WorldWideScience

Sample records for vertical wind component

  1. Vertical-axial component wind turbine with a high coefficient using for wind energy

    International Nuclear Information System (INIS)

    Yersin, Ch. Sh.; Manatbev, R.K.; Yersina, A. K.; Tulepbergenov, A. K.

    2012-01-01

    The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy

  2. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  3. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  4. A probability index for surface zonda wind occurrence at Mendoza city through vertical sounding principal components analysis

    Science.gov (United States)

    Otero, Federico; Norte, Federico; Araneo, Diego

    2018-01-01

    The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.

  5. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  6. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  7. Experimental characterization of vertical-axis wind turbine noise.

    Science.gov (United States)

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  8. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  9. On the vertical structure of wind gusts

    DEFF Research Database (Denmark)

    Suomi, I.; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    The increasing size of wind turbines, their height and the area swept by their blades have revised the need for understanding the vertical structure of wind gusts. Information is needed for the whole profile. In this study, we analyzed turbulence measurements from a 100m high meteorological mast...... and the turbulence intensity, of which the turbulence intensity was found to dominate over the peak factor in determining the effects of stability and height above the surface on the gust factor. The peak factor only explained 15% or less of the vertical decrease of the gust factor, but determined the effect of gust...... duration on the gust factor. The statistical method to estimate the peak factor did not reproduce the observed vertical decrease in near-neutral and stable conditions and near-constant situation in unstable conditions. Despite this inconsistency, the theoretical method provides estimates for the peak...

  10. Analysis and design of a vertical axis wind turbine

    OpenAIRE

    Goyena Iriso, Joseba

    2011-01-01

    The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...

  11. Self-starting aerodynamics analysis of vertical axis wind turbine

    OpenAIRE

    Jianyang Zhu; Hailin Huang; Hao Shen

    2015-01-01

    Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter defi...

  12. Estimation of power in low velocity vertical axis wind turbine

    Science.gov (United States)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  13. Characteristics for wind energy and wind turbines by considering vertical wind shear

    Institute of Scientific and Technical Information of China (English)

    郑玉巧; 赵荣珍

    2015-01-01

    The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.

  14. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  15. Vertically and Horizontally Mounted Wind Mills : Wind Energy Production in Tampere University of Applied Sciences

    OpenAIRE

    Evdokimova, Ekaterina

    2013-01-01

    The purpose of this thesis was to gather information about vertical and horizontal wind mills and to complete a research on wind power production by wind mills which were installed in Tampere University of Applied Sciences. The horizontally mounted wind mill Windspot 3.5 and vertically mounted wind mill Cypress were installed in summer 2011 but they started functioning and supplying energy only during 2012. In the theoretical part of this thesis wind speed and wind power production is dis...

  16. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...... a structural optimization and aeroelastic analysis of an optimized Troposkein vertical axis wind turbine to minimize the relation between the rotor mass and the swept area. The aeroelastic behavior of the different designs has been analyzed using a modified version of the HAWC2 code with the Actuator Cylinder...... model to compute the aerodynamics of the vertical axis wind turbine. The combined shape and topology optimization of a vertical axis wind turbine show a minimum mass to area ratio of 1.82 kg/m2 for blades with varying blade sections from a NACA 0040 at the attachment points to a NACA 0015...

  17. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  18. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  19. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  20. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  1. Experimental characterization of individual pitch controlled vertical axis wind turbine

    NARCIS (Netherlands)

    Leblanc, B.P.; Simao Ferreira, C.

    2017-01-01

    Research into the Vertical Axis Wind Turbine (VAWT) has been progressing over the last few years due to
    the large shift in design constraints for large floating offshore wind turbines by leveraging tools and experience
    from research beginning in the 1970s and lasting until the HAWT

  2. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  3. A search for thermospheric composition perturbations due to vertical winds

    Science.gov (United States)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI

  4. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  5. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Jarral, A.; Ali, M.; Sahir, M.H.

    2013-01-01

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  6. Vertical axis wind turbines: a survey and bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Abramovich, H

    1987-01-01

    The stimulus for the development of modern, big wind turbines has been the world-wide oil crisis during the seventies. Although the horizontal axis wind turbines (HAWT) was the most popular type of wind turbine the Darrieus vertical axis wind turbine (VAWT) has been recognized as a machine with competitive economic potential. The state of the art of the VAWT is reviewed. The wind turbine carrying the name of Darrieus was first proposed by the French inventor in 1925. His original patent covered a range of vertical-axis configurations but the term 'Darrieus' is now generally associated with the curved-blade geometry. In 1966 two researchers at the Canadian NRC again raised the idea of both the straight and curved-blade versions of the Darrieus VAWT.

  7. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  8. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  9. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  10. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  11. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  12. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  13. Small-Scale vertical axis wind turbine design

    OpenAIRE

    Castillo Tudela, Javier

    2011-01-01

    The thesis focuses on the design of a small vertical axis wind turbine rotor with solid wood as a construction material. The aerodynamic analysis is performed implementing a momentum based model on a mathematical computer program. A three bladed wind turbine is proposed as candidate for further prototype testing after evaluating the effect of several parameters in turbine efficiency, torque and acceleration. The results obtained indicate that wood is a suitable material for rotor cons...

  14. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  15. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  16. The Parameters Affect on Power Coefficient Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Qasim

    2012-04-01

    Full Text Available ABSTRACT: This study describes the design of a special type of vertical axis rotor wind turbine with moveable vertically positioned vanes. The novel design increases the torque in the left side of the wind turbine by increasing the drag coefficient. It also reduces the negative torque of the frame which rotates contrary to the wind in the other side. Two different types of models, having different vane shapes (flat vane and cavity shaped vane, were fabricated. Each type consisted of two models with varying number of frames (three and four frames. The models were tested in a wind tunnel with variable wind speed in order to understand the effect of shape, weight, and number of frames on the power coefficient of the wind turbine. ABSTRAK: Di dalam kajian ini, rotor turbin angin berpaksi vertikel sebagai rangka khusus telah direkabentuk dengan lokasi vertikel mudahalih oleh bilah kipas. Rekabentuk ini meningkatkan tork di bahagian kiri turbin angin dengan meningkatkan pekali seretan dan mengurangkan tork negatif rangka yang berputar berlawanan dengan angin pada bahagian lain. Dua jenis model berbentuk berlainan telah difabrikasi (bilah kipas rata dan bilah kipas berbentuk kaviti, dengan setiap jenis mempunyai dua model dengan bilangan rangka yang berlainan (berangka tiga dan berangka empat. Model-model telah diuji di dalam terowong angin dengan kelajuan angin yang berbeza bagi mendapatkan kesan rekabentuk, berat dan bilangan rangka ke atas pekali kuasa.KEYWORDS: design; wind turbine; drag coefficient; vane

  17. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-01-01

    Full Text Available Geometrical shape of a vertical axis wind turbine (VAWT is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational Fluid Dynamics (CFD method; based on the results, we then use an orthogonal analysis method to investigate the influence of interactions of the structural parameters on performance of the wind turbine and to obtain optimization combination of the structural parameters considering the interactions. Results of analysis of variance indicate that interactions among the structural parameters have influence on performance of the wind turbine, and optimization results based on orthogonal analysis have higher wind energy utilization than that of traditional research approaches.

  18. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  19. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple...

  20. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  1. Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)

    Science.gov (United States)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.

    2013-12-01

    For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

  2. Integrated simulation challenges with the DeepWind floating vertical axis wind turbine concept

    DEFF Research Database (Denmark)

    Verelst, David; Aagaard Madsen, Helge; Borg, Michael

    2015-01-01

    This paper presents the experiences and challenges with concurrently carrying out numerical model development, integrated simulations and design of a novel floating vertical axis wind turbine, the DeepWind concept. The floating VAWT modelling capabilities of the aero-hydro-elastic HAWC2 simulation...

