01

    To warn physicians and parents about the risk of macaque bites, we present two pediatric cases (a 4-year-old boy and a 10-year-old girl) of bites sustained while on holiday. The young boy developed febrile dermohypodermitis and was hospitalized for IV antibiotic treatment. He received an initial antirabies vaccine while still in the holiday destination. Except for local wound disinfection and antibiotic ointment, the girl did not receive any specific treatment while abroad. Both were negative for simian herpes PCR. When travelling in countries or cities with endemic simian herpes virus, parents should keep children away from monkeys. Travel agencies, pediatricians and family physicians should better inform families about the zoonotic risk. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  8. Manganese tissue dosimetry in rats and monkeys: accounting for dietary and inhaled Mn with physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Nong, Andy; Taylor, Michael D; Clewell, Harvey J; Dorman, David C; Andersen, Melvin E

    2009-03-01

    Manganese (Mn) is an essential nutrient required for normal tissue growth and function. Following exposures to high concentrations of inhaled Mn, there is preferential accumulation of Mn in certain brain regions such as the striatum and globus pallidus. The goal of this research was to complete a physiologically based pharmacokinetic (PBPK) model for Mn in rats and scale the model to describe Mn tissue accumulation in nonhuman primates exposed to Mn by inhalation and diet. The model structure includes saturable tissue binding with association and dissociation rate constants, asymmetric tissue permeation flux rate constants to specific tissues, and inducible biliary excretion. The rat PBPK model described tissue time-course studies for various dietary Mn intakes and accounted for inhalation studies of both 14-day and 90-day duration. In monkeys, model parameters were first calibrated using steady-state tissue Mn concentrations from rhesus monkeys fed a diet containing 133 ppm Mn. The model was then applied to simulate 65 exposure days of weekly (6 h/day; 5 days/week) inhalation exposures to soluble MnSO(4) at 0.03 to 1.5 mg Mn/m(3). Sensitivity analysis showed that Mn tissue concentrations in the models have dose-dependencies in (1) biliary excretion of free Mn from liver, (2) saturable tissue binding in all tissues, and (3) differential influx/efflux rates for tissues that preferentially accumulate Mn. This multispecies PBPK model is consistent with the available experimental kinetic data, indicating preferential increases in some brain regions with exposures above 0.2 mg/m(3) and fairly rapid return to steady-state levels (within several weeks rather than months) after cessation of exposure. PBPK models that account for preferential Mn tissue accumulation from both oral and inhalation exposures will be essential to support tissue dosimetry-based human risk assessments for Mn.

  9. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Science.gov (United States)

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT2A receptor activity is altered in autism, while recent work indicates that systemic 5HT2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. A universal role of the ventral striatum in reward-based learning: Evidence from human studies

    OpenAIRE

    Daniel, Reka; Pollmann, Stefan

    2014-01-01

    Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are dive...

  11. Neurturin Protects Against 6-Hydroxydopamine-Induced Reductions in Evoked Dopamine Overflow in Rat Striatum

    Science.gov (United States)

    Cass, Wayne A.; Peters, Laura E.

    2010-01-01

    Neurturin (NTN), a member of the glial cell line-derived neurotrophic factor (GDNF) family, has substantial effects on normal and lesioned nigrostriatal dopamine systems. However, its ability to protect against toxin-induced loss of striatal dopamine release has not been previously reported. The goal of the present study was to determine if NTN could protect against 6-hydroxydopamine (6-OHDA)-induced reductions in striatal dopamine overflow and tissue levels of dopamine, and to compare the effects of NTN with those of GDNF. Male Fischer-344 rats were given a single injection of vehicle, or 5 μg NTN or GDNF, into the right striatum. The following day the animals were given a single injection of 12 μg 6-OHDA into the striatum at the same site where the trophic factor was injected. Microdialysis experiments conducted three weeks later indicated that the 6-OHDA decreased basal levels of dopamine and metabolites in the lesioned striatum compared to the contralateral striatum, and NTN was able to partially protect against the 6-OHDA-induced reductions. Injection of NTN one day prior to 6-OHDA also led to significant protection against loss of both potassium and amphetamine evoked overflow of dopamine. The NTN treatments partially protected against 6-OHDA-induced reductions in striatal tissue levels of dopamine, and completely protected against loss of nigral dopamine content. The protective effects of NTN were similar in magnitude to those of GDNF. These results support that within the experimental parameters used in this study, NTN is as effective as GDNF in protecting against the dopamine-depleting effects of intrastriatal 6-OHDA. PMID:20615442

  12. Asiatic acid attenuated apoptotic and inflammatory stress in the striatum of MPTP-treated mice.

    Science.gov (United States)

    Chao, Pei-Chun; Lee, Hsiang-Lin; Yin, Mei-Chin

    2016-04-01

    The effects of post-treatments with asiatic acid (AA) at 20, 40 or 80 mg per kg BW per day against apoptotic, oxidative and inflammatory injury in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice were examined. The results showed that AA supplements at 40 and 80 mg per kg BW per day increased AA deposit in the striatum, increased glutathione content and decreased reactive oxygen species production in the striatum. AA supplements at 20-80 mg per kg BW per day dose-dependently lowered striatal levels of nitric oxide, 3-nitrotyrosine, interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha and prostaglandin E2. AA supplements at 40 and 80 mg per kg BW per day down-regulated striatal p47(phox) and gp91(phox) expression; but, at three test doses suppressed striatal expression of inducible nitric oxide synthase and cyclooxygenase-2. AA post-treatments at 40 and 80 mg per kg BW per day enhanced Bcl-2 expression, and lowered Bax, apoptosis-inducing factor and caspase-3 expression in the striatum. AA at 20-80 mg per kg BW per day up-regulated striatal tyrosine hydroxylase expression, and suppressed Toll-like receptors (TLR)2 and nuclear factor kappa B p65 expression. AA treatments at 40 and 80 mg per kg BW per day decreased striatal expression of α-synuclein and TLR4, increased striatal levels of dopamine, brain-derived nerve growth factor and glial cell line-derived neurotrophic factor. These novel findings suggest that asiatic acid is a potent nutraceutical agent against the progression of Parkinson's disease.

  13. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol reinforcement.

    Science.gov (United States)

    Spoelder, Marcia; Hesseling, Peter; Styles, Matthew; Baars, Annemarie M; Lozeman-van 't Klooster, José G; Lesscher, Heidi M B; Vanderschuren, Louk J M J

    2017-01-01

    Dopaminergic neurotransmission in the striatum has been widely implicated in the reinforcing properties of substances of abuse. However, the striatum is functionally heterogeneous, and previous work has mostly focused on psychostimulant drugs. Therefore, we investigated how dopamine within striatal subregions modulates alcohol-directed behaviour in rats. We assessed the effects of infusion of the dopamine receptor antagonist alpha-flupenthixol into the shell and core of the nucleus accumbens (NAcc) and the dorsolateral striatum (DLS) on responding for alcohol under fixed ratio 1 (FR1) and progressive ratio (PR) schedules of reinforcement. Bilateral infusion of alpha-flupenthixol into the NAcc shell reduced responding for alcohol under both the FR1 (15 μg/side) and the PR schedule (3.75-15 μg/side) of reinforcement. Infusion of alpha-flupenthixol into the NAcc core (7.5-15 μg/side) also decreased responding for alcohol under both schedules. By contrast, alpha-flupenthixol infusion into the DLS did not affect FR1 responding, but reduced responding under the PR schedule (15 μg/side). The decreases in responding were related to earlier termination of responding during the session, whereas the onset and rate of responding remained largely unaffected. Together, these data suggest that dopamine in the NAcc shell is involved in the incentive motivation for alcohol, whereas DLS dopamine comes into play when obtaining alcohol requires high levels of effort. In contrast, NAcc core dopamine appears to play a more general role in alcohol reinforcement. In conclusion, dopaminergic neurotransmission acts in concert in subregions of the striatum to modulate different aspects of alcohol-directed behaviour. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Population Density of the White-Throated Monkey ( Cercopithecus ...

    African Journals Online (AJOL)

    Population Density of the White-Throated Monkey ( Cercopithecus Erythrogaster ) in ... Journal of Agriculture, Forestry and the Social Sciences ... in Okomu National Park, Edo State, Nigeria was conducted to estimate the population density.

  15. Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi).

    Science.gov (United States)

    Nevo, Omer; Orts Garri, Rosa; Hernandez Salazar, Laura Teresa; Schulz, Stefan; Heymann, Eckhard W; Ayasse, Manfred; Laska, Matthias

    2015-10-06

    Primates are now known to possess well-developed olfactory sensitivity and discrimination capacities that can play a substantial role in many aspects of their interaction with conspecifics and the environment. Several studies have demonstrated that olfactory cues may be useful in fruit selection. Here, using a conditioning paradigm, we show that captive spider monkeys (Ateles geoffroyi) display high olfactory discrimination performance between synthetic odor mixtures mimicking ripe and unripe fruits of two wild, primate-consumed, Neotropical plant species. Further, we show that spider monkeys are able to discriminate the odor of ripe fruits from odors that simulate unripe fruits that become increasingly similar to that of ripe ones. These results suggest that the ability of spider monkeys to identify ripe fruits may not depend on the presence of any individual compound that mark fruit ripeness. Further, the results demonstrate that spider monkeys are able to identify ripe fruits even when the odor signal is accompanied by a substantial degree of noise.

  16. jMonkeyEngine 3.0 cookbook

    CERN Document Server

    Edén, Rickard

    2014-01-01

    If you are a jMonkey developer or a Java developer who is interested to delve further into the game making process to expand your skillset and create more technical games, then this book is perfect for you.

  17. A common currency for the computation of motivational values in the human striatum

    Science.gov (United States)

    Li, Yansong; Dreher, Jean-Claude

    2015-01-01

    Reward comparison in the brain is thought to be achieved through the use of a ‘common currency’, implying that reward value representations are computed on a unique scale in the same brain regions regardless of the reward type. Although such a mechanism has been identified in the ventro-medial prefrontal cortex and ventral striatum in the context of decision-making, it is less clear whether it similarly applies to non-choice situations. To answer this question, we scanned 38 participants with fMRI while they were presented with single cues predicting either monetary or erotic rewards, without the need to make a decision. The ventral striatum was the main brain structure to respond to both cues while showing increasing activity with increasing expected reward intensity. Most importantly, the relative response of the striatum to monetary vs erotic cues was correlated with the relative motivational value of these rewards as inferred from reaction times. Similar correlations were observed in a fronto-parietal network known to be involved in attentional focus and motor readiness. Together, our results suggest that striatal reward value signals not only obey to a common currency mechanism in the absence of choice but may also serve as an input to adjust motivated behaviour accordingly. PMID:24837478

  18. Effect of electrolytic lesion of the dorsomedial striatum on sexual behaviour and locomotor activity in rats.

    Science.gov (United States)

    Ortiz-Pulido, R; Hernández-Briones, Z S; Tamariz-Rodríguez, A; Hernández, M E; Aranda-Abreu, G E; Coria-Avila, G A; Manzo, J; García, L I

    2017-06-01

    Cortical motor areas are influenced not only by peripheral sensory afferents and prefrontal association areas, but also by the basal ganglia, specifically the striatum. The dorsomedial striatum (DMS) and dorsolateral striatum are involved in both spatial and stimulus-response learning; however, each of these areas may mediate different components of learning. The aim of the study is to determine the effect of electrolytic lesion to the DMS on the learning and performance of sexual behaviour and locomotor activity in male rats. Once the subjects had learned to perform motor tests of balance, maze navigation, ramp ascent, and sexual behaviour, they underwent electrolytic lesion to the DMS. Five days later, the tests were repeated on 2 occasions and researchers compared performance latencies for each test. Average latency values for performance on the maze and balance tests were higher after the lesion. However, the average values for the ramp test and for sexual behaviour did not differ between groups. Electrolytic lesion of the DMS modifies the performance of locomotor activity (maze test and balance), but not of sexual behaviour. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Cognition and Dopamine D2 Receptor Availability in the Striatum in Older Patients with Schizophrenia.

    Science.gov (United States)

    Rajji, Tarek K; Mulsant, Benoit H; Nakajima, Shinichiro; Caravaggio, Fernando; Suzuki, Takefumi; Uchida, Hiroyuki; Gerretsen, Philip; Mar, Wanna; Pollock, Bruce G; Mamo, David C; Graff-Guerrero, Ariel

    2017-01-01

    To assess the impact of reducing the dose of antipsychotics on cognition and dopaminergic D2 receptor availability in the whole striatum, and identify their relationship in patients with schizophrenia aged 50 years or older. Open-label prospective PET [11C]-raclopride study. A tertiary care center outpatient setting. Thirty-seven clinically stable participants with schizophrenia or schizoaffective disorder, aged 50 years or greater, and having been treated with olanzapine or risperidone monotherapy at the same dose for at least 6 months. Gradual reduction in their olanzapine or risperidone daily dose of up to 40%. Clinical and cognitive assessments, and [11C]-raclopride PET to determine D2 receptor availability at baseline and after the dose reduction. Main outcome measures were overall cognition and D2 receptor availability in whole striatum. Reducing the antipsychotic dose resulted in an increase in D2 receptor availability in the whole striatum and an association between D2 receptor availability and overall cognition despite lack of change in the latter. There was also an association between change in D2 receptor availability and change in overall cognition. Our findings suggest that optimizing D2 receptor availability by reducing antipsychotic dose allows this system to contribute more significantly to cognitive function in patients with schizophrenia. This uncovered association could be harnessed by cognitive-enhancing interventions. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. The response of the anterior striatum during adult human vocal learning.

    Science.gov (United States)

    Simmonds, Anna J; Leech, Robert; Iverson, Paul; Wise, Richard J S

    2014-08-15

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia "loops," which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. Copyright © 2014 the American Physiological Society.

  1. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  2. Complex sensorimotor transformation processes required for response selection are facilitated by the striatum.

    Science.gov (United States)

    Stock, Ann-Kathrin; Ness, Vanessa; Beste, Christian

    2015-12-01

    Both fronto-parietal networks and the basal ganglia play an important role in action cascading. It is well-known that cortical structures mediate sensorimotor transformation for this purpose. The striatum receives extensive input from those cortical structures and has been shown to be modulated by the predictability of cortical input. Until today, it has however remained unclear whether the processing of spatial codes or even sensorimotor transformation processes for the purpose of action cascading involve the striatum. We therefore examined this question by means of fMRI using a stop-change task that varied the predictability as well as the complexity of sensorimotor transformations required for correct responding in the context of action cascading. On the behavioral level, we found that the complexity of sensorimotor transformation processes only prolonged reaction times when the requirement for this transformation was predictable. fMRI results matched this effect showing enhanced activity of the caudate in case a complex sensorimotor transformation could be anticipated. Irrespective of the complexity of the required transformations, the putamen was furthermore involved in the prediction of imminent action cascading demands. Taken together, our findings give rise to a conceptual advance regarding basal ganglia function by showing that the anticipation and, more importantly, processing of complex sensorimotor transformation processes involves the striatum. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A universal role of the ventral striatum in reward-based learning: Evidence from human studies

    Science.gov (United States)

    Daniel, Reka; Pollmann, Stefan

    2014-01-01

    Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are diverse and often only indirect feedback is available. Here we explore the range of rewards that are processed by the dopaminergic system in human participants, and examine whether it is also involved in learning in the absence of explicit rewards. While results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS) receives valuation information for a diverse set of rewarding stimuli. These range from simple primary reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning, indicating that the reward system is also recruited in more complex learning tasks. PMID:24825620

  4. Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum.

    Science.gov (United States)

    Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2015-10-01

    We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Concentrations of MDPV in rat striatum correlate with the psychostimulant effect.

    Science.gov (United States)

    Novellas, Judith; López-Arnau, Raúl; Carbó, Marcel Li; Pubill, David; Camarasa, Jorge; Escubedo, Elena

    2015-11-01

    3,4-methylenedioxypyrovalerone or MDPV is a synthetic cathinone with psychostimulant properties more potent than cocaine. We quantified this drug in the striatum after subcutaneous administration to rats. MDPV reached the brain around 5 min after its administration and peaked at 20-25 min later. The elimination half-life in the striatum (61 min) correlates with the decrease in the psychostimulant effect after 60 min. Around 11% of the administered dose reached the striatum and, considering a homogeneous brain distribution, we determined that around 86% of the plasma MDPV is distributed to the brain. MDPV induced a dose-dependent increase in locomotor activity, rearing behaviour and stereotypies, all prevented by haloperidol. A plot of locomotor activity or stereotypies versus MDPV striatal concentrations over time showed a direct relationship between factors. No free MDPV metabolites were detected in plasma, at any time, but hydrolysis with glucuronidase allowed us to identify mainly three metabolites, one of them for the first time in rat plasma. The present results contribute to evidence that MDPV induces hyperlocomotion mainly through a dopamine-dependent mechanism. Good correlation between behavioural effects and striatal levels of MDPV leads us to conclude that its psychostimulant effect is mainly due to a striatal distribution of the substance. The present research provides useful information on the pharmacokinetics of MDPV, and can help design new experiments with kinetics data as well as provide a better understanding of the effects of MDPV in humans and its potential interactions. © The Author(s) 2015.

  6. Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis social learning

    Directory of Open Access Journals (Sweden)

    LM Hopper

    2013-02-01

    Full Text Available Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella or marmosets (Callithrix jacchus. To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran “open diffusion” tests with monkeys housed in two social groups (N = 23. Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the “Slide-box”. Two thirds (67% of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a ‘ghost’ display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions and paired controls (28% were successful but none were successful in the ghost control. We propose that the squirrel monkeys’ learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert

  7. Patient-to-patient spread of a single strain of Corynebacterium striatum causing infections in a surgical intensive care unit

    NARCIS (Netherlands)

    A.H. Brandenburg (Afke); A.F. van Belkum (Alex); C. van Pelt (Cindy); H.A. Bruining (Hajo); J.W. Mouton (Johan); H.A. Verbrugh (Henri)

    1996-01-01

    textabstractOver a 12-month period, Corynebacterium striatum strains were isolated from clinical specimens from 14 patients admitted to a surgical intensive care unit. These isolates were identical by morphology and biotype and displayed the same antibiogram. Ten

  8. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization.

    Science.gov (United States)

    Llusia, Joan; Bermejo-Bermejo, Victoria; Calvete-Sogo, Héctor; Peñuelas, Josep

    2014-11-01

    Increasing tropospheric ozone (O3) and nitrogen soil availability (N) are two of the main drivers of global change. They both may affect gas exchange, including plant emission of volatiles such as terpenes. We conducted an experiment using open-top chambers to analyze these possible effects on two leguminous species of Mediterranean pastures that are known to have different O3 sensitivity, Ornithopus compressus and Trifolium striatum. O3 exposure and N fertilization did not affect the photosynthetic rates of O. compressus and T. striatum, although O3 tended to induce an increase in the stomatal conductance of both species, especially T. striatum, the most sensitive species. O3 and N soil availability reduced the emission of terpenes in O. compressus and T. striatum. If these responses are confirmed as a general pattern, O3 could affect the competitiveness of these species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Longitudinal Analysis of Early Stage Sarcopenia in Aging Rhesus Monkeys

    OpenAIRE

    McKiernan, Susan H.; Colman, Ricki; Lopez, Marisol; Beasley, T. Mark; Weindruch, Richard; Aiken, Judd M.

    2008-01-01

    We present a longitudinal study using the rhesus monkey to determine biochemical and histological changes in vastus lateralis (VL) muscle fibers and whether these changes correlate with muscle mass loss. Dual energy x-ray absorptiometry (DXA) was used to determine body weight, body fat and to estimate upper leg muscle mass in twelve adult male rhesus monkeys over 12 years. Muscle mass (MM) was evaluated at years six, nine and twelve of the study. Concurrently, VL muscle biopsy samples were co...

  10. Preference transitivity and symbolic representation in capuchin monkeys (Cebus apella.

    Directory of Open Access Journals (Sweden)

    Elsa Addessi

    Full Text Available BACKGROUND: Can non-human animals comprehend and employ symbols? The most convincing empirical evidence comes from language-trained apes, but little is known about this ability in monkeys. Tokens can be regarded as symbols since they are inherently non-valuable objects that acquire an arbitrarily assigned value upon exchange with an experimenter. Recent evidence suggested that capuchin monkeys, which diverged from the human lineage 35 million years ago, can estimate, represent and combine token quantities. A fundamental and open question is whether monkeys can reason about symbols in ways similar to how they reason about real objects. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined this broad question in the context of economic choice behavior. Specifically, we assessed whether, in a symbolic context, capuchins' preferences satisfy transitivity--a fundamental trait of rational decision-making. Given three options A, B and C, transitivity holds true if A > or = B, B > or = C and A > or = C (where > or = indicates preference. In this study, we trained monkeys to exchange three types of tokens for three different foods. We then compared choices monkeys made between different types of tokens with choices monkeys made between the foods. Qualitatively, capuchins' preferences revealed by the way of tokens were similar to those measured with the actual foods. In particular, when choosing between tokens, monkeys displayed strict economic preferences and their choices satisfied transitivity. Quantitatively, however, values measured by the way of tokens differed systematically from those measured with the actual foods. In particular, for any pair of foods, the relative value of the preferred food increased when monkeys chose between the corresponding tokens. CONCLUSIONS/SIGNIFICANCE: These results indicate that indeed capuchins are capable of treating tokens as symbols. However, as they do so, capuchins experience the cognitive burdens imposed by symbolic

  11. Auditory artificial grammar learning in macaque and marmoset monkeys.

    Science.gov (United States)

    Wilson, Benjamin; Slater, Heather; Kikuchi, Yukiko; Milne, Alice E; Marslen-Wilson, William D; Smith, Kenny; Petkov, Christopher I

    2013-11-27

    Artificial grammars (AG) are designed to emulate aspects of the structure of language, and AG learning (AGL) paradigms can be used to study the extent of nonhuman animals' structure-learning capabilities. However, different AG structures have been used with nonhuman animals and are difficult to compare across studies and species. We developed a simple quantitative parameter space, which we used to summarize previous nonhuman animal AGL results. This was used to highlight an under-studied AG with a forward-branching structure, designed to model certain aspects of the nondeterministic nature of word transitions in natural language and animal song. We tested whether two monkey species could learn aspects of this auditory AG. After habituating the monkeys to the AG, analysis of video recordings showed that common marmosets (New World monkeys) differentiated between well formed, correct testing sequences and those violating the AG structure based primarily on simple learning strategies. By comparison, Rhesus macaques (Old World monkeys) showed evidence for deeper levels of AGL. A novel eye-tracking approach confirmed this result in the macaques and demonstrated evidence for more complex AGL. This study provides evidence for a previously unknown level of AGL complexity in Old World monkeys that seems less evident in New World monkeys, which are more distant evolutionary relatives to humans. The findings allow for the development of both marmosets and macaques as neurobiological model systems to study different aspects of AGL at the neuronal level.

  12. Objectively measuring effects of electro-acupuncture in parkinsonian rhesus monkeys.

    Science.gov (United States)

    Zhang, Rui; Andersen, Anders H; Hardy, Peter A; Forman, Eric; Evans, April; Ai, Yi; Yue, Jin; Yue, Guihua; Gash, Don M; Grondin, Richard; Zhang, Zhiming

    2017-10-07

    Acupuncture has increasingly been used as an alternative therapy for treatment of Parkinson's disease (PD). However, the efficacy of acupunture for PD still remains unclear. The present study was designed to objectively and safely monitor anti-parkinsonian effects of electroacupuncture (EA) and brain activity in nonhuman primates modeling human PD. Six middle-aged rhesus monkeys were extensively studied by a computerized behavioral testing battery and by pharmacological MRI (phMRI) scans with specific dopaminergic drug stimulations. All animals were evaluated for behavior and phMRI responses under normal, parkinsonian, parkinsonian with EA treatment and parkinsonian after EA treatment conditions. Stable parkinsonian features were observed in all animals prior to entering the EA study and positive responses to levodopa (L-dopa) challenge were also seen in all animals. The results demonstrated that chronic EA treatments could significantly improve the movement speed and the fine motor performance time during the period of EA treatments, and the effectiveness of EA could be detected even 3 months after the EA treatment. The phMRI data revealed that chronic EA treatments could alter neuronal activity in the striatum, primary motor cortex (M1), cingulate gyrus and global pallidus externa (GPe) in the ipsilateral hemisphere to MPTP lesions. As seen in the changes of parkinsonian features, the residual effects of phMRI responses to apomorphine (APO) challenge could also be found in the aforementioned areas. The results strongly suggest that anti-parkinsonian effects of EA can be objectively assessed, and the method used in the present study could be translated into the human clinic with some minor modifications. Copyright © 2017. Published by Elsevier B.V.

  13. A molecular approach towards the taxonomy of fresh water prawns Macrobrachium striatum and M. equidens (Decapoda, Palaemonidae) using mitochondrial markers.

    Science.gov (United States)

    Jose, Deepak; Nidhin, B; Anil Kumar, K P; Pradeep, P J; Harikrishnan, M

    2016-07-01

    Genus Macrobrachium includes freshwater prawns which inhabit most diverse habitats ranging from low saline areas to inland hill streams and impounded water bodies. Being morphologically conserved, this genus has been exposed to severe disputes related to their taxonomy, systematics and phylogeny. Macrobrachium striatum and M. equidens represent two morphologically related congeneric species within this genus. Earlier, M. striatum was considered as a striped form of M. equidens. Though these species are now well-described morphologically and differentiated into two species, no molecular level investigation has been carried out in support of their speciation. We report a study on M. striatum and M. equidens with emphasis to their molecular data through mitochondrial markers (16S ribosomal RNA and cytochrome oxidase subunit I). Results obtained from developed molecular markers of the two species revealed considerable genetic differentiation between them. Phylogram generated using Minimum evolution and Neighbour joining analyses differentiated M. striatum and M. equidens as two independent species. Genetic distance data showed high interspecific divergence (ranging from 3.9% to 17.0% for 16S rRNA sequences and 13.8% to 21.0% for COI sequences) between M. striatum and M. equidens confirming the findings of phylogram. Hence, it could be delineated that M. striatum and M. equidens represent two distinct species within genus Macrobrachium with emphasis to their morphology and genetics.

  14. Secretion of phytohemagglutinin by monkey COS cells.

    Science.gov (United States)

    Voelker, T A; Florkiewicz, R Z; Chrispeels, M J

    1986-12-01

    The entire coding region of a gene, which encodes a polypeptide of phytohemagglutinin (PHA-L), obtained from a library of genomic DNA of the common bean Phaseolus vulgaris cv. Greensleeves, was introduced into the SV40 expression vector pJC119. Monkey COS1 cells were transfected with the recombinant clone and the synthesis, glycosylation, and transport of PHA-L studied and compared with the normal processes in bean cotyledons. In the bean, phytohemagglutinin is synthesized on the rough endoplasmic reticulum and transported via the Golgi complex to protein bodies, vacuole-like organelles. Phytohemagglutinin was synthesized and glycosylated at the ER and processed in the Golgi apparatus of the transfected COS1 cells. After passing the Golgi apparatus, PHA-L was slowly secreted into the culture medium (half-time of 3-6 h), a result indicating that the signals for targeting proteins beyond the Golgi apparatus in plant cells are different from those in animal cells. PHA, which is stored in protein bodies in the plant cells, is secreted by animal cells. Tunicamycin inhibited both glycosylation and secretion of PHA by the COS1 cells, a finding indicating an essential role of the oligosaccharides for transport of PHA in these cells in contrast to the situation found in bean cotyledons. PHA, secreted into the culture medium, was partially sensitive to endo H, a result indicating the presence of one high-mannose and one complex oligosaccharide chain, a situation identical to that in beans.

  15. Prefrontal neurons represent winning and losing during competitive video shooting games between monkeys

    National Research Council Canada - National Science Library

    Hosokawa, Takayuki; Watanabe, Masataka

    2012-01-01

    ...) showed response sensitivity related to a competitive game. In this study, monkeys played a video shooting game, either competing with another monkey or the computer, or playing alone without a rival...

  16. Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Kuiken, C. L.; Dekker, J. T.; Goudsmit, J.

    1995-01-01

    The suborder Anthropoidea of the primates has traditionally been divided in three superfamilies: the Hominoidea (apes and humans) and the Cercopithecoidea (Old World monkeys), together comprising the infraorder Catarrhini, and the Ceboidea (New World monkeys) belonging to the infraorder Platyrrhini.

  17. Fetal malformations and early embryonic gene expression response in cynomolgus monkeys maternally exposed to thalidomide

    Science.gov (United States)

    The present study was performed to determine experimental conditions for thalidomide induction of fetal malformations and to understand the molecular mechanisms underlying thalidomide teratogenicity in cynomolgus monkeys. Cynomolgus monkeys were orally administered (±)-thalidomid...

  18. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  19. A universal role of the ventral striatum in reward-based learning: evidence from human studies.

    Science.gov (United States)

    Daniel, Reka; Pollmann, Stefan

    2014-10-01

    Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are diverse and often only indirect feedback is available. Here we explore the range of rewards that are processed by the dopaminergic system in human participants, and examine whether it is also involved in learning in the absence of explicit rewards. While results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS) receives valuation information for a diverse set of rewarding stimuli. These range from simple primary reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning, indicating that the reward system is also recruited in more complex learning tasks. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Molecular mechanism regulating 24-hour rhythm of dopamine D3 receptor expression in mouse ventral striatum.

    Science.gov (United States)

    Ikeda, Eriko; Matsunaga, Naoya; Kakimoto, Keisuke; Hamamura, Kengo; Hayashi, Akane; Koyanagi, Satoru; Ohdo, Shigehiro

    2013-05-01

    The dopamine D3 receptor (DRD3) in the ventral striatum is thought to influence motivation and motor functions. Although the expression of DRD3 in the ventral striatum has been shown to exhibit 24-hour variations, the mechanisms underlying the variation remain obscure. Here, we demonstrated that molecular components of the circadian clock act as regulators that control the 24-hour variation in the expression of DRD3. The transcription of DRD3 was enhanced by the retinoic acid-related orphan receptor α (RORα), and its activation was inhibited by the orphan receptor REV-ERBα, an endogenous antagonist of RORα. The serum or dexamethasone-induced oscillation in the expression of DRD3 in cells was abrogated by the downregulation or overexpression of REV-ERBα, suggesting that REV-ERBα functions as a regulator of DRD3 oscillations in the cellular autonomous clock. Chromatin immunoprecipitation assays of the DRD3 promoter indicated that the binding of the REV-ERBα protein to the DRD3 promoter increased in the early dark phase. DRD3 protein expression varied with higher levels during the dark phase. Moreover, the effects of the DRD3 agonist 7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT)-induced locomotor hypoactivity were significantly increased when DRD3 proteins were abundant. These results suggest that RORα and REV-ERBα consist of a reciprocating mechanism wherein RORα upregulates the expression of DRD3, whereas REV-ERBα periodically suppresses the expression at the time of day when REV-ERBα is abundant. Our present findings revealed that a molecular link between the circadian clock and the function of DRD3 in the ventral striatum acts as a modulator of the pharmacological actions of DRD3 agonists/antagonists.