  3. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  4. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    Maganhar, A.L.

    2015-01-01

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  5. Determination of performance parameters of vertical axis wind turbines in wind tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Van Bang

    2017-01-01

    Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.

  6. Efficiency of the DOMUS 750 vertical-axis wind turbine

    Science.gov (United States)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  7. Compatibility Between Electric Components in Wind Farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana Aristi, Iván

    2011-01-01

    The paper describes a method for investigation of the compatibility between electric components in wind farms by identifying critical resonances at different points of an offshore wind farm (OWF), based on systematic variation of critical parameters. In this way, the design of future OWF can...... be improved at a very early stage of the process. It is also revealed what parameters are the most important ones when considering compatibility. It was observed that a change of capacitance in the collection grid shifts the resonance peaks. A change in WT transformer capacitances influences the admittance...

  8. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    Science.gov (United States)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  9. Estudo da ocorrência de fluxos no perfil vertical do vento na baixa atmosfera com análise das componentes principais (ACP e a sua relação com a precipitação no Rio Grande do Sul Vertical wind profile uses a principal component analysis, and of their relation to precipitation in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Cleber Souza Corrêa

    2007-04-01

    Full Text Available Neste estudo busca-se entender as relações dos Jatos de Nível Baixo (JNB e dos fluxos no perfil vertical do vento na geração de convecção em escala sinótica e a sua associação com a precipitação, observa-se o perfil vertical do vento através de radiossondagens realizadas no Aeroporto Internacional Salgado Filho em Porto Alegre, Estado do Rio Grande do Sul, Brasil. Estimam-se características predominantes da dinâmica dos fluxos dentro da baixa atmosfera, descrevendo a interação dos JNB e fluxos na geração da precipitação. Os JNB associados neste intenso transporte apresentam uma tendência de estarem ligados a eventos convectivos noturnos e na geração de Sistemas Convectivos de Mesoescala (SCM, que geram elevados índices pluviométricos que podem causar importante influência econômica. Utiliza-se a técnica da Análise das Componentes Principais para realização deste estudo, comparando suas componentes com a precipitação de sessenta e quatro estações pluviométricas sobre Estado do Rio Grande do Sul. O emprego desta metodologia facilita o entendimento da complexidade das interações das diferentes escalas meteorológicas envolvidas nos processos sinóticos de macro e mesoescala, mostrando neste método uma melhor representação das características dinâmicas dos processos baroclínicos na convecção. Em tal complexidade, o trabalho realizado pelos JNB e os fluxos nesta interação são o de serem uma escala efetiva de transporte de vapor de água na baixa atmosfera ao nível de mesoescala e de escala continental.This study analyses the relation between Low-Level Jets (LLJ and Flows in the vertical wind profiles generating convection at the synoptic scale, and associated events of rainfall, using vertical wind profiles obtained by radiosonde at the Salgado Filho International Airport in Porto Alegre, the State of Rio Grande do Sul. The LLJs involved in this large-scale transport tend to be associated with

  10. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  11. Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2015-01-01

    If a vertical axis wind turbine is mounted offshore on a semi-submersible, the pitch motion of the platform will dominate the static pitch and dynamic motion of the platform and wind turbine such that the effect of tower tilting on the aerodynamics of the vertical axis wind turbine should...... be investigated to more accurately predict the aerodynamic loads. This paper proposes certain modifications to the double multiple-streamtube (DMS) model to include the component of wind speed parallel to the rotating shaft. The model is validated against experimental data collected on an H-Darrieus wind turbine...... in skewed flow conditions. Three different dynamic stall models are also integrated into the DMS model: Gormont's model with the adaptation of Strickland, Gormont's model with the modification of Berg and the Beddoes-Leishman dynamic stall model. Both the small Sandia 17m wind turbine and the large DeepWind...

  12. Vertical axis wind turbines : past initiatives and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.; Fartaj, A.; Ting, D. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2003-08-01

    Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT) are the two categories of modern wind turbines used for producing electricity and pumping water. While their popularity declined in the 1970s and 1980s to more economical fossil fuel resources, many countries have expressed a renewed interest in wind power in response to environmental concerns and energy security. Renewable energy sources supply more than 14 per cent of the total global energy demand, and wind energy plays the biggest role. In 2002, more than $7 billion was invested in wind technology. Canada has been a leader in VAWT technology. In 1966, Engineers at the Low Speed Aerodynamics Laboratory of the National Research Council devised a VAWT configuration with non-adjustable hoop-shaped airfoils that had greater efficiency that conventional high-solidity VAWT. In the early 1980s, a multi-megawatt VAWT was built in Quebec under the auspices of the EOLE project. The EOLE is the largest VAWT in the world. In 1980, Canada's national Atlantic Wind Test Site was developed for the purpose of testing and developing wind technology. Research at this facility has focused on dynamically soft Darrieus rotors, a concept which can reduce structural loads. Early development has shown that although VAWT is slightly less efficient than HAWT, it can be built larger and more cost effectively. This paper presents the outstanding features of VAWT products including the Solwind SW 10/4800 series VAWT, the Chinook 2000 wind turbine, the Ropatec Windrotor, the Windside Turbine, the VAWTEX, the Windstar VAWT, and Windtec. 19 refs., 13 figs.

  13. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  14. Dynamic Modal Analysis of Vertical Machining Centre Components

    OpenAIRE

    Anayet U. Patwari; Waleed F. Faris; A. K. M. Nurul Amin; S. K. Loh

    2009-01-01

    The paper presents a systematic procedure and details of the use of experimental and analytical modal analysis technique for structural dynamic evaluation processes of a vertical machining centre. The main results deal with assessment of the mode shape of the different components of the vertical machining centre. The simplified experimental modal analysis of different components of milling machine was carried out. This model of the different machine tool's structure is made by design software...

  15. Variable speed control for Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.

    A robust variable speed control for vertical axis wind turbine applications is implemented. It is a PI rotor speed controller based on an induction generator model operated at variable frequency. The generator dynamics are approximated by a first order differential equation with a prescribed slip....... In order to allow variability in the rotor speed an inverter is assumed which changes the nominal generator speed. Below rated power the optimum tip speed ratio is tracked, while above the power is constrained to rated. The wind speed which is needed in the control it is considered as a known signal...... the Inflow project. The investigation of the VAWT performance under different control parameters such as the PI gains has been performed by Christos Galinos. Deterministic and turbulent wind speed steps of 2 m/s from 6 m/s to 24 m/s and back to 12 m/s are applied. The controller gives smooth transient...

  16. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  17. The system design and performance test of hybrid vertical axis wind turbine

    Science.gov (United States)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  18. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3.......6 Results input into satellite maps The nature of the offshore vertical wind shear is investigated using acquired data from the NORSEWInD network of mast and wind lidar stations. The importance of the knowledge of the vertical wind speed profile and wind shear is first illustrated for the evaluation...

  19. Performance testing of a small vertical-axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  20. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    Directory of Open Access Journals (Sweden)

    Adela-Eliza Dumitrascu

    2015-01-01

    Full Text Available Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram, which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  1. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    Science.gov (United States)

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  2. Wake structure of a single vertical axis wind turbine

    International Nuclear Information System (INIS)

    Posa, Antonio; Parker, Colin M.; Leftwich, Megan C.; Balaras, Elias

    2016-01-01

    Highlights: • The wake structure of an isolated Vertical Axis Wind Turbine is studied by both Particle Imaging Velocimetry and Large Eddy Simulation. • The wake structure is investigated for two values of tip speed ratio, TSR_1=1.35 and TSR_2=2.21. • A displacement of the momentum deficit towards the windward side is verified in the wake. • Higher turbulence and coherence is observed on the leeward side of the wake, due to the upwind stall of the blades. • Coherence in the wake core, associated to the downwind stall, decays quickly downstream. - Abstract: The wake structure behind a vertical axis wind turbine (VAWT) is both measured in a wind tunnel using particle imaging velocimetry (PIV) and computed with large-eddy simulation (LES). Geometric and dynamic conditions are closely matched to typical applications of VAWTs (Re_D ∼ 1.8 × 10"5). The experiments and computations were highly coordinated with continuous two-way feedback to produce the most insightful results. Good qualitative agreement is seen between the computational and experimental results. The dependence of the wake structure on the tip speed ratio, TSR, is investigated, showing higher asymmetry and larger vortices at the lower rotational speed, due to stronger dynamic stall phenomena. Instantaneous, ensemble-averaged and phase-averaged fields are discussed, as well as the dynamics of coherent structures in the rotor region and downstream wake.

  3. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis...... wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent...

  4. CWTC business plan; Wind turbine component centre

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P; Hillestroem, A; Markou, H; Berring, P; Friis, P

    2011-04-15

    This report presents the Business Plan for the establishment of the Wind Turbine Component Centre (CWTC) to meet the objectives of performing theoretical research and experimental testing. The core idea of a CWTC is to support the Danish wind energy industry and research activities at the component level improving the competitive advantage of that industry. The CWTC will in itself operate its activities, including access to test and experimental facilities, on a semi commercial basis. The business model for the CWTC presented is based on revenues coming from component manufacturers as well as research grants, and will include membership fees as well as hourly payment and larger projects where payment is a limited project sum. The presented roadmap model clarifies the development path towards a fully developed CWTC, which will cover test of all important components along the drive-train as well as offering a comprehensive systematic understanding of the entire drive-train. The CWTC will over time market and sell its products and services on a global scale, but first and foremost the CWTC is established to support and strengthen the Danish wind energy industry and specifically the Danish sub suppliers to the Danish wind turbine industry and also the Danish research establishments. The presented organizational structure reflects that there are certain functions that are separated from the operations and it also reflects that scientific staffing are hired in on a project basis. Machine operators will be hired in on a permanent basis. The breakdown of the cost for running the rig, both for R and D and commercial projects is presented. The income from the other activities is calculated based on the cost for the research staff, both for R and D activities and commercial. In the first year the income will be 100% from R and D activities, which is the cost for the staff to set-up the test-rig, the guidelines and test procedures, and partly for running the rig. Within 3

  5. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  6. A new vertical axis wind turbine design for urban areas

    Science.gov (United States)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  7. Vibrational analysis of vertical axis wind turbine blades

    Science.gov (United States)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  8. 3D CFD Analysis of a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2015-04-01

    Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

  9. Vertical axis wind turbine drive train transient dynamics

    Science.gov (United States)

    Clauss, D. B.; Carne, T. G.

    1982-01-01

    Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.

  10. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    Science.gov (United States)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  11. Structural Dynamic Analysis of Semi-Submersible Floating Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jeremiah Ishie

    2016-12-01

    Full Text Available The strong and stable wind at offshore locations and the increasing demand for energy have made the application of wind turbines in deeper water surge. A novel concept of a 5 MW baseline Floating Vertical Axis Wind Turbine (FVAWT and a 5 MW optimised FVAWT with the DeepWind Darrieus rotor and the optimised DeepWind Darrieus rotor, respectively, were studied extensively. The structural responses, fatigue damages, platform global motions and mooring line dynamics of the FVAWTs were investigated comprehensively during normal operating conditions under steady wind and turbulent wind conditions, using a coupled non-linear aero-hydro-servo-elastic code (the Simo-Riflex-DMS code which was developed by Wang et al. for modeling FVAWTs. This coupled code incorporates the models for the turbulent wind field, aerodynamics, hydrodynamics, structural dynamics, and generator controller. The simulation is performed in a fully coupled manner in time domain. The comparison of responses under different wind conditions were used to demonstrate the effect of turbulence on both FVAWTs dynamic responses. The turbulent wind condition has the advantage of reducing the 2P effects. Furthermore, comparative studies of the FVAWTs responses were undertaken to explore the advantages of adopting the optimised 5 MW DeepWind Darrieus rotor over the baseline model. The results identified the 5 MW optimised FVAWT to having: lower Fore-Aft (FA but higher lower Side-Side (SS bending moments of structural components; lower motions amplitude; lower short-term fatigue equivalent loads and a further reduced 2P effects.

  12. Interaction between main components in wind farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Koldby, Erik

    and the simplicity of the measurement methods using the device makes it a good candidate for performing black-box modelling of multiports whenever such models are not available from the manufacturers. Parametric variation method developed for EMT simulations in ATP-EMTP is a good tool for performing large...... with Frequency Domain Severity Factor proved to be a robust tool in assessing stresses on electric components arising from transient phenomena in offshore wind farms, including the voltage magnitude and frequency of oscillations. Quarter-wave resonance frequency is a good approximation of resonance frequency...... as well as performing parametric variation studies. Methods and tools were developed and shown to perform and estimate the severity of a potential mid- and high- frequency interaction between electric components in OWFs by robust sensitivity analysis in commercial EMT simulation tool. Performing...

  13. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    OpenAIRE

    Tan Jiqiu; Zhong Dingqing; Wang Qiong

    2014-01-01

    In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction fie...

  14. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept

    Directory of Open Access Journals (Sweden)

    Andrew Shires

    2013-05-01

    Full Text Available There has been a resurgence of interest in the development of vertical axis wind turbines which have several inherent attributes that offer some advantages for offshore operations, particularly their scalability and low over-turning moments with better accessibility to drivetrain components. This paper describes an aerodynamic performance model for vertical axis wind turbines specifically developed for the design of a novel offshore V-shaped rotor with multiple aerodynamic surfaces. The model is based on the Double-Multiple Streamtube method and includes a number of developments for alternative complex rotor shapes. The paper compares predicted results with measured field data for five different turbines with both curved and straight blades and rated powers in the range 100–500 kW. Based on these comparisons, the paper proposes modifications to the Gormont dynamic stall model that gives improved predictions of rotor power for the turbines considered.

  15. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  16. Vertical-axis wind turbine experiments at full dynamic similarity

    Science.gov (United States)

    Duvvuri, Subrahmanyam; Miller, Mark; Brownstein, Ian; Dabiri, John; Hultmark, Marcus

    2017-11-01

    This study presents results from pressurized (upto 200 atm) wind tunnel tests of a self-spinning 5-blade model Vertical-Axis Wind Turbine (VAWT). The model is geometrically similar (scale ratio 1:22) to a commercially available VAWT, which has a rotor diameter of 2.17 meters and blade span of 3.66 meters, and is used at the Stanford university field lab. The use of pressurized air as working fluid allows for the unique ability to obtain full dynamic similarity with field conditions in terms of matched Reynolds numbers (Re), tip-speed ratios (λ), and Mach number (M). Tests were performed across a wide range of Re and λ, with the highest Re exceeding the maximum operational field Reynolds number (Remax) by a factor of 3. With an extended range of accessible Re conditions, the peak turbine power efficiency was seen to occur roughly at Re = 2 Remax and λ = 1 . Beyond Re > 2 Remax the turbine performance is invariant in Re for all λ. A clear demonstration of Reynolds number invariance for an actual full-scale wind turbine lends novelty to this study, and overall the results show the viability of the present experimental technique in testing turbines at field conditions.

  17. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  18. Design and analysis of a semi-submersible vertical axis wind turbine

    OpenAIRE

    Siddique, Muhammad Abu Zafar

    2017-01-01

    Wind energy are deployed by two types of wind turbines. They are Horizontal Axis Wind Turbine (HAWT) and Vertical Axis Wind Turbine (VAWT), classified according to their axis of rotation. In recent years, offshore wind energy playing a vital role in the wind turbine industry due to high intensity of air, less turbulent and comparatively clean and easily employed in large area which is difficult to manage for onshore or near-shore. The advantages of HAWTs are now facing different challenge in ...