  1. Brain-derived neurotrophic factor controls cannabinoid CB1 receptor function in the striatum.

    Science.gov (United States)

    De Chiara, Valentina; Angelucci, Francesco; Rossi, Silvia; Musella, Alessandra; Cavasinni, Francesca; Cantarella, Cristina; Mataluni, Giorgia; Sacchetti, Lucia; Napolitano, Francesco; Castelli, Maura; Caltagirone, Carlo; Bernardi, Giorgio; Maccarrone, Mauro; Usiello, Alessandro; Centonze, Diego

    2010-06-16

    The role of brain-derived neurotrophic factor (BDNF) in emotional processes suggests an interaction with the endocannabinoid system. Here, we addressed the functional interplay between BDNF and cannabinoid CB(1) receptors (CB(1)Rs) in the striatum, a brain area in which both BDNF and CB(1)s play a role in the emotional consequences of stress and of rewarding experiences. BDNF potently inhibited CB(1)R function in the striatum, through a mechanism mediated by altered cholesterol metabolism and membrane lipid raft function. The effect of BDNF was restricted to CB(1)Rs controlling GABA-mediated IPSCs (CB(1)R(GABA)), whereas CB(1)Rs modulating glutamate transmission and GABA(B) receptors were not affected. The action of BDNF on CB(1)R(GABA) function was tyrosine kinase dependent and was complete even after receptor sensitization with cocaine or environmental manipulations activating the dopamine (DA)-dependent reward system. In mice lacking one copy of the BDNF gene (BDNF(+/-)), CB(1)R(GABA) responses were potentiated and were preserved from the action of haloperidol, a DA D(2) receptor (D(2)R) antagonist able to fully abolish CB(1)R(GABA) function in rewarded animals. Haloperidol also enhanced BDNF levels in the striatum, suggesting that this neurotrophin may act as a downstream effector of D(2)Rs in the modulation of cannabinoid signaling. Accordingly, 5 d cocaine exposure both reduced striatal BDNF levels and increased CB(1)R(GABA) activity, through a mechanism dependent on D(2)Rs. The present study identifies a novel mechanism of CB(1)R regulation mediated by BDNF and cholesterol metabolism and provides some evidence that DA D(2)R-dependent modulation of striatal CB(1)R activity is mediated by this neurotrophin.

  2. Dopaminergic basis for impairments in functional connectivity across subdivisions of the striatum in Parkinson's disease.

    Science.gov (United States)

    Bell, Peter T; Gilat, Moran; O'Callaghan, Claire; Copland, David A; Frank, Michael J; Lewis, Simon J G; Shine, James M

    2015-04-01

    The pathological hallmark of Parkinson's disease is the degeneration of dopaminergic nigrostriatal neurons, leading to depletion of striatal dopamine. Recent neuroanatomical work has identified pathways for communication across striatal subdivisions, suggesting that the striatum provides a platform for integration of information across parallel corticostriatal circuits. The aim of this study was to investigate whether dopaminergic dysfunction in Parkinson's disease was associated with impairments in functional connectivity across striatal subdivisions, which could potentially reflect reduced integration across corticostriatal circuits. Utilizing resting-state functional magnetic resonance imaging (fMRI), we analyzed functional connectivity in 39 patients with Parkinson's disease, both "on" and "off" their regular dopaminergic medications, along with 40 age-matched healthy controls. Our results demonstrate widespread impairments in connectivity across subdivisions of the striatum in patients with Parkinson's disease in the "off" state. The administration of dopaminergic medication significantly improved connectivity across striatal subdivisions in Parkinson's disease, implicating dopaminergic deficits in the pathogenesis of impaired striatal interconnectivity. In addition, impaired striatal interconnectivity in the Parkinson's disease "off" state was associated with pathological decoupling of the striatum from the thalamic and sensorimotor (SM) networks. Specifically, we found that although the strength of striatal interconnectivity was positively correlated with both (i) the strength of internal thalamic connectivity, and (ii) the strength of internal SM connectivity, in both healthy controls and the Parkinson's disease "on" state, these relationships were absent in Parkinson's disease when in the "off" state. Taken together our findings emphasize the central role of dopamine in integrated striatal function and the pathological consequences of striatal dopamine

  3. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum.

    Science.gov (United States)

    Hiroi, N; Graybiel, A M

    1996-10-07

    Atypical and typical neuroleptics, when administered chronically, can bring about profound but contrasting changes in schizophrenic symptoms and motor activation and dramatically modulate brain neurochemistry. To explore the transcriptional events that might be involved in this neurochemical regulation, we used immunohistochemistry and immunoblotting to examine the expression patterns of two bZip transcription factors, c-Fos and FosB, in the striatum of rats treated acutely and chronically with neuroleptic drugs of different classes. Typical and atypical neuroleptic drugs produced contrasting regulatory effects on a FosB-like protein of ca. 36-39 kDa, the molecular weight of truncated FosB (delta FosB). Chronic treatments with two typical neuroleptics, haloperidol and metoclopramide, but not with the atypical neuroleptic clozapine, led to markedly enhanced FosB-like immunoreactivity in the caudoputamen. Further, c-Fos-like protein in the striatum, considered a marker for the induction of antipsychotic actions by neuroleptic treatments, was downregulated by chronic treatment with the two potent antipsychotic drugs tested, but not by chronic treatment with metoclopramide, which has low antipsychotic efficacy but induces extrapyramidal side effects. These results suggest that chronic treatments with neuroleptics having different effects on cognitive and motor behavior induce different long-term changes in transcription factor expression in the striatum. Nevertheless, we found that neuroleptics of both classes regulated transcription factor expression in overlapping populations of striatal neurons expressing enkephalin or DARPP-32. Contrasting patterns of transcriptional regulation in these neurons may thus contribute to the distinct neurochemical and behavioral effects that characterize neuroleptics of different classes.

  4. Altered Aconitase 2 Activity in Huntington’s Disease Peripheral Blood Cells and Mouse Model Striatum

    Directory of Open Access Journals (Sweden)

    Chiung-Mei Chen

    2017-11-01

    Full Text Available Huntington’s disease (HD is caused by an unstable cytosine adenine guanine (CAG trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin protein. Previously, we identified several up- and down-regulated protein molecules in the striatum of the Hdh(CAG150 knock-in mice at 16 months of age, a mouse model which is modeling the early human HD stage. Among those molecules, aconitase 2 (Aco2 located in the mitochondrial matrix is involved in the energy generation and susceptible to increased oxidative stress that would lead to inactivation of Aco2 activity. In this study, we demonstrate decreased Aco2 protein level and activity in the brain of both Hdh(CAG150 and R6/2 mice. Aco2 activity was decreased in striatum of Hdh(CAG150 mice at 16 months of age as well as R6/2 mice at 7 to 13 weeks of age. Aco2 activity in the striatum of R6/2 mice could be restored by the anti-oxidant, N-acetyl-l-cysteine, supporting that decreased Aco2 activity in HD is probably caused by increased oxidative damage. Decreased Aco2 activity was further found in the peripheral blood mononuclear cells (PBMC of both HD patients and pre-symptomatic HD mutation (PreHD carriers, while the decreased Aco2 protein level of PBMC was only present in HD patients. Aco2 activity correlated significantly with motor score, independence scale, and functional capacity of the Unified Huntington’s Disease Rating Scale as well as disease duration. Our study provides a potential biomarker to assess the disease status of HD patients and PreHD carriers.

  5. Effects of aripiprazole on caffeine-induced hyperlocomotion and neural activation in the striatum.

    Science.gov (United States)

    Batista, Luara A; Viana, Thércia G; Silveira, Vívian T; Aguiar, Daniele C; Moreira, Fabrício A

    2016-01-01

    Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.

  6. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  7. Caffeine stimulates cytochrome oxidase expression and activity in the striatum in a sexually dimorphic manner.

    Science.gov (United States)

    Jones, Frederick S; Jing, Jie; Stonehouse, Anthony H; Stevens, Anthony; Edelman, Gerald M

    2008-09-01

    Epidemiological studies indicate that caffeine consumption reduces the risk of Parkinson's disease (PD) in men, and antagonists of the adenosine 2A receptor ameliorate the motor symptoms of PD. These findings motivated us to identify proteins whose expression is regulated by caffeine in a sexually dimorphic manner. Using mass spectroscopy, we found that Cox7c, a nuclear-encoded subunit of the mitochondrial enzyme cytochrome oxidase, is up-regulated in the striatum of male but not female mice after receiving a single dose of caffeine. The expression of two other Cox subunits, Cox1 and Cox4, was also stimulated by caffeine in a male-specific fashion. This up-regulation of Cox subunits by caffeine was accompanied by an increase in Cox enzyme activity in the male striatum. Caffeine-induced stimulation of Cox expression and activity were reproduced using the adenosine 2A receptor (A2AR)-specific antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-epsilon]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261), and coadministration of the A2AR-specific agonist 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) counteracted the elevation of Cox expression and activity by caffeine. Caffeine also increased Cox activity in PC-12 cells. In contrast, small interfering RNA (siRNA) knockdown of Cox7c expression in PC-12 cells blunted Cox activity, and this was counteracted by caffeine treatment. Caffeine was also found to increase Cox7c mRNA expression in the striatum and in PC-12 cells. This occurred at the level of transcription and was mediated by a segment of the Cox7c promoter. Overall, these findings indicate that cytochrome oxidase is a metabolic target of caffeine and that stimulation of Cox activity by caffeine via blockade of A2AR signaling may be an important mechanism underlying the therapeutic benefits of caffeine in PD.

  8. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    Science.gov (United States)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Mannisto, P. T.

    1992-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 micrograms/ml, or about 2% of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5% and 1.5%, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33% and 16%, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceeding 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  9. Altered trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in the striatum leads to behavioral changes in emotional responses.

    Science.gov (United States)

    Lee, Young; Lee, Hojin; Kim, Hyung-Wook; Yoon, Bong-June

    2015-01-01

    The striatum receives and integrates multiple inputs from diverse areas in the brain and plays a critical role in the regulation of motor activity. However, whether the striatum is involved in the alteration of behavior in the presence of emotional challenges is unknown. Here, we examined whether alterations in the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in the dorsal striatum would affect anxiety-related behaviors. We found that the transient expression of G1CT or G2CT, AMPAR-derived peptides, in the dorsomedial striatum led to decreased mobility in high-anxiety circumstances; however, the expression of these peptides in the dorsolateral striatum did not affect anxiety-related behavior. These data suggest that excitatory connections within the dorsomedial striatum play important roles in the control of motor actions in the presence of emotional challenges. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Observational learning in capuchin monkeys: a video deficit effect.

    Science.gov (United States)

    Anderson, James R; Kuroshima, Hika; Fujita, Kazuo

    2017-07-01

    Young human children have been shown to learn less effectively from video or televised images than from real-life demonstrations. Although nonhuman primates respond to and can learn from video images, there is a lack of direct comparisons of task acquisition from video and live demonstrations. To address this gap in knowledge, we presented capuchin monkeys with video clips of a human demonstrator explicitly hiding food under one of two containers. The clips were presented at normal, faster than normal, or slower than normal speed, and then the monkeys were allowed to choose between the real containers. Even after 55 sessions and hundreds of video demonstration trials the monkeys' performances indicated no mastery of the task, and there was no effect of video speed. When given live demonstrations of the hiding act, the monkeys' performances were vastly improved. Upon subsequent return to video demonstrations, performances declined to pre-live-demonstration levels, but this time with evidence for an advantage of fast video demonstrations. Demonstration action speed may be one aspect of images that influence nonhuman primates' ability to learn from video images, an ability that in monkeys, as in young children, appears limited compared to learning from live models.

  11. Responses of squirrel monkeys to their experimentally modified mobbing calls

    Science.gov (United States)

    Fichtel, Claudia; Hammerschmidt, Kurt

    2003-05-01

    Previous acoustic analyses suggested emotion-correlated changes in the acoustic structure of squirrel monkey (Saimiri sciureus) vocalizations. Specifically, calls given in aversive contexts were characterized by an upward shift in frequencies, often accompanied by an increase in amplitude. In order to test whether changes in frequencies or amplitude are indeed relevant for conspecific listeners, playback experiments were conducted in which either frequencies or amplitude of mobbing calls were modified. Latency and first orienting response were measured in playback experiments with six adult squirrel monkeys. After broadcasting yaps with increased frequencies or amplitude, squirrel monkeys showed a longer orienting response towards the speaker than after the corresponding control stimuli. Furthermore, after broadcasting yaps with decreased frequencies or amplitude, squirrel monkeys showed a shorter orienting response towards the speaker than after the corresponding manipulated calls with higher frequencies or amplitude. These results suggest that changes in frequencies or amplitude were perceived by squirrel monkeys, indicating that the relationship between call structure and the underlying affective state of the caller agreed with the listener's assessment of the calls. However, a simultaneous increase in frequencies and amplitude did not lead to an enhanced response, compared to each single parameter. Thus, from the receiver's perspective, both call parameters may mutually replace each other.

  12. Economic choices reveal probability distortion in macaque monkeys.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. Copyright © 2015 Stauffer et al.

  13. Hippocampus leads ventral striatum in replay of place-reward information.

    Science.gov (United States)

    Lansink, Carien S; Goltstein, Pieter M; Lankelma, Jan V; McNaughton, Bruce L; Pennartz, Cyriel M A

    2009-08-01

    Associating spatial locations with rewards is fundamental to survival in natural environments and requires the integrity of the hippocampus and ventral striatum. In joint multineuron recordings from these areas, hippocampal-striatal ensembles reactivated together during sleep. This process was especially strong in pairs in which the hippocampal cell processed spatial information and ventral striatal firing correlated to reward. Replay was dominated by cell pairs in which the hippocampal "place" cell fired preferentially before the striatal reward-related neuron. Our results suggest a plausible mechanism for consolidating place-reward associations and are consistent with a central tenet of consolidation theory, showing that the hippocampus leads reactivation in a projection area.

  14. Separate Populations of Neurons in Ventral Striatum Encode Value and Motivation

    Science.gov (United States)

    Gentry, Ronny N.; Goldstein, Brandon L.; Hearn, Taylor N.; Barnett, Brian R.; Kashtelyan, Vadim; Roesch, Matthew R.

    2013-01-01

    Neurons in the ventral striatum (VS) fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation. PMID:23724077

  15. Previous exposure to footshock stress attenuates nicotine-induced serotonin release in rat striatum during the subsequent stress.

    Science.gov (United States)

    Takahashi, H; Takada, Y; Nagai, N; Urano, T; Takada, A

    2000-07-01

    We have analyzed the effects of chronic or repeated footshock stress on the release of serotonin (5-hydroxytryptamine: 5-HT) in the striatum of rats that received nicotine by using a microdialysis technique. Neither local infusion of nicotine alone nor stress application alone changed 5-HT release. Local infusion of 1 mM nicotine to the striatum, however, significantly increased 5-HT release in the striatum to 145.9 +/- 30.8 pg/dialysate during simultaneous stress application. These increases of extracellular 5-HT release induced by the combination of nicotine and stress application were also observed in rats that had received daily chronic footshock. However, the previously administered footshock induced the reduced release of 5-HT from the striatum to 33.5 +/- 8. 6 (repeated footshock) and 10.0 +/- 3.6 pg/dialysate (daily footshock) when footshock was given together with nicotine infusion. These results suggest that previous exposure to stress attenuated the nicotine-induced 5-HT release in the striatum during the subsequent stress.

  16. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory.

    Science.gov (United States)

    Mattfeld, Aaron T; Stark, Craig E L

    2015-08-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment, we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment, we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments, the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. © 2015 Wiley Periodicals, Inc.

  17. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  18. Serotonin agonists reduce dopamine synthesis in the striatum only when the impulse flow of nigro-striatal neurons is intact.

    Science.gov (United States)

    Spampinato, U; Esposito, E; Samanin, R

    1985-09-01

    The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.

  19. Neural metabolite changes in corpus striatum after rat multipotent mesenchymal stem cells transplanted in hemiparkinsonian rats by magnetic resonance spectroscopy.

    Science.gov (United States)

    Fu, Wenyu; Zheng, Zhijuan; Zhuang, Wenxin; Chen, Dandan; Wang, Xiaocui; Sun, Xihe; Wang, Xin

    2013-12-01

    To investigate the biochemical changes in striatum after rat bone marrow mesenchymal stem cells (MSCs) were transplanted into hemiparkinsonian rats and to further confirm the therapeutic effects of rat MSCs for Parkinson's disease (PD). 5-bromo-2-deoxyuridine (BrdU)-labeled MSCs were transplanted into the corpus striatum of the 6-hydroxydopamine (6-OHDA)-injected side of six PD model rats. Before and 8 weeks after MSC transplantation, ethological changes in PD rats were assessed. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum were measured using immunohistochemical methods. The differentiation of MSCs was detected by double immunofluorescence techniques. The concentrations of neural metabolites of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were measured by ¹H-magnetic resonance spectroscopy (MRS). Relative concentrations of NAA/Cr and Cho/Cr were calculated. The behavior of PD rats in rotarod tests improved, and there were statistical differences in TH-positive cells in SN and TH-positive terminals in striatum after the transplantation of BrdU-labeled MSCs. Transplanted MSCs differentiated into MAP-2-positive neurons. Especially compared with pre-MSC transplantation, the neural metabolite NAA/Cr ratio of the 6-OHDA-injected side of the striatum increased (P rats.

  20. Neural Monkey: An Open-source Tool for Sequence Learning

    Directory of Open Access Journals (Sweden)

    Helcl Jindřich

    2017-04-01

    Full Text Available In this paper, we announce the development of Neural Monkey – an open-source neural machine translation (NMT and general sequence-to-sequence learning system built over the TensorFlow machine learning library. The system provides a high-level API tailored for fast prototyping of complex architectures with multiple sequence encoders and decoders. Models’ overall architecture is specified in easy-to-read configuration files. The long-term goal of the Neural Monkey project is to create and maintain a growing collection of implementations of recently proposed components or methods, and therefore it is designed to be easily extensible. Trained models can be deployed either for batch data processing or as a web service. In the presented paper, we describe the design of the system and introduce the reader to running experiments using Neural Monkey.

  1. ‘‘What's wrong with my monkey?''

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2010-01-01

    The birth of the first transgenic primate to have inherited a transgene from its parents opens the possibility to set up transgenic marmoset colonies, as these monkeys are small and relatively easy to keep and breed in research facilities. The prospect of transgenic marmoset models of human disease......, readily available in the way that transgenic laboratory mice are currently, prompts excitement in the scientific community; but the idea of monkeys being bred to carry diseases is also contentious. We structure an ethical analysis of the transgenic marmoset case around three questions: whether...... it is acceptable to use animals as models of human disease; whether it is acceptable to genetically modify animals; and whether these animals' being monkeys makes a difference. The analysis considers the prospect of transgenic marmoset studies coming to replace transgenic mouse studies and lesion studies...

  2. Comparative Overview of Visuospatial Working Memory in Monkeys and Rats.

    Science.gov (United States)

    Tsutsui, Ken-Ichiro; Oyama, Kei; Nakamura, Shinya; Iijima, Toshio

    2016-01-01

    Neural mechanisms of working memory, particularly its visuospatial aspect, have long been studied in non-human primates. On the other hand, rodents are becoming more important in systems neuroscience, as many of the innovative research methods have become available for them. There has been a question on whether primates and rodents have similar neural backgrounds for working memory. In this article, we carried out a comparative overview of the neural mechanisms of visuospatial working memory in monkeys and rats. In monkeys, a number of lesion studies indicate that the brain region most responsible for visuospatial working memory is the ventral dorsolateral prefrontal cortex (vDLPFC), as the performance in the standard tests for visuospatial working memory, such as delayed response and delayed alternation tasks, are impaired by lesions in this region. Single-unit studies revealed a characteristic firing pattern in neurons in this area, a sustained delay activity. Further studies indicated that the information maintained in the working memory, such as cue location and response direction in a delayed response, is coded in the sustained delay activity. In rats, an area comparable to the monkey vDLPFC was found to be the dorsal part of the medial prefrontal cortex (mPFC), as the delayed alternation in a T-maze is impaired by its lesion. Recently, the sustained delay activity similar to that found in monkeys has been found in the dorsal mPFC of rats performing the delayed response task. Furthermore, anatomical studies indicate that the vDLPFC in monkeys and the dorsal mPFC in rats have much in common, such as that they are both the major targets of parieto-frontal projections. Thus lines of evidence indicate that in both monkeys and rodents, the PFC plays a critical role in working memory.

  3. Individual Differences in Striatum Activity to Food Commercials Predict Weight Gain in Adolescents

    Science.gov (United States)

    Yokum, Sonja; Gearhardt, Ashley N.; Harris, Jennifer L.; Brownell, Kelly D.; Stice, Eric

    2014-01-01

    Objective Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in Body Mass Index (BMI). Design and Methods Adolescents (N = 30) underwent a scan session at baseline while watching a television show edited to include 20 food commercials and 20 non-food commercials. BMI was measured at baseline and 1-year follow-up. Results Activation in the striatum, but not OFC, in response to food commercials relative to non-food commercials and in response to food commercials relative to the television show was positively associated with change in BMI over 1-year follow-up. Baseline BMI did not moderate these effects. Conclusions The results suggest that there are individual differences in neural susceptibility to food advertising. These findings highlight a potential mechanism for the impact of food marketing on adolescent obesity. PMID:25155745

  4. Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation.

    Science.gov (United States)

    Albouy, Geneviève; King, Bradley R; Maquet, Pierre; Doyon, Julien

    2013-11-01

    While several models of memory consolidation have previously associated hippocampal activity with declarative memory, there is now increasing evidence that the hippocampus also plays a crucial role in procedural memory. Here, we review recent human functional neuroimaging studies demonstrating that the hippocampus is involved in the acquisition and sleep-related consolidation of procedural memories, and motor sequence-based skills in particular. More specifically, we present evidence that hippocampal activity and its functional interactions with other brain structures, particularly competition with the striatum, contribute to initial learning of sequential motor behavior. Interestingly, these early cerebral representations in the hippocampus and striatum, which may interact through the prefrontal cortex, can even predict subsequent sleep-related memory consolidation processes. We propose that sleep can reorganize the activity within, as well as the functional interactions between, these structures, ultimately favoring overnight performance enhancement. Finally, we conclude by offering insights into the respective roles of these structures in procedural memory consolidation processes. We argue that, in the context of motor sequence memory consolidation, the hippocampal system triggers subsequent sleep-dependent performance enhancement whereas the striatal system is involved in the maintenance of the motor behavior over time. Copyright © 2013 Wiley Periodicals, Inc.

  5. Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain

    Science.gov (United States)

    Guitart-Masip, Marc; Fuentemilla, Lluis; Bach, Dominik R.; Huys, Quentin J. M.; Dayan, Peter; Dolan, Raymond J.; Duzel, Emrah

    2011-01-01

    The acquisition of reward and the avoidance of punishment could logically be contingent on either emitting or withholding particular actions. However, the separate pathways in the striatum for go and nogo appear to violate this independence, instead coupling affect and effect. Respect for this interdependence has biased many studies of reward and punishment, so potential action-outcome valence interactions during anticipatory phases remain unexplored. In a functional Magnetic Resonance Imaging (fMRI) study with healthy human volunteers we manipulated subjects’ requirement to emit or withhold an action independent from subsequent receipt of reward or avoidance of punishment. During anticipation, in the striatum, and a lateral region within the substantia nigra/ventral tegmental area (SN/VTA), action representations dominated over valence representations. Moreover, we did not observe any representation associated with different state values through accumulation of outcomes, challenging a conventional and dominant association between these areas and state value representations. In contrast, a more medial sector of the SN/VTA responded preferentially to valence, with opposite signs depending on whether action was anticipated to be emitted or withheld. This dominant influence of action requires an enriched notion of opponency between reward and punishment. PMID:21613500

  6. Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner.

    Science.gov (United States)

    Ketzef, Maya; Spigolon, Giada; Johansson, Yvonne; Bonito-Oliva, Alessandra; Fisone, Gilberto; Silberberg, Gilad

    2017-05-17

    Parkinson's disease (PD) is a movement disorder caused by the loss of dopaminergic innervation, particularly to the striatum. PD patients often exhibit sensory impairments, yet the underlying network mechanisms are unknown. Here we examined how dopamine (DA) depletion affects sensory processing in the mouse striatum. We used the optopatcher for online identification of direct and indirect pathway projection neurons (MSNs) during in vivo whole-cell recordings. In control mice, MSNs encoded the laterality of sensory inputs with larger and earlier responses to contralateral than ipsilateral whisker deflection. This laterality coding was lost in DA-depleted mice due to adaptive changes in the intrinsic and synaptic properties, mainly, of direct pathway MSNs. L-DOPA treatment restored laterality coding by increasing the separation between ipsilateral and contralateral responses. Our results show that DA depletion impairs bilateral tactile acuity in a pathway-dependent manner, thus providing unexpected insights into the network mechanisms underlying sensory deficits in PD. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  8. ART FOR REWARD’S SAKE: VISUAL ART RECRUITS THE VENTRAL STRIATUM

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M.; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R.; Reddy, Srinivas; Sathian, K.

    2010-01-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non -art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. PMID:21111833

  9. Genetic variation in COMT activity impacts learning and dopamine release capacity in the striatum

    Science.gov (United States)

    Simpson, Eleanor H.; Morud, Julia; Winiger, Vanessa; Biezonski, Dominik; Zhu, Judy P.; Bach, Mary Elizabeth; Malleret, Gael; Polan, H. Jonathan; Ng-Evans, Scott; Phillips, Paul E.M.; Kellendonk, Christoph; Kandel, Eric R.

    2014-01-01

    A common genetic polymorphism that results in increased activity of the dopamine regulating enzyme COMT (the COMT Val158 allele) has been found to associate with poorer cognitive performance and increased susceptibility to develop psychiatric disorders. It is generally assumed that this increase in COMT activity influences cognitive function and psychiatric disease risk by increasing dopamine turnover in cortical synapses, though this cannot be directly measured in humans. Here we explore a novel transgenic mouse model of increased COMT activity, equivalent to the relative increase in activity observed with the human COMT Val158 allele. By performing an extensive battery of behavioral tests, we found that COMT overexpressing mice (COMT-OE mice) exhibit cognitive deficits selectively in the domains that are affected by the COMT Val158 allele, stimulus–response learning and working memory, functionally validating our model of increased COMT activity. Although we detected no changes in the level of markers for dopamine synthesis and dopamine transport, we found that COMT-OE mice display an increase in dopamine release capacity in the striatum. This result suggests that increased COMT activity may not only affect dopamine signaling by enhancing synaptic clearance in the cortex, but may also cause changes in presynaptic dopamine function in the striatum. These changes may underlie the behavioral deficits observed in the mice and might also play a role in the cognitive deficits and increased psychiatric disease risk associated with genetic variation in COMT activity in humans. PMID:24639487

  10. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum.

    Directory of Open Access Journals (Sweden)

    Mariana Raineri

    Full Text Available Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections on glial cells (microglia and astroglia. We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.

  11. Reward processing dysfunction in ventral striatum and orbitofrontal cortex in Parkinson's disease.

    Science.gov (United States)

    du Plessis, Stéfan; Bossert, Meija; Vink, Matthijs; van den Heuvel, Leigh; Bardien, Soraya; Emsley, Robin; Buckle, Chanelle; Seedat, Soraya; Carr, Jonathan

    2017-12-24

    Parkinson's disease is a growing concern as the longevity of the world's population steadily increases. Both ageing and Parkinson's disease have an impact on dopamine neurotransmission. It is therefore important to investigate their relative impact on the fronto-striatal reward system. There has been little investigation of reward processing in terms of anticipation and reward outcome in Parkinson's disease. Abnormal responses during reward processing have previously been demonstrated in whole-brain analysis of Parkinson's patients with mild lateralized disease, but the exact impact in regions specific to reward processing is still unknown. Here we aim to investigate the impact of Parkinson's disease on the orbitofrontal ventral striatal reward system in patients with moderate to severe clinical symptoms. We utilized a monetary incentive delay (MID) task in 17 Parkinson's patients who were compared to two control groups stratified by age. The MID paradigm reliably activates the ventral striatum during reward anticipation and the orbitofrontal cortex during reward outcome processing. Relative to the two control groups, Parkinson's disease patients had abnormal task related activity during both reward anticipation in the ventral striatum and reward outcome in the orbitofrontal cortex. There were no effects of ageing. These findings demonstrate abnormalities in anticipatory as well as reward outcome processing while treated primarily with levodopa. The orbitofrontal dysfunction during reward outcome processing may have specificity in Parkinson's disease, as it has been shown to be relatively unaffected by normal ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure

    Science.gov (United States)

    Kim, Hak Rim

    2016-01-01

    The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs). EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF) of 835 MHz at a specific absorption rate (SAR) of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress. PMID:27073885

  13. Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum

    Science.gov (United States)

    Goitia, Belen; Garcia-Rill, Edgar; Krasnova, Irina N.; Cadet, Jean Lud; Urbano, Francisco J.; Bisagno, Veronica

    2012-01-01

    Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum. PMID:23056363

  14. Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder.

    Science.gov (United States)

    Robinson, Oliver J; Cools, Roshan; Carlisi, Christina O; Sahakian, Barbara J; Drevets, Wayne C

    2012-02-01

    Affective biases may underlie many of the key symptoms of major depressive disorder, from anhedonia to altered cognitive performance. Understanding the cause of these biases is therefore critical in the quest for improved treatments. Depression is associated, for example, with a negative affective bias in reversal learning. However, despite the fact that reversal learning is associated with striatal response in healthy individuals and depressed individuals exhibit attenuated striatal function on multiple tasks, studies to date have not demonstrated striatal involvement in the negative bias in reversal learning in depression. In this study, the authors sought to determine whether this may be because reversal learning tasks conventionally used to study behavior examine reversals only on the basis of unexpected punishment and therefore do not adequately separate reward- and punishment-based behavior. The authors used functional MRI to compare the hemodynamic response to a reversal learning task with mixed reward- and punishment-based reversal stages between individuals with unmedicated major depressive disorder (N=13) and healthy comparison subjects (N=14). Impaired reward (but not punishment) reversal accuracy was found alongside attenuated anteroventral striatal response to unexpected reward in depression. Attenuated neurophysiological response of the anteroventral striatum may reflect dysfunction in circuits involving afferent projections from the orbitofrontal, limbic, and/or mesostriatal dopaminergic pathways, which conceivably may, together with the ventral striatum, underlie anhedonia in depression. Learning to appreciate and enjoy positive life experiences is critical for recovery from depression. This study pinpoints a neural target for such recovery.

  15. Pulpal Response to Intraligamentary Injection in the Cynomologus Monkey

    Science.gov (United States)

    Peurach, James C.

    1985-01-01

    The objective of this study was to determine if intraligamentary injection causes qualitative histopathologic changes in the dental pulp of a Cynomologus monkey. In as much as the pulp and periapical tissues of the monkey are similar to that of humans, nonresolving damage to the pulp would contraindicate periodontal ligament injection in procedures where the tooth would not be extracted or the pulp extirpated. Periodontal ligament injection in this study did not produce any histopathological pulpal changes when compared to the pulps of uninjected teeth. ImagesFig. 1Fig. 2 PMID:3859234

  16. Isolation of M. pneumoniae from monkeys (Presbitus cristata).

    Science.gov (United States)

    Stipkovits, L; Marantidi, A N; Dzikidze, E K; Krylova, R I; Vulvovich, J V

    1989-03-01

    Monkeys of the species Presbitus cristata died of severe interstitial pneumonia 20-60 days after their transportation. The carcases were examined for the presence of mycoplasmas. Thirty-six out of 65 samples obtained from the liver, spleen, kidney, lung, lymph nodes, pharynx, bronchi and blood of 13 monkeys contained mycoplasmas biochemically and serologically identical with M. pneumoniae. The isolated strains were able to elicit a rise in body temperature and an elevation in the number of leucocytes in blood as well as development of interstitial pneumonia, colonization of the inner organs by the mycoplasmas and a serological response in the experimentally infected guinea-pigs.

  17. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira; Andrade, Cláudia; Pettenuzzo, Letícia; Guma, Fátima T. Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil); Batista Teixeira da Rocha, João [Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS Brazil (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil)

    2012-10-15

    In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe){sub 2}/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe){sub 2} significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe){sub 2} provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe){sub 2} treated striatal slices suggested apoptotic cell death. (PhTe){sub 2} exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe){sub 2}-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis. -- Highlights: ► Diphenyl ditelluride causes apoptotic neuronal death in the striatum of young rats. ► Diphenyl ditelluride causes reactive astrogliosis in the striatum of rats. ► Diphenyl ditelluride disrupts the homeostasis of the cytoskeleton of the striatum. ► The actions of diphenyl ditelluride are mediated by MAPK and Akt

  18. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  19. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing effects of virtually all drugs...... of abuse. Objective/Hypotheses: The sensitivity of the measurement of DA transmission using raclopride as the surrogate marker may be affected by the type of analysis of raclopride binding potential (pB) chosen. Here, we compare striatal pB data obtained using three routine analyses of raclopride data...