  19. On the aerodynamics of a vertical axis wind turbine wake : An experimental and numerical study

    NARCIS (Netherlands)

    Tescione, G.

    2016-01-01

    THE recent trend in wind energy industry, with the increasing deployment of offshore wind farms, has revived the interest in the concept of a vertical axis wind turbine. The scientific, technological and economical challenges of the next generation of wind turbines indicate that a transformative

  20. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  1. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Science.gov (United States)

    Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz

    A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  2. Guy cable design and damping for vertical axis wind turbines

    Science.gov (United States)

    Carne, T. G.

    1981-01-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  3. Transportation of Large Wind Components: A Permitting and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cook, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report summarizes permitting and regulatory issues associated with transporting wind turbine blades, towers, and nacelles as well as large transformers (wind components). These wind components are commonly categorized as oversized and overweight (OSOW) and require specific permit approvals from state and local jurisdictions. The report was developed based on a Quadrennial Energy Review (QER) recommendation on logistical requirements for the transportation of 'oversized or high-consequence energy materials, equipment, and components.'

  4. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...

  5. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  6. Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km deduced from the WINDII observations on board UARS

    Directory of Open Access Journals (Sweden)

    V. Fauliot

    1997-09-01

    Full Text Available The WINDII interferometer placed on board the Upper Atmosphere Research Satellite measures temperature and wind from the O(1S green-line emission in the Earth's mesosphere and lower thermosphere. It is a remote-sensing instrument providing the horizontal wind components. In this study, the vertical winds are derived using the continuity equation. Mean wind annually averaged at equinoxes and solstices is shown. Ascendance and subsidence to the order of 1–2 cm s–1 present a seasonal occurrence at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated to the mean meridional and vertical circulations are evaluated. The line emission rate measured together with the horizontal wind shows structures in altitude and latitude correlated with the meridional and vertical wind patterns. The effect of wind advection is discussed.

  7. Vertical-axis wind turbine development in Canada

    Science.gov (United States)

    Templin, R. J.; Rangi, R. S.

    1983-12-01

    Recent Canadian progress in the development of the curved-blade Darrieus vertical-axis wind turbine (VAWT) is described. Cooperation between government, industry and power utilities in the conduct of field trials, over several years, has demonstrated improved performance and reliability of grid-coupled turbines of this type. The rated power of the VAWTs currently under test ranges from 30 kW, in a wind/diesel powerplant, to 230 kW, in an installation on an island in the Gulf of St. Lawrence. Progress has also been made in understanding the basic aerodynamic behavior of the VAWT and theoretical methods for performance and load prediction have correspondingly improved. A brief description is given of 'Project EOLE', a cooperative project between the federal government and the utility Hydro-Quebec to develop and test, during the next two to three years, a 4 MW VAWT prototype, which will be coupled to the power grid at a location on the south shore of the St. Lawrence River.

  8. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  9. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  10. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  11. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  12. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  13. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  14. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  15. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    Science.gov (United States)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  16. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  17. Dynamic Analysis of a Floating Vertical Axis Wind Turbine Under Emergency Shutdown Using Hydrodynamic Brake

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical...... axis wind turbine were carried out for emergency shutdown cases over a range of environmental conditions based on correlated wind and wave data. When generator failure happens, a brake should be applied to stop the acceleration of the rotor to prevent the rotor from overspeeding and subsequent disaster...

  18. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  19. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Due to growing interest in wind energy harvesting offshore as well as in the urban environment, vertical axis wind turbines (VAWTs) have recently received renewed interest. Their omni-directional capability makes them a very interesting option for use with the frequently varying wind directions

  20. The effect of pitch angle on the performance of a vertical-axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.M.; Blocken, B.; Borg, R.P.; Gauci, P.; Staines, C.S.

    2016-01-01

    Wind energy is a highly promising resource to approach a sustainable built environment. Vertical axis wind turbines (VAWT) offer the advantage of omni-directional operation over horizontal axis wind turbines (HAWT). This makes them ideal for utilization in urban environments which are characterized

  1. Low order physical models of vertical axis wind turbines

    Science.gov (United States)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  2. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Ferreira, C Simão; Madsen, H Aagaard; Barone, M; Roscher, B; Deglaire, P; Arduin, I

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed

  3. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  4. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Science.gov (United States)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  5. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    International Nuclear Information System (INIS)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research

  6. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research.

  7. Development, construction and testing of a vertical axis 200 kW wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-20

    It is proposed to design and develop a large vertical axis wind turbine that will generate economically 200 kilowatts of power at a wind speed of about 30 miles per hour. The scope of this proposal is to carry out studies, build, erect and test an electrical power generation plant that will feed into existing power grids. Preliminary technical studies indicate that the power of the turbine increases with the third power of the the wind speed. The rotor power loading should be as high as the prevailing winds allow; thus it would always be advisable to let the rotor run at as high an rpm as the economics will allow. For turbines up to about 100 ft in diameter, an extruded blade seems to be the best solution for economic rotor design. A 300 ft/s runaway tip speed seems to be acceptable as an rpm limit. Structurally, it is advantageous to increase the blade airfoil section to 18%. The proposed program has a very high probability of success in that each element of the total system involves a very low technical risk. The manufacturing methods rely on existing technology, and preliminary research indicates that readily available commercial materials can be used. There will be no involvement with highly stressed, fatigue-sensitive components. The total unit energy cost will be about fifty percent less for the proposed 90 ft. turbine than for the 15 ft. turbine produced for the National Research Council. 8 figs., 12 tabs.

  8. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use because they generate less noise, have bird free turbines and lower cost. There is few vertical axis wind turbines design with good power curve....... However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...

  9. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Directory of Open Access Journals (Sweden)

    Fedak Waldemar

    2017-01-01

    Full Text Available Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  10. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Science.gov (United States)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  11. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  12. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  13. 75 FR 27583 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and...

    Science.gov (United States)

    2010-05-17

    ... CFR 11.11(d), gives final notice of the proposed construction of a small vertical axis wind turbine... (FONSI) for Small Vertical Wind Turbine and Solar Installation at the Paul Simon Job Corps Center Located... impact. This notice serves as the Final Finding of No Significant Impact (FONSI) for Small Vertical Wind...

  14. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  15. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    Complex EOF analysis; cloud motion vector winds; wind profiles; retrieval; monsoon. Proc. Indian Acad. Sci. .... The data gaps are removed using simple linear interpolation .... retrieved via standard linear regression using the two independent ...

  16. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  17. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  18. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2014-02-01

    Full Text Available In this study, large eddy simulation (LES is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS stresses: (a the Smagorinsky model; and (b the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a the actuator swept-surface model (ASSM, in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e., the actuator swept surface; and (b the actuator line model (ALM, in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e., the actuator lines. This is the first time that LES has been applied and validated for the simulation of VAWT wakes by using either the ASSM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST water channel. Different combinations of SGS models with VAWT models are studied, and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASSM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient.

  19. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  20. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  1. Georges Darrieus, inventor of vertical axis wind-turbines; Georges Darrieus, pere des eoliennes a axe vertical

    Energy Technology Data Exchange (ETDEWEB)

    Rogier, E.

    2000-10-01

    This article is a short biography of the French man Georges Darrieus (1888-1979) who invented the vertical wind turbine. G.Darrieus can be considered as the first industrial researcher in France, he was a double authority in sciences and in industry machinery. He presented more than 50 patterns and wrote about 700 scientific and technological articles.

  2. Some design aspects of high-speed vertical-axis wind turbines

    National Research Council Canada - National Science Library

    Templin, R. J; South, P

    1977-01-01

    ... (rotor height to diameter ratio, solidity, number of blades, etc.) for high-speed vertical-axis wind turbines from kilowatt to megawatt sizes and shows that very large turbines are theoretically feasible...