  20. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing  effects of virtually all drugs...... of abuse. Objective/Hypotheses: The sensitivity of the measurement of DA transmission using raclopride  as the surrogate marker may be affected by the type of analysis of raclopride binding potential (pB) chosen. Here, we compare  striatal pB data obtained using three routine analyses of raclopride data...

  1. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  2. Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of Methamphetamine Craving after Voluntary Abstinence.

    Science.gov (United States)

    Caprioli, Daniele; Venniro, Marco; Zhang, Michelle; Bossert, Jennifer M; Warren, Brandon L; Hope, Bruce T; Shaham, Yavin

    2017-01-25

    We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving

  3. The monkey in the mirror: Hardly a stranger

    Science.gov (United States)

    de Waal, Frans B. M.; Dindo, Marietta; Freeman, Cassiopeia A.; Hall, Marisa J.

    2005-01-01

    It is widely assumed that monkeys see a stranger in the mirror, whereas apes and humans recognize themselves. In this study, we question the former assumption by using a detailed comparison of how monkeys respond to mirrors versus live individuals. Eight adult female and six adult male brown capuchin monkeys (Cebus apella) were exposed twice to three conditions: (i) a familiar same-sex partner, (ii) an unfamiliar same-sex partner, and (iii) a mirror. Females showed more eye contact and friendly behavior and fewer signs of anxiety in front of a mirror than they did when exposed to an unfamiliar partner. Males showed greater ambiguity, but they too reacted differently to mirrors and strangers. Discrimination between conditions was immediate, and blind coders were able to tell the difference between monkeys under the three conditions. Capuchins thus seem to recognize their reflection in the mirror as special, and they may not confuse it with an actual conspecific. Possibly, they reach a level of self–other distinction intermediate between seeing their mirror image as other and recognizing it as self. PMID:16055557

  4. Vegetarian diet in Guenon and Mangabey monkeys of Moukalaba ...

    African Journals Online (AJOL)

    php/ijbcs http://indexmedicus.afro.who.int. Vegetarian diet in Guenon and Mangabey monkeys of Moukalaba-Doudou. National Park, Gabon: Similarities and Differences. Lilian Brice MANGAMA-KOUMBA1,2*, Ghislain Wilfried EBANG ELLA1,2,.

  5. Distribution And Conservation Of The Patas Monkey Erythrocebus ...

    African Journals Online (AJOL)

    From December 2003 through May 2004, a survey was conducted on patas monkeys Erythrocebus patas in Kenya to determine the historic distribution, current distribution, conservation status, and threats. Patas were found in Laikipia District, Busia, West-Pokot, Turkana, Makueni and Taita Taveta Districts. Historically ...

  6. Survey of De Brazza's monkey ( Cercopithecus neglectus Schlegel ...

    African Journals Online (AJOL)

    Censuses of De Brazza's monkey Cercopithecus neglectus were conducted in the Tororo District of eastern Uganda and in Trans-Nzoia and West Pokot Districts of Western Kenya to determine the status of this species and its habitat. The species had not been reported in eastern Uganda since 1958, and a previous census ...

  7. Long-term persistence of de Brazza's Monkey ( Cercopithecus ...

    African Journals Online (AJOL)

    Here we report on population trends of de Brazza's monkey (Cercopithecus neglectus) over 20 years in Kenya's Kisere Forest, a biologically-rich moist forest remnant under intense anthropogenic pressure. We found that although abundance of this shy primate did not change across four censuses, group composition ...

  8. Phylogenetic tests of a Cercopithecus monkey hybrid reveal X ...

    African Journals Online (AJOL)

    A captive Cercopithecus nictitans × C. cephus male was examined at loci on the X- and Y-chromosomes as a test of previously described phylogenetic methods for identifying hybrid Cercopithecus monkeys. The results confirm the reliability of such assays, indicating that they can be of immediate utility for studies of wild ...

  9. Toxoplasmosis in a colony of New World monkeys

    DEFF Research Database (Denmark)

    Dietz, H.H.; Henriksen, P.; Bille-Hansen, Vivi

    1997-01-01

    In a colony of New World monkeys five tamarins (Saguinus oedipus, Saguinus labiatus and Leontopithecus rosal. rosal.), three marmosets (Callithrix jacchus and Callithrix pygmaea) and one saki (Pithecia pithecia) died suddenly. The colony comprised 16 marmosets, 10 tamarins and three sakis. The ma...

  10. Polioencephalomalacia secondary to hypernatremia in squirrel monkeys (Saimiri sciureus).

    Science.gov (United States)

    Macri, S M Cummings; Masek-Hammerman, K; Crowell, A M; Fenn, M S; Knight, H L; Westmoreland, S V; Miller, A D

    2014-05-01

    Squirrel monkeys (Saimiri spp) are one of the most consistently used New World primates in biomedical research and are increasingly being used in neuroscience research, including models of drug abuse and addiction. Spontaneous neurologic disease in the squirrel monkey is uncommonly reported but includes various infectious diseases as well as cerebral amyloidosis. Hypernatremia is an extremely serious condition of hyperosmolarity that occurs as a result of water loss, adipsia, or excess sodium intake. Neurologic effects of hypernatremia reflect the cellular dehydration produced by the shift of water from the intracellular fluid space into the hypertonic extracellular fluid space. Severe hypernatremia may result in cerebrocortical laminar necrosis (polioencephalomalacia) in human patients as well as in a number of domestic species, including pigs, poultry, and ruminants. We report the clinical, histopathologic, and immunohistochemical findings of polioencephalomalacia in 13 squirrel monkeys. Polioencephalomalacia in these animals was associated with hypernatremia that was confirmed by serum levels of sodium greater than 180 mmol/L (reference range, 134.0-154.0 mmol/L [mEq/L]). All animals had concurrent diseases or experimental manipulation that predisposed to adipsia. Immunohistochemical investigation using antibodies to neuronal nuclei (NeuN), CNPase, Iba-1, and CD31 revealed necrosis of predominantly cerebral cortical layers 3, 4, and 5 characterized by neuronal degeneration and loss, oligodendrocytic loss, microglial proliferation, and vascular reactivity. The squirrel monkey is exquisitely sensitive to hyperosmolar metabolic disruption and it is associated with laminar cortical necrosis.

  11. Paratuberculosis (Johne’s Disease) in the Monkey (Macaca Mulatta),

    Science.gov (United States)

    Johne’s disease or paratuberculosis is caused by the acid-fast organism Mycobacterium paratuberculosis and is known to affect cattle, sheep and goats...IT HAS A PROLONGED COURSE CHARACTERIZED BY DIARRHEA, EMACIATION, AND EVENTUALLY DEATH. The recognition of paratuberculosis in the monkey provides

  12. Food and Feeding Habits of Mona Monkey Cercopithecus Mona in ...

    African Journals Online (AJOL)

    The feeding habits of mona monkey Cercopithecus mona in Ayede/Isan forest reserve, Ayede, Ekiti State, Nigeria were studied for six months. Direct observation was used in the data collection. The study area was visited two days per week between 0600-1100hours and 1600-1800hours for the six months in the forest ...

  13. Servants, Managers and Monkeys: New Perspectives on Leadership

    Science.gov (United States)

    Buskey, Frederick C.

    2014-01-01

    In this article the author questions whether the understanding of teaching and leading is the same today as it was last year? The chances are that the concept of what it means to be a teacher and a leader has changed. After describing three leadership types: servants, managers, and monkeys, Buskey suggest several things that are needed to improve…

  14. Evaluating the habitat of the critically endangered Kipunji monkey ...

    African Journals Online (AJOL)

    Most primates are threatened by tropical forest loss. One population of the critically endangered kipunji monkey Rungwecebus kipunji occurs in a restricted part of one forest in southern Tanzania. This restricted range is something of an enigma. We collated woody vegetation data to assess habitat quality in and around the ...

  15. Concurent fatal helminthosis and balantidosis in red monkey ...

    African Journals Online (AJOL)

    Fresh fecal specimen from a moribund red monkey (Erythrocebus patas) from the zoological garden, University of Ibadan with a history of dysentery was examined. Ova of Trichuris spp., Enterobius spp, Ancylostoma spp. and Strongyloides spp., as well as Balantidium spp oocysts were found. Post mortem, findings revealed ...

  16. GLP-1 receptor localization in monkey and human tissue

    DEFF Research Database (Denmark)

    Pyke, Charles; Heller, R Scott; Kirk, Rikke Kaae

    2014-01-01

    and increase heart rate. Using a new monoclonal antibody for immunohistochemistry, we detected GLP-1 receptor (GLP-1R) in important target organs in humans and monkeys. In the pancreas, GLP-1R was predominantly localized in β-cells with a markedly weaker expression in acinar cells. Pancreatic ductal epithelial...

  17. 54 relative density and distribution of tantalus monkey

    African Journals Online (AJOL)

    Tersor

    In Jeltere ecological habitat for the species survival is under threats. ... range of forest habitats with different levels of human activity, which is ideal for investigating anthropogenic influence on primate abundance and distribution. METHODS .... Table 3: Populations structure of Tantalus monkey in Sambisa game reserve.

  18. The distribution of Mona monkeys ( Cercopithecus mona , schreber ...

    African Journals Online (AJOL)

    Relatively, high occurrences were observed at the sites behind the Church and Mosque, and the Faculty of Environmental Sciences between 09:01 12:00 h. Mona populations were significantly different (P<0.05) between the study sites. Mona monkey habitat restoration, proper forest management and law enforcement ...

  19. 54 relative density and distribution of tantalus monkey

    African Journals Online (AJOL)

    Tersor

    Tantalus monkey (Cercopithecus tantalus) was reported as widely abundant primate species in Sambisa Game. Reserve. In order to provide information ... density and he found a negative relationship with minimum density. By contrast, Eeley and .... A comprehensive computer software package Microsoft excel (Ms excel) ...

  20. The Monkey Kid: A Personal Glimpse into the Cultural Revolution

    Directory of Open Access Journals (Sweden)

    Anita M. Andrew

    2011-04-01

    Full Text Available Wang, Xiao-Yen (Director/Writer, 'The Monkey Kid '(1995. San Francisco, Calif.: Beijing–San Francisco Film Group. Also released in France by Les Films du Parodoxe under the title, 'La Mome Singe '(1997. 95 minutes. Mandarin Chinese with English subtitles.

  1. New insights into samango monkey speciation in South Africa.

    Directory of Open Access Journals (Sweden)

    Desiré L Dalton

    Full Text Available The samango monkey is South Africa's only exclusively forest dwelling primate and represents the southernmost extent of the range of arboreal guenons in Africa. The main threats to South Africa's forests and thus to the samango are linked to increasing land-use pressure and increasing demands for forest resources, resulting in deforestation, degradation and further fragmentation of irreplaceable habitats. The species belongs to the highly polytypic Cercopithecus nictitans group which is sometimes divided into two species C. mitis and C. albogularis. The number of subspecies of C. albogularis is also under debate and is based only on differences in pelage colouration and thus far no genetic research has been undertaken on South African samango monkey populations. In this study we aim to further clarify the number of samango monkey subspecies, as well as their respective distributions in South Africa by combining molecular, morphometric and pelage data. Overall, our study provides the most comprehensive view to date into the taxonomic description of samango monkeys in South Africa. Our data supports the identification of three distinct genetic entities namely; C. a. labiatus, C. a. erythrarchus and C. a. schwarzi and argues for separate conservation management of the distinct genetic entities defined by this study.

  2. Vegetarian diet in Guenon and Mangabey monkeys of Moukalaba ...

    African Journals Online (AJOL)

    habitats and his characteristics in primatology. Today it is considered as a sanctuary of western lowland gorillas, with an abundance and high density of apes (Takenoshita and. Yamagiwa, 2008; Nakashima et al., 2013b). Also, there are two main groups of. Cercopithecines monkeys (Mangabeys and. Guenons) and a lack ...

  3. Call Combinations in Monkeys: Compositional or Idiomatic Expressions?

    Science.gov (United States)

    Arnold, Kate; Zuberbuhler, Klaus

    2012-01-01

    Syntax is widely considered the feature that most decisively sets human language apart from other natural communication systems. Animal vocalisations are generally considered to be holistic with few examples of utterances meaning something other than the sum of their parts. Previously, we have shown that male putty-nosed monkeys produce call…

  4. Functional Specialization within the Striatum along Both the Dorsal/Ventral and Anterior/Posterior Axes during Associative Learning via Reward and Punishment

    Science.gov (United States)

    Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E. L.

    2011-01-01

    The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what…

  5. Normal thoracic radiographic appearance of the cynomolgus monkey (Macaca fascicularis.

    Directory of Open Access Journals (Sweden)

    Liang Xie

    Full Text Available BACKGROUND: The cynomolgus monkey (Macaca fascicularis has been increasingly used as a non-human primate model in biomedical research. As establishing baseline thoracic radiography for the cynomolgus monkey is essential, we tested the hypothesis that age and sex may affect the thoracic radiography parameters of this species. METHODS: Here, 697 healthy cynomolgus monkeys were segregated by sex and age (three age groups: 25-36 months, 37-48 months, 49-60 months. The lung length (LL, maximal interior thoracic depth (TD, maximal interior thoracic breadth (TBr, cardiac silhouette breadth (CBr, cardiothoracic ratio (CR, right and left costophrenic angles (RCA and LCA, and right hilar height ratio (R-HHR were assessed by chest film. Statistical analysis was applied to examine the effect of age, sex, and age × sex interactions. RESULTS: Significant effects by age were shown for LL, TD, TBr, CBr, and CR. Significant effects by sex were found for TD, TBr, CBr, CR, and R-HHR. Significant effects by age × sex were observed for TD, TBr, CBr, and CR. Both TD and TBr increased with age in both sexes, and both were significantly higher in males than in females in the group aged 49-60 months. CBr increased with age and was significantly higher in males than in females across all age groups. CR declined with age and was significantly higher in males than females across all age groups, and CR was similar or slightly higher relative to those previously found in other non-human primate species. As to the other parameters with no significant sex nor age-related differences, the R-HHR was greater than 1.00, and the angulation of bilateral costophrenic angles were sharp. CONCLUSIONS: The thoracic radiographic parameters for the healthy cynomolgus monkey presented here should prove useful in veterinary practice, research involving non-human primate models of respiratory or cardiovascular disorders, and morphological studies on cynomolgus monkeys.

  6. Modeling depression in adult female cynomolgus monkeys (Macaca fascicularis).

    Science.gov (United States)

    Willard, Stephanie L; Shively, Carol A

    2012-06-01

    Depressive disorders are prevalent, costly, and poorly understood. Male rodents in stress paradigms are most commonly used as animal models, despite the two-fold increased prevalence of depression in women and sex differences in response to stress. Although these models have provided valuable insights, new models are needed to move the field forward. Social stress-associated behavioral depression in adult female cynomolgus macaques closely resembles human depression in physiological, neurobiological, and behavioral characteristics, including reduced body mass, hypothalamic-pituitary-adrenal axis perturbations, autonomic dysfunction, increased cardiovascular disease risk, reduced hippocampal volume, altered serotonergic function, decreased activity levels, and increased mortality. In addition, behaviorally depressed monkeys also have low ovarian steroid concentrations, even though they continue to have menstrual cycles. Although this type of ovarian dysfunction has not been reported in depressed women and is difficult to identify, it may be the key to understanding the high prevalence of depression in women. Depressive behavior in female cynomolgus monkeys is naturally occurring and not induced by experimental manipulation. Different social environmental challenges, including isolation vs. subordination, may elicit the depression-like response in some animals and not others. Similarly, social subordination is stressful and depressive behavior is more common in socially subordinate monkeys. Yet, not all subordinates exhibit behavioral depression, suggesting individual differences in sensitivity to specific environmental stressors and enhanced risk of behavioral depression in some individuals. The behavior and neurobiology of subordinates is distinctly different than that of behaviorally depressed monkeys, which affords the opportunity to differentiate between stressed and depressed states. Thus, behaviorally depressed monkeys exhibit numerous physiological

  7. Enhanced training protects memory against amnesia produced by concurrent inactivation of amygdala and striatum, amygdala and substantia nigra, or striatum and substantia nigra

    Science.gov (United States)

    Salado-Castillo, Rigoberto; Sánchez-Alavéz, Manuel; Quirarte, Gina L.; Martínez García, María Isabel; Prado-Alcalá, Roberto A.

    2011-01-01

    Memory is markedly impaired when normal activity of any of a number of cerebral structures is disturbed after a learning experience. A growing body of evidence indicates, however, that such interference with neuronal function becomes negligible when the learning experience is significantly enhanced. We now report on the effects of enhanced training on retention after temporary inactivation of cerebral nuclei known to be involved in memory, namely the substantia nigra (SN), striatum (STR), and amygdala (AMY). When training was conducted with a relatively low intensity of footshock (1.0 mA), post-training infusion of lidocaine into the SN, STR, or AMY produced a marked memory deficit. Increasing the aversive stimulation to 2.0 mA protected memory from the amnesic effect of intranigral lidocaine, but there was still a deficit after its infusion into the STR and AMY. Administration of lidocaine into each of these nuclei, in the groups that had been trained with 3.0 mA, was completely ineffective in producing alterations in memory consolidation. Simultaneous infusion of lidocaine into STR + SN, AMY + SN, or AMY + STR was also ineffective in altering memory formation when the highest footshock intensity was used for training. To our knowledge, this is the first demonstration that an enhanced learning experience guards against memory deficits after simultaneous temporary interruption of neural activity of brain nuclei heretofore thought to be necessary for memory formation. These findings support the proposition that brain structures involved in memory processing are functionally connected in series during memory consolidation and that, after an enhanced learning experience, these structures become functionally connected in parallel. PMID:22203796

  8. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction.

    Science.gov (United States)

    Everitt, Barry J; Robbins, Trevor W

    2013-11-01

    We revisit our hypothesis that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntarily drug use to habitual, and ultimately compulsive drug use. We especially focus on the transitions in striatal control over drug seeking behaviour that underlie these transitions since functional heterogeneity of the striatum was a key area of Ann Kelley's research interests and one in which she made enormous contributions. We also discuss the hypothesis in light of recent data that the emergence of a compulsive drug seeking habit both reflects a shift to dorsal striatal control over behaviour and impaired prefontal cortical inhibitory control mechanisms. We further discuss aspects of the vulnerability to compulsive drug use and in particular the impact of impulsivity. In writing this review we acknowledge the untimely death of an outstanding scientist and a dear personal friend. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Progressive obtundation in a young woman with bilateral corpus striatum infarction: a case report

    Directory of Open Access Journals (Sweden)

    Zangana Hero M

    2011-07-01

    Full Text Available Abstract Background Bilateral ischemic infarction involving the corpus striatum is a rare event which usually results from global cerebral hypoxia, intoxications, and drug abuse. Case presentation We report a 28 year old Caucasian woman who presented with progressive obtundation and later development of severe expressive dysphasia and Parkinsonism after sustaining ischemic stroke of both corpora striata. Hemorrhagic transformation developed on day four of admission. Conclusion This is a rare case of bilateral basal ganglia infarction with hemorrhagic transformation in a young patient. Our patient's work up did not reveal any cause behind this stroke; however, advanced investigations (such as genetic testing and conventional angiography were not done. The damage resulted in motor dysphasia and Parkinsonism. Neither dystonia nor other involuntary movements developed, and cognitive function was not assessed because of the language disorder.

  10. Hippocampus leads ventral striatum in replay of place-reward information.

    Directory of Open Access Journals (Sweden)

    Carien S Lansink

    2009-08-01

    Full Text Available Associating spatial locations with rewards is fundamental to survival in natural environments and requires the integrity of the hippocampus and ventral striatum. In joint multineuron recordings from these areas, hippocampal-striatal ensembles reactivated together during sleep. This process was especially strong in pairs in which the hippocampal cell processed spatial information and ventral striatal firing correlated to reward. Replay was dominated by cell pairs in which the hippocampal "place" cell fired preferentially before the striatal reward-related neuron. Our results suggest a plausible mechanism for consolidating place-reward associations and are consistent with a central tenet of consolidation theory, showing that the hippocampus leads reactivation in a projection area.

  11. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  12. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum.

    Science.gov (United States)

    Hagimoto, Kazuya; Takami, Saki; Murakami, Fujio; Tanabe, Yasuto

    2017-03-01

    The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system in which we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors. Our results showed that, at an initial stage of striosome/matrix mosaic formation, striosome cells were mostly stationary, whereas matrix cells actively migrated in multiple directions regardless of the presence of striosome cells. The mostly stationary striosome cells were still able to associate to form patchy clusters via attractive interactions. Our results suggest that the restricted migratory capability of striosome cells may allow them to cluster together only when they happen to be located in close proximity to each other and are not separated by actively migrating matrix cells. The way in which the mutidirectionally migrating matrix cells intermingle with the mostly stationary striosome cells may therefore determine the topographic features of striosomes. At later stages, the actively migrating matrix cells began to repulse the patchy clusters of striosomes, presumably enhancing the striosome cluster formation and the segregation and eventual formation of dichotomous homogeneous striosome/matrix compartments. Overall, our study reveals temporally distinct migratory behaviors of striosome/matrix cells, which may underlie the sequential steps of mosaic formation in the developing striatum. J. Comp. Neurol. 525:794-817, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation.

    Science.gov (United States)

    Ordoñez, Cristina; Moreno-Murciano, Paz; Hernandez, Maria; Di Caudo, Carla; Mundiñano, Iñaki-Carril; Carril-Mundiñano, Iñaki; Vazquez, Nerea; Garcia-Verdugo, Jose Manuel; Sanchez-Pernaute, Rosario; Luquin, Maria-Rosario

    2013-01-01

    The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2(+) cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render them parkinsonian (N = 8). Animals received bromodeoxyuridine (100 mg/kg once a day during five consecutive days) to label proliferating cells and their progeny. Using confocal and electron microscopy we analyzed the Sox-2(+) cell population in the nigrostriatal system and investigated changes in the number, proliferation and neurogenic potential of Sox-2(+) cells, in control conditions and at two time points after MPTP administration. We found Sox-2(+) cells with self-renewal capacity in both the striatum and the substantia nigra. Importantly, only in the striatum Sox-2(+) was expressed in some calretinin(+) neurons. MPTP administration led to an increase in the proliferation of striatal Sox-2(+) cells and to an acute, concomitant decrease in the percentage of Sox-2(+)/calretinin(+) neurons, which recovered by 18 months. Given their potential capacity to differentiate into neurons and their responsiveness to dopamine neurotoxic insults, striatal Sox-2(+) cells represent good candidates to harness endogenous repair mechanisms for regenerative approaches in Parkinson's disease.

  14. Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum.

    Science.gov (United States)

    Muñiz, Javier A; Gomez, Gimena; González, Betina; Rivero-Echeto, María Celeste; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica

    2016-05-01

    Caffeine is the world's most popular psychoactive drug and is also an active adulterant found in many drugs of abuse, including seized cocaine samples. Despite several studies which examine the effects of caffeine or cocaine administered as single agents, little data are available for these agents when given in combination. The purpose of the present study was to determine if combined intake of both psychostimulants can lead to maladaptive changes in striatal function. Mice were injected with a binge regimen (intermittent treatment for 13 days) of caffeine (3 × 5 mg/kg), cocaine (3 × 10 mg/kg), or combined administration. We found that chronic caffeine potentiated locomotion induced by cocaine and that both caffeine-treated groups showed sensitization. Striatal tissue was obtained 24 h and 7 days after last injection (withdrawal) for immunohistochemistry and mRNA expression. Our results show that combined intake of both psychostimulants can increase GFAP immunoreactivity in the striatum at both times post treatment. Gene expression analysis, targeted at dopamine, adenosine, and glutamate receptor subunit genes, revealed significant transcript down-regulation in the dorsal striatum of AMPA, NMDA, D1 and D2 receptor subunit mRNA expression in the group that received combined treatment, but not after individual administration. At withdrawal, we found increased D1 receptor mRNA expression along with increased A1, AMPA, NMDA, and metabotropic subunit expression. A2A mRNA showed decreased expression after both times in all experimental groups. Our study provides evidence that there are striatal alterations mediated by combined caffeine and cocaine administration, and highlights negative outcomes of chronic intake of both psychostimulants.

  15. Parkinson's disease subtypes show a specific link between dopaminergic and glucose metabolism in the striatum.

    Directory of Open Access Journals (Sweden)

    Carsten Eggers

    Full Text Available BACKGROUND: Previous studies have shown different clinical and imaging pattern in tremordominant and akinetic-rigid Parkinson's disease (PD subtypes. The association between dopaminergic and glucose metabolism has in contrast not been investigated yet. Therefore, this study compared PD subtypes with respect to clinical and imaging findings with the aim of establishing a relationship between clinical subtypes, dopamine and glucose metabolism. METHODS: Two groups of a total of 64 idiopathic PD patients (42 male, 22 female, mean age 56 ± 10.9 years were analysed: akinetic-rigid (AR, n = 32 and tremor-dominant (TD, n = 32 patients. Both were compared with respect to differential involvement of local striatal dopamine and glucose metabolism using [18F]-fluoro-L-dopa (F-dopa and [18F]-fluorodeoxyglucose (FDG-PET. RESULTS: The analysis of PD subgroups showed significant differences in the F-dopa uptake in the anterior putamen. Using the results of the local striatal dopamine difference as a volume of interest for the FDG-analysis, analysis of AR patients revealed a significantly lower normalised cerebral metabolic rate of glucose (nCMRGlc within the ventral striatum. CONCLUSIONS: The dual tracer study illlustrates clear differences between TD and AR subtypes in the ventral striatum. In accordance with previous FP-CIT-SPECT studies, it discloses congruent results for the presynaptic dopaminergic system and extends the knowledge about an additional involvement of local metabolic activity in the caudate and anterior putamen. The findings corroborate the specific role of distinct PD subtypes within the cerebello-thalamo-cortical-circuits. Multitracer PET imaging may thus enhance the knowledge about the clinical segregation into subtypes.

  16. Effects of the neonicotinoids thiametoxam and clothianidin on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    de Oliveira, Iris Machado; Nunes, Brenda Viviane Ferreira; Barbosa, Durán Rafael; Pallares, Alfonso Miguel; Faro, Lilian Rosana Ferreira

    2010-02-15

    Thiamethoxam (TMX) and clothianidin (CLO) are neonicotinoids insecticides. The main characteristic of these pesticides is their agonist action on nicotinic acetylcholine receptors (nAChRs). In the present work it was studied and characterized the effects of TMX and CLO, in different concentrations, on dopaminergic system of rat striatum using in vivo brain microdialysis coupled to HPLC-EC. Intrastriatal administration of 1mM or 5mM TMX has not produced significant increases on dopamine (DA) levels, nonetheless the infusion of 10mM TMX increases the DA output to 841+/-132%, when compared to basal levels. Infusion of 1mM CLO has not induced a significant increase in DA levels, even so 2, 3.5 and 5mM CLO have produced an increase of 438+/-8%, 2778+/-598% and 4604+/-516%, respectively, every compared to basal levels. Mecamylamine (MEC), a non-competitive nAChRs antagonist, was used to investigate the role of nAChRs on DA release induced by TMX and CLO. The increases in extracellular DA levels induced by TMX and CLO when associated to MEC are 80% and 68% lower than the effect produced by CLO and TMX isolated. These results confirm that TMX and CLO appear to induce in vivo DA increased release in striatum of rats and it seems to be concentration dependent. Moreover, these results indicate that this effect might be related to nAChRs. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts

    DEFF Research Database (Denmark)

    Cumming, P; Danielsen, E H; Vafaee, M

    2001-01-01

    for dopamine D1 or D2 receptors in pig striatum. However, the grafting was associated with a local increase in the binding of [11C]PK 11195, a tracer for reactive gliosis, suggesting that an immunological reaction occurs at the site of graft, which might potentially have reduced the graft patency. However...

  18. Detection of lactate in the striatum without contamination of macromolecules by J-difference editing MRS at 7T

    NARCIS (Netherlands)

    Wijnen, J. P.; Haarsma, J.; Boer, V. O.; Luijten, P. R.; van der Stigchel, S.; Neggers, S. F. W.; Klomp, D. W. J.

    Lactate levels are measurable by MRS and are related to neural activity. Therefore, it is of interest to accurately measure lactate levels in the basal ganglia networks. If sufficiently stable, lactate measurements may be used to investigate alterations in dopaminergic signalling in the striatum,

  19. Dysfunctional mitochondrial respiration in the striatum of the Huntington's disease transgenic R6/2 mouse model

    DEFF Research Database (Denmark)

    Aidt, Frederik Heurlin; Nielsen, Signe Marie Borch; Kanters, Jørgen

    2013-01-01

    Metabolic dysfunction and mitochondrial involvement are recognised as part of the pathology in Huntington's Disease (HD). Post-mortem examinations of the striatum from end-stage HD patients have shown a decrease in the in vitro activity of complexes II, III and IV of the electron transport system...

  20. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum

    NARCIS (Netherlands)

    Westerink, B.H.C.; Kawahara, Y; de Boer, P; Geels, C; de Vries, J.B; Wikström, H.V; van Kalkeren, A; van Vliet, B; Kruse, C.H; Long, S.K

    2001-01-01

    Dose-effect curves were established for the effects of the antipsychotic drugs haloperidol, clozapine, olanzapine, risperidone and ziprasidone on extracellular levels of dopamine and noradrenaline in the medial prefrontal cortex, and of dopamine in the striatum. Haloperidol was more effective in

  1. Amphetamine-enhanced accumulation of ( sup 3 H)-spiperone in mouse corpus striatum in vivo: Modification by other drugs

    Energy Technology Data Exchange (ETDEWEB)

    Dorris, R.L. (Baylor College of Dentistry, Dallas, TX (USA))

    1989-01-01

    Other investigators have reported that amphetamine administered to rodents results in an increase in the in vivo accumulation of either the tritiated dopamine receptor ligand, spiperone or pimozide in the dopaminergic corpus striatum, (specific binding) while not altering that in the sparsely dopaminergically innervated cerebellum (non-specific binding). Experiments were undertaken to determine if the results could be replicated and if some other drugs would modify the effect. Male mice were injected with ({sup 3}H)-spiperone (20 {mu}Ci/Kg, 0.0003 mg/kg) s.c. and killed 2 hrs later for determination of radioactivity in corpus striatum and cerebellum. Amphetamine (20 mg/kg, i.p.) given 15 min before ({sup 3}H)-spiperone, increased accumulation in striatum but not cerebellum. The increase was inhibited by {alpha} - methyltyrosine ({alpha}-MT), haloperidol, reserpine or amantadine. It is suggested that the amphetamine-induced increase in accumulation of ({sup 3}H)-spiperone in corpus striatum (specific binding) depends on release of large amounts of dopamine, which then must be able to interact with the dopamine receptor. The antagonism of the effect by {alpha}-MT or reserpine can be explained by dopamine depletion, that of haloperidol by antagonism for binding at the receptor site. It is suggested that amantadine acts by a dual mechanism: (1) as a low efficacy agonist, it competes for binding to the receptor and (2) it has some ability to block dopamine release.

  2. Detection of lactate in the striatum without contamination of macromolecules by J-difference editing MRS at 7T

    NARCIS (Netherlands)

    Wijnen, J. P.; Haarsma, J.; Boer, V. O.; Luijten, P. R.; van der Stigchel, S.; Neggers, S. F W; Klomp, D. W J

    2015-01-01

    Lactate levels are measurable by MRS and are related to neural activity. Therefore, it is of interest to accurately measure lactate levels in the basal ganglia networks. If sufficiently stable, lactate measurements may be used to investigate alterations in dopaminergic signalling in the striatum,

  3. The Role of the Striatum in Sentence Processing: Evidence from a Priming Study in Early Stages of Huntington's Disease

    Science.gov (United States)

    Teichmann, Marc; Dupoux, Emmanuel; Cesaro, Pierre; Bachoud-Levi, Anne-Catherine

    2008-01-01

    The role of sub-cortical structures such as the striatum in language remains a controversial issue. Based on linguistic claims that language processing implies both recovery of lexical information and application of combinatorial rules it has been shown that striatal damaged patients have difficulties applying conjugation rules while lexical…

  4. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples

    NARCIS (Netherlands)

    Pennartz, C.M.A.; Lee, E.; Verheul, J.; Lipa, P.; Barnes, C.A.; Mc. Naughton, B.L.