  3. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren R K

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved

  4. Vertical characterization of the wind mode and its effect on the wind farm profitability of Sidi Daoud - Tunisia

    International Nuclear Information System (INIS)

    Elamouri, M.; Ben Amar, F.; Trabelsi, A.

    2011-01-01

    The choice of a site and the statistical characterization of the wind speed represent the most significant factors in the process of wind park establishment. Indeed, the average value of the wind speed during one year and its temporal variation are the factors which have the greatest impact on the economic wind farm profitability. Thus, this article presents a meteorological and energetic study, in terms of the height of Sidi Daoud wind power station installed in Tunisia. From the meteorological data recorded, during the year 2004, in two places (masts 3 and 4) of the site and with heights 45, 50 and 60 m above ground level, we studied the vertical profile the wind speed both using the logarithmic law and the power law. The Raleigh distribution is selected to determine the annual characteristics of the wind and their influence on the available energy. The obtained results are then extrapolated vertically using the power law making it possible to make a comparative study between the two places in order to know the evolution of the wind speed at altitudes representing an energetic interest. The study also concerns the aerodynamic performances of the three aerogenerators with horizontal axis AE-46, AE-52 and AE-61 installed in site. From their characteristic curves, we have been able to study their energy efficiency in function of the wind speed, their use factors and the availability rate according to the height. All the numerical results illustrated in the article are obtained by a computer code developed by software MATLAB.

  5. United States Air Force Academy (USAFA) Vertical Axis Wind Turbine.

    Science.gov (United States)

    1980-09-01

    Rotors, SAND76-0131. Albuquerque: July 1977. 10. Oliver, R.C. and P.R. Nixon. "Design Procedure for Coupling Savonius and Darrieus Wind Turbines ", Air...May 17-20, 1976. -65- 16. Blackwell, B.F., R.E. Sheldahl, and L.V. Feltz. Wind Tunnel Performance Data for the Darrieus Wind Turbine with NACA 0012...a 5.8 m/s (13 mph) wind . At 100 rpm, the Darrieus turbine would be fully self-sustaining and acceleration would continue to an operating tip speed

  6. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  7. Steady and Unsteady Analysis of NACA 0018 Airfoil in Vertical-Axis Wind Turbine

    DEFF Research Database (Denmark)

    Rogowski, Krzysztof; Hansen, Martin Otto Laver; Maronski, Ryszard

    2018-01-01

    Numerical results are presented for aerodynamic unsteady and steady airfoil characteristtcs of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical model of the Darrieus-type wind turbine and the rotor operating parameters used for nurnerieal simulation are taken...

  8. One Year of Vertical Wind Profiles Measurements at a Mediterranean Coastal Site of South Italy

    DEFF Research Database (Denmark)

    Calidonna, Claudia Roberta; Gullì, Daniel; Avolio, Elenio

    2015-01-01

    To exploit wind energy both onshore and offshore in coastal area the effect of the coastal discontinuity is important. The shape of the vertical wind profiles and the related c parameter of the Weibull distribution are impacted by the atmospheric internal boundary layers developing from the coast...

  9. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first ... include several sources of both systematic and random errors. Among them cloud top height .... highly correlated with the pseudo-winds at levels between 850mb and 600mb (r ј 0:8) ...

  10. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...... that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved....

  11. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    Science.gov (United States)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  12. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available A building design of vertical axis wind turbines (VAWT was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  13. Numerical simulations of thermospheric dynamics: divergence as a proxy for vertical winds

    Directory of Open Access Journals (Sweden)

    S. L. Cooper

    2009-06-01

    Full Text Available A local scale, time dependent three-dimensional model of the neutral thermosphere was used to test the applicability of two previously published empirical relations between thermospheric vertical wind and velocity divergence, i.e., those due to Burnside et al. (1981 and Brekke (1997. The model self-consistently solves for vertical winds driven by heat and momentum deposited into the neutral atmosphere by high latitude ion convection. The Brekke condition accurately mimicked the overall "shape" of the three-dimensional model vertical wind field although, as written, it consistently overestimated the vertical wind magnitude by a factor of approximately 5/3, for the heating scenarios that we considered. This same general behavior was observed regardless of whether the forcing was static or rapidly changing with time. We discuss the likely reason for the Brekke condition overestimating the magnitude of our vertical winds, and suggest an alternative condition that should better describe vertical winds that are driven by local heating. The applicability of the Burnside condition was, by contrast, quite variable. During static heating, both the magnitude and the sign of the model vertical winds were predicted reliably at heights above those of maximum energy and momentum deposition per unit mass. However, below the thermal forcing, the Burnside condition predicted vertical winds of the wrong sign. It also introduced significant artefacts into the predicted vertical wind field when the forcing changed suddenly with time. If these results are of general applicability (which seems likely, given the way these relations are derived then the Burnside condition could usually be used safely at altitudes above hmF2. But it should be avoided below this height at all times, and even at high altitudes during periods of dynamic forcing. While the Brekke condition (or our modified version of it could likely be used in all circumstances

  14. Field test report of the Department of Energy's 100-kW vertical axis wind turbine

    Science.gov (United States)

    Nellums, R. O.

    1985-02-01

    Three second generation Darrieus type vertical axis wind turbines of approximately 120 kW capacity per unit were installed in 1980-1981. Through March 1984, over 9000 hours of operation had been accumulated, including 6600 hours of operation on the unit installed in Bushland, Texas. The turbines were heavily instrumented and have yielded a large amount of test data. Test results of this program, including aerodynamic, structural, drive train, and economic data are presented. Among the most favorable results were an aerodynamic peak performance coefficient of 0.41; fundamental structural integrity requiring few repairs and no major component replacements as of March 1984; and an average prototype fabrication cost of approximately $970 per peak kilowatt of output. A review of potential design improvements is presented.

  15. A Comparison on the Dynamics of a Floating Vertical Axis Wind Turbine on Three Different Floating Support Structures

    OpenAIRE

    Borg, Michael; Collu, Maurizio

    2014-01-01

    To increase the competitiveness of offshore wind energy in the global energy market, it is necessary to identify optimal offshore wind turbine configurations to deliver the lowest cost of energy. For deep waters where floating wind turbines are the feasible support structure option, the vertical axis wind turbine concept might prove to be one of these optimal configurations. This paper carries out a preliminary investigation into the dynamics of a vertical axis wind turbine coupled with three...

  16. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  17. Vertical Wave Impacts on Offshore Wind Turbine Inspection Platforms

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Jacobsen, Niels Gjøl

    2011-01-01

    Breaking wave impacts on a monopile at 20 m depth are computed with a VOF (Volume Of Fluid) method. The impacting waves are generated by the second-order focused wave group technique, to obtain waves that break at the position of the monopile. The subsequent impact from the vertical run-up flow...... on a horizontal inspection platform is computed for five different platform levels. The computational results show details of monopile impact such as slamming pressures from the overturning wave front and the formation of run-up flow. The results show that vertical platform impacts can occur at 20 m water depth....... The dependence of the vertical platform load to the platform level is discussed. Attention is given to the significant downward force that occur after the upward force associated with the vertical impact. The effect of the numerical resolution on the results is assessed. The position of wave overturning is found...

  18. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  19. Transient Performance of a Vertical Axis Wind Turbine

    Science.gov (United States)

    Onol, Aykut; Yesilyurt, Serhat

    2016-11-01

    A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).

  20. Teaching Geophysics with a Vertical-Component Seismometer

    Science.gov (United States)

    van Wijk, Kasper; Channel, Ted; Viskupic, Karen; Smith, Martin L.