    2004-01-01

    Previously it has been shown that the hippocampus and neocortex can spontaneously reactivate ensemble activity patterns during post-behavioral sleep and rest periods. Here we examined whether such reactivation also occurs in a subcortical structure, the ventral striatum, which receives a direct

  5. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo

    NARCIS (Netherlands)

    W.N. Sloot (W.); J. Korf (Jakob); J.F. Koster (Johan); L.E.A. de Wit (Elly); J.-B.P. Gramsbergen (J. B P)

    1996-01-01

    textabstractThe present studies were aimed at investigating the possible roles of dopamine (DA) and iron in production of hydroxyl radicals (.OH) in rat striatum after Mn2+ intoxication. For this purpose, DA depletions were assessed concomitant with in vivo 2,3- and 2,5-dihydroxybenzoic acid (DHBA)

  6. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo

    NARCIS (Netherlands)

    Sloot, WN; Korf, J; Koster, JF; DeWit, LEA; Gramsbergen, JBP

    The present studies were aimed at investigating the possible roles of dopamine (DA) and iron in production of hydroxyl radicals ((OH)-O-.) in rat striatum after Mn2+ intoxication. For this purpose, DA depletions were assessed concomitant with in vivo 2,3- and 2,5-dihydroxybenzoic acid (DHBA)

  7. Rhesus monkeys see who they hear: spontaneous cross-modal memory for familiar conspecifics.

    Directory of Open Access Journals (Sweden)

    Ikuma Adachi

    Full Text Available Rhesus monkeys gather much of their knowledge of the social world through visual input and may preferentially represent this knowledge in the visual modality. Recognition of familiar faces is clearly advantageous, and the flexibility and utility of primate social memory would be greatly enhanced if visual memories could be accessed cross-modally either by visual or auditory stimulation. Such cross-modal access to visual memory would facilitate flexible retrieval of the knowledge necessary for adaptive social behavior. We tested whether rhesus monkeys have cross-modal access to visual memory for familiar conspecifics using a delayed matching-to-sample procedure. Monkeys learned visual matching of video clips of familiar individuals to photographs of those individuals, and generalized performance to novel videos. In crossmodal probe trials, coo-calls were played during the memory interval. The calls were either from the monkey just seen in the sample video clip or from a different familiar monkey. Even though the monkeys were trained exclusively in visual matching, the calls influenced choice by causing an increase in the proportion of errors to the picture of the monkey whose voice was heard on incongruent trials. This result demonstrates spontaneous cross-modal recognition. It also shows that viewing videos of familiar monkeys activates naturally formed memories of real monkeys, validating the use of video stimuli in studies of social cognition in monkeys.

  8. Regional distribution of the opioid receptor agonist N-(methyl- sup 11 C)pethidine in the brain of the rhesus monkey studied with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig, P. (Hospital Pharmacy, University Hospital, Uppsala (Sweden)); Eckernaes, S.Aa. (Departments of Neurology, University Hospital, Uppsala (Sweden)); Lindberg, B.S. (Department of Obstetrics and Gynaelogy, University Hospital, Uppsala (Sweden)); Lundqvist, H. (Centre for Radiation Sciences, University of Uppsala (Sweden)); Antoni, G.; Rimland, A.; Laangstroem, B. (Department of Organic Chemistry, University of Uppsala (Sweden))

    1990-01-01

    The regional distribution and kinetics in the brain of Rhesus monkeys of N-(methyl-{sup 11}C)-pethidine have been studied by positron emission tomography, PET. {sup 11}C-Pethidine reached the brain with peak radioactivities appearing within 6-10 min. after administration. Highest radioactivities were measured in areas corresponding to the thalamus, the striatal area and also the lowest transection of the temporal lobes, with an uptake of 2.7-3.1 times the homogenous dilution of the radioactive dose. Low radioactivities were seen in the cerebellum and the occipital lobes. This distribution corresponds to the regional density of opioid receptors using in vitro binding techniques. The {sup 11}C-pethidine derived radioactivity left the brain with an initial half-life of 40--60 minutes, followed by an elimination which paralleled the plasma elimination of unlabelled pethidine. After pretreatment of the monkey with a small dose of naloxone, the radioactivities decreased about 40% in areas corresponding to the thalamus, striatum and lowest section of the temporal lobes, indicating competition for the same binding sties. By the use of a three-compartment model, it was possible to get an estimate of {sup 11}C-pethidine receptor binding characteristics in the brain. The ratio of Kon/Koff, equal to Bmax.Kd, was 0.06-0.1. This indicates that pethidine is bound with low affinity to the opioid receptors and is a poor ligand for studies of opioid receptor function with PET. Brain kinetics of {sup 11}C-pethidine is mainly determined by its blood kinetics. (author).

  9. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Laetitia eFrancelle

    2014-09-01

    Full Text Available HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion translated into an abnormal poly-glutamine (polyQ tract in the huntingtin (Htt protein. The most striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of mutant Htt (mHtt is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of compensatory responses to cellular stress. In this review, we focus on gene products that are preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene products are for a vast majority down-regulated and more rarely increased in HD. Recent research shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g. MSK1, A2A and CB1 receptors whereas others enhance the susceptibility of striatal neurons to mHtt (e.g. Rhes, RGS2, D2 receptors. The down-regulation of these latter proteins may be considered as a potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products that have been identified so far, their function in the striatum is unknown and their modifying effects on mHtt toxicity remain to be experimentally addressed. Focusing on these striatal markers may contribute to a better understanding of HD pathogenesis, and possibly the identification of novel therapeutic targets.

  10. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum.

    Science.gov (United States)

    Shahani, Neelam; Swarnkar, Supriya; Giovinazzo, Vincenzo; Morgenweck, Jenny; Bohn, Laura M; Scharager-Tapia, Catherina; Pascal, Bruce; Martinez-Acedo, Pablo; Khare, Kshitij; Subramaniam, Srinivasa

    2016-11-15

    The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction. Copyright © 2016, American Association for the Advancement of Science.

  11. Impaired hippocampus-dependent and facilitated striatum-dependent behaviors in mice lacking the δ opioid receptor.

    Science.gov (United States)

    Le Merrer, Julie; Rezai, Xavier; Scherrer, Grégory; Becker, Jérôme A J; Kieffer, Brigitte L

    2013-05-01

    Pharmacological data suggest that delta opioid receptors modulate learning and memory processes. In the present study, we investigated whether inactivation of the delta opioid receptor modifies hippocampus (HPC)- and striatum-dependent behaviors. We first assessed HPC-dependent learning in mice lacking the receptor (Oprd1(-/-) mice) or wild-type (WT) mice treated with the delta opioid antagonist naltrindole using novel object recognition, and a dual-solution cross-maze task. Second, we subjected mutant animals to memory tests addressing striatum-dependent learning using a single-solution response cross-maze task and a motor skill-learning task. Genetic and pharmacological inactivation of delta opioid receptors reduced performance in HPC-dependent object place recognition. Place learning was also altered in Oprd1(-/-) animals, whereas striatum-dependent response and procedural learning were facilitated. Third, we investigated the expression levels for a large set of genes involved in neurotransmission in both HPC and striatum of Oprd1(-/-) mice. Gene expression was modified for several key genes that may contribute to alter hippocampal and striatal functions, and bias striatal output towards striatonigral activity. To test this hypothesis, we finally examined locomotor effects of dopamine receptor agonists. We found that Oprd1(-/-) and naltrindole-treated WT mice were more sensitive to the stimulant locomotor effect of SKF-81297 (D1/D5), supporting the hypothesis of facilitated striatonigral output. These data suggest, for the first time, that delta receptor activity tonically inhibits striatal function, and demonstrate that delta opioid receptors modulate learning and memory performance by regulating the HPC/striatum balance.

  12. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration.

    Science.gov (United States)

    Gao, Ping; Limpens, Jules H W; Spijker, Sabine; Vanderschuren, Louk J M J; Voorn, Pieter

    2017-03-01

    The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs) implicated in transcriptional regulation, synaptic plasticity and intracellular signalling. However, little is known about how IEG expression patterns change during long-term drug self-administration. The present study, therefore, compares the effects of 10 and 60-day self-administration of cocaine and sucrose on the expression of 17 IEGs in brain regions implicated in addictive behaviour, i.e. dorsal striatum, ventral striatum and medial prefrontal cortex (mPFC). Increased expression after cocaine self-administration was found for 6 IEGs in dorsal and ventral striatum (c-fos, Mkp1, Fosb/ΔFosb, Egr2, Egr4, and Arc) and 10 IEGs in mPFC (same 6 IEGs as in striatum, plus Bdnf, Homer1, Sgk1 and Rgs2). Five of these 10 IEGs (Egr2, Fosb/ΔFosb, Bdnf, Homer1 and Jun) and Trkb in mPFC were responsive to long-term sucrose self-administration. Importantly, no major differences were found between IEG expression patterns after 10 or 60 days of cocaine self-administration, except Fosb/ΔFosb in dorsal striatum and Egr2 in mPFC, whereas the amount of cocaine obtained per session was comparable for short-term and long-term self-administration. These steady changes in IEG expression are, therefore, associated with stable self-administration behaviour rather than the total amount of cocaine consumed. Thus, sustained impulses to IEG regulation during prolonged cocaine self-administration may evoke neuroplastic changes underlying compulsive drug use. © 2015 Society for the Study of Addiction.

  13. Dissociable Rate-Dependent Effects of Oral Methylphenidate on Impulsivity and D2/3 Receptor Availability in the Striatum

    Science.gov (United States)

    Caprioli, Daniele; Jupp, Bianca; Hong, Young T.; Sawiak, Stephen J.; Ferrari, Valentina; Wharton, Laura; Williamson, David J.; McNabb, Carolyn; Berry, David; Aigbirhio, Franklin I.; Robbins, Trevor W.; Fryer, Tim D.

    2015-01-01

    We have previously shown that impulsivity in rats is linked to decreased dopamine D2/3 receptor availability in the ventral striatum. In the present study, we investigated, using longitudinal positron emission tomography (PET), the effects of orally administered methylphenidate (MPH), a first-line treatment for attention deficit hyperactivity disorder, on D2/3 receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a five-choice serial reaction time task. After a baseline PET scan with the D2/3 ligand [18F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 d. Rats were then reassessed for impulsivity and underwent a second [18F]fallypride PET scan. Before MPH treatment, we found that D2/3 receptor availability was significantly decreased in the left but not the right ventral striatum of high-impulse (HI) rats compared with low-impulse (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D2/3 receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D2/3 receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D2/3 receptor availability in any of the striatal subregions investigated. These findings indicate that trait-like impulsivity is associated with decreased D2/3 receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D2/3 receptor availability through independent mechanisms. PMID:25740505

  14. δ-opioid receptor function in the dorsal striatum plays a role in high levels of ethanol consumption in rats.

    Science.gov (United States)

    Nielsen, Carsten K; Simms, Jeffrey A; Li, Rui; Mill, Douglas; Yi, Henry; Feduccia, Allison A; Santos, Nathan; Bartlett, Selena E

    2012-03-28

    Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.

  15. Enriched Expression of Neutral Sphingomyelinase 2 in the Striatum is Essential for Regulation of Lipid Raft Content and Motor Coordination.

    Science.gov (United States)

    Tan, Laura Hui-Ru; Tan, Angela Jin-Rong; Ng, Yu-Ying; Chua, John Jia-En; Chew, Wee-Siong; Muralidharan, Sneha; Torta, Federico; Dutta, Bamaprasad; Sze, Siu Kwan; Herr, Deron R; Ong, Wei-Yi

    2017-10-17

    Sphingomyelinases are a family of enzymes that hydrolyze sphingomyelin to generate phosphocholine and ceramide. The brain distribution and function of neutral sphingomyelinase 2 (nSMase2) were elucidated in this study. nSMase2 mRNA expression was greatest in the striatum, followed by the prefrontal cortex, hippocampus, cerebellum, thalamus, brainstem, and olfactory bulb. The striatum had the highest level of nSMase2 protein expression, followed by the prefrontal cortex, thalamus, hippocampus, brainstem, and cerebellum. Dense immunolabeling was observed in the striatum, including the caudate-putamen, while moderately dense staining was found in the olfactory bulb and cerebral neocortex. Electron microscopy of the caudate-putamen showed nSMase2 immunoreaction product was present in small diameter dendrites or dendritic spines, that formed asymmetrical synapses with unlabeled axon terminals containing small round vesicles; and characteristics of glutamatergic axons. Lipidomic analysis of the striatum showed increase in long chain sphingomyelins, SM36:1 and SM38:1 after inhibition of nSMase activity. Quantitative proteomic analysis of striatal lipid raft fraction showed many proteins were downregulated by more than 2-fold after inhibition or antisense knockdown of nSMase; consistent with the notion that nSMase2 activity is important for aggregation or clustering of proteins in lipid rafts. Inhibition or antisense knockdown of nSMase2 in the caudate-putamen resulted in motor deficits in the rotarod and narrow beam tests; as well as decreased acoustic startle and improved prepulse inhibition of the startle reflex. Together, results indicate an important function of nSMase2 in the striatum.

  16. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    Directory of Open Access Journals (Sweden)

    Hiroaki Kawamichi

    2016-11-01

    Full Text Available Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68. Furthermore, we also conducted a voxel-based morphometry (VBM study of the effects of being in a romantic relationship (N = 113. Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.

  17. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness.

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68). Furthermore, we also conducted a voxel-based morphometry study of the effects of being in a romantic relationship (N = 113). Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.

  18. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  19. Non-random walks in monkeys and humans

    Science.gov (United States)

    Boyer, Denis; Crofoot, Margaret C.; Walsh, Peter D.

    2012-01-01

    Principles of self-organization play an increasingly central role in models of human activity. Notably, individual human displacements exhibit strongly recurrent patterns that are characterized by scaling laws and can be mechanistically modelled as self-attracting walks. Recurrence is not, however, unique to human displacements. Here we report that the mobility patterns of wild capuchin monkeys are not random walks, and they exhibit recurrence properties similar to those of cell phone users, suggesting spatial cognition mechanisms shared with humans. We also show that the highly uneven visitation patterns within monkey home ranges are not entirely self-generated but are forced by spatio-temporal habitat heterogeneities. If models of human mobility are to become useful tools for predictive purposes, they will need to consider the interaction between memory and environmental heterogeneities. PMID:22031731

  20. Monkeying with the Goodness-of-Fit Test

    Directory of Open Access Journals (Sweden)

    George Marsaglia

    2005-09-01

    Full Text Available The familiar Σ(OBS - EXP 2/EXP goodness-of-fit measure is commonly used to test whether an observed sequence came from the realization of n independent identically distributed (iid discrete random variables. It can be quite effective for testing for identical distribution, but is not suited for assessing independence, as it pays no attention to the order in which output values are received. This note reviews a way to adjust or tamper, that is, monkey-with the classical test to make it test for independence as well as identical distribution--in short, to test for both the i's in iid, using monkey tests similar to those in the Diehard Battery of Tests of Randomness (Marsaglia 1995.

  1. Present and potential distribution of Snub-nosed Monkey

    DEFF Research Database (Denmark)

    Nüchel, Jonas; Bøcher, Peder Klith; Svenning, Jens-Christian

    are the Snub-nosed Monkeys (Rhinopithecus), a temperate-subtropical East Asian genus. We use species distribution modeling to assess the following question of key relevancy for conservation management of Rhinopithecus; 1. Which climatic factors determine the present distribution of Rhinopithecus within...... Southeast Asia? 2. By also considering historical records on now extirpated populations, we then assess the extent to which Rhinopithecus today live in an anthropogenically truncated niche space. 3. To form a basis for selecting areas for reintroduction, based on (1)-(2) we then estimate the potential...... distribution of Rhinopithecus within the region, considering climate, habitat availability and the locations of nature reserves. Keywords: biodiversity, biogeography, conservation, China, snub-nosed monkey, rhinopithecus, primates, species distribution modeling...

  2. Spontaneous epithelioid hemangiosarcoma in a rhesus monkey (Macaca mulatta).

    Science.gov (United States)

    Tsuchiya, Takayuki; Gray, Tasha L; Gatto, Nicholas T; Forest, Thomas; Machotka, Sam V; Troth, Sean P; Prahalada, Srinivasa

    2014-08-01

    Epithelioid hemangiosarcoma is a rare malignant endothelial neoplasia with a unique, predominantly epithelioid morphology. A 4-y-old rhesus monkey from our laboratory had multiple neoplastic nodules in a digit, limb skin, hindlimb muscle, and visceral organs including lung, heart, and brain. The nodules were composed of pleomorphic, polygonal, epithelioid, neoplastic cells that were arranged in sheets, nests, and cords and supported by variably dense fibrovascular connective tissue. The morphologic features of this tumor were predominantly epithelioid. However, some regions contained cystic spaces, clefts, and channel-like structures, all of which were lined with morphologically distinct neoplastic endothelial cells. These neoplastic cells, with or without epithelioid morphology, were positive immunohistochemically for CD31, factor VIII-related antigen, and vimentin. The presence of multiple metastatic nodules, high mitotic rate, and extensive Ki67-positive staining were consistent with malignancy. This report is the first description of epithelioid hemangiosarcoma in a rhesus monkey.

  3. Phosphorylation of tyrosine receptor kinase B in the dorsal striatum and dorsal hippocampus is associated with response learning in a water plus maze.

    Science.gov (United States)

    Pahng, Amanda R; Colombo, Paul J

    2017-02-01

    The dorsal hippocampus and dorsal striatum have dissociable roles in learning and memory that are related to region-specific changes in proteins necessary for neuronal plasticity and memory formation. There is additional evidence that the hippocampus and striatum can interact during memory formation. Phosphorylation of tyrosine receptor kinase B is important for memory formation in the hippocampus, but whether or not it has a role in striatum-dependent learning, or in interactions between the hippocampus and striatum, has not been examined. In the present study, we tested the hypothesis that response training increases pTrkB in the dorsal striatum, but decreases pTrkB in dorsal hippocampus, due to an interaction between the systems during memory formation. Results show a significant decrease in pTrkB levels in the dorsal hippocampus of rats trained on the response task compared with swim controls. Response training did not increase pTrkB levels in the dorsal striatum. Positive correlations were found between response learning and the total area of cells expressing pTrkB in the dorsal striatum, while no correlations were found in swim controls. Our results partially support our hypothesis and indicate that response learning is associated with a decrease in hippocampal pTrkB, while phosphorylation of TrkB in the dorsal striatum remains constant. This indicates that suppression of hippocampal pTrkB during response learning may be involved in striatum-dependent memory formation. Additionally, our findings suggest that activation of TrkB in a sparse arrangement of cells may be associated with faster acquisition of a response task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Effects of lentivirus-mediated CREB expression in the dorsolateral striatum: memory enhancement and evidence for competitive and cooperative interactions with the hippocampus.

    Science.gov (United States)

    Kathirvelu, Balachandar; Colombo, Paul J

    2013-11-01

    Neural systems specialized for memory may interact during memory formation or recall, and the results of interactions are important determinants of how systems control behavioral output. In two experiments, we used lentivirus-mediated expression of the transcription factor CREB (LV-CREB) to test if localized manipulations of cellular plasticity influence interactions between the hippocampus and dorsolateral striatum. In Experiment 1, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for response learning, and impairs memory for place learning. LV-CREB in the dorsolateral striatum had no effect on response learning, but impaired place memory; a finding consistent with competition between the striatum and hippocampus. In Experiment 2, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for cue learning, and impairs memory for contextual fear conditioning. LV-CREB in the dorsolateral striatum enhanced memory for cue learning and, in contrast to our prediction, also enhanced memory for contextual fear conditioning, consistent with a cooperative interaction between the striatum and hippocampus. Overall, the current experiments demonstrate that infusion of LV-CREB in the dorsolateral striatum (1) increases levels of CREB protein locally, (2) does not alter acquisition of place, response, cue, or contextual fear conditioning, (3) facilitates memory for cue learning and contextual fear conditioning, and (4) impairs memory for place learning. Taken together, the present results provide evidence that LV-CREB in the dorsolateral striatum can enhance memory formation and cause both competitive and cooperative interactions with the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  5. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    OpenAIRE

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su; Han, Su-Cheol; Lee, C. Justin

    2016-01-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey br...

  6. Photochemical injury to the foveomacula of the monkey eye following argon blue-green panretinal photocoagulation.

    OpenAIRE

    Parver, L M

    2000-01-01

    PURPOSE: Visual loss following panretinal photocoagulation was found in the Diabetic Retinopathy and the Early Treatment Diabetic Retinopathy Studies. This study was designed to test the hypothesis that light scattered in the monkey eye during a procedure designed to mimic a clinical panretinal photocoagulation (PRP) can produce a photochemical injury to the foveomacula. METHODS: Ten eyes of 5 adult cynomologous monkeys underwent a PRP using an argon blue-green laser. Three eyes in 2 monkeys ...

  7. Musculoplasty for mastoid cavity obliteration in the capucine monkey.

    Science.gov (United States)

    Donald, P J

    1975-01-01

    In a series of musculoplasty in 12 ears in the capucine monkey the mastoid cavity was successfully obliterated in the early follow-up months, but showed no obliteration at one year. A control using a bovine collagen preparation showed similar results. Musculoplasty appears to carry the dual risk of burying residual cholesteatomatous disease by virtue of atrophy and shrinkage of the muscle flap, and reformation of the mastoid cavity.

  8. White Matter Neurons in Young Adult and Aged Rhesus Monkey

    Directory of Open Access Journals (Sweden)

    Farzad eMortazavi

    2016-02-01

    Full Text Available In humans and non-human primates (NHP, white matter neurons (WMNs persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR, temporal (TE, and parietal (Par association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30μm thickness, and neuronal density was assessed by systematic random sampling. Per 0.16mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of

  9. Biological Rhythms and Temperature Regulation in Rhesus Monkeys During Spaceflight

    Science.gov (United States)

    Fuller, Charles A. (Principal Investigator)

    1996-01-01

    This program examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite COSMOS 2229 were exposed to 11 2/3 days of microgravity. The circadian patterns temperature regulation, heart rate and activity were monitored constantly. This experiment has extended previous observations from COSMOS 1514 and 2044, as well as provided insights into the physiological mechanisms that produce these changes.

  10. Discriminative stimulus effects of nalbuphine in rhesus monkeys.

    Science.gov (United States)

    Gerak, L R; France, C P

    1996-02-01

    Three rhesus monkeys discriminated between 0.178 mg/kg of nalbuphine and saline while responding under a fixed-ratio 5 schedule of stimulus-shock termination. Nalbuphine produced dose-related increases in drug-lever responding with > or = 90% of responses occurring on the drug lever at doses larger than 0.1 mg/kg. The duration of action of the discriminative stimulus effects of nalbuphine was less than 5.25 hr. Rank order potency of compounds that substituted for the nalbuphine discriminative stimulus (i.e., > or = 90% responding on the nalbuphine lever) in all three subjects was fentanyl > butorphanol > methadone > morphine. Compounds that did not substitute completely in all monkeys included the kappa agonists ethylketocyclazocine, enadoline, spiradoline and U-50,488 and the nonopioids cocaine, d-amphetamine, clonidine, ketamine and phencyclidine. Naltrexone antagonized the discriminative stimulus effects of nalbuphine, shifting the nalbuphine dose-effect curve in a manner that was consistent with mu receptor mediation. Results from the current study demonstrate that, in rhesus monkeys, the discriminative stimulus effects of nalbuphine are mediated by mu opioid receptors. Although there is evidence suggesting that nalbuphine has kappa agonist effects (e.g., subjective effects in humans), results from several studies, including the current study, strongly suggest that in rhesus monkeys nalbuphine does not exert agonist actions at kappa receptors. Moreover, these data indicate that differences in behavioral effects between nalbuphine and prototypic mu opioids (e.g., morphine) probably result from differences in activity (e.g., efficacy) at mu receptors rather than any kappa agonist actions of nalbuphine.

  11. Behavioral effects of 6-methylene naltrexone (nalmefene) in rhesus monkeys.

    Science.gov (United States)

    France, C P; Gerak, L R

    1994-09-01

    Nalmefene [17-N-cyclopropylmethyl-3,14-beta-dihydroxy-4,5-alpha-epoxy-6- methylenemorphinan hydrochloride (also NIH 10365)], a 6-methylene derivative of naltrexone, was compared to naltrexone for its behavioral effects in rhesus monkeys. Nalmefene had opioid antagonist actions under all conditions, having a potency similar to that of naltrexone. In morphine-treated monkeys, discriminating between 0.01 mg/kg of naltrexone and saline, nalmefene substituted completely for naltrexone at doses larger than 0.001 mg/kg. The onset of discriminative stimulus effects was similar for nalmefene and naltrexone. A dose of 0.032 mg/kg of either antagonist occasioned > or = 90% naltrexone-level responding beginning 6 to 8 min after s.c. administration; the effects of this dose of either antagonist persisted for more than 1 hr. Like the parent compound naltrexone, nalmefene also antagonized the discriminative stimulus effects of opioid agonists. Nalmefene prevented the discriminative stimulus effects of morphine in monkeys acutely deprived of morphine and antagonized the discriminative stimulus effects of nalbuphine in a separate group of monkeys discriminating between nalbuphine and saline. At the dose of naltrexone and nalmefene that produced an equivalent antagonism of morphine when the antagonist was administered 0.25 hr before morphine (0.01 mg/kg), the duration of antagonist action was 6 hr, respectively. Nalmefene also attenuated the antinociceptive effects of the mu agonist alfentanil and the kappa agonist CI-977 [5R-(5,7,8-beta)-N-methyl- N-[7-(1-pyrrolidinyl)1-oxaspiro[4,5]dec-8-yl]-4-benzofuranaceta mide], being 55 times more potent in attenuating the antinociceptive effects of alfentanil as compared to Cl-977.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Changes in Somatosensory Responsiveness in Behaving Monkeys and Human Sub

    Science.gov (United States)

    1991-08-30

    MONITORING ORGANIZATION REPORT NUOf1BE(S) Department of Anatomy and Neurobiology University of Tennessee, Memphis Sa. NAME OF PERFORMING ORGANIZATION 6b...and monkeys make ballistic movements more quickly (50-100 msec) in response to vibratory as compared to visual signals. Human subjects also make...quickly (50-100 msec) in response to vibratory as compared to visual signals. Subjects also make movements more quickly to a visual target if, in addition

  13. Individual differences in rhesus monkeys' demand for drugs of abuse.

    Science.gov (United States)

    Koffarnus, Mikhail N; Hall, Amy; Winger, Gail

    2012-09-01

    A relatively small percentage of humans who are exposed to drugs of abuse eventually become addicted to or dependent on those drugs. These individual differences in likelihood of developing drug addiction may reflect behavioral, neurobiological or genetic correlates of drug addiction and are therefore important to model. Behavioral economic measures of demand establish functions whose overall elasticity (rate of decrease in consumption as price increases) reflects the reinforcing effectiveness of various stimuli, including drugs. Using these demand functions, we determined the reinforcing effectiveness of five drugs of abuse (cocaine, remifentanil, ketamine, methohexital and ethanol) in 10 rhesus monkeys with histories of intravenous drug-taking. There was a continuum of reinforcing effectiveness across the five drugs, with cocaine and remifentanil showing the most reinforcing effectiveness. There was also a continuum of sensitivity of the monkeys; two of the 10 animals, in particular, showed greater demand for the drugs than did the remaining eight monkeys. In addition, monkeys that demonstrated greater demand for one drug tended to show greater demand for all drugs but did not show a similar relatively greater demand for sucrose pellets. These findings suggest that the tendency to find drugs to be reinforcing is a general one, not restricted to particular drugs and also, that a minority of animals show a substantially enhanced sensitivity to the reinforcing effects of drugs. The possibility that differences in responsiveness to the reinforcing effects of drugs may form the basis of individual differences in drug-taking in humans should be considered. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  14. The visual motion detectors underlying ocular following responses in monkeys

    Science.gov (United States)

    Miura, Kenichiro; Matsuura, Kiyoto; Taki, Masakatsu; Tabata, Hiromitsu; Inaba, Naoko; Kawano, Kenji; Miles, Frederick A.

    2008-01-01

    Psychophysical evidence indicates that visual motion can be sensed by low-level (energy-based) and high-level (feature-based) mechanisms. The present experiments were undertaken to determine which of these mechanisms mediates the initial ocular following response (OFR) that can be elicited at ultra-short latencies by sudden motion of large-field images. We used the methodology of Sheliga, Chen, FitzGibbon and Miles (Initial ocular following in humans: a response to first-order motion energy. Vision Research, In press), who studied the initial OFRs of humans, to study the initial OFRs of monkeys. Accordingly, we applied horizontal motion to 1) vertical square-wave gratings lacking the fundamental (“missing fundamental stimulus”), and 2) vertical grating patterns consisting of the sum of two sinusoids of frequency 3f and 4f, which created a repeating pattern with beat frequency, f. Both visual stimuli share a critical property: when subject to ¼-wavelength steps, their overall pattern (feature) shifts in the direction of the steps, whereas their major Fourier component shifts in the reverse direction (because of spatial aliasing). We found that the initial OFRs of monkeys to these stimuli, like those of humans, were always in the opposite direction to the ¼-wavelength shifts, i.e., in the direction of the major Fourier component, consistent with detection by (low-level) oriented spatio-temporal filters as in the well-known energy model of motion analysis. Our data indicate that the motion detectors mediating the initial OFR have quantitatively similar properties in monkeys and humans, suggesting that monkeys provide a good animal model for the human OFR. PMID:16356529

  15. Phosphorylcholine and phosphorylethanolamine in human and rhesus monkey lenses.

    Science.gov (United States)

    Jernigan, H M; Zigler, J S

    1989-11-01

    Phosphorylcholine (P-choline) and phosphorylethanolamine (P-ethanolamine) are important precursors of phospholipids. The metabolism and concentration of P-choline has been shown to change in animal models of cataract, especially in oxidatively or osmotically stressed rat lenses. The concentrations of P-choline and P-ethanolamine were determined in monkey lenses and in normal and cataractous human lenses, and the rate of synthesis of P-choline was determined in human and monkey lenses. The concentration of P-choline in 53 clear human lenses was 0.94 mM (+/- 0.31 S.D.) and was relatively unaffected by age, eye bank storage, or freezing. There was a 70% decrease in P-choline in brown cataracts but no significant change from normal in non-brown cataracts. The concentration of P-ethanolamine in human lenses was 0.45 mM (+/- 0.26 S.D.), and it appeared to decrease during frozen storage of lenses and in cataracts. The concentrations of P-choline and P-ethanolamine in 12 rhesus monkey lenses were 1.51 mM (+/- 0.27 S.D.) and 0.75 mM (+/- 0.14 S.D.), respectively. The rate of synthesis of P-choline in monkey lenses incubated with [3H]choline was 8 nmol hr-1 g-1 wet weight in 1 mM choline. Adult human lenses incubated in 1 mM choline synthesized P-choline at a rate of 23 nmol hr-1 g-1 (+/- 6 S.D.). This limited capacity for P-choline synthesis in primate lenses may contribute to the lower P-choline concentration relative to rat lenses, which contain 11 mM P-choline and can synthesize P-choline at an apparent maximum rate of 130 nmol hr-1 g-1.

  16. Do rhesus monkeys (Macaca mulatta) perceive illusory motion?

    Science.gov (United States)

    Agrillo, Christian; Gori, Simone; Beran, Michael J.

    2015-01-01

    During the last decade, visual illusions have been used repeatedly to understand similarities and differences of visual perception of human and non-human animals. However, nearly all studies have focused only on illusions not related to motion perception and, to date, it is unknown whether non-human primates perceive any kind of motion illusion. In the present study we investigated whether rhesus monkeys (Macaca mulatta) perceived one of the most popular motion illusions in humans, the Rotating Snake illusion (RSI). To this purpose, we set up four experiments. In Experiment 1 subjects initially were trained to discriminate static vs. dynamic arrays. Once reaching the learning criterion, they underwent probe trials in which we presented the RSI and a control stimulus identical in overall configuration with the exception that the order of the luminance sequence was changed in a way that no apparent motion is perceived by humans. The overall performance of monkeys indicated that they spontaneously classified RSI as a dynamic array. Subsequently, we tested adult humans in the same task with the aim of directly comparing the performance of human and non-human primates (Experiment 2). In Experiment 3 we found that monkeys can be successfully trained to discriminate between the RSI and a control stimulus. Experiment 4 showed that a simple change in luminance sequence in the two arrays could not explain the performance reported in Exp. 3. These results suggest that some rhesus monkeys display a human-like perception of this motion illusion, raising the possibility that the neurocognitive systems underlying motion perception may be similar between human and non-human primates. PMID:25812828

  17. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.

    Science.gov (United States)

    Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C

    2017-02-15

    Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness.SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that

  18. Simulating the effect of reinforcement learning on neuronal synchrony and periodicity in the striatum

    Directory of Open Access Journals (Sweden)

    Sebastien eHelie

    2016-04-01

    Full Text Available The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG synchrony and reinforcement learning. We simulate a biologically-realistic model of the striatum initially proposed by Ponzi and Wickens (2010 and enhance the model by adding plastic cortico-BG synapses that can be modified using reinforcement learning. The effect of reinforcement learning on striatal rhythmic activity is then explored, and disrupted using simulated deep brain stimulation (DBS. The stimulator injects current in the brain structure to which it is attached, which affects neuronal synchrony. The results show that training the model without DBS yields a high accuracy in the learning task and reduced the number of active neurons in the striatum, along with an increased firing periodicity and a decreased firing synchrony between neurons in the same assembly. In addition, a spectral decomposition shows a stronger signal for correct trials than incorrect trials in high frequency bands. If the DBS is ON during the training phase, but not the test phase, the amount of learning in the model is reduced, along with firing periodicity. Similar to when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials than for incorrect trials in high frequency domains, but this phenoemenon happens in higher frequency bands than when the DBS is OFF. Synchrony between the neurons is not affected. Finally, the results show that turning the DBS ON at test increases both firing periodicity and striatal synchrony, and spectral decomposition of the signal show that neural activity synchronizes with the DBS fundamental frequency (and its harmonics. Turning the DBS ON during the test phase results

  19. Discriminative stimulus and antinociceptive effects of dihydroetorphine in rhesus monkeys.

    Science.gov (United States)

    Gerak, Lisa R; Gauthier, Cheryl R A; France, Charles R A P

    2003-04-01

    Although dihydroetorphine has micro opioid agonist activity there is evidence to suggest that it is not identical to that of morphine. This study compared dihydroetorphine to other opioids under behavioral conditions that are sensitive to micro opioid agonism. The acute effects of dihydroetorphine, etorphine and morphine were evaluated using two procedures. In one procedure, monkeys received 3.2 mg/kg per day of morphine and discriminated naltrexone from saline while responding under a fixed-ratio 5 schedule of stimulus shock termination. In addition, a warm-water, tail-withdrawal procedure was used in untreated monkeys. When acutely deprived of morphine, monkeys responded on the naltrexone lever, and this effect was reversed by dihydroetorphine, etorphine and morphine. Each agonist produced the maximum (20-s latency) antinociceptive effect in 50 degrees C water. Naltrexone antagonized the discriminative stimulus and antinociceptive effects of dihydroetorphine and etorphine, although Schild analyses yielded large variability in slopes and pA(2) values. Naltrexone reversed established effects of dihydroetorphine and morphine in both procedures and pretreatment with dihydroetorphine (2, 6 or 24 h) did not alter the discriminative stimulus effects of morphine. Taken together, these data support the notion that dihydroetorphine is a micro agonist with a short duration of action; however, variability in antagonism of dihydroetorphine and morphine might be a manifestation of differences that have been reported for these drugs at the cellular level.

  20. Antinociceptive and respiratory effects of nalbuphine in rhesus monkeys.

    Science.gov (United States)

    Gerak, L R; Butelman, E R; Woods, J H; France, C P

    1994-11-01

    Antinociceptive and respiratory effects of nalbuphine and other opioids were studied in rhesus monkeys. In a thermal, tail withdrawal assay, the kappa agonist enadoline and the mu agonists alfentanil and fentanyl produced maximum antinociceptive effects in all subjects and over a wide range of temperatures, whereas nalbuphine produced antinociceptive effects in only some subjects and only when the water temperature was < or = 50 degrees C. Naltrexone antagonized the antinociceptive effects of nalbuphine, alfentanil and enadoline; however, the magnitude of antagonism was not equal among agonists. In subjects that did not show an antinociceptive response to nalbuphine, nalbuphine (3.2-10.0 mg/kg) antagonized the antinociceptive effects of fentanyl but not enadoline. The irreversible opioid antagonist clocinnamox produced a parallel shift to the right in the nalbuphine dose-effect curve 1 hr after administration and decreased the maximum effect produced by nalbuphine 24 and 48 hr after administration. Nalbuphine had modest respiratory-depressant effects in monkeys breathing air and attenuated hyperventilation produced by 5% CO2. In contrast, alfentanil had marked respiratory-depressant effects in monkeys breathing air or 5% CO2 in air and these effects were antagonized by nalbuphine. Taken together, these results suggest nalbuphine has low efficacy at mu opioid receptors; however, quantitative differences between alfentanil and nalbuphine indicate a second (non-enadoline sensitive) receptor might also be important for the antinociceptive effects of nalbuphine.

  1. Rhesus monkeys (Macaca mulatta) hear rising frequency sounds as looming.

    Science.gov (United States)

    Ghazanfar, Asif A; Maier, Joost X

    2009-08-01

    Rising sound intensity provides an important cue for the detection of looming objects. Studies with humans indirectly suggest that rising pitch can also signal a looming object. This link between rising intensity and rising frequency is puzzling because no physical rise in frequency occurs when a sound source approaches. Putative explanations include (a) the idea that the loudness of sound depends on its frequency, (b) the frequent co-occurrence of rising intensity with rising frequency in vocalizations generates an association between the 2 features, and (c) auditory neurons process amplitude- and frequency-modulated sounds similarly. If these hypotheses are valid, then rhesus monkeys (Macaca mulatta)--which share some homologies in the vocal production apparatus and auditory system--should also associate rising frequency with rising intensity, and thus should perceive rising frequency as a looming sound source. A head-turning assay and a preferential-looking paradigm revealed that monkeys show an attentional bias toward rising versus falling frequency sounds and link the former to visual looming signals. This suggests that monkeys hear a rising frequency sound as a looming sound source even though, in the real world, no such link exists. 2009 APA, all rights reserved

  2. Capuchin monkeys do not show human-like pricing effects.

    Science.gov (United States)

    Catapano, Rhia; Buttrick, Nicholas; Widness, Jane; Goldstein, Robin; Santos, Laurie R

    2014-01-01

    Recent work in judgment and decision-making has shown that a good's price can have irrational effects on people's preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella) are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased), we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human pricing effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling.

  3. Electrons at the monkey saddle: A multicritical Lifshitz point

    Science.gov (United States)

    Shtyk, A.; Goldstein, G.; Chamon, C.

    2017-01-01

    We consider two-dimensional interacting electrons at a monkey saddle with dispersion ∝px3-3 pxpy2 . Such a dispersion naturally arises at the multicritical Lifshitz point when three Van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em∝(Bm ) 3 /2 and related oscillations in thermodynamic and transport properties, such as de Haas-Van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the noninteracting electron fixed point is unstable to interactions under the renormalization-group flow, developing either a superconducting instability or non-Fermi-liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K' points, exhibits an interplay of competing many-body instabilities, namely, s -wave superconductivity, ferromagnetism, and spin- and charge-density waves.

  4. Capuchin monkeys do not show human-like pricing effects

    Science.gov (United States)

    Catapano, Rhia; Buttrick, Nicholas; Widness, Jane; Goldstein, Robin; Santos, Laurie R.

    2014-01-01

    Recent work in judgment and decision-making has shown that a good's price can have irrational effects on people's preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella) are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased), we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human pricing effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling. PMID:25520677

  5. Cognitive performance of juvenile monkeys after chronic fluoxetine treatment

    Directory of Open Access Journals (Sweden)

    Mari S. Golub

    2017-08-01

    Full Text Available Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age were dosed with fluoxetine or vehicle (N = 16/group for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N = 8/group suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms and testing location (upper or lower tier of cages. Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment.

  6. Epigenetic changes with dietary soy in cynomolgus monkeys.

    Directory of Open Access Journals (Sweden)

    Timothy D Howard

    Full Text Available Nutritional interventions are important alternatives for reducing the prevalence of many chronic diseases. Soy is a good source of protein that contains isoflavones, including genistein and daidzein, and may alter the risk of obesity, Type 2 diabetes, osteoporosis, cardiovascular disease, and reproductive cancers. We have shown previously in nonhuman primates that soy protein containing isoflavones leads to improved body weight, insulin sensitivity, lipid profiles, and atherosclerosis compared to protein without soy isoflavones (casein, and does not increase the risk of cancer. Since genistein has been shown to alter DNA methylation, we compared the methylation profiles of cynomolgus monkeys, from multiple tissues, eating two high-fat, typical American diets (TAD with similar macronutrient contents, with or without soy protein. DNA methylation status was successfully determined for 80.6% of the probes in at least one tissue using Illumina's HumanMethylation27 BeadChip. Overall methylation increased in liver and muscle tissue when monkeys switched from the TAD-soy to the TAD-casein diets. Genes involved in epigenetic processes, specifically homeobox genes (HOXA5, HOXA11, and HOXB1, and ABCG5 were among those that changed between diets. These data support the use of the HumanMethylation27 BeadChip in cynomolgus monkeys and identify epigenetic changes associated with dietary interventions with soy protein that may potentially affect the etiology of complex diseases.

  7. Epigenetic changes with dietary soy in cynomolgus monkeys.

    Science.gov (United States)

    Howard, Timothy D; Ho, Shuk-Mei; Zhang, Li; Chen, Jing; Cui, Wei; Slager, Rebecca; Gray, Stanton; Hawkins, Gregory A; Medvedovic, Mario; Wagner, Janice D

    2011-01-01

    Nutritional interventions are important alternatives for reducing the prevalence of many chronic diseases. Soy is a good source of protein that contains isoflavones, including genistein and daidzein, and may alter the risk of obesity, Type 2 diabetes, osteoporosis, cardiovascular disease, and reproductive cancers. We have shown previously in nonhuman primates that soy protein containing isoflavones leads to improved body weight, insulin sensitivity, lipid profiles, and atherosclerosis compared to protein without soy isoflavones (casein), and does not increase the risk of cancer. Since genistein has been shown to alter DNA methylation, we compared the methylation profiles of cynomolgus monkeys, from multiple tissues, eating two high-fat, typical American diets (TAD) with similar macronutrient contents, with or without soy protein. DNA methylation status was successfully determined for 80.6% of the probes in at least one tissue using Illumina's HumanMethylation27 BeadChip. Overall methylation increased in liver and muscle tissue when monkeys switched from the TAD-soy to the TAD-casein diets. Genes involved in epigenetic processes, specifically homeobox genes (HOXA5, HOXA11, and HOXB1), and ABCG5 were among those that changed between diets. These data support the use of the HumanMethylation27 BeadChip in cynomolgus monkeys and identify epigenetic changes associated with dietary interventions with soy protein that may potentially affect the etiology of complex diseases.

  8. Encoding of reward expectation by monkey anterior insular neurons.

    Science.gov (United States)

    Mizuhiki, Takashi; Richmond, Barry J; Shidara, Munetaka

    2012-06-01

    The insula, a cortical brain region that is known to encode information about autonomic, visceral, and olfactory functions, has recently been shown to encode information during reward-seeking tasks in both single neuronal recording and functional magnetic resonance imaging studies. To examine the reward-related activation, we recorded from 170 single neurons in anterior insula of 2 monkeys during a multitrial reward schedule task, where the monkeys had to complete a schedule of 1, 2, 3, or 4 trials to earn a reward. In one block of trials a visual cue indicated whether a reward would or would not be delivered in the current trial after the monkey successfully detected that a red spot turned green, and in other blocks the visual cue was random with respect to reward delivery. Over one-quarter of 131 responsive neurons were activated when the current trial would (certain or uncertain) be rewarded if performed correctly. These same neurons failed to respond in trials that were certain, as indicated by the cue, to be unrewarded. Another group of neurons responded when the reward was delivered, similar to results reported previously. The dynamics of population activity in anterior insula also showed strong signals related to knowing when a reward is coming. The most parsimonious explanation is that this activity codes for a type of expected outcome, where the expectation encompasses both certain and uncertain rewards.

  9. Capuchin monkeys do not show human-like pricing effects

    Directory of Open Access Journals (Sweden)

    Rhia eCatapano

    2014-12-01

    Full Text Available Recent work in judgment and decision-making has shown that a good’s price can have irrational effects on people’s preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased, we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human price effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling.

  10. Sex and Status Sell to Monkeys: Social Advertising Creates Brand Preferences in Rhesus Macaques

    National Research Council Canada - National Science Library

    M Yavuz Acikalin; Karli Watson; Gavan Fitzsimons; Michael Platt

    2015-01-01

      Innate evolutionary mechanisms may influence consumer response to advertising. We demonstrate that exposure to sex- and status-based advertising campaigns elicit brand preferences in rhesus monkeys...

  11. Selection of river crossing location and sleeping site by proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia.

    Science.gov (United States)

    Matsuda, Ikki; Tuuga, Augustine; Akiyama, Yoshihiro; Higashi, Seigo

    2008-11-01

    From May 2005-2006, selections of river crossing locations and sleeping sites used by a one-male group (BE-Group) of proboscis monkeys (Nasalis larvatus) were investigated along the Menanggul River, tributary of the Kinabatangan River, Sabah, Malaysia. The frequency of river crossings for focal monkeys in the BE-Group was significantly higher at locations with narrow branch-to-bank distances. Branch-to-bank distances were defined as the distances between the longest tree branches extending over the river and the bank of river on each side. This was measured in areas crossed by the monkeys. The focal monkeys used locations with a higher probability of successful river crossings that did not require jumping into the water and swimming across than those that did. The frequency of sleeping site usage by the BE-Group was positively correlated with the frequency of using river crossing locations by the focal monkeys. Previous reports on predation of proboscis monkeys indicate that clouded leopards (Neofelis diardi) and crocodilians (Tomistoma schlegeli and Crocodylus porosus) may be the major terrestrial and aquatic predators of these monkeys. The selection of river crossing locations by proboscis monkeys may be influenced both by the threat of these predators and the location of suitable and protected sleeping sites. Finally, sleeping sites locations that offer arboreal escape routes may protect proboscis monkeys from leopard attack. Copyright 2008 Wiley-Liss, Inc.

  12. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Daniela Camargos Costa

    2014-08-01

    Full Text Available Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4% and in wild Alouatta clamitans monkeys (n = 20, 35% from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.

  13. Do you see what I see? A comparative investigation of the Delboeuf illusion in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Cebus apella).

    Science.gov (United States)

    Parrish, Audrey E; Brosnan, Sarah F; Beran, Michael J

    2015-10-01

    Studying visual illusions is critical to understanding typical visual perception. We investigated whether rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella) perceived the Delboeuf illusion in a similar manner as human adults (Homo sapiens). To test this, in Experiment 1, we presented monkeys and humans with a relative discrimination task that required subjects to choose the larger of 2 central dots that were sometimes encircled by concentric rings. As predicted, humans demonstrated evidence of the Delboeuf illusion, overestimating central dots when small rings surrounded them and underestimating the size of central dots when large rings surrounded them. However, monkeys did not show evidence of the illusion. To rule out an alternate explanation, in Experiment 2, we presented all species with an absolute classification task that required them to classify a central dot as "small" or "large." We presented a range of ring sizes to determine whether the Delboeuf illusion would occur for any dot-to-ring ratios. Here, we found evidence of the Delboeuf illusion in all 3 species. Humans and monkeys underestimated central dot size to a progressively greater degree with progressively larger rings. The Delboeuf illusion now has been extended to include capuchin monkeys and rhesus monkeys, and through such comparative investigations we can better evaluate hypotheses regarding illusion perception among nonhuman animals. (c) 2015 APA, all rights reserved).

  14. Comparison of the spatial-cognitive functions of dorsomedial striatum and anterior cingulate cortex in mice.

    Directory of Open Access Journals (Sweden)

    Tine Pooters

    Full Text Available Neurons in anterior cingulate cortex (aCC project to dorsomedial striatum (DMS as part of a corticostriatal circuit with putative roles in learning and other cognitive functions. In the present study, the spatial-cognitive importance of aCC and DMS was assessed in the hidden-platform version of the Morris water maze (MWM. Brain lesion experiments that focused on areas of connectivity between these regions indicated their involvement in spatial cognition. MWM learning curves were markedly delayed in DMS-lesioned mice in the absence of other major functional impairments, whereas there was a more subtle, but still significant influence of aCC lesions. Lesioned mice displayed impaired abilities to use spatial search strategies, increased thigmotaxic swimming, and decreased searching in the proximity of the escape platform. Additionally, aCC and DMS activity was compared in mice between the early acquisition phase (2 and 3 days of training and the over-trained high-proficiency phase (after 30 days of training. Neuroplasticity-related expression of the immediate early gene Arc implicated both regions during the goal-directed, early phases of spatial learning. These results suggest the functional involvement of aCC and DMS in processes of spatial cognition that model associative cortex-dependent, human episodic memory abilities.

  15. (-) Epigallocatechin-3-gallate attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum.

    Science.gov (United States)

    Wang, Mao-Hsien; Lin, Rui-Feng; Tseng, Hsiang-Chien; Soung, Hung-Sheng; Chang, Kuo-Chi; Tsai, Cheng-Chia

    2015-04-01

    Reserpine-induced orofacial dyskinesia (OD) has been used for decades as an animal model for human tardive dyskinesia (TD) because both of them have pathophysiology strongly associated with striatal oxidative stress. Green tea catechins, especially (-) epigallocatechin-3-gallate (EGCG), have potent antioxidative effects and are able to protect against various oxidative injuries. In this study, we examined the potential protective effects of EGCG on reserpine-induced behavioral and neurochemical dysfunction in rats. Reserpine treatment (1mg/kgs.c. one injection every other day, three injections total) induced significant increases (p<0.001) in the frequency of vacuous chewing movement (VCM) and tongue protrusion (TP) as well as the duration of facial twitching (FT). EGCG treatment (100mg/kgi.p. for 11days, starting 7days before the reserpine injections) was able to prevent most of the reserpine-induced OD. Also, EGCG treatment was able to reduce the reserpine-induced lipid peroxidation (LPO) production, and enhances the antioxidation power in the striatum of reserpine-treated rats. The above results indicate that EGCG has a protective role against reserpine-induced OD, probably via its powerful antioxidative properties. Thus, EGCG may possible have a clinically relevant therapeutic effect in preventing, delaying or even treating TD. Copyright © 2015. Published by Elsevier Inc.

  16. Huntington disease: a single-gene degenerative disorder of the striatum.

    Science.gov (United States)

    Nopoulos, Peggy C

    2016-03-01

    Huntington disease (HD) is an autosomal dominant, neurodegenerative disorder with a primary etiology of striatal pathology. The Huntingtin gene (HTT) has a unique feature of a DNA trinucleotide (triplet) repeat, with repeat length ranging from 10 to 35 in the normal population. Repeat lengths between 36 and 39 cause HD at reduced penetrance (some will get the disease, others won't) and when expanded to 40 or more repeats (mHTT), causes HD at full penetrance (every person with this length or beyond will definitely develop the disease). The symptoms of HD may be motor, cognitive, and psychiatric, and are consistent with the pathophysiology of frontostriatal circuitry malfunction. Expressed ubiquitously and throughout the entire life cycle (development through adulthood), mHTT causes initial dysfunction and eventual death of a specific cell population within the striatum. Although all areas of the brain are eventually affected, the primary pathology of the disease is regionally specific. As a single-gene disorder, HD has the distinction of having the potential of treatment that is aimed directly at the known pathogenic mechanism by gene silencing, providing hope for neuroprotection and ultimately, prevention.

  17. Differential effects of neural inactivation of the dorsolateral striatum on response and latent extinction.

    Science.gov (United States)

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2017-04-01

    The present study examined the role of the dorsolateral striatum (DLS) in extinction behavior. Male Long-Evans rats were initially trained on the straight alley maze, in which they were reinforced to traverse a straight runway and retrieve food reward at the opposite end of the maze. After initial acquisition, animals were given extinction training using 1 of 2 distinct protocols: response extinction or latent extinction. For response extinction, the animal was released from the same starting position and had the opportunity to perform the originally reinforced approach response to the goal end of the maze, which no longer contained food. For latent extinction, the animal was confined to the original goal location without food, allowing the animal to form a new cognitive expectation (i.e., that the goal location is no longer reinforced). Immediately before response or latent extinction training, animals received bilateral intra-DLS administration of the sodium channel blocker bupivacaine or control injections of physiological saline. Results indicated that neural inactivation of the DLS with bupivacaine impaired response extinction, but did not influence latent extinction. The dissociation observed indicates that the DLS selectively mediates extinction mechanisms involving suppression of the original response, as opposed to cognitive mechanisms involving a change in expectation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors.

    Science.gov (United States)

    Ben Hamida, Sami; Darcq, Emmanuel; Wang, Jun; Wu, Su; Phamluong, Khanhky; Kharazia, Viktor; Ron, Dorit

    2013-09-04

    We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake.

  19. Deep brain stimulation of the ventral striatum increases BDNF in the fear extinction circuit

    Directory of Open Access Journals (Sweden)

    Fabricio H Do-Monte

    2013-08-01

    Full Text Available Deep brain stimulation (DBS of the ventral capsule/ventral striatum (VC/VS reduces the symptoms of treatment-resistant obsessive compulsive disorder (OCD, and improves response to extinction-based therapies. We recently reported that DBS-like stimulation of a rat homologue of VC/VS, the dorsal-VS, reduced conditioned fear and enhanced extinction memory (Rodriguez-Romaguera et al, 2012. In contrast, DBS of the ventral-VS had the opposite effects. To examine possible mechanisms, we assessed the effects of VS DBS on the expression of the neural activity marker Fos and brain-derived neurotrophic factor (BDNF, a key mediator of extinction plasticity in prefrontal-amygdala circuits. Consistent with decreased fear expression, DBS of dorsal-VS increased Fos expression in prelimbic and infralimbic prefrontal cortices and in the lateral division of the central nucleus of amygdala, an area that inhibits amygdala output. Consistent with improved extinction memory, we found that DBS of dorsal-VS, but not ventral-VS, increased neuronal BDNF expression in prelimbic and infralimbic prefrontal cortices. These rodent findings are consistent with the idea that clinical DBS of VC/VS may augment fear extinction through an increase in BDNF expression.

  20. Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior.

    Science.gov (United States)

    Blankenship, Philip A; Cheatwood, Joseph L; Wallace, Douglas G

    2017-08-01

    Spatial and temporal information processing provide a foundation for higher cognitive functions. The survival of animals depends on integrating spatial and temporal information to organize behavior. In general, previous research has focused on only one source of information processing; however, there is evidence to support a convergence in the processing of egocentric-spatial and temporal information within a cortico-striatal system of structures. The current study evaluated the contributions of the dorsocentral striatum (DCS) to egocentric-spatial and temporal (within the seconds-to-minutes range) processing of information using a food protection task. Long-Evans rats received unilateral NMDA lesions of the DCS followed by testing in a food protection task. Performance in this task is mediated by the motivation of the animal to consume a food item, their perception of the time required to consume a food item, their sensory ability to process egocentric cues, and their motor ability to evade an incoming conspecific. Unilateral DCS lesions were shown to impact both spatial and temporal characteristics of food protection. These results suggest that the DCS may be a critical structure for the integration of egocentric-spatial and temporal information within the interval timing range.

  1. Interest in politics modulates neural activity in the amygdala and ventral striatum.

    Science.gov (United States)

    Gozzi, Marta; Zamboni, Giovanna; Krueger, Frank; Grafman, Jordan

    2010-11-01

    Studies on political participation have found that a person's interest in politics contributes to the likelihood that he or she will be involved in the political process. Here, we looked at whether or not interest in politics affects patterns of brain activity when individuals think about political matters. Using functional magnetic resonance imaging (fMRI), we scanned individuals (either interested or uninterested in politics based on a self-report questionnaire) while they were expressing their agreement or disagreement with political opinions. After scanning, participants were asked to rate each political opinion presented in the scanner for emotional valence and emotional intensity. Behavioral results showed that those political opinions participants agreed with were perceived as more emotionally intense and more positive by individuals interested in politics relative to individuals uninterested in politics. In addition, individuals interested in politics showed greater activation in the amygdala and the ventral striatum (ventral putamen) relative to individuals uninterested in politics when reading political opinions in accordance with their own views. This study shows that having an interest in politics elicits activations in emotion- and reward-related brain areas even when simply agreeing with written political opinions. © 2010 Wiley-Liss, Inc.

  2. Hyper-influence of the orbitofrontal cortex over the ventral striatum in obsessive-compulsive disorder.

    Science.gov (United States)

    Abe, Yoshinari; Sakai, Yuki; Nishida, Seiji; Nakamae, Takashi; Yamada, Kei; Fukui, Kenji; Narumoto, Jin

    2015-11-01

    Dysfunction of the fronto-striato-thalamic circuit routing through the orbitofrontal cortex (OFC) is thought to play the main role in the pathophysiology of obsessive-compulsive disorder (OCD). Repetitious stimulation of the OFC-ventral striatum (VS) projections in mice has been shown to increase the firing of the postsynaptic VS cells and the frequency of OCD-like symptoms. Moreover, increased functional connectivity (FC) between the OFC and the VS has been reported in patients with OCD. While FC is a synchronous, non-directed correlation, the directed influence between these brain regions remains unclear in patients with OCD. We obtained resting state functional magnetic resonance imaging scans from 37 non-medicated patients with OCD and 38 matched healthy volunteers, and calculated bivariative voxel-wise Granger Causality (GC) to and from three striatal regions of interest (ROI) using a blind deconvolution procedure. Additionally, we conducted multivariative GC analysis to determine if the effect revealed by the bivariative voxel-wise GCA is mediated by another seed ROI. We found a significant hyper-influence of the OFC over the VS of subjects with OCD (ploop in non-medicated patients with OCD. We confirmed the hyperactive connection from the OFC to the VS that is consistent with previous animal studies. These findings provide evidence for the more detailed pathophysiology of OCD. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  3. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.

    Science.gov (United States)

    Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram

    2016-06-01

    Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Medial prefrontal cortex and striatum mediate the influence of social comparison on the decision process.

    Science.gov (United States)

    Bault, Nadège; Joffily, Mateus; Rustichini, Aldo; Coricelli, Giorgio

    2011-09-20

    We compared private and social decision making to investigate the neural underpinnings of the effect of social comparison on risky choices. We measured brain activity using functional MRI while participants chose between two lotteries: in the private condition, they observed the outcome of the unchosen lottery, and in the social condition, the outcome of the lottery chosen by another person. The striatum, a reward-related brain structure, showed higher activity when participants won more than their counterpart (social gains) compared with winning in isolation and lower activity when they won less than their counterpart (social loss) compared with private loss. The medial prefrontal cortex, implicated in social reasoning, was more activated by social gains than all other events. Sensitivity to social gains influenced both brain activity and behavior during subsequent choices. Specifically, striatal activity associated with social gains predicted medial prefrontal cortex activity during social choices, and experienced social gains induced more risky and competitive behavior in later trials. These results show that interplay between reward and social reasoning networks mediates the influence of social comparison on the decision process.

  5. Microinfusion of antineuronal antibodies into rodent striatum: failure to differentiate between elevated and low titers.

    Science.gov (United States)

    Singer, Harvey S; Mink, Jonathan W; Loiselle, Christopher R; Burke, Kathleen A; Ruchkina, Irina; Morshed, Syed; Parveen, Salina; Leckman, James F; Hallett, Joseph J; Lombroso, Paul J

    2005-06-01

    An autoimmune-mediated mechanism has been proposed for several pediatric movement disorders. In a three-center (Brown, Yale, and Johns Hopkins) collaborative effort, serum antineuronal antibodies (ANAb) were measured by use of ELISA or immunohistochemical techniques on 35 children (mean age 11.4 years) with Tourette syndrome, attention deficit hyperactivity disorder, and/or obsessive compulsive disorder. Eight sera, 4 containing the highest and 4 the lowest levels of ANAb, were identified at each institution. Selected sera (total of 9 with elevated and 7 with low ANAb) were re-encoded and sent to each center for infusion into the ventrolateral striatum of 16 male Sprague-Dawley rats. Animals were observed for behavioral abnormalities for 3 days before the start of infusion, during infusion on days 2-4, and for 2 days after infusion. Combined stereotypy scores increased after antibody infusion, but there was no significant effect based on serum titer (p=0.85). Scores differed among centers, but analyses based on individual institutional data again failed to show an effect based on elevated or low ANAb values (Brown, p=0.95; Yale and Johns Hopkins, p=0.81). Post hoc studies with sham surgery and infusion of phosphate-buffered saline support suggestions of nonspecific behavioral effects unrelated to antibody titer. This report emphasizes that any conclusions about antibody-mediated movement disorders that are based upon results from the rodent infusion model must be considered with caution.

  6. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics

    Directory of Open Access Journals (Sweden)

    Daniil eSarkisyan

    2015-05-01

    Full Text Available The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN and proenkephalin (PENK mRNAs (by qRT-PCR, and dynorphins and enkephalins (by radioimmunoassay in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.

  7. The monkey puzzle: a systematic review of studies of stress, social hierarchies, and heart disease in monkeys.

    Science.gov (United States)

    Petticrew, Mark; Davey Smith, George

    2012-01-01

    It is often suggested that psychosocial factors, such as stress, or one's social position, may play an important role in producing social gradients in human disease. Evidence in favour of this model of health inequalities has relied, in part, on studies of the health effects of the natural social hierarchies found among non-human primates. This study aimed to assess the strength of this evidence. A systematic review was carried out to identify all studies of psychosocial factors and coronary artery disease (CAD) in non-human primates. We searched databases (MEDLINE, PsycInfo, EMBASE, and Primatelit from inception to November 2010) to identify experimental and observational studies of the impact of social reorganisation, social instability, and disruption of dominance hierarchies on primate CAD outcomes. We also handsearched bibliographies and examined the citations to those studies in public health articles. Fourteen studies were found which presented evidence on CAD and social status and/or psychosocial stress. These suggested that the association between social status and disease may be sex-specific: in female monkeys dominant status may be protective, with subordinate females having a greater extent of atherosclerosis. In male monkeys the reverse may be the case. Overall, non-human primate studies present only limited evidence for an association between social status and CAD, Despite this, there is selective citation of individual non-human primate studies in reviews and commentaries relating to human disease aetiology. Such generalisation of data from monkey studies to human societies does not appear warranted.

  8. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Aims Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Design Pathological Gamblers...... and Healthy Controlswere experimentally compared in a non-gambling (baseline) and gambling condition. Measurements We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition...... of the Iowa GamblingTask (IGT). After each condition participants rated their excitement level. Setting Laboratory experiment. Participants 18 Pathological Gamblers and 16 Healthy Controls. Findings Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels...

  9. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Makoto Ito

    2015-11-01

    Full Text Available Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS, the dorsomedial striatum (DMS, and the ventral striatum (VS identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  10. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light.