    2013-12-01

    Earthquakes are some of the more dramatic expressions of the dynamics of our planet. The sudden release of stress built up slowly by tectonic or volcanic processes often has far-reaching consequences, and can be measured (in classrooms) around the world. This is one reason why designing and building seismometers has been a popular activity, , 2 and why different versions of "Seismometer in Schools" projects thrive in the United States, Australia, and Europe. We present a cheap, robust, and easy-to-build seismometer—called the TC1 —to measure seismic displacements in the vertical direction. Its components are easy to obtain and assemble, yet the resulting instrument is accurate enough to record earthquakes from around the globe. The parts list and building instructions of the TC1 seismometer are freely available online. Alternatively, a complete kit can be purchased for around US300. Assembling the system naturally introduces students to a number of concepts in physics and engineering, while upon completion seismic recordings trigger discussions about the dynamics and internal structure of the Earth. The discussions are fostered by service learning and shared in the network of TC1s called the Z-NET.

  1. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  2. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  3. Potential of carbon mitigation by vertical axis wind turbines in urban regions

    International Nuclear Information System (INIS)

    Pope, K.; Naterer, G.F.

    2009-01-01

    The potential of greenhouse gas reduction with vertical axis wind turbines (VAWTs) in urban centers is examined in this paper. Four different wind turbine designs are compared, in terms of greenhouse gas reduction and specific energy distribution of the wind energy resource. A VAWT can potentially improve power generation capability in turbulent regions, where wind conditions can be represented by an exponential function. Results are presented to demonstrate that a VAWT covering one square metre, installed in 50% of Toronto residential dwellings, could mitigate between 29,193 and 138,741 tonnes of CO 2 per year. (author)

  4. CFD modeling of a vertical-axis wind turbine for efficiency improvement and climate change mitigation

    International Nuclear Information System (INIS)

    Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.

    2009-01-01

    Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)

  5. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Ashrafi, Z. Najafian; Sedaghat, Ahmad

    2017-01-01

    Highlights: • A review on CFD simulation technique for Darrieus wind turbines is provided. • Recommendations and guidelines toward reliable and accurate simulations are presented. • Different progresses in CFD simulation of Darrieus wind turbines are addressed. - Abstract: The global warming threats, the presence of policies on support of renewable energies, and the desire for clean smart cities are the major drives for most recent researches on developing small wind turbines in urban environments. VAWTs (vertical axis wind turbines) are most appealing for energy harvesting in the urban environment. This is attributed due to structural simplicity, wind direction independency, no yaw mechanism required, withstand high turbulence winds, cost effectiveness, easier maintenance, and lower noise emission of VAWTs. This paper reviews recent published works on CFD (computational fluid dynamic) simulations of Darrieus VAWTs. Recommendations and guidelines are presented for turbulence modeling, spatial and temporal discretization, numerical schemes and algorithms, and computational domain size. The operating and geometrical parameters such as tip speed ratio, wind speed, solidity, blade number and blade shapes are fully investigated. The purpose is to address different progresses in simulations areas such as blade profile modification and optimization, wind turbine performance augmentation using guide vanes, wind turbine wake interaction in wind farms, wind turbine aerodynamic noise reduction, dynamic stall control, self-starting characteristics, and effects of unsteady and skewed wind conditions.

  6. Aerodynamics of small-scale vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  7. Vertical-axis wind turbine: a modified design

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, S A; Probert, S D

    1987-01-01

    Parts of each Bach-type blade of a conventional Savonius rotor have been replaced by four flaps. These flaps open when moving into the wind, so the drag on the blade is then reduced. Thus approximately a 35% increase in average static torque has been achieved relative to that obtained with the original rotor of similar geometry, both experiencing an undisturbed wind of 6.67 ms/sup -1/. The torque developed over the whole rotation is positive, which is not the case with the conventional rotor.

  8. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    Science.gov (United States)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  9. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  10. Dynamic Calculation Design of Vertical Wind Turbine | Okhueleigbe ...

    African Journals Online (AJOL)

    The Nigeria power system is facing shortage of power due to poor generation. The country is now trying to shift to the utilization of renewable energy in the production of electrical power so as to have a mix energy generation system. One of the renewable energies is the kinetic energy of wind. For this energy to be properly ...

  11. Vertical components of surface vibrations induced by mining tremors in the Upper Silesian Coalfield, Poland

    International Nuclear Information System (INIS)

    Maciag, E.; Kowalski, W.

    1997-01-01

    Characteristics of vertical components of surface vibration is epicentral zones due to mining tremors in the Upper Silesian Coalfield (USC) are analysed. Both maximum acceleration amplitudes and dominant frequencies of vertical (Z) and horizontal (N-S and E-W) components of vibrations are compared. The role played by the vertical components of vibrations in estimates of hazard for surface structures excited by mining tremors is discussed. 8 refs., 7 figs

  12. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  13. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  14. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  15. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Borg, Michael; Collu, M.

    2015-01-01

    The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency......-domain characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...

  16. Design of rotor blade for vertical axis wind turbine using double aerofoil

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, P.D.; Ratkovich, N.; Kirkegaard, P.H.; Nielsen, Soeren R.K. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)

    2012-07-01

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use,because they generate less noise, have bird free turbines and lower cost. There are few vertical axis wind turbines design with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design. In this current work, two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK) software. Aerofoils used in this work are selected from standard aerofoil shapes. (Author)

  17. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    Science.gov (United States)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  18. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    Science.gov (United States)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  19. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model

  20. INNOVATIVE SOLUTIONS FOR SMALL SCALE VERTICAL AXIS WIND TURBINES USED IN HARBOURS AND SHORE AREAS

    Directory of Open Access Journals (Sweden)

    IONESCU Raluca Dora

    2014-09-01

    Full Text Available The paper aims to analyse the wind turbine solutions implemented in harbours and on shore areas. Also a thorough study of the blade design solutions for small power Vertical axis wind turbines (VAWTs has been conducted, with their advantages and disadvantages, in order to find the best solution that minimises the loads and helps with the self-starting capabilities of the wind turbine. First are presented all the solutions, next are discussed several research results for each solution and, in the end, a combination of solutions is chosen for our new small power VAWT with a pre-dimensioning analysis.

  1. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Ion NILA

    2012-06-01

    Full Text Available This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the natural frequency while wind turbine mode shapes have been utilized because of their accuracy and faster solution. In this problem 12 modes of structure have been extracted.

  2. Performance characteristics of a Vertical Axis Wind Turbine (VAWT) under transient conditions

    OpenAIRE

    Colley, Gareth; Mishra, Rakesh

    2011-01-01

    The present work investigates the performance characteristics of a novel Vertical Axis Wind Turbine (VAWT) for use in the urban environment. Here the performance of the wind turbine has been analyzed experimentally using a full scale prototype measuring 2.0m diameter and 1.0m in height. The turbine was located at the exit of a 0.6m x 0.6m wind tunnel section and was subjected to a jet flow. The performance output from the turbine has been obtained using a torque transducer unit which provides...

  3. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  4. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  5. Design and Aero-elastic Simulation of a 5MW Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    2013-01-01

    This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines......-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part...... of the European project DeepWind (2010-2014), which has been financed by the European Union (FP7-Future Emerging Technologies)....

  6. Numerical results in a vertical wind axis turbine with relative rotating blades

    Energy Technology Data Exchange (ETDEWEB)

    Bayeul-Laine, Annie-Claude; Dockter, Aurore; Simonet, Sophie; Bois, Gerard [Arts et Metiers PARISTECH (France)

    2011-07-01

    The use of wind energy to produce electricity through wind turbines has spread world-wide. The quantity of electricity produced is affected by numerous factors such as wind speed and direction and turbine design; the aim of this paper is to assess the influence of different blades on the performance of a turbine. This study was performed on a turbine in which the blades have a rotating movement, each around its own axis and around the turbine's axis. Unsteady simulations were carried out with several blade stagger angles and one wind speed and 2 different blade geometries were used for 4 rotational speeds. Results showed that the studied turbine gave better performance than vertical axis wind turbines and that blade sketch, blade speed ratios, and blade stagger angle were important influences on the performance. This study showed that this kind of turbine has the potential to achieve good performance but that further work needs to be done.

  7. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a vertical projection with geometric seam correction.