    Science.gov (United States)

    Castañeda, Tamara R; de Prado, Blanca Marquez; Prieto, David; Mora, Francisco

    2004-04-01

    Using microdialysis, we investigated the circadian rhythms of the extracellular concentrations of dopamine, glutamate and gamma-aminobutyric acid (GABA) in the striatum and nucleus accumbens of the awake rat. Wistar rats were maintained in a 12 hr dark:12 hr light (12:12) cycle for 2 wk before the experiment began. The neurotransmitter levels were measured every 30 min for 30 hr in control (maintaining the 12:12 cycle) or in experimental conditions under a 24-h light period (continuous light) or under a 24-h dark interval (continuous dark). The dopamine metabolites, DOPAC and HVA, and the main serotonin metabolite, 5-HIAA, were measured along with arginine and glutamine under all conditions. In 12:12 conditions, a circadian rhythm of dopamine, glutamate and GABA was found in both the striatum and nucleus accumbens. Again under 12:12 conditions, DOPAC, HVA, 5-HIAA, and arginine, but not glutamine, fluctuated in a circadian rhythm. In the striatum under constant light conditions, there was a circadian rhythm of dopamine, glutamate, GABA, DOPAC and HVA, but not 5-HIAA. By contrast, when the rats were kept under continuous dark, dopamine and its metabolites, DOPAC and HVA (but not glutamate and GABA), did not fluctuate in a circadian rhythm. In the nucleus accumbens, under both constant light or dark conditions, no changes were found in the circadian rhythm in any of the neurotransmitters and metabolites studied. These findings show that in the striatum, dopamine but not glutamate and GABA, seem to be influenced by light. In the nucleus accumbens, however, the three neurotransmitters had a circadian rhythm, which was independent of light.

  11. New learning and memory related pathways among the hippocampus, the amygdala and the ventromedial region of the striatum in rats.

    Science.gov (United States)

    Wang, Bin; Chen, Yan-chen; Jiang, Gang; Ning, Qun; Ma, Lin; Chan, Wood-yee; Wu, Sheng; Zhou, Guo-qing; Bao, Rong; Zheng, Zhao-cong; Yang, Xin; Luo, Ji-xuan; Zheng, Wei; Guo, Hai-wen; Zeng, Cheng; Zeng, Qi-yi; Shu, Si-yun

    2016-01-01

    The hippocampus, central amygdaloid nucleus and the ventromedial region (marginal division) of the striatum have been reported to be involved in the mechanism of learning and memory. This study aimed elucidating anatomical and functional connections among these brain areas during learning and memory. In the first part of this study, the c-Fos protein was used to explore functional connections among these structures. Chemical stimulation of either hippocampus or central amygdaloid nucleus results in dense expression of c-Fos protein in nuclei of neurons in the marginal division of the striatum, indicating that the hippocampus and the central amygdaloid nucleus might be functionally connected with the marginal division. In the second part of the study, the cholera toxin subunit B-horseradish peroxidase was injected into the central amygdaloid nucleus to observe anatomical connections among them. The retrogradely transported conjugated horseradish peroxidase was observed in neurons of both the marginal division and dorsal part of the hippocampus following the injection. Hence, neural fibers from both the marginal division and the hippocampus directly projected to the central amygdaloid nucleus. The results implicated potential new functional and structural pathways through these brain areas during the process of learning and memory. The pathways ran from ventromedial portion (the marginal division) of the striatum to the central amygdaloid nucleus and then to the hippocampus before going back to the marginal division of the striatum. Two smaller circuits were between the marginal division and the central amygdaloid nucleus, and between the central amygdaloid nucleus and the hippocampus. These connections have added new dimensions of neural networks of learning and memory, and might be involved in the pathogenesis of dementia and Alzheimer disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. More Consistently Altered Connectivity Patterns for Cerebellum and Medial Temporal Lobes than for Amygdala and Striatum in Schizophrenia

    OpenAIRE

    Henning ePeters; Junming eShao; Martin eScherr; Dirk eSchwerthoeffer; Claus eZimmer; Johann eFoerstl; Josef eBaeuml; Afra eWohlschlaeger; Valentin eRiedl; Kathrin eKoch; Christian eSorg

    2017-01-01

    Background: Brain architecture can be divided into a cortico-thalamic system and modulatory “subcortical-cerebellar” systems containing key structures such as striatum, medial temporal lobes (MTLs), amygdala, and cerebellum. Subcortical-cerebellar systems are known to be altered in schizophrenia. In particular, intrinsic functional brain connectivity (iFC) between these systems has been consistently demonstrated in patients. While altered connectivity is known for each subcortical-cerebellar ...

  13. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Science.gov (United States)

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  14. Impaired Hippocampus-Dependent and Facilitated Striatum-Dependent Behaviors in Mice Lacking the Delta Opioid Receptor

    OpenAIRE

    Le Merrer, Julie; Rezai, Xavier; Scherrer, Grégory; Becker, Jérôme A. J.; Kieffer, Brigitte L

    2013-01-01

    Pharmacological data suggest that delta opioid receptors modulate learning and memory processes. In the present study, we investigated whether inactivation of the delta opioid receptor modifies hippocampus (HPC)- and striatum-dependent behaviors. We first assessed HPC-dependent learning in mice lacking the receptor (Oprd1−/− mice) or wild-type (WT) mice treated with the delta opioid antagonist naltrindole using novel object recognition, and a dual-solution cross-maze task. Second, we subjecte...

  15. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    OpenAIRE

    Hiroaki Kawamichi; Sugawara, Sho K.; Hamano, Yuki H.; Kai Makita; Masahiro Matsunaga; Tanabe, Hiroki C.; Yuichi Ogino; Shigeru Saito; Norihiro Sadato

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  16. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness

    OpenAIRE

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C.; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  17. Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni in cynomolgus monkeys (Macaca fascicularis) and eradication regimens.

    Science.gov (United States)

    Koga, Tetsufumi; Aoki, Wataru; Mizuno, Takashi; Wakazono, Kuniko; Ohno, Junki; Nakai, Tsunehiro; Nomiya, Takao; Fujii, Miki; Fusegawa, Keiichi; Kinoshita, Kazuya; Hamada, Takakazu; Ikeda, Yoshinori

    2017-02-01

    Campylobacter spp. are zoonotic pathogens, however, knowledge about their presence and antimicrobial resistance in nonhuman primates is limited. Our animal facility purchased cynomolgus monkeys (Macaca fascicularis) from various Asian countries: China, Cambodia, Indonesia, the Philippines, and Vietnam. Colonization by Campylobacter spp. was investigated in 238 of the monkeys from 2009 to 2012 and antimicrobial susceptibility testing was carried out for these isolates. Furthermore, we eradicated these pathogens from these monkeys. Campylobacter spp. were isolated from 47 monkeys from three specific countries: China, Cambodia, and Indonesia, with respective isolation rates of 15%, 36%, and 67%. Two monkeys, which were each infected with Campylobacter jejuni and Campylobacter coli, showed clinical symptoms of diarrhea and bloody feces. In total, 41 isolates of C. coli and 17 isolates of C. jejuni were detected. Antimicrobial susceptibility varied: in the monkeys from China, erythromycin (ERY)-, tetracycline (TET)-, and ciprofloxacin-resistant C. coli, in the monkeys from Cambodia, amoxicillin-intermediate, TET- and ciprofloxacin-resistant C. coli and amoxicillin- and ciprofloxacin-resistant C. jejuni, and in the monkeys from Indonesia, ciprofloxacin-resistant C. coli and TET- and ciprofloxacin-resistant C. jejuni were common (>75%). Multiresistant isolates of C. coli were found in monkeys from all countries and multiresistant isolates of C. jejuni were found in monkeys from Indonesia. The eradication rate with azithromycin was comparable to that with gentamicin (GEN) by oral administration, and was higher than those with amoxicillin-clavulanic acid (AMC) and chloramphenicol (CHL). From the perspective of zoonosis, we should acknowledge multiresistant Campylobacter spp. isolated from the monkeys as a serious warning. Copyright © 2015. Published by Elsevier B.V.

  18. Methamphetamine promotes habitual action and alters the density of striatal glutamate receptor and vesicular proteins in dorsal striatum.

    Science.gov (United States)

    Furlong, Teri M; Corbit, Laura H; Brown, Robert A; Balleine, Bernard W

    2017-07-14

    Goal-directed actions are controlled by the value of the consequences they produce and so increase when what they produce is valuable and decrease when it is not. With continued invariant practice, however, goal-directed actions can become habits, controlled not by their consequences but by antecedent, reward-related states and stimuli. Here, we show that pre-exposure to methamphetamine (METH) caused abnormally rapid development of habitual control. Furthermore, these drug-induced habits differed strikingly from conventional habits; we found that they were insensitive both to changes in reward value and to the effects of negative feedback. In addition to these behavioral changes, METH exposure produced bidirectional changes to synaptic proteins in the dorsal striatum. In the dorsomedial striatum, a structure critical for goal-directed action, METH exposure was associated with a reduction in glutamate receptor and glutamate vesicular proteins, whereas in the dorsolateral striatum, a region that has previously been implicated in habit learning, there was an increase in these proteins. Together, these results indicate that METH exposure promotes habitual control of action that appears to be the result of bidirectional changes in glutamatergic transmission in the circuits underlying goal-directed and habit-based learning. © 2017 Society for the Study of Addiction.

  19. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    Science.gov (United States)

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-11-01

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  20. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum.

    Science.gov (United States)

    Jing, Deqiang; Lee, Francis S; Ninan, Ipe

    2017-01-01

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNF Met/Met ) compared to the wild-type (BDNF Val/Val ) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNF Met/Met mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling.

    Science.gov (United States)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka; Gjedde, Albert; Doudet, Doris

    2011-02-01

    Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Pathological Gamblers and Healthy Controls were experimentally compared in a non-gambling (baseline) and gambling condition. We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition of the Iowa Gambling Task (IGT). After each condition participants rated their excitement level. Laboratory experiment. 18 Pathological Gamblers and 16 Healthy Controls. Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels than Healthy Controls despite lower IGT performance. No differences in excitement levels and IGT performance were found between Pathological Gamblers and Healthy Controls without dopamine release. Pathological Gamblers showed a significant correlation between dopamine release and excitement level, while no such interaction was found in Healthy Controls. In pathological gamblers dopamine release in the ventral striatum appears to be associated with increased excitement levels despite lower IGT performance. The results might suggest a 'double deficit' function of dopamine in pathological gambling, where dopamine release reinforces maladaptive gambling through increasing excitement levels, reducing inhibition of risky decisions, or a combination of both. These findings may have implications for the understanding of dopamine in pathological gambling and other forms of addiction. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.

  2. Impaired bidirectional synaptic plasticity and procedural memory formation in striatum-specific cAMP response element-binding protein-deficient mice

    OpenAIRE

    Pittenger, Christopher; Fasano, Stefania; Mazzocchi-Jones, David Martin; Dunnett, Stephen Bruce; Kandel, Eric R.; Brambilla, Riccardo

    2006-01-01

    The striatum has a well documented role in procedural learning and memory. However, the synaptic and molecular mechanisms of acquisition and storage of this form of memory remain poorly understood. We examined procedural memory and plasticity in transgenic mice reversibly expressing a dominant-negative cAMP response element-binding protein (CREB) mutant in the dorsal striatum. In these transgenic mice, corticostriatal long-term potentiation and depression are abolished, indicating that CREB f...

  3. Decreased neuronal nitric oxide synthase messenger RNA and somatostatin messenger RNA in the striatum of Huntington's disease.

    Science.gov (United States)

    Norris, P J; Waldvogel, H J; Faull, R L; Love, D R; Emson, P C

    1996-06-01

    The cellular abundance of neuronal nitric oxide synthase and somatostatin messenger RNAs was compared in the caudate nucleus, putamen and sensorimotor cortex of Huntington's disease and control cases. Neuronal nitric oxide synthase messenger RNA was significantly decreased in the caudate nucleus and putamen, but not in the sensorimotor cortex in Huntington's disease; the decrease in neuronal nitric oxide synthase messenger RNA became more pronounced with the severity of the disease. Somatostatin gene expression was significantly decreased in the dorsal putamen in Huntington's disease, but was essentially unchanged in all other regions examined. The density of neurons expressing detectable levels of neuronal nitric oxide synthase messenger RNA was reduced in the striata of Huntington's disease cases with advanced pathology; the density of neurons expressing detectable levels of somatostatin messenger RNA was similar in control and Huntington's disease cases. Neuropeptide Y-, somatostatin- and NADPH-diaphorase-positive neurons were consistently present throughout the striatum across all the grades of the disease. Neuronal nitric oxide synthase and NADPH-diaphorase activity (a histochemical marker for nitric oxide synthase-containing neurons) co-localize with somatostatin and neuropeptide Y in interneurons in the human striatum and cerebral cortex. Although the neurodegeneration associated with Huntington's disease is most evident in the striatum (particularly the dorsal regions), neuronal nitric oxide synthase/neuropeptide Y/somatostatin interneurons are relatively spared. Nitric oxide released by neuronal nitric oxide synthase-containing neurons may mediate glutamate-induced excitotoxic cell death, a mechanism proposed to be instrumental in causing the neurodegeneration seen in Huntington's disease. The results described here suggest that although the population of interneurons containing somatostatin, neuropeptide Y and neuronal nitric oxide synthase do survive in

  4. Volume transmission of substance P in striatum induced by intraplantar formalin injection attenuates nociceptive responses via activation of the neurokinin 1 receptor.

    Science.gov (United States)

    Nakamura, Yoki; Izumi, Hiroki; Shimizu, Takumi; Hisaoka-Nakashima, Kazue; Morioka, Norimitsu; Nakata, Yoshihiro

    2013-01-01

    To clarify a role of substance P (SP) in an endogenous pain control mechanism involving the rat striatum, striatal SP release was measured over time by microdialysis following intraplantar injection of 0.4% formalin. A slow-onset but significant increase of SP and neurokinin 1 receptor (NK1R) internalization in the contralateral striatum were observed following the second phase of formalin-induced nociceptive behaviors. Moreover, 60 min after formalin injection, preprotachykinin-A, the SP mRNA, and the immediate early gene cFOS were upregulated in the contralateral striatum. Continuous infusion of SP into the striatum by reverse microdialysis attenuated formalin-induced second phase, but not the first phase, nociceptive behaviors, and hind paw mechanical allodynia. Moreover, these anti-nociceptive effects of SP were completely inhibited by co-treatment with the NK1R antagonist CP96345. Acute microinjection of SP, however, at a dose that was similar to the total dose of SP continuously infused into the striatum, did not affect formalin-induced nociceptive behaviors. These data indicate that striatal NK1R activation leads to pain suppression rather than facilitation. Furthermore, volume transmission of SP in the striatum appears to be indispensable in the mechanism of pain control. Modulation of striatal NK1Rs could prove to be a useful method of inducing analgesia.

  5. The effect of environmental enrichment on the behavior of captive tufted capuchin monkeys (Cebus apella)

    DEFF Research Database (Denmark)

    Jacobsen, Kirsten R; Mikkelsen, L F; Hau, J

    2010-01-01

    The authors provided different forms of environmental enrichment to six old laboratory male tufted capuchin monkeys (Cebus apella) and studied the behavior of the monkeys during a baseline period and during three enrichment periods. Each observation period lasted 5 d, with an interval of 6 d betw...

  6. Nutritional analysis and intervention in the captive woolly monkey (Lagothric lagotricha)

    NARCIS (Netherlands)

    Ange-van Heugten, K.D.

    2008-01-01

    Woolly monkeys (Lagothrix ssp.) are a threatened species in the wild and are extremely difficult to breed and successfully maintain in captivity. The majority of health complications in woolly monkeys (WM) may be of nutritional origin. The objectives of this thesis were to: 1) determine the current

  7. Hemopoietic stem cells in rhesus monkeys : surface antigens, radiosensitivity, and responses to GM-CSF

    NARCIS (Netherlands)

    J.J. Wielenga (Jenne)

    1990-01-01

    textabstractRhesus monkeys (Macaca mulatta) were bred at the Primate Center TNO, Rijswijk, The Netherlands!. Both male and female animals were used for the experiments. The monkeys weighed 2.5-4 kg and were 2-4 years old at the time of the experiment. They were all typed for RhLA-A, -B and -DR

  8. No effects of dioxin singly on limb malformations in macaque monkeys through epidemiological and treated studies

    Energy Technology Data Exchange (ETDEWEB)

    Asaoka, Kazuo; Iida, Hiroko [Kyoto Univ. (Japan). Primate Research Insitute, Dept. of Molecular and Cellular Biochemistry; Watanabe, Kunio [Kyoto Univ. (Japan). Primate Research Institute, Field Research Center; Goda, Hiroshi [Towa Kagaku Co., Ltd. (Japan); Ihara, Toshio; Nagata, Ryoichi [Shin Nippon Biomedical Laboratories, Ltd. (Japan). Safety Research Facility; Yasuda, Mineo [Hiroshima International Univ. (Japan). Fac. of Health Sciences, Dept. of Clinical Engineering; Kubata, Shunichiro [Tokyo Univ. (Japan). Dept. of Life Science, Graduate School of Arts and Sciences

    2004-09-15

    Human populations exposed with highly dioxin were suspected to be caused immunological dysfunctions, carcinogenesis, and developmental and reproductive dysfunctions. Because of species resemblances, the dioxin effects have been investigating using monkeys as a model for assessment of dioxin exposure on human health. Since 1957 the limb malformations of monkeys in Japan have been reported. The higher frequency of them was found in provisional groups of monkeys who were given the same kind of food for human. The chromosomal abnormalities are excluded from the factor for the congenital limb malformations that are still producing in Japan. In this study, the relations between dioxin and the limb malformations of macaque monkeys were estimated by the epidemiological and administered researches. The dioxin levels in monkeys were measured at two districts that one has the provisional groups including monkeys with limb malformations and the other has breeding groups never seeing the malformations for a long time. TEQ was calculated by the levels of dioxin isomers in the monkeys and the values show no difference between the two places and between the individuals with and without the limb malformations. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was administered via subcutaneous to pregnant rhesus monkeys from the day 20 of gestation to the day 90 after birth. The exposed babies, including the offspring and died in neonatal, had observed normal limbs in the range of 30-300 ng TCDD /kg of body weight.

  9. Fecal and Salivary Cortisol Concentrations in Woolly (Lagothrix ssp. and Spider Monkeys (Ateles spp.

    Directory of Open Access Journals (Sweden)

    Kimberly D. Ange-van Heugten

    2009-01-01

    Full Text Available Detrimental physiological effects due to stressors can contribute to the low captive success of primates. The objective of this research was to investigate the potential impact of diet composition on cortisol concentrations in feces and saliva in woolly (n=27 and spider monkeys (n=61. The research was conducted in three studies: the first investigated spider monkeys in the United States, the second investigated spider monkeys within Europe, and the third investigated woolly monkeys within Europe. Fecal cortisol in spider monkeys in US zoos varied (P=.07 from 30 to 66 ng/g. The zoo with the highest fecal cortisol also had the highest salivary cortisol (P≤.05. For European zoos, fecal cortisol differed between zoos for both spider and woolly monkeys (P≤.05. Spider monkeys had higher fecal cortisol than woolly monkeys (P≤.05. Zoos with the highest dietary carbohydrates, sugars, glucose, and fruit had the highest cortisol. Cortisol was highest for zoos that did not meet crude protein requirements and fed the lowest percentage of complete feeds and crude fiber. Differences among zoos in housing and diets may increase animal stress. The lifespan and reproductive success of captive primates could improve if stressors are reduced and dietary nutrients optimized.

  10. Adequate mothering by partially isolated rhesus monkeys after observation of maternal care

    NARCIS (Netherlands)

    Dienske, H.; Vreeswijk, W. van; Koning, H.

    1980-01-01

    13 laboratory-born female monkeys were allowed to remain with their mothers for about 4 mo and were subsequently singly caged in rooms where they were able to see other monkeys. Ss that did not see mothers caring for their infants neglected their own firstborn. In contrast, Ss that were allowed to

  11. Assessing significant (> 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta)

    Science.gov (United States)

    Novak, Melinda A.; Menard, Mark T.; El-Mallah, Saif N.; Rosenberg, Kendra; Lutz, Corrine K.; Worlein, Julie; Coleman, Kris; Meyer, Jerrold S.

    2016-01-01

    Hair loss is common in macaque colonies. Very little is known about the relationship between psychological stress and hair loss. We initially examined alopecia and hair cortisol concentrations in 198 (89 male) rhesus macaques from three primate centers and demonstrated replicability of our previous finding that extensive alopecia (> 30% hair loss) is associated with increased chronic cortisol concentrations and significantly affected by facility. A subset of these monkeys (142 of which 67 were males) were sampled twice approximately 8 months apart allowing us to examine the hypotheses that gaining hair should be associated with decreases in cortisol concentrations and vice versa. Hair loss was digitally scored using ImageJ software for the first sample. Then visual assessment was used to examine the second sample, resulting in 3 categories of coat condition: 1) monkeys that remained fully haired, 2) monkeys that remained alopecic (with more than 30% hair loss), or 3) monkeys that showed more than a 15% increase in hair. The sample size for the group that lost hair was too small to be analyzed. Consistent with our hypothesis, monkeys that gained hair showed a significant reduction in hair cortisol concentrations but this effect only held for females. Coat condition changed little across sampling periods with only 25 (11 male) monkeys showing a greater than 15% gain of hair. Twenty (7 male) monkeys remained alopecic, whereas 97 (49 males) remained fully haired. Hair cortisol was highly correlated across samples for the monkeys that retained their status (remained alopecic or retained their hair). PMID:27008590

  12. Aging, dominance history, and social behavior in Java-monkeys (Macaca fascicularis)

    NARCIS (Netherlands)

    Gispen, W.H.; Veenema, H.C.; Spruijt, B.M.; Vanhooff, J.A.R.A.M.

    1997-01-01

    The aim of this study was to investigate the influence of the dominance history of socially housed Java-monkeys on the aging process. In monkeys, social subordinance is generally associated with elevated levels of cortisol, which, in turn, have been suggested to influence cognitive decline. As

  13. Hypothalamic-Pituitary-Adrenal Axis Physiology and Cognitive Control of Behavior in Stress Inoculated Monkeys

    Science.gov (United States)

    Parker, Karen J.; Buckmaster, Christine L.; Lindley, Steven E.; Schatzberg, Alan F.; Lyons, David M.

    2012-01-01

    Monkeys exposed to stress inoculation protocols early in life subsequently exhibit diminished neurobiological responses to moderate psychological stressors and enhanced cognitive control of behavior during juvenile development compared to non-inoculated monkeys. The present experiments extended these findings and revealed that stress inoculated…

  14. Fixational Saccades and Their Relation to Fixation Instability in Strabismic Monkeys.

    Science.gov (United States)

    Upadhyaya, Suraj; Pullela, Mythri; Ramachandran, Santoshi; Adade, Samuel; Joshi, Anand C; Das, Vallabh E

    2017-11-01

    To evaluate the contribution of fixational saccades toward fixation instability in strabismic monkeys. Binocular eye movements were measured as six experimental monkeys (five strabismic monkeys and one monkey with downbeat nystagmus) and one normal monkey fixated targets of two shapes (Optotype, Disk) and two sizes (0.5°, 2°) during monocular and binocular viewing. Fixational saccades were detected using an unsupervised clustering algorithm. When compared with the normal monkey, amplitude and frequency of fixational saccades in both the viewing and nonviewing eye were greater in 3 of 5 strabismic monkeys (1-way ANOVA on ranks P saccades was largely due to quick phases of ongoing nystagmus. Fixational saccade amplitude was increased significantly (3-way ANOVA; P saccade amplitude and the Bivariate Contour Ellipse Area (BCEA) was nonlinear, showing saturation of saccade amplitude. Fixation instability in depth was significantly greater in strabismic monkeys (vergence BCEA: 0.63 deg2-2.15 deg2) compared with the normal animal (vergence BCEA: 0.15 deg2; P saccades. Target parameter effects on fixational saccades are similar to previous findings of target effects on BCEA.

  15. Observation of reward delivery to a conspecific modulates dopamine release in ventral striatum.

    Science.gov (United States)

    Kashtelyan, Vadim; Lichtenberg, Nina T; Chen, Mindy L; Cheer, Joseph F; Roesch, Matthew R

    2014-11-03

    Dopamine (DA) neurons increase and decrease firing for rewards that are better and worse than expected, respectively. These correlates have been observed at the level of single-unit firing and in measurements of phasic DA release in ventral striatum (VS). Here, we ask whether DA release is modulated by delivery of reward, not to oneself, but to a conspecific. It is unknown what, if anything, DA release encodes during social situations in which one animal witnesses another animal receive reward. It might be predicted that DA release will increase, suggesting that watching a conspecific receive reward is a favorable outcome. Conversely, DA release may be entirely dependent on personal experience, or perhaps observation of receipt of reward might be experienced as a negative outcome because another individual, rather than oneself, receives the reward. Our data show that animals display a mixture of affective states during observation of conspecific reward, first exhibiting increases in appetitive calls (50 kHz), then exhibiting increases in aversive calls (22 kHz). Like ultrasonic vocalizations (USVs), DA signals were modulated by delivery of reward to the conspecific. We show stronger DA release during observation of the conspecific receiving reward relative to observation of reward delivered to an empty box, but only on the first trial. During the following trials, this relationship reversed: DA release was reduced during observation of the conspecific receiving reward. These findings suggest that positive and negative states associated with conspecific reward delivery modulate DA signals related to learning in social situations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  17. Amotivation is associated with smaller ventral striatum volumes in older patients with schizophrenia.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Nakajima, Shinichiro; Mar, Wanna; Gerretsen, Philip; Kim, Julia; Chakravarty, M Mallar; Mulsant, Benoit; Pollock, Bruce; Mamo, David; Remington, Gary; Graff-Guerrero, Ariel

    2017-11-07

    Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long-term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D2/3 receptor (D2/3 R) blockade by antipsychotics. Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D2/3 R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D2/3 R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  19. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    Science.gov (United States)

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-06-03

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Dorsal striatum mediates deliberate decision making, not late-stage, stimulus-response learning.

    Science.gov (United States)

    Hiebert, Nole M; Owen, Adrian M; Seergobin, Ken N; MacDonald, Penny A

    2017-09-25

    We investigated a controversy regarding the role of the dorsal striatum (DS) in deliberate decision-making versus late-stage, stimulus-response learning to the point of automatization. Participants learned to associate abstract images with right or left button presses explicitly before strengthening these associations through stimulus-response trials with (i.e., Session 1) and without (i.e., Session 2) feedback. In Session 1, trials were divided into response-selection and feedback events to separately assess decision versus learning processes. Session 3 evaluated stimulus-response automaticity using a location Stroop task. DS activity correlated with response-selection and not feedback events in Phase 1 (i.e., Blocks 1-3), Session 1. Longer response times (RTs), lower accuracy, and greater intertrial variability characterized Phase 1, suggesting deliberation. DS activity extinguished in Phase 2 (i.e., Blocks 4-12), Session 1, once RTs, response variability, and accuracy stabilized, though stimulus-response automatization continued. This was signaled by persisting improvements in RT and accuracy into Session 2. Distraction between Sessions 1 and 2 briefly reintroduced response uncertainty, and correspondingly, significant DS activity reappeared in Block 1 of Session 2 only. Once stimulus-response associations were again refamiliarized and deliberation unnecessary, DS activation disappeared for Blocks 2-8, Session 2. Interference from previously learned right or left button responses with incongruent location judgments in a location Stroop task provided evidence that automaticity of stimulus-specific button-press responses had developed by the end of Session 2. These results suggest that DS mediates decision making and not late-stage learning, reconciling two, independently evolving and well-supported literatures that implicate DS in different cognitive functions. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  2. Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity.

    Science.gov (United States)

    Goodman, J; Leong, K-C; Packard, M G

    2015-12-17

    Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system. Copyright © 2015

  3. Post-training cocaine administration facilitates habit learning and requires the infralimbic cortex and dorsolateral striatum.

    Science.gov (United States)

    Schmitzer-Torbert, Neil; Apostolidis, Steven; Amoa, Romeo; O'Rear, Connor; Kaster, Michael; Stowers, Josh; Ritz, Robert

    2015-02-01

    Human drug addiction is a complex disorder, in which exogenous substances are able to recruit and maintain behaviors involved in drug taking. Many drugs that are addictive in humans are able to act on natural brain systems for learning and memory, and while many memory systems may be affected by addictive drugs, work with operant tasks has shown that addictive drugs (e.g. cocaine and alcohol) are particularly effective in recruiting habit learning systems, compared to natural rewards. It is currently unknown if the ability of addictive drugs to facilitate habit learning depends on a direct action on habit learning systems in the brain, versus the rewarding properties of drug administration. To differentiate between these options, rats were trained to perform two actions (lever pressing), each of which was rewarded with a different natural reward. After acquiring the behavior, rats received three training sessions which were followed by post-training injections of saline or cocaine (5 or 10mg/kg, i.p.). Using sensory-specific satiety, extinction tests revealed that lever pressing for actions which were paired with saline were sensitive to devaluation (typical of goal-directed behaviors) while actions which were paired with cocaine were not sensitive to devaluation (typical of habitual behaviors). Lesions of the infralimbic or dorsolateral striatum were able to block the action of post-training cocaine injections. These data indicate that, within individual rats, cocaine injections facilitate the transition of behavior to habitual control for actions that have been recently performed, without a general facilitation of habit learning, and that this action of cocaine requires brain areas that are critical for learning natural habits. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Chronic psychoemotional stress impairs cannabinoid-receptor-mediated control of GABA transmission in the striatum.

    Science.gov (United States)

    Rossi, Silvia; De Chiara, Valentina; Musella, Alessandra; Kusayanagi, Hajime; Mataluni, Giorgia; Bernardi, Giorgio; Usiello, Alessandro; Centonze, Diego

    2008-07-16

    Exposure to stressful events has a myriad of consequences in animals and in humans, and triggers synaptic adaptations in many brain areas. Stress might also alter cannabinoid-receptor-mediated transmission in the brain, but no physiological study has addressed this issue so far. In the present study, we found that social defeat stress, induced in mice by exposure to aggression, altered cannabinoid CB(1)-receptor-mediated control of synaptic transmission in the striatum. In fact, the presynaptic inhibition of GABAergic IPSCs induced by the cannabinoid CB(1) receptor agonist HU210 [(6aR)-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol] was reduced after a single stressful episode and fully abolished after 3 and 7 d of stress exposure. Repeated psychoemotional stress also impaired the sensitivity of GABA synapses to endocannabinoids mobilized by group I metabotropic glutamate receptor stimulation, whereas the cannabinoid CB(1)-mediated control of glutamate transmission was unaffected by repeated exposure to an aggressor. Corticosteroids released in response to the activation of the hypothalamic-pituitary-adrenal axis played a major role in the synaptic defects observed in stressed animals, because these alterations were fully prevented by pharmacological blockade of glucocorticoid receptors and were mimicked by corticosterone injections. The recovery of stress-induced synaptic defects was favored when stressed mice were given access to a running wheel or to sucrose consumption, which function as potent natural rewards. A similar rescuing effect was obtained by a single injection of cocaine, a psychostimulant with strong rewarding properties. Targeting cannabinoid CB(1) receptors or endocannabinoid metabolism might be a valuable option to treat stress-associated neuropsychiatric conditions.

  5. Recognizing Facial Cues: Individual Discrimination by Chimpanzees (Pan troglodytes) and Rhesus Monkeys (Macaca mulatta)

    Science.gov (United States)

    Parr, Lisa A.; Winslow, James T.; Hopkins, William D.; de Waal, Frans B. M.

    2007-01-01

    Faces are one of the most salient classes of stimuli involved in social communication. Three experiments compared face-recognition abilities in chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). In the face-matching task, the chimpanzees matched identical photographs of conspecifics' faces on Trial 1, and the rhesus monkeys did the same after 4 generalization trials. In the individual-recognition task, the chimpanzees matched 2 different photographs of the same individual after 2 trials, and the rhesus monkeys generalized in fewer than 6 trials. The feature-masking task showed that the eyes were the most important cue for individual recognition. Thus, chimpanzees and rhesus monkeys are able to use facial cues to discriminate unfamiliar conspecifics. Although the rhesus monkeys required many trials to learn the tasks, this is not evidence that faces are not as important social stimuli for them as for the chimpanzees. PMID:10739311

  6. Memory of ordinal number categories in macaque monkeys.

    Science.gov (United States)

    Orlov, Tanya; Amit, Daniel J; Yakovlev, Volodya; Zohary, Ehud; Hochstein, Shaul

    2006-03-01

    What mechanism underlies serial order memory? Studying preverbal serial memory shows that macaque monkeys reproducing a sequence of items can acquire knowledge of item ordinal position. In our previous experiment, macaques were repeatedly presented with image lists (first shown sequentially and then simultaneously on a touch screen together with a distractor chosen randomly from other lists). The task was to touch list images in the correct order. The monkeys' natural tendency was to categorize images by their ordinal position or number because their most common error was touching the distractor when it had the same ordinal number (in its own list) as the correct image. Item-to-item associations were used to complete the categorization strategy. Proposing a dynamic image-salience hypothesis for serial recall (based on category-to-image influence and a salience computation for identifying touch targets), we now study the category label characteristics in the context of this hypothesis. We found that these category labels are absolute, ordinal-number-based categories (first, second, etc.), not relative memorized as relative distance from the beginning and the end of the list, and not based on fixed ranking of reward contingency/image familiarity. Even isolated from item-item associations, the categories demonstrate category tuning (as well as the corresponding overlap of adjacent ordinal number codes). Moreover, monkeys choose images by proximity of their category to the current touch number, irrespective of the accuracy of the preceding choice. Category tuning itself is symmetric relative to correct ordinal position, but is skewed by other factors (reward, etc.). Tuning width increases with list length, with a concurrent increased use of item-to-item associations for determining touch order.

  7. Intranasal oxytocin enhances socially-reinforced learning in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Lisa A Parr

    2014-09-01

    Full Text Available There are currently no drugs approved for the treatment of social deficits associated with autism spectrum disorders (ASD. One hypothesis for these deficits is that individuals with ASD lack the motivation to attend to social cues because those cues are not implicitly rewarding. Therefore, any drug that could enhance the rewarding quality of social stimuli could have a profound impact on the treatment of ASD, and other social disorders. Oxytocin (OT is a neuropeptide that has been effective in enhancing social cognition and social reward in humans. The present study examined the ability of OT to selectively enhance learning after social compared to nonsocial reward in rhesus monkeys, an important species for modeling the neurobiology of social behavior in humans. Monkeys were required to learn an implicit visual matching task after receiving either intranasal (IN OT or Placebo (saline. Correct trials were rewarded with the presentation of positive and negative social (play faces/threat faces or nonsocial (banana/cage locks stimuli, plus food. Incorrect trials were not rewarded. Results demonstrated a strong effect of socially-reinforced learning, monkeys’ performed significantly better when reinforced with social versus nonsocial stimuli. Additionally, socially-reinforced learning was significantly better and occurred faster after IN-OT compared to placebo treatment. Performance in the IN-OT, but not Placebo, condition was also significantly better when the reinforcement stimuli were emotionally positive compared to negative facial expressions. These data support the hypothesis that OT may function to enhance prosocial behavior in primates by increasing the rewarding quality of emotionally positive, social compared to emotionally negative or nonsocial images. These data also support the use of the rhesus monkey as a model for exploring the neurobiological basis of social behavior and its impairment.

  8. Delay discounting of food and remifentanil in rhesus monkeys.

    Science.gov (United States)

    Maguire, David R; Gerak, Lisa R; France, Charles P

    2013-09-01

    Drug abuse can be conceptualized as choice between drug and nondrug reinforcers in which drug choice is excessive; factors impacting drug taking can be examined using procedures in which subjects choose between drug and an alternative reinforcer. This experiment examined the effects of delayed reinforcement on choice between food and the mu-opioid receptor agonist remifentanil. Rhesus monkeys responded under a concurrent fixed-ratio 5, fixed-ratio 5 schedule in which responding on one lever delivered one food pellet and responding on another lever delivered an i.v. infusion. With no delay, monkeys responded predominantly for food rather than saline or small doses of remifentanil; as the dose of remifentanil increased (0.1-1.0 μg/kg/infusion), monkeys responded more for drug. Delaying delivery (30-240 s) of 0.32 and not 1.0 μg/kg/infusion of remifentanil (food delivered immediately) decreased responding for drug and increased responding for food, resulting in a rightward shift in the remifentanil dose-effect curve. Delaying delivery of food (60-240 s) when doses of remifentanil smaller than 0.32 μg/kg/infusion (but not saline) were available decreased responding for food and increased responding for drug, resulting in a leftward shift in the remifentanil dose-effect curve. These results provide evidence that delaying the delivery of a mu-opioid receptor agonist reduces its potency as a positive reinforcer; more importantly, delaying the delivery of an alternative nondrug reinforcer (e.g., food) enhances the reinforcing potency of the agonist. Thus, understanding the factors that control substance abuse requires examination of contingencies for both drug and nondrug reinforcers.

  9. Functional imaging reveals numerous fields in the monkey auditory cortex.

    Directory of Open Access Journals (Sweden)

    Christopher I Petkov

    2006-07-01

    Full Text Available Anatomical studies propose that the primate auditory cortex contains more fields than have actually been functionally confirmed or described. Spatially resolved functional magnetic resonance imaging (fMRI with carefully designed acoustical stimulation could be ideally suited to extend our understanding of the processing within these fields. However, after numerous experiments in humans, many auditory fields remain poorly characterized. Imaging the macaque monkey is of particular interest as these species have a richer set of anatomical and neurophysiological data to clarify the source of the imaged activity. We functionally mapped the auditory cortex of behaving and of anesthetized macaque monkeys with high resolution fMRI. By optimizing our imaging and stimulation procedures, we obtained robust activity throughout auditory cortex using tonal and band-passed noise sounds. Then, by varying the frequency content of the sounds, spatially specific activity patterns were observed over this region. As a result, the activity patterns could be assigned to many auditory cortical fields, including those whose functional properties were previously undescribed. The results provide an extensive functional tessellation of the macaque auditory cortex and suggest that 11 fields contain neurons tuned for the frequency of sounds. This study provides functional support for a model where three fields in primary auditory cortex are surrounded by eight neighboring "belt" fields in non-primary auditory cortex. The findings can now guide neurophysiological recordings in the monkey to expand our understanding of the processing within these fields. Additionally, this work will improve fMRI investigations of the human auditory cortex.

  10. Traditions in Spider Monkeys Are Biased towards the Social Domain

    Science.gov (United States)

    Santorelli, Claire J.; Schaffner, Colleen M.; Campbell, Christina J.; Notman, Hugh; Pavelka, Mary S.; Weghorst, Jennifer A.; Aureli, Filippo

    2011-01-01

    Cross-site comparison studies of behavioral variation can provide evidence for traditions in wild species once ecological and genetic factors are excluded as causes for cross-site differences. These studies ensure behavior variants are considered within the context of a species' ecology and evolutionary adaptations. We examined wide-scale geographic variation in the behavior of spider monkeys (Ateles geoffroyi) across five long-term field sites in Central America using a well established ethnographic cross-site survey method. Spider monkeys possess a relatively rare social system with a high degree of fission-fusion dynamics, also typical of chimpanzees (Pan troglodytes) and humans (Homo sapiens). From the initial 62 behaviors surveyed 65% failed to meet the necessary criteria for traditions. The remaining 22 behaviors showed cross-site variation in occurrence ranging from absent through to customary, representing to our knowledge, the first documented cases of traditions in this taxon and only the second case of multiple traditions in a New World monkey species. Of the 22 behavioral variants recorded across all sites, on average 57% occurred in the social domain, 19% in food-related domains and 24% in other domains. This social bias contrasts with the food-related bias reported in great ape cross-site comparison studies and has implications for the evolution of human culture. No pattern of geographical radiation was found in relation to distance across sites. Our findings promote A. geoffroyi as a model species to investigate traditions with field and captive based experiments and emphasize the importance of the social domain for the study of animal traditions. PMID:21373196

  11. Functional organization of monkey brain for abstract operation.

    Science.gov (United States)

    Obayashi, Shigeru; Matsumoto, Ryohei; Suhara, Tetsuya; Nagai, Yuji; Iriki, Atsushi; Maeda, Jun

    2007-04-01

    When humans manipulate a control device under operational rules, with the goal of indirectly controlling a remote tool to achieve a desired outcome, they may rely on the power of internal representation to organize individual moves of the controller and tool into a set of sequences by mapping the motor space among hand, controller and tool. We recently used functional brain imaging (PET) to investigate activations in monkey brain associated with joystick-controlled remote operation of a shovel to obtain food. Activated areas included the prefrontal cortex, posterior parietal cortex and cerebellum, regardless of the rules relating movements of the joystick to those of the shovel (Obayashi et al., 2004). If those areas are engaged in the mental manipulation of internal representation, then we should expect brain activity in the same regions during any similar remote operation, even with different controllers and/or operational rules. To address the above hypothesis in the current study, we used PET to measure regional cerebral blood flow (rCBF) of two monkeys during a task in which they were required to control a shovel remotely (to fetch a food pellet) by manipulating dual dials. Compared to unplanned movement of the dials, the active dual-dial operation was associated with robust activation of the prefrontal cortex, higher-order motor cortex, posterior parietal cortex and cerebellum, quite similar to that observed during remote operation with a joystick. The present study suggests that monkeys might be able to organize abstract sequential operations according to learned rules, and perhaps indeed to have insight into the nature of the causal relationships, implying the existence of a relatively sophisticated system of internal representation in the absence of language. The fact that the present results are consistent with our previous PET studies strengthens the view that the underlying mechanism for implicit manipulation of internal representations may involve a

  12. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic...... in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only. Our findings suggest a consistent pattern of intralobar parietal connections between humans...

  13. Coding of Border Ownership in Monkey Visual Cortex

    OpenAIRE

    Zhou, Hong; Friedman, Howard S.; von der Heydt, Rüdiger

    2000-01-01

    Areas V1 and V2 of the visual cortex have traditionally been conceived as stages of local feature representations. We investigated whether neural responses carry information about how local features belong to objects. Single-cell activity was recorded in areas V1, V2, and V4 of awake behaving monkeys. Displays were used in which the same local feature (contrast edge or line) could be presented as part of different figures. For example, the same light–dark edge could be the left side of a dark...

  14. [Heart functions in monkeys during a 2-week antiorthostatic hypokinesia

    Science.gov (United States)

    Krotov, V. P.; Convertino, V.; Korol'kov, V. I.; Latham, R.; Trambovetskii, E. V.; Fanton, J.; Crisman, R.; Truzhennikov, A. N.; Evert, D.; Nosovskii, A. M.; hide

    1996-01-01

    Dynamics of the left heart ventricular muscle contractility and compliance was studied in 4 monkeys in the head down position (antiorthostatic hypokinesia) with the body angle 10 during 2 weeks. Functional tests on a tilt table and under two conditions of centrifuge rotation were performed prior to and after the antiorthostatic hypokinesia. No changes in the left heart ventricular muscle contractility was found. However, the sensitivity level of the baroreflex control decreased. Compliance of the left heart myocardial fibre increased in the first hours and days of the antiorthostatic hypokinesia.

  15. Latanoprost-Eluting Contact Lenses in Glaucomatous Monkeys.

    Science.gov (United States)

    Ciolino, Joseph B; Ross, Amy E; Tulsan, Rehka; Watts, Amy C; Wang, Rong-Fang; Zurakowski, David; Serle, Janet B; Kohane, Daniel S

    2016-10-01

    To assess the ability of latanoprost-eluting contact lenses to lower the intraocular pressure (IOP) of glaucomatous eyes of cynomolgus monkeys. Preclinical efficacy study of 3 treatment arms in a crossover design. Female cynomolgus monkeys with glaucoma induced in 1 eye by repeated argon laser trabeculoplasty. Latanoprost-eluting low-dose contact lenses (CLLO) and high-dose contact lenses (CLHI) were produced by encapsulating a thin latanoprost-polymer film within the periphery of a methafilcon hydrogel, which was lathed into a contact lens. We assessed the IOP-lowering effect of CLLO, CLHI, or daily latanoprost ophthalmic solution in the same monkeys. Each monkey consecutively received 1 week of continuous-wear CLLO, 3 weeks without treatment, 5 days of latanoprost drops, 3 weeks without treatment, and 1 week of continuous-wear CLHI. On 2 consecutive days before initiation of each study arm, the IOP was measured hourly over 7 consecutive hours to establish the baseline IOP. Two-tailed Student t tests and repeated-measures analysis of variance were used for statistical analysis. Intraocular pressure. Latanoprost ophthalmic solution resulted in IOP reduction of 5.4±1.0 mmHg on day 3 and peak IOP reduction of 6.6±1.3 mmHg on day 5. The CLLO reduced IOP by 6.3±1.0, 6.7±0.3, and 6.7±0.3 mmHg on days 3, 5, and 8, respectively. The CLHI lowered IOP by 10.5±1.4, 11.1±4.0, and 10.0±2.5 mmHg on days 3, 5, and 8, respectively. For the CLLO and CLHI, the IOP was statistically significantly reduced compared with the untreated baseline at most time points measured. The CLHI demonstrated greater IOP reduction than latanoprost ophthalmic solution on day 3 (P = 0.001) and day 5 (P = 0.015), and at several time points on day 8 (P contact lenses is at least as effective as delivery with daily latanoprost ophthalmic solution. More research is needed to determine the optimal continuous-release dose that would be well tolerated and maximally effective. Contact lens drug

  16. Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey.

    Science.gov (United States)

    Nielsen, Kristina J; Callaway, Edward M; Krauzlis, Richard J

    2012-01-01

    Viral vectors are promising tools for the dissection of neural circuits. In principle, they can manipulate neurons at a level of specificity not otherwise achievable. While many studies have used viral vector-based approaches in the rodent brain, only a few have employed this technique in the non-human primate, despite the importance of this animal model for neuroscience research. Here, we report evidence that a viral vector-based approach can be used to manipulate a monkey's behavior in a task. For this purpose, we used the allatostatin receptor/allatostatin (AlstR/AL) system, which has previously been shown to allow inactivation of neurons in vivo. The AlstR was expressed in neurons in monkey V1 by injection of an adeno-associated virus 1 (AAV1) vector. Two monkeys were trained in a detection task, in which they had to make a saccade to a faint peripheral target. Injection of AL caused a retinotopic deficit in the detection task in one monkey. Specifically, the monkey showed marked impairment for detection targets placed at the visual field location represented at the virus injection site, but not for targets shown elsewhere. We confirmed that these deficits indeed were due to the interaction of AlstR and AL by injecting saline, or AL at a V1 location without AlstR expression. Post-mortem histology confirmed AlstR expression in this monkey. We failed to replicate the behavioral results in a second monkey, as AL injection did not impair the second monkey's performance in the detection task. However, post-mortem histology revealed a very low level of AlstR expression in this monkey. Our results demonstrate that viral vector-based approaches can produce effects strong enough to influence a monkey's performance in a behavioral task, supporting the further development of this approach for studying how neuronal circuits control complex behaviors in non-human primates.

  17. Behavioral Determinants of Cannabinoid Self-Administration in Old World Monkeys.

    Science.gov (United States)

    John, William S; Martin, Thomas J; Nader, Michael A

    2017-06-01

    Reinforcing effects of Δ 9 -tetrahydrocannabinol (THC), the primary active ingredient in marijuana, as assessed with self-administration (SA), has only been established in New World primates (squirrel monkeys). The objective of this study was to investigate some experimental factors that may enhance intravenous SA of THC and the cannabinoid receptor (CBR) agonist CP 55 940 in Old World monkeys (rhesus and cynomolgus), a species that has been used extensively in biomedical research. In one experiment, male rhesus monkeys (N=9) were trained to respond under a fixed-ratio 10 schedule of food presentation. The effects of CP 55 940 (1.0-10 μg/kg, i.v.) and THC (3.0-300 μg/kg, i.v.) on food-maintained responding and body temperature were determined in these subjects prior to giving them access to self-administer each drug. Both drugs dose-dependently decreased food-maintained responding. CP 55 940 (0.001-3.0 μg/kg) functioned as a reinforcer in three monkeys, whereas THC (0.01-10 μg/kg) did not have reinforcing effects in any subject. CP 55 940 was least potent to decrease food-maintained responding in the monkeys in which CP 55 940 functioned as a reinforcer. Next, THC was administered daily to monkeys until tolerance developed to rate-decreasing effects. When THC SA was reexamined, it functioned as a reinforcer in three monkeys. In a group of cocaine-experienced male cynomolgus monkeys (N=4), THC SA was examined under a second-order schedule of reinforcement; THC functioned as reinforcer in two monkeys. These data suggest that SA of CBR agonists may be relatively independent of their rate-decreasing effects in Old World monkeys. Understanding individual differences in vulnerability to THC SA may lead to novel treatment strategies for marijuana abuse.

  18. Looking ahead? Computerized maze task performance by chimpanzees (Pan troglodytes), rhesus monkeys (Macaca mulatta), capuchin monkeys (Cebus apella), and human children (Homo sapiens).

    Science.gov (United States)

    Beran, Michael J; Parrish, Audrey E; Futch, Sara E; Evans, Theodore A; Perdue, Bonnie M

    2015-05-01

    Human and nonhuman primates are not mentally constrained to the present. They can remember the past and-at least to an extent-anticipate the future. Anticipation of the future ranges from long-term prospection such as planning for retirement to more short-term future-oriented cognition such as planning a route through a maze. Here we tested a great ape species (chimpanzees), an Old World monkey species (rhesus macaques), a New World monkey species (capuchin monkeys), and human children on a computerized maze task. All subjects had to move a cursor through a maze to reach a goal at the bottom of the screen. For best performance on the task, subjects had to "plan ahead" to the end of the maze to move the cursor in the correct direction, avoid traps, and reverse directions if necessary. Mazes varied in difficulty. Chimpanzees were better than both monkey species, and monkeys showed a particular deficit when moving away from the goal or changing directions was required. Children showed a similar pattern to monkeys regarding the effects of reversals and moves away from the goal, but their overall performance in terms of correct maze completion was similar to the chimpanzees. The results highlight similarities as well as differences in planning across species and the role that inhibitory control may play in future-oriented cognition in primates. (c) 2015 APA, all rights reserved).

  19. Differential habitat utilization by patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus) living sympatrically in northern Cameroon.

    Science.gov (United States)

    Nakagawa, N

    1999-11-01

    In order to obtain reliable evidence for differences in habitat preferences between two closely related savanna-dwelling primate species, namely, patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus), I collected data on vegetation and patterns of range use concurrently at a single study site, Kala Maloue, Cameroon, in a similar manner for a group of each species. Kala Maloue consisted of 64% grassland mostly dominated by Gramineae spp. and the rest was woodland. Tantalus monkeys showed preference for woodland, especially gallery forest, much more than did the patas irrespective of the season. Moreover, patas preferentially established their home range in grassland in the wet season. Interspecific and seasonal differences in habitat preferences could be interpreted on the basis of interspecific and seasonal differences in preferences for main food. In dry season, tantalus utilized water-containing areas at a frequency closely in proportion to the availability of such areas while the patas utilized water-containing areas more frequently than expected. This is because tantalus established a smaller home range along the river where water was never completely depleted throughout the dry season. Both the patas and the tantalus preferred woodland to grassland as sleeping sites possibly owing to predation avoidance. Both the daily travel distance per group weight and the home range size per group weight were greater for patas than for tantalus partly because of higher preference for grassland with low habitat quality in the case of patas. It is suggested, however, that high locomotive ability enabled patas to effectively utilize small and widely dispersed items of food such as grasshoppers and to explore areas with high availability of food and water and with preferable sleeping sites.

  20. Coding of the long-term value of multiple future rewards in the primate striatum.

    Science.gov (United States)

    Yamada, Hiroshi; Inokawa, Hitoshi; Matsumoto, Naoyuki; Ueda, Yasumasa; Enomoto, Kazuki; Kimura, Minoru

    2013-02-01

    Decisions maximizing benefits involve a tradeoff between the quantity of a reward and the cost of elapsed time until an animal receives it. The estimation of long-term reward values is critical to attain the most desirable outcomes over a certain period of time. Reinforcement learning theories have established algorithms to estimate the long-term reward values of multiple future rewards in which the values of future rewards are discounted as a function of how many steps of choices are necessary to achieve them. Here, we report that presumed striatal projection neurons represent the long-term values of multiple future rewards estimated by a standard reinforcement learning model while monkeys are engaged in a series of trial-and-error choices and adaptive decisions for multiple rewards. We found that the magnitude of activity of a subset of neurons was positively correlated with the long-term reward values, and that of another subset of neurons was negatively correlated throughout the entire decision-making process in individual trials: from the start of the task trial, estimation of the values and their comparison among alternatives, choice execution, and evaluation of the received rewards. An idiosyncratic finding was that neurons showing negative correlations represented reward values in the near future (high discounting), while neurons showing positive correlations represented reward values not only in the near future, but also in the far future (low discounting). These findings provide a new insight that long-term value signals are embedded in two subsets of striatal neurons as high and low discounting of multiple future rewards.

  1. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

    Directory of Open Access Journals (Sweden)

    Jianyu Fang

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin complementary DNA (cDNA from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.

  2. Prediction suppression and surprise enhancement in monkey inferotemporal cortex.

    Science.gov (United States)

    Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R

    2017-07-01

    Exposing monkeys, over the course of days and weeks, to pairs of images presented in fixed sequence, so that each leading image becomes a predictor for the corresponding trailing image, affects neuronal visual responsiveness in area TE. At the end of the training period, neurons respond relatively weakly to a trailing image when it appears in a trained sequence and, thus, confirms prediction, whereas they respond relatively strongly to the same image when it appears in an untrained sequence and, thus, violates prediction. This effect could arise from prediction suppression (reduced firing in response to the occurrence of a probable event) or surprise enhancement (elevated firing in response to the omission of a probable event). To identify its cause, we compared firing under the prediction-confirming and prediction-violating conditions to firing under a prediction-neutral condition. The results provide strong evidence for prediction suppression and limited evidence for surprise enhancement.NEW & NOTEWORTHY In predictive coding models of the visual system, neurons carry signed prediction error signals. We show here that monkey inferotemporal neurons exhibit prediction-modulated firing, as posited by these models, but that the signal is unsigned. The response to a prediction-confirming image is suppressed, and the response to a prediction-violating image may be enhanced. These results are better explained by a model in which the visual system emphasizes unpredicted events than by a predictive coding model. Copyright © 2017 the American Physiological Society.

  3. Color discrimination in the tufted capuchin monkey, Sapajus spp.

    Directory of Open Access Journals (Sweden)

    Paulo Roney Kilpp Goulart

    Full Text Available The present study evaluated the efficacy of an adapted version of the Mollon-Reffin test for the behavioral investigation of color vision in capuchin monkeys. Ten tufted capuchin monkeys (Sapajus spp., formerly referred to as Cebus apella had their DNA analyzed and were characterized as the following: one trichromat female, seven deuteranope dichromats (six males and one female, and two protanope males, one of which was identified as an "ML protanope." For their behavioral characterization, all of the subjects were tested at three regions of the Commission International de l'Eclairage (CIE 1976 u'v' diagram, with each test consisting of 20 chromatic variation vectors that were radially distributed around the chromaticity point set as the test background. The phenotypes inferred from the behavioral data were in complete agreement with those predicted from the genetic analysis, with the threshold distribution clearly differentiating between trichromats and dichromats and the estimated confusion lines characteristically converging for deuteranopes and the "classic" protanope. The discrimination pattern of the ML protanope was intermediate between protan and deutan, with confusion lines horizontally oriented and parallel to each other. The observed phenotypic differentiation confirmed the efficacy of the Mollon-Reffin test paradigm as a useful tool for evaluating color discrimination in nonhuman primates. Especially noteworthy was the demonstration of behavioral segregation between the "classic" and "ML" protanopes, suggesting identifiable behavioral consequences of even slight variations in the spectral sensitivity of M/L photopigments in dichromats.

  4. Color Discrimination in the Tufted Capuchin Monkey, Sapajus spp

    Science.gov (United States)

    Goulart, Paulo Roney Kilpp; Bonci, Daniela Maria Oliveira; Galvão, Olavo de Faria; Silveira, Luiz Carlos de Lima; Ventura, Dora Fix

    2013-01-01

    The present study evaluated the efficacy of an adapted version of the Mollon-Reffin test for the behavioral investigation of color vision in capuchin monkeys. Ten tufted capuchin monkeys (Sapajus spp., formerly referred to as Cebus apella) had their DNA analyzed and were characterized as the following: one trichromat female, seven deuteranope dichromats (six males and one female), and two protanope males, one of which was identified as an “ML protanope.” For their behavioral characterization, all of the subjects were tested at three regions of the Commission International de l'Eclairage (CIE) 1976 u′v′ diagram, with each test consisting of 20 chromatic variation vectors that were radially distributed around the chromaticity point set as the test background. The phenotypes inferred from the behavioral data were in complete agreement with those predicted from the genetic analysis, with the threshold distribution clearly differentiating between trichromats and dichromats and the estimated confusion lines characteristically converging for deuteranopes and the “classic” protanope. The discrimination pattern of the ML protanope was intermediate between protan and deutan, with confusion lines horizontally oriented and parallel to each other. The observed phenotypic differentiation confirmed the efficacy of the Mollon-Reffin test paradigm as a useful tool for evaluating color discrimination in nonhuman primates. Especially noteworthy was the demonstration of behavioral segregation between the “classic” and “ML” protanopes, suggesting identifiable behavioral consequences of even slight variations in the spectral sensitivity of M/L photopigments in dichromats. PMID:23620819

  5. Meaningful gesture in monkeys? Investigating whether mandrills create social culture.

    Directory of Open Access Journals (Sweden)

    Mark E Laidre

    Full Text Available BACKGROUND: Human societies exhibit a rich array of gestures with cultural origins. Often these gestures are found exclusively in local populations, where their meaning has been crafted by a community into a shared convention. In nonhuman primates like African monkeys, little evidence exists for such culturally-conventionalized gestures. METHODOLOGY/PRINCIPAL FINDINGS: Here I report a striking gesture unique to a single community of mandrills (Mandrillus sphinx among nineteen studied across North America, Africa, and Europe. The gesture was found within a community of 23 mandrills where individuals old and young, female and male covered their eyes with their hands for periods which could exceed 30 min, often while simultaneously raising their elbow prominently into the air. This 'Eye covering' gesture has been performed within the community for a decade, enduring deaths, removals, and births, and it persists into the present. Differential responses to Eye covering versus controls suggested that the gesture might have a locally-respected meaning, potentially functioning over a distance to inhibit interruptions as a 'do not disturb' sign operates. CONCLUSIONS/SIGNIFICANCE: The creation of this gesture by monkeys suggests that the ability to cultivate shared meanings using novel manual acts may be distributed more broadly beyond the human species. Although logistically difficult with primates, the translocation of gesturers between communities remains critical to experimentally establishing the possible cultural origin and transmission of nonhuman gestures.

  6. Fluoxetine Administration in Juvenile Monkeys: Implications for Pharmacotherapy in Children

    Directory of Open Access Journals (Sweden)

    Mari S. Golub

    2018-02-01

    Full Text Available Fluoxetine therapy has been approved for children with major depressive disorder and obsessive compulsive disorder for over 14 years and has expanded to other childhood behavior disorders. As use increases, more detail on fluoxetine effects during juvenile brain development can help maintain safe and effective use of this therapy. Here, a narrative review is provided of previously published findings from a large nonhuman primate project. Fluoxetine was administered to juvenile male rhesus monkeys for an extended period (2 years prior to puberty. Compared to controls, treated monkeys showed sleep disruption, facilitated social interaction, greater impulsivity, and impaired sustained attention during treatment. No effects on growth were seen. Metabolomics assays characterized a distinctive response to fluoxetine and demonstrated individual differences that were related to the impulsivity measure. Fluoxetine interactions with monoamine oxidase A polymorphisms that influenced behavior and metabolomics markers were an important, previously unrecognized finding of our studies. After treatment was discontinued, some behavioral effects persisted, but short-term memory and cognitive flexibility testing did not show drug effects. This detailed experimental work can contribute to clinical research and continued safe and effective fluoxetine pharmacotherapy in children.

  7. LANGUAGE DEVELOPMENT. The developmental dynamics of marmoset monkey vocal production.

    Science.gov (United States)

    Takahashi, D Y; Fenley, A R; Teramoto, Y; Narayanan, D Z; Borjon, J I; Holmes, P; Ghazanfar, A A

    2015-08-14

    Human vocal development occurs through two parallel interactive processes that transform infant cries into more mature vocalizations, such as cooing sounds and babbling. First, natural categories of sounds change as the vocal apparatus matures. Second, parental vocal feedback sensitizes infants to certain features of those sounds, and the sounds are modified accordingly. Paradoxically, our closest living ancestors, nonhuman primates, are thought to undergo few or no production-related acoustic changes during development, and any such changes are thought to be impervious to social feedback. Using early and dense sampling, quantitative tracking of acoustic changes, and biomechanical modeling, we showed that vocalizations in infant marmoset monkeys undergo dramatic changes that cannot be solely attributed to simple consequences of growth. Using parental interaction experiments, we found that contingent parental feedback influences the rate of vocal development. These findings overturn decades-old ideas about primate vocalizations and show that marmoset monkeys are a compelling model system for early vocal development in humans. Copyright © 2015, American Association for the Advancement of Science.

  8. Are monkeys able to plan for future exchange?

    Science.gov (United States)

    Bourjade, Marie; Thierry, Bernard; Call, Josep; Dufour, Valérie

    2012-09-01

    Whether or not non-human animals can plan for the future is a hotly debated issue. We investigate this question further and use a planning-to-exchange task to study future planning in the cooperative domain in two species of monkeys: the brown capuchin (Cebus apella) and the Tonkean macaque (Macaca tonkeana). The rationale required subjects to plan for a future opportunity to exchange tokens for food by collecting tokens several minutes in advance. Subjects who successfully planned for the exchange task were expected to select suitable tokens during a collection period (5/10 min), save them for a fixed period of time (20/30 min), then take them into an adjacent compartment and exchange them for food with an experimenter. Monkeys mostly failed to transport tokens when entering the testing compartment; hence, they do not seem able to plan for a future exchange with a human partner. Three subjects did however manage to solve the task several times, albeit at very low rates. They brought the correct version of three possible token types, but rarely transported more than one suitable token at a time. Given that the frequency of token manipulation predicted transport, success might have occurred by chance. This was not the case, however, since in most cases subjects were not already holding the token in their hands before they entered the testing compartment. Instead, these results may reflect subjects' strengths and weaknesses in their time-related comprehension of the task.

  9. Contextual factors explain risk-seeking preferences in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Sarah eHeilbronner

    2013-02-01

    Full Text Available In contrast to humans and most other animals, rhesus macaques strongly prefer risky rewards to safe ones with similar expected value. Why macaques prefer risk while other animals typically avoid it remains puzzling and challenges the idea that monkeys provide a model for human economic behavior. Here we argue that monkeys’ risk-seeking preferences are neither mysterious nor unique. Risk-seeking in macaques is possibly induced by specific elements of the tasks that have been used to measure their risk preferences. The most important of these elements are (1 very small stakes, (2 serially repeated gambles with short delays between trials, and (3 task parameters that are learned through experience, not described verbally. Together, we hypothesize that these features will readily induce risk-seeking in monkeys, humans, and rats. Thus, elements of task design that are often ignored when comparing studies of risk attitudes can easily overwhelm basal risk preferences. More broadly, these results highlight the fundamental importance of understanding the psychological basis of economic decisions in interpreting preference data and corresponding neural measures.