  8. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-01-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  9. Developments in blade shape design for a Darrieus vertical axis wind turbine

    Science.gov (United States)

    Ashwill, T. D.; Leonard, T. M.

    1986-09-01

    A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a buildable blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.

  10. Characterization of aerodynamic performance of vertical axis wind turbines : impact of operational parameters

    NARCIS (Netherlands)

    Rezaeiha, Abdolrahim; Montazeri, Hamid; Blocken, Bert

    2018-01-01

    Vertical axis wind turbines (VAWTs) have received growing interest for off-shore application and in the urban environments mainly due to their omni-directional capability, scalability, robustness, low noise and costs. However, their aerodynamic performance is still not comparable with their

  11. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Recently the interest in developing vertical axis wind turbines (VAWTs) for offshore application has been increasing. Among the aerodynamic models of VAWTs, double multi-streamtube (DMST) and actuator cylinder (AC) models are two favorable methods for fully coupled modeling and dynamic analysis...

  12. Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Montazeri, H.; Blocken, B.J.E.

    2017-01-01

    The central shaft is an inseparable part of a vertical axis wind turbine (VAWT). For small turbines such as those typically used in urban environments, the shaft could operate in the subcritical regime, resulting in large drag and considerable aerodynamic power loss. The current study aims to (i)

  13. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  14. Towards accurate performance prediction of a vertical axis wind turbine operating at different tip speed ratios

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Accurate prediction of the performance of a vertical-axis wind turbine (VAWT) using CFD simulation requires the employment of a sufficiently fine azimuthal increment (dθ) combined with a mesh size at which essential flow characteristics can be accurately resolved. Furthermore, the domain size needs

  15. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...

  16. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flap

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos Simao; Gaunaa, Mac

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (10-20 MW)floating ofshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modied linear derivation of the Actuator...

  17. Visualization by PIV of dynamic stall on a vertical axis wind turbine

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Kuik, van G.A.M.; Bussel, van G.J.W.; Scarano, F.

    2009-01-01

    The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle ¿ of the

  18. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  19. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    Science.gov (United States)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  20. Effects of asymmetric vertical disruptions on ITER components

    International Nuclear Information System (INIS)

    Albanese, R.; Carpentieri, B.; Cavinato, M.; Minucci, S.; Palmaccio, R.; Portone, A.; Rubinacci, G.; Testoni, P.; Ventre, S.; Villone, F.

    2015-01-01

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other

  1. Effects of asymmetric vertical disruptions on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Carpentieri, B. [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen (Netherlands); Cavinato, M. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Minucci, S. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Palmaccio, R. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy); Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Rubinacci, G. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Ventre, S.; Villone, F. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy)

    2015-05-15

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other.

  2. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Krysiński Tomasz

    2015-03-01

    Full Text Available The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  3. Novel Design for a Wind Tunnel Vertical Gust Generator

    Science.gov (United States)

    Smith, Zachary; Jones, Anya; Hrynuk, John

    2017-11-01

    Gust response of MAVs is a fundamental problem for flight stability and control of such aircraft. Current knowledge about the gust response of these vehicles is limited and gust interaction often results in damage to vehicles. Studying isolated gust effects on simple airfoil models in a controlled environment is a necessity for the further development of MAV control laws. Gusts have typically been generated by oscillating an airfoil causing the shedding of vortices to propagate through the system. While effective, this method provides only a transient up and downdraft behavior with small changes in angle of attack, not suitable for studying MAV scale gust interactions. To study these interactions, a gust that creates a change in flow angle larger than the static stall angle of typical airfoils was developed. This work was done in a low speed, low turbulence wind tunnel at base operating speed of 1.5 m/s, generating a Reynolds number of 12,000 on a NACA 0012 wing. It describes the fundamental mechanisms of how this gust was generated and the results obtained from the gust generator. The gust, which can alter the flow field in less than 1 second, was characterized using PIV and the interactions with a stationary airfoil at several angles of attack are evaluated.

  4. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    Science.gov (United States)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  5. A Numerical Study on a Vertical-Axis Wind Turbine with Inclined Arms

    Directory of Open Access Journals (Sweden)

    Agostino De Marco

    2014-01-01

    Full Text Available This work focuses on a particular type of vertical-axis wind turbine, in which a number of inclined arms with airfoil-shaped cross-sections are mounted to connect the principal blades to their hub. While the majority of the known studies on vertical-axis turbines is devoted to the role of principal blades, in most of the cases without taking into account other parts of the wind turbine, the objective of this work is to investigate the effect of uncommon arm geometries, such as the inclined arms. The inclined arms are known to have a potentially beneficial role in the power extraction from the wind current but, due to the complexity of the phenomena, the investigation on aerodynamics of this type of turbine is often impossible through analytical models, such as blade-element momentum theory. It turns out that adequate studies can only be carried out by wind tunnel experiments or CFD simulations. This work presents a methodical CFD study on how inclined arms can be used on a selected wind turbine configuration to harvest additional power from the wind. The turbine configuration, geometry, and some fundamental definitions are introduced first. Then an in-depth CFD analysis is presented and discussed.

  6. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    Science.gov (United States)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  7. Vertical governance change and product differentiation under decreasing component costs

    NARCIS (Netherlands)

    Vermeulen, B.; Huisman, K.J.M.; Kok, de A.G.

    In deciding on whether and when to outsource component production, firms should consider the trade-off between total production costs and the ability to horizontally differentiate products. We study the outsourcing decision in a duopoly under decreasing but uncertain market rates for components,

  8. Vertical governance change and product differentiation under decreasing component costs

    NARCIS (Netherlands)

    Vermeulen, B.; Huisman, K.J.M.; Kok, A.G. de

    2015-01-01

    In deciding on whether and when to outsource component production, firms should consider the trade-off between total production costs and the ability to horizontally differentiate products. We study the outsourcing decision in a duopoly under decreasing but uncertain market rates for components,

  9. Vertical Distribution of Structural Components in Corn Stover

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2014-11-01

    Full Text Available In the United States, corn (Zea mays L. stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg−1, but with an alkalinity measure of 0.83 g MJ−1, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha−1, but it would be only 1000 L ha−1 if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  10. Vertical distribution of structural components in corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  11. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  12. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Furukawa, Kazuma; Yamamoto, Masayuki

    2015-01-01

    Small wind turbine performance and safety standard for straight-bladed Vertical Axis Wind Turbine (VAWT) have not been developed in the world because of the lack of fundament experimental data. This paper focuses on the evaluation of aerodynamic forces depending on several numbers of blades in wind tunnel experiment. In the present study, the test airfoil of blade is symmetry airfoil of NACA 0021 and the number of blades is from two to five. Pressure acting on the surface of rotor blade is measured during rotation by multiport pressure devices and transmitted to a stationary system through wireless LAN. And then, the aerodynamic forces (tangential force, normal force et al.) are discussed as a function of azimuth angle, achieving a quantitative analysis of the effect of numbers of blades. Finally, the loads are compared with the experimental data of six-component balance. As a result, it is clarified that the power coefficient decreases with the increase of numbers of blades. Furthermore, the power which is absorbed from wind by wind turbine mainly depends on upstream region of azimuth angle of θ = 0°∼180°. In this way, these results are very important for developing the simple design equations and applications for straight-bladed VAWT. - Highlights: • Aerodynamic forces are measured by not only torque meter but also six-component balance. • The pressure distribution on the surface of rotor blade is directly measured by multiport pressure devices. • The power coefficient decreases with the increase of numbers of blades. • The fluctuation amplitudes from six-component balance show larger value than the results of pressure distribution.