  10. Aeromonas simiae sp. nov., isolated from monkey faeces.

    Science.gov (United States)

    Harf-Monteil, Colette; Flèche, Anne Le; Riegel, Philippe; Prévost, Gilles; Bermond, Delphine; Grimont, Patrick A D; Monteil, Henri

    2004-03-01

    Two Aeromonas strains, IBS S6874(T) and IBS S6652, were isolated from the faeces of two healthy monkeys (Macaca fascicularis) from Mauritius that were kept in quarantine in the Centre for Primatology, Strasbourg, France. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates formed an unknown genetic lineage within the genus Aeromonas. The two isolates had nearly identical sequences (0.1 % nucleotide substitution) that were related closely to those of recognized Aeromonas species (1.7-3.5 % nucleotide substitution). DNA-DNA hybridization showed that strains IBS S6874(T) and IBS S6652 had high DNA-DNA similarity (89 %) to each other and a low level of DNA-DNA similarity to closely related taxa (18 % relatedness to Aeromonas trota and 16 % relatedness to Aeromonas schubertii). Phenotypically, the two monkey isolates differed from most previously described mesophilic Aeromonas species by their lack of haemolysis on sheep-blood agar and inability to produce indole, gas from glucose or acid from mannitol. They differed from the most closely related species, A. schubertii, by their ability to produce acid from D-cellobiose and D-sucrose and by their pyrazinamidase activity. The name Aeromonas simiae sp. nov. is proposed for these isolates; strain IBS S6874(T) (=CIP 107798(T)=CCUG 47378(T)) is the type strain.

  11. Development of sensitivity to visual texture modulation in macaque monkeys.

    Science.gov (United States)

    El-Shamayleh, Yasmine; Movshon, J Anthony; Kiorpes, Lynne

    2010-09-10

    In human and non-human primates, higher form vision matures substantially later than spatial acuity and contrast sensitivity, as revealed by performance on such tasks as figure-ground segregation and contour integration. Our goal was to understand whether delayed maturation on these tasks was intrinsically form-dependent or, rather, related to the nature of spatial integration necessary for extracting task-relevant cues. We used an intermediate-level form task that did not call for extensive spatial integration. We trained monkeys (6-201 weeks) to discriminate the orientation of pattern modulation in a two-alternative forced choice paradigm. We presented two families of form patterns, defined by texture or contrast variations, and luminance-defined patterns for comparison. Infant monkeys could discriminate texture- and contrast-defined form as early as 6 weeks; sensitivity improved up to 40 weeks. Surprisingly, sensitivity for texture- and contrast-defined form matured earlier than for luminance-defined form. These results suggest that intermediate-level form vision develops in concert with basic spatial vision rather than following sequentially. Comparison with earlier results reveals that different aspects of form vision develop over different time courses, with processes that depend on comparing local image content maturing earlier than those requiring "global" linking of multiple visual elements across a larger spatial extent.

  12. Aberrant topology of striatum's connectivity is associated with the number of episodes in depression.

    Science.gov (United States)

    Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2014-02-01

    In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter

  13. Effects of co-administration of ketamine and ethanol on the dopamine system via the cortex-striatum circuitry.

    Science.gov (United States)

    Liu, Qing; Xu, Tian-Yong; Zhang, Zhi-Bi; Leung, Chi-Kwan; You, Ding-Yun; Wang, Shang-Wen; Yi, Shuai; Jing, Qiang; Xie, Run-Fang; Li, Huifang-Jie; Zeng, Xiao-Feng

    2017-06-15

    Ketamine and ethanol are increasingly being used together as recreational drugs in rave parties. Their effects on the dopamine (DA) system remain largely unknown. This study aimed to investigate the effects of consuming two different concentrations of ketamine with and without alcohol on the DA system. We employed the conditioned place preference (CPP) paradigm to evaluate the rewarding effects of the combined administration of two different doses of ketamine (30mg/kg and 60mg/kg) with ethanol (0.3156g/kg). We evaluated the effects of the combined drug treatment on the transcriptional output of tyrosine hydroxylase (TH), dopa decarboxylase (DDC), synaptosomal-associated protein 25 (SNAP25), and vesicular monoamine transporter 2 (VMAT2) as well as protein expression level of brain-derived neurotrophic factor (BDNF) in rat prefrontal cortex (PFC) and striatum. We found that rats exhibited a dose-dependent, drug-paired, place preference to ketamine and ethanol associated with an elevated DA level in the striatum but not in the PFC. Moreover, treatment involving low- or high-dose ketamine with or without ethanol caused a differential regulatory response in the mRNA levels of the four DA metabolism genes and the cellular protein abundance of BDNF via the cortex-striatum circuitry. This study investigated the molecular mechanisms that occur following the combined administration of ketamine and ethanol in the DA system, which could potentially lead to alterations in the mental status and behavior of ketamine/ethanol users. Our findings may aid the development of therapeutic strategies for substance abuse patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    Full Text Available The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+ signaling. To characterize Ca(2+ signaling in striatal cells, spontaneous cytoplasmic Ca(2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP in the astrocytes. In both the GFP-negative cells (putative-neurons and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+ transients (referred to as slow Ca(2+ oscillations, which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+ oscillation. Depletion of the intracellular Ca(2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+ oscillation in both putative-neurons and astrocytes. The slow Ca(2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+ oscillation may involve in the neuron-glia interaction in the striatum.

  15. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats.

    Science.gov (United States)

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan; Lee, Inah

    2014-11-19

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. Copyright © 2014 the authors 0270-6474/14/3415534-14$15.00/0.

  16. Differential entrainment and learning-related dynamics of spike and local field potential activity in the sensorimotor and associative striatum.

    Science.gov (United States)

    Thorn, Catherine A; Graybiel, Ann M

    2014-02-19

    Parallel cortico-basal ganglia loops are thought to have distinct but interacting functions in motor learning and habit formation. In rats, the striatal projection neuron populations (MSNs) in the dorsolateral and dorsomedial striatum, respectively corresponding to sensorimotor and associative regions of the striatum, exhibit contrasting dynamics as rats acquire T-maze tasks (Thorn et al., 2010). Here, we asked whether these patterns could be related to the activity of local interneuron populations in the striatum and to the local field potential activity recorded simultaneously in the corresponding regions. We found that dorsolateral and dorsomedial striatal fast-spiking interneurons exhibited task-specific and training-related dynamics consistent with those of corresponding MSN populations. Moreover, both MSNs and interneuron populations in both regions became entrained to theta-band (5-12 Hz) frequencies during task acquisition. However, the predominant entrainment frequencies were different for the sensorimotor and associative zones. Dorsolateral striatal neurons became entrained mid-task to oscillations centered ∼ 5 Hz, whereas simultaneously recorded neurons in the dorsomedial region became entrained to higher frequency (∼ 10 Hz) rhythms. These region-specific patterns of entrainment evolved dynamically with the development of region-specific patterns of interneuron and MSN activity, indicating that, with learning, these two striatal regions can develop different frequency-modulated circuit activities in parallel. We suggest that such differential entrainment of sensorimotor and associative neuronal populations, acquired through learning, could be critical for coordinating information flow throughout each trans-striatal network while simultaneously enabling nearby components of the separate networks to operate independently.

  17. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction.

    Science.gov (United States)

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Parvaz, Muhammad A; Alia-Klein, Nelly; Volkow, Nora D; Goldstein, Rita Z

    2012-10-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie the maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction. © 2012 Published 2012. This article is a US Government work and is in the public domain in the USA.

  18. Study on microstructure of corpus striatum in patients with idiopathic rapid eye movement sleep behavior disorder using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ya-meng ZHANG

    2017-07-01

    Full Text Available Objective To investigate the structure of corpus striatum and the integrity of white matter fiber in patients with Parkinson's disease (PD and idiopathic rapid eye movement sleep behavior disorder (iRBD.  Methods Twelve patients with iRBD, 12 patients with PD and 10 healthy subjects that were well matched in gender, age and education were enrolled in this study. Head MRI examination was performed to all subjects to observe the changes of corpus striatum structure (the gray matter volume and the integrity of white matter fiber [fractional anisotropy (FA] by combining voxel?based morphometry (VBM and diffusion tensor imaging (DTI.  Results Compared with healthy subjects, the gray matter volume of left caudate nucleus was significantly decreased (P < 0.005, and FA values of left caudate nucleus (P < 0.005, right caudate nucleus (P < 0.001 and right putamen (P < 0.05 were all significantly reduced in iRBD patients; FA value of right putamen was significantly decreased in PD patients (P < 0.05. Compared with PD patients, the gray matter volume of left caudate nucleus of iRBD patients was significantly reduced (P < 0.001, FA values of left caudate nucleus (P < 0.01 and right caudate nucleus (P < 0.005 of iRBD patients were significantly reduced.  Conclusions There is atrophy of gray matter volume and extensive white matter fiber impairment in corpus striatum of patients with iRBD, and the white matter fiber impairment was similar to PD, which provides an anatomical evidence for iRBD being presymptom of PD. DOI: 10.3969/j.issn.1672-6731.2017.05.008

  19. A yellow fever epizootic in Zika Forest, Uganda, during 1972: Part 2: Monkey serology.

    Science.gov (United States)

    Kirya, B G; Okia, N O

    1977-01-01

    During the 1972 yellow fever epizootic in Zika Forest, Uganda, sera from 21 monkeys shot in a number of forests around the Entebbe area were tested for the presence of a number of arbovirus antibodies. All sera were tested for antibodies against Chikungunya (CHIK), O'nyong-nyong (ONN), Zika, yellow fever (YF) West Nile (WN) and Wesselsbron (WESS) by the haemagglutination-inhibition (HI) test. Because of the crossreaction within the flaviviruses (group B arboviruses) mouse protection test (PT) was also carried out on the sera against YF, WESS and Zika viruses. Serological studies carried out on monkey sera from different parts of Uganda, including the Entebbe area, during 1968 gave results which reflected a surprisingly low rate of YF immune monkeys (3%) throughout the country compared with the rate of over 40% immune monkeys obtained by Haddow et al. in 1951. 40% of the monkey sera collected during 1972 were immune to YF by the PT. Since no YF virus had been isolated between 1968 and 1972 the results indicate strongly that the monkeys in the Entebbe area were involved in the epizootic of 1972. No sick or dead monkeys were found in all the forests checked around Entebbe area during the epizootic. This indicates that the animal-to-animal cycle of the equatorial African forests involved the mild endemic infection characteristic of a virus in its natural habitat and infecting its natural host.

  20. Sporadic premature aging in a Japanese monkey: a primate model for progeria.

    Directory of Open Access Journals (Sweden)

    Takao Oishi

    Full Text Available In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes.

  1. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Gravett, Michael G; Jin, Ling; Pavlova, Sylvia I; Tao, Lin

    2012-06-01

    The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Vaginal swab samples were aseptically obtained from 200 reproductive-aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specific polymerase chain reaction, and 16S rRNA gene sequence.   A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was Lactobacillus reuteri, which colonized the vaginas of 86% monkeys. Lactobacillus johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. © 2012 John Wiley & Sons A/S.

  2. Isolation and amino acid sequences of squirrel monkey (Saimiri sciurea) insulin and glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jinghua (Veterans Administration Medical Center, Bronx, NY (United States)); Eng, J.; Yalow, R.S. (Veterans Administration Medical Center, Bronx, NY (United States) City Univ. of New York, NY (United States))

    1990-12-01

    It was reported two decades ago that insulin was not detectable in the glucose-stimulated state in Saimiri sciurea, the New World squirrel monkey, by a radioimmunoassay system developed with guinea pig anti-pork insulin antibody and labeled park insulin. With the same system, reasonable levels were observed in rhesus monkeys and chimpanzees. This suggested that New World monkeys, like the New World hystricomorph rodents such as the guinea pig and the coypu, might have insulins whose sequences differ markedly from those of Old World mammals. In this report the authors describe the purification and amino acid sequences of squirrel monkey insulin and glucagon. They demonstrate that the substitutions at B29, B27, A2, A4, and A17 of squirrel monkey insulin are identical with those previously found in another New World primate, the owl monkey (Aotus trivirgatus). The immunologic cross-reactivity of this insulin in their immunoassay system is only a few percent of that of human insulin. It appears that the peptides of the New World monkeys have diverged less from those of the Old World mammals than have those of the New World hystricomorph rodents. The striking improvements in peptide purification and sequencing have the potential for adding new information concerning the evolutionary divergence of species.

  3. Reproduction and sera embryotoxicity after immunization of monkeys with the laminin peptides YIGSR, RGD, and IKVAV.

    Science.gov (United States)

    Chambers, B J; Klein, N W; Conrad, S H; Ruppenthal, G C; Sackett, G P; Weeks, B S; Kleinman, H K

    1995-01-01

    Monkeys with excellent reproductive histories were immunized with the laminin peptides YIGSR, RGD, IKVAV, and YD, a control sequence with no known biological function. Sera from the YIGSR-immunized monkey became toxic, causing neural tube defects in whole rat embryo cultures, and this monkey experienced fetal loss after immunization. Sera from the RGD-immunized monkey also became embryotoxic in culture after immunization, but this monkey appeared to become infertile as she failed to initiate a pregnancy for at least 2 years after immunization. In contrast, embryos cultured on sera from the IKVAV- or YD-immunized monkeys were predominantly normal and both monkeys completed successful pregnancies. Antibody levels to the respective peptides or to laminin were not predictive of embryotoxicity, but antibody binding to homogenized yolk sacs as well as to yolk sacs of cultured embryos was associated with sera embryotoxicity and reproductive outcomes in vivo. These observations suggested that the laminin sequences YIGSR and RGD may play a role in immune-mediated reproductive failure by reacting directly with embryonic tissue and could provide a basis for identifying individuals at risk for both spontaneous abortion and infertility. Images Fig. 3 Fig. 4 PMID:7624326

  4. Sex differences in rhesus monkey toy preferences parallel those of children.

    Science.gov (United States)

    Hassett, Janice M; Siebert, Erin R; Wallen, Kim

    2008-08-01

    Sex differences in toy preferences in children are marked, with boys expressing stronger and more rigid toy preferences than girls, whose preferences are more flexible. Socialization processes, parents, or peers encouraging play with gender-specific toys are thought to be the primary force shaping sex differences in toy preference. A contrast in view is that toy preferences reflect biologically-determined preferences for specific activities facilitated by specific toys. Sex differences in juvenile activities, such as rough-and-tumble play, peer preferences, and infant interest, share similarities in humans and monkeys. Thus if activity preferences shape toy preferences, male and female monkeys may show toy preferences similar to those seen in boys and girls. We compared the interactions of 34 rhesus monkeys, living within a 135 monkey troop, with human wheeled toys and plush toys. Male monkeys, like boys, showed consistent and strong preferences for wheeled toys, while female monkeys, like girls, showed greater variability in preferences. Thus, the magnitude of preference for wheeled over plush toys differed significantly between males and females. The similarities to human findings demonstrate that such preferences can develop without explicit gendered socialization. We offer the hypothesis that toy preferences reflect hormonally influenced behavioral and cognitive biases which are sculpted by social processes into the sex differences seen in monkeys and humans.

  5. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia

    Science.gov (United States)

    Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of edited GluR-2 RNA molecules. Disturbances of GluR-2 RNA

  6. Lack of prosociality in great apes, capuchin monkeys and spider monkeys: convergent evidence from two different food distribution tasks.

    Science.gov (United States)

    Amici, Federica; Visalberghi, Elisabetta; Call, Josep

    2014-10-22

    Prosociality can be defined as any behaviour performed to alleviate the needs of others or to improve their welfare. Prosociality has probably played an essential role in the evolution of cooperative behaviour and several studies have already investigated it in primates to understand the evolutionary origins of human prosociality. Two main tasks have been used to test prosociality in a food context. In the Platforms task, subjects can prosocially provide food to a partner by selecting a prosocial platform over a selfish one. In the Tokens task, subjects can prosocially provide food to a partner by selecting a prosocial token over a selfish one. As these tasks have provided mixed results, we used both tasks to test prosociality in great apes, capuchin monkeys and spider monkeys. Our results provided no compelling evidence of prosociality in a food context in any of the species tested. Additionally, our study revealed serious limitations of the Tokens task as it has been previously used. These results highlight the importance of controlling for confounding variables and of using multiple tasks to address inconsistencies present in the literature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Social Status in Monkeys: Effects of Social Confrontation on Brain Function and Cocaine Self-Administration.

    Science.gov (United States)

    Gould, Robert W; Czoty, Paul W; Porrino, Linda J; Nader, Michael A

    2017-04-01

    Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [18F]fluorodeoxyglucose ([18F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual's social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction.

  8. Interactions between Delta(9)-tetrahydrocannabinol and mu opioid receptor agonists in rhesus monkeys: discrimination and antinociception.

    Science.gov (United States)

    Li, Jun-Xu; McMahon, Lance R; Gerak, Lisa R; Becker, Ginger L; France, Charles P

    2008-08-01

    Opioid receptor agonists can enhance some effects of cannabinoid receptor agonists, and cannabinoid receptor agonists can enhance some effects of opioid receptor agonists; however, the generality of these interactions is not established. This study examined interactions between the discriminative stimulus and antinociceptive effects of mu opioid receptor agonists and Delta(9)-tetrahydrocannabinol (THC) in rhesus monkeys. Neither heroin nor morphine (intravenous (i.v.) or subcutaneous (s.c.)) altered the discriminative stimulus effects of THC in monkeys (n = 5) discriminating 0.1 mg/kg THC i.v. In contrast, THC (s.c.) markedly attenuated the discriminative stimulus effect of morphine and heroin in nondependent monkeys (n = 4) discriminating 1.78 mg/kg morphine s.c. Doses of THC that attenuated the discriminative stimulus effects of morphine in nondependent monkeys failed to modify the discriminative stimulus effects of morphine in morphine-dependent (5.6 mg/kg/12 h) monkeys (n = 4) discriminating 0.0178 mg/kg naltrexone s.c. THC also failed to modify the discriminative stimulus effects of naltrexone in morphine-dependent monkeys or the effects of midazolam in monkeys (n = 4) discriminating 0.32 mg/kg midazolam s.c. Doses of THC (s.c.) that attenuated the discriminative stimulus effects of morphine in nondependent monkeys enhanced the antinociceptive effects of morphine (s.c.) in nondependent monkeys. While mu receptor agonists did not alter the discriminative stimulus effects of THC, THC altered the effects of mu receptor agonists in a context-dependent manner. That the same doses of THC enhance, attenuate, or do not affect morphine, depending on the condition, suggests that attenuation of morphine by THC can result from perceptual masking rather than common pharmacodynamic mechanisms or pharmacokinetic interactions.

  9. Estradiol alters Fos-immunoreactivity in the hippocampus and dorsal striatum during place and response learning in middle-aged but not young adult female rats.

    Science.gov (United States)

    Pleil, Kristen E; Glenn, Melissa J; Williams, Christina L

    2011-03-01

    Evidence from lesion and inactivation studies suggests that the hippocampus (HPC) and dorsal striatum compete for control over navigation behavior, and there is some evidence in males that the structure with greater relative activation controls behavior. Estradiol has been shown to enhance HPC-dependent place learning and impair dorsal striatum-dependent response learning in female rats, possibly by increasing hippocampal activation and/or decreasing striatal activation. We used Fos-immunoreactivity (Fos-IR) to examine the activation of several subregions of the HPC and striatum in ovariectomized female rats with or without estradiol replacement 30 min after place or response learning. In 4-month-old rats, neither task nor estradiol increased Fos-IR above explore control levels in any subregion analyzed, even though estradiol impaired response learning. In 12-month-old rats, estradiol increased Fos-IR in the dentate gyrus, dorsal medial striatum, and dorsal lateral striatum in place task learners, while the absence of estradiol increased Fos-IR in these regions in response task learners. However, learning rate was not affected by estradiol in either task. We also included a group of long-term ovariectomized 12-month-old rats that displayed impaired place learning and altered Fos-IR in CA1 of the HPC. These results suggest that task-specific effects of estradiol on hippocampal and striatal activation emerge across age but that relative hippocampal and striatal activation are not related to learning rate during spatial navigation learning.

  10. Relationship between mutations in the gyrA gene and quinolone resistance in clinical isolates of Corynebacterium striatum and Corynebacterium amycolatum.

    Science.gov (United States)

    Sierra, Josep M; Martinez-Martinez, Luis; Vázquez, Fernando; Giralt, Ernest; Vila, Jordi

    2005-05-01

    Quinolone susceptibility was analyzed in 17 clinical isolates of Corynebacterium striatum and 9 strains of Corynebacterium amycolatum by the E-test method in Mueller-Hinton agar plates. The C. striatum ATCC 6940 strain was used as a control strain. The amplified quinolone resistance determining regions of the gyrA genes of C. amycolatum and C. striatum were characterized. Four in vitro quinolone-resistant mutants of C. amycolatum were selected and analyzed. Both in vivo and in vitro quinolone-resistant strains of C. amycolatum showed high levels of fluoroquinolone resistance in strains with a double mutation leading to an amino acid change in positions 87 and 91 or positions 87 and 88 (unusual mutation) of GyrA, whereas the same concomitant mutations at amino acid positions 87 and 91 in GyrA of C. striatum produced high levels of resistance to ciprofloxacin and levofloxacin but only showed a moderate increase in the MIC of moxifloxacin, suggesting that other mechanism(s) of quinolone resistance could be involved in moxifloxacin resistance in C. amycolatum. Moreover, a PCR-RFLP-NcoI of the gyrA gene was developed to distinguish between C. amycolatum and C. striatum species.

  11. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  12. Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity, and fatty acid composition in the striatum of Parkinson's disease mouse model.

    Science.gov (United States)

    Kabuto, Hideaki; Yamanushi, Tomoko T; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2013-01-01

    Active oxygen has been implicated in the pathogenesis of Parkinson's disease (PD); therefore, antioxidants have attracted attention as a potential way to prevent this disease. Squalene, a natural triterpene and an intermediate in the biosynthesis of cholesterol, is known to have active oxygen scavenging activities. Squalane, synthesized by complete hydrogenation of squalene, does not have active oxygen scavenging activities. We examined the effects of oral administration of squalene or squalane on a PD mouse model, which was developed by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA). Squalene administration 7 days before and 7 days after one 6-OHDA injection prevented a reduction in striatal dopamine (DA) levels, while the same administration of squalane enhanced the levels. Neither squalene nor squalane administration for 7 days changed the levels of catalase, glutathione peroxidase, or superoxide dismutase activities in the striatum. Squalane increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, in the striatum. Both squalane and squalene increased the ratio of linoleic acid/linolenic acid in the striatum. These results suggest that the administration of squalene or squalane induces similar changes in the composition of fatty acids and has no effect on the activities of active oxygen scavenging enzymes in the striatum. However, squalane increases oxidative damage in the striatum and exacerbates the toxicity of 6-OHDA, while squalene prevents it. The effects of squalene or squalane treatment in this model suggest their possible uses and risks in the treatment of PD.

  13. Pharmacokinetics of the cephalosporin SM-1652 in mice, rats, rabbits, dogs, and rhesus monkeys.

    OpenAIRE

    Matsui, H; Yano, K; Okuda, T

    1982-01-01

    The pharmacokinetics of SM-1652 were studied in mice, rats, rabbits, dogs, and rhesus monkeys. The plasma half-lives of SM-1652, administered intravenously at a dose of 20 mg/kg, were 11.0 min in mice, 26.0 min in rats, 65.8 min in rabbits, 72.6 min in dogs, and 150.9 min in monkeys. The 24-h urinary excretion of SM-1652 was 30 to 35% of the dose in mice and rats, 70 to 75% in rabbits and dogs, and 45% in monkeys. Biliary excretion of the antibiotic over a 24-h period was 60 and 19% in rats a...

  14. Drusenoid maculopathy in rhesus monkeys (Macaca mulatta): Effects of age and gender

    Science.gov (United States)

    Ivert, Lena; Landauer, Noelle; Mattison, Julie A; Ingram, Donald K; Neuringer, Martha

    2008-01-01

    Purpose To compare drusenoid maculopathy in monkeys with human age-related macular degeneration and evaluate the influence of age, gender and caloric restriction. Methods Examination by indirect ophthalmoscopy, slit lamp biomicroscopy and fundus photography, including in some cases fluorescein angiography, was performed on 61 male and 60 female rhesus macaques of ages 10-39 years. Fifty-four of the monkeys were maintained on a calorically restricted diet (approximately 30% lower than control levels) and 67 on an approximately ad libitum diet for 2-19 years, with all other environmental factors held constant. Maculopathies were graded on a 5-point scale and the effects of age, sex, and diet on prevalence and severity were examined. The retinas of 6 monkeys with macular drusen, 19-28 years old, were examined histologically. Results Rhesus monkeys showed a high prevalence (61 %) of drusenoid maculopathy. The prevalence and severity of the maculopathy increased with age (p =0.012). Fully half of all monkeys aged 10-12 years had some detectable degree of drusen. This high prevalence in young adulthood indicates that drusen develop much earlier in rhesus monkeys than in humans, who develop early maculopathy most rapidly at 50-60 years of age, even when correcting for the 3-fold difference in lifespan. No neovascularization or geographic atrophy was found. Females had a higher prevalence and severity than males (p=0.019). Calorically restricted monkeys had a slightly lower prevalence and severity at 10-12 years than controls, but the difference was not statistically significant. This is an on-going project and differences between the caloric restricted and ad-lib groups may emerge as the animals age. Some monkeys developed severe maculopathy in their 20s with others unaffected in their 30s. The histology of drusen resembled those in human retina. Conclusion Drusenoid maculopathy is common in rhesus monkeys even in young adult life. Half of the rhesus monkeys examined have

  15. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    Science.gov (United States)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  16. [Epizootic hepatitis A among African green monkeys kept in a vivarium].

    Science.gov (United States)

    Andzhaparidze, A G; Karetnyĭ, Iu V; Korzaia, L I; Balaian, M S; Titova, I P

    1989-01-01

    The results of observations on the pattern of spread of hepatitis A virus and immune response to it in African green monkeys (Cercopithecus aethiops) kept in the animal house are presented. The infection in the monkeys was found to be characterized by all virological, serological, and biochemical parameters inherent in hepatitis A virus. The results indicated that hepatitis A in monkeys may run both asymptomatic and clinically manifest course, and the spread of infection in the animal house sequentially involves most seronegative animals into the epidemic process.

  17. Cardiac arrhythmias induced by chloral hydrate in rhesus monkeys.

    Science.gov (United States)

    Han, Pengfei; Song, Haibo; Yang, Pingliang; Xie, Huiqi; Kang, Y James

    2011-06-01

    Chloral hydrate has been long used as a safe sedative and hypnotic drug in humans. However, reports on its cardiovascular adverse effects have been published from time to time. The present study was undertaken to use Rhesus monkeys as a model to define the dose regiment of chloral hydrate at which cardiac arrhythmias can be induced and the consequences of the cardiac events. Male Rhesus monkeys of 2-3 years old were intravenously infused with chloral hydrate starting at 50 mg/kg with an increasing increment of 25 mg/kg until the occurrence of cardiac arrhythmias. In addition, a traditional up-and-down dosing procedure was applied to define a single dose level at which cardiac arrhythmias can be induced. The data obtained showed that when the sequentially escaladed dose reached 125 mg/kg, cardiac arrhythmias occurred in all monkeys tested. The single effective dose to cause cardiac arrhythmias calculated from the crossover analysis was 143 ± 4 mg/kg. This value would be equivalent to 68.6 ± 1.9 mg/kg for children and 46.4 ± 1.3 mg/kg for adults in humans. Under either multiple or single dose condition, cardiac arrhythmias did not occur before 40 min after the onset of anesthesia induced by chloral hydrate. Cardiac arrhythmias were recovered without help at the end of the anesthesia in most cases, but also continued after the regain of consciousness in some cases. The cardiac arrhythmias were accompanied with compromised cardiac function including suppressed fractional shortening and ejection fraction. This study thus suggests that cautions need to be taken when chloral hydrate is used above certain levels and beyond a certain period of anesthesia, and cardiac arrhythmias induced by chloral hydrate need to be closely monitored because compromised cardiac function may occur simultaneously. In addition, patients with cardiac arrhythmias induced by chloral hydrate should be monitored even after they are recovered from the anesthesia.

  18. Peripapillary Scleral Thickness in Perfusion-Fixed Normal Monkey Eyes

    Science.gov (United States)

    Downs, J. Crawford; Blidner, Richard A.; Bellezza, Anthony J.; Thompson, Hilary W.; Hart, Richard T.; Burgoyne, Claude F.

    2009-01-01

    Purpose To characterize the thickness of the peripapillary sclera in perfusion-fixed normal monkey eyes so as to build accurate computational models of intraocular pressure (IOP)-related stress and strain within these tissues. Methods Nine rhesus monkeys were perfusion fixed, each with one normal eye set to an IOP of 10 mm Hg by manometer. A 6-mm-diameter specimen containing the optic nerve head and peripapillary sclera was trephined from each scleral shell and cut into 4-μm serial sagittal sections across the scleral canal opening, either horizontally (four eyes) or vertically (five eyes). The thickness of the peripapillary sclera was measured on every 24th section at 100-μm intervals from the posterior scleral canal opening (PSCO) to the peripheral edge of the specimen. The data were pooled by quadrant (superior, inferior, nasal, and temporal), regions within each quadrant, and distance from the PSCO, overall and for individual eyes, and subjected to analysis of variance. Results In terms of distance from the PSCO, the peripapillary sclera was thinnest nearest the PSCO (201 μm, nasal; 201 μm, temporal; 240 μm, inferior; 249 μm, superior), thickened progressively to a maximum in the midperiphery approximately 600 to 1000 μm from the PSCO (326 μm, nasal; 415 μm, superior; 420 μm, temporal; 422 μm, inferior), and thinned again peripherally in all quadrants. The peripapillary sclera was thinner in the nasal quadrant when compared with the other quadrants superiorly, inferiorly, and temporally (central region means of 291 μm, nasal; 369 μm, superior; 372 μm, inferior; and 369 μm, temporal; P < 0.0001). Conclusions In the normal monkey eye, peripapillary scleral thickness varies significantly with distance from the posterior scleral canal opening and is thinner in the nasal quadrant than in the other quadrants. These differences are substantial and are likely to affect the magnitude of IOP-related stress and strain within these tissues for a given level

  19. Differential effects of nicotine against stress-induced changes in dopaminergic system in rat striatum and hippocampus.

    Science.gov (United States)

    Pawlak, R; Takada, Y; Takahashi, H; Urano, T; Ihara, H; Nagai, N; Takada, A

    2000-01-10

    A number of studies have shown an increase in nicotine self-administration among smokers when exposed to stress. Since it is well known that nicotine or stress alter the dopaminergic system, we examined the effect of chronic nicotine administration on the dopamine level and its metabolism in the striatum and the hippocampus during stressful conditions in rats. Nicotine (0.4 mg/kg, i.p. for 14 days) increased the dopamine level in the striatum (Pstress sharply elevated the dopamine level (PNicotine pretreatment attenuated some of these changes in a region- and time-dependent manner. However, stress induced a decrease in dopamine turnover in the hippocampus (Pnicotine failed to prevent this effect. Stress-induced alterations gradually returned toward normal during the 48-h observation period, and in some cases this was facilitated by nicotine. Thus, we demonstrated differential, region- and time-dependent protective effects of chronic nicotine administration against stress-induced changes in dopamine levels and release in brain regions critically affected by stress.

  20. Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo.

    Science.gov (United States)

    Monni, Emanuela; Cusulin, Carlo; Cavallaro, Maurizio; Lindvall, Olle; Kokaia, Zaal

    2014-01-01

    Clonogenic neural stem (NS) cell lines grown in adherent cultures have previously been established from embryonic stem cells and fetal and adult CNS in rodents and from human fetal brain and spinal cord. Here we describe the isolation of a new cell line from human fetal striatum (hNS cells). These cells showed properties of NS cells in vitro such as monolayer growth, high proliferation rate and expression of radial glia markers. The hNS cells expressed an early neuronal marker while being in the proliferative state. Under appropriate conditions, the hNS cells were efficiently differentiated to neurons, and after 4 weeks about 50% of the cells were βIII tubulin positive. They also expressed the mature neuronal marker NeuN and markers of neuronal subtypes, GABA, calbindin, and DARPP32. After intrastriatal implantation into newborn rats, the hNS cells survived and many of them migrated outside the transplant core into the surrounding tissue. A high percentage of cells in the grafts expressed the neuroblast marker DCX, indicating their neurogenic potential, and some of the cells differentiated to NeuN+ mature neurons. The human fetal striatum-derived NS cell line described here should be a useful tool for studies on cell replacement strategies in models of the striatal neuronal loss occurring in Huntington's disease and stroke.