  13. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  14. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    Science.gov (United States)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  15. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  16. Structure design and experimental appraisal of the drag force type vertical axis wind turbine

    International Nuclear Information System (INIS)

    Kim, Dong Keon; Keum, Jong Yoon; Yoon, Soon Hyun

    2006-01-01

    Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pitot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades(α) and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, α=60 .deg. and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of Ω=0.33, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed

  17. CFD ANALYSIS OF THE AIR FLOW AROUND THE BLADES OF THE VERTICAL AXIS WIND TURBINE

    Directory of Open Access Journals (Sweden)

    Muhammed Musab Gavgali

    2017-06-01

    Full Text Available The paper presents the results of calculations of flow around the vertical axis wind turbine. Three-dimensional calculations were performed using ANSYS Fluent. They were made at steady-state conditions for a wind speed of 3 m/s for 4 angular settings of the three-bladed rotor. The purpose of the calculations was to determine the values of the aerodynamic forces acting on the individual blades and to present the pressure contours on the surface of turbine rotor blades. The calculations were made for 4 rotor angular settings.

  18. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    Science.gov (United States)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  19. Vertical gust response prediction of cable-stayed bridges in yawed wind; Shachokyo no shafu ni yoru enchoku gust oto no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S.; Nagamachi, K.; Kawai, Y. [Kawasaki Steel Corp., Tokyo (Japan); Kimura, K.; Fujino, Y. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Tanaka, H.

    1996-03-01

    This paper outlines the vertical gust response analysis method in a yawed wind, gives an analytic example, and compares the experimental result with the analytic result to investigate the application of an analysis method and the validity of assumption and approximation. The vertical gust response to two cable-stayed bridges under construction in a yawed wind was predicted by applying assumption and approximation to the gust response prediction method in a yawed wind with the cantilever model having a plate cross-section manipulated. In this case, the wind velocity component perpendicular to the leading edge was defined as an effective wind velocity, and a bridge axis and the component perpendicular to a bridge axis were separately calculated in response. Moreover, some aerodynamic coefficients of a bridge girder cross-section were approximately obtained from the characteristics of the flat blades with same aspect ratio. The obtained analytic result was compared with the wind tunnel test result based on all bridge models. The result showed that the former almost coincides with the latter, the assumption and approximation of this time are verified in validity, and this analysis method can be used for cable-stayed bridges under construction. 10 refs., 7 figs., 2 tabs.

  20. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  1. A novel vertical-axis wind turbine for distributed and utility deployment

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.Y. [Inha Univ., Incheon (Korea, Republic of); Lee, S. [Inha Univ., Incheon (Korea, Republic of)]|[KR Wind Energy Research Inst., Incheon (Korea, Republic of); Sabourin, T.; Park, K. [KR Windpower Inc., (United States)

    2008-07-01

    The rapid growth in the wind power industry can be attributed to energy cost saving, power reliability, grid support, and environmental concerns. Wind turbines should also comply with community noise and aesthetic requirements as well as meet a strong need for high capacity. Wind Turbine Generator Systems are classified as either horizontal axis wind turbine (HAWT) or vertical axis wind turbine (VAWT) depending on whether their axis of rotation is parallel or perpendicular to the ground. The average electric power produced by the wind turbine is proportional to the efficiency of the rotor, air density, projected area of the turbine, and cube of wind speed. The capacity factor should be increased to guarantee the economics of the turbine via increase in the rotor size or the turbine efficiency. The low rotational speed of VAWT rotors suggests that the machine will be quieter than the high-rotational speed of HAWTs, thereby being potentially suitable for applications closer to population centres. The slow rotating machine may also be considered to be visually more aesthetic. This paper presented the measured performance of a small-scale VAWT rated as 1 kW which has a tail consisting of a stabilizer and a rudder. It was tested for its electric power produced at specified wind conditions in an open-type wind tunnel. In order to eliminate the inevitable blockage effect by the size of turbine, the flow deceleration effect of the incoming air to the turbine was analyzed through model testing and numerical simulation and implemented to the proto-type testing. The turbine and its furling tail was shown to be safe. 9 refs., 1 tab., 10 figs.

  2. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic...... computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down...... and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed...

  3. Double-multiple streamtube model for studying vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  4. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2007-12-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  5. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2007-01-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  6. Noise Emission of a 200 kW Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Erik Möllerström

    2015-12-01

    Full Text Available The noise emission from a vertical axis wind turbine (VAWT has been investigated. A noise measurement campaign on a 200 kW straight-bladed VAWT has been conducted, and the result has been compared to a semi-empirical model for turbulent-boundary-layer trailing edge (TBL-TE noise. The noise emission from the wind turbine was measured, at wind speed 8 m/s, 10 m above ground, to 96.2 dBA. At this wind speed, the turbine was stalling as it was run at a tip speed lower than optimal due to constructional constraints. The noise emission at a wind speed of 6 m/s, 10 m above ground was measured while operating at optimum tip speed and was found to be 94.1 dBA. A comparison with similar size horizontal axis wind turbines (HAWTs indicates a noise emission at the absolute bottom of the range. Furthermore, it is clear from the analysis that the turbulent-boundary-layer trailing-edge noise, as modeled here, is much lower than the measured levels, which suggests that other mechanisms are likely to be important, such as inflow turbulence.

  7. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    Science.gov (United States)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  8. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Senior Member of Technical Staff, Analytical Structural Dynamics Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Owens, B C; 2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Principal Member of Technical Staff, Wind Energy Technologies Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Griffith, D T

    2014-01-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs

  9. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    Science.gov (United States)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  10. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    Science.gov (United States)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  11. Proceedings of the Vertical-Axis Wind Turbine Technology Workshop, Albuquerque, New Mexico, May 18--20, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    Separate abstracts are included for twenty-nine of the thirty papers presented concerning vertical axis wind turbines. One paper has previously been abstracted and included in the ERDA Energy Data Base and Energy Research Abstracts journal.

  12. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  13. The 5 MW DeepWind floating offshore vertical wind turbine concept design - status and perspective

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Kragh, Knud Abildgaard

    2014-01-01

    , and a generator design tool “NESSI”. HAWC2 has been adopted for VAWT rotors by DTU Wind Energy in the project and is explained on its technical capability to embrace integrated modeling of the different physical aspects. NESSI, developed at AAU (Aalborg University) is presented with focus on key elements...... in generator design. The paper presents new developments in the current design of a novel rotor shape with overspeed control. Rotor performance, design structural key figures and upscaling potential are reported. New results implemented on permanent magnets generator and - bearing technology show...

  14. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  15. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. THE CHARACTERISTICS OF THE OPERATING PARAMETERS OF THE VERTICAL AXIS WIND TURBINE FOR THE SELECTED WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2017-03-01

    Full Text Available The article presents the results of examining a wind turbine on the vertical axis of rotation. The study was conducted in an open circuit wind tunnel Gunt HM 170 in the laboratory of the Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems in Lublin University of Technology. The subject of research was a rotor based on the patent PL 219985. The research object in the form of rotor consists of blades capable of altering the surface of the active area (receiving kinetic energy of the wind. The study was performed on appropriately scaled and geometrically similar models with maintaining, relevant to the type of research, the criterion numbers. Research objects in the form of rotors with different angles of divergence of blades were made using a 3D powder printer ZPrinter® 450. The results of the research conducted were carried out at the selected flow velocity of 6.5 m/s for three angles of divergence, ie. 30°, 60°, and 90° at variable rotational speed. The applied research station allows braking of the turbine to the required speed, recording velocity and torque, which allows to obtain characteristics of torque and power as a function of rotor speed.

  17. The impact of inertial forces on morphing wind turbine blade in vertical axis configuration

    International Nuclear Information System (INIS)

    Butbul, Jonathan; MacPhee, David; Beyene, Asfaw

    2015-01-01

    Highlights: • A novel flexible VAWT has been experimentally tested alongside numerically simulations. • Using FEA and CFD, direction of blade bending was predicted from inertial and aerodynamic forces. • High-speed camera footage has been used to validate the model. • The flexible VAWT was found to self-start in the majority of tests, while the rigid one did not. • It is suggested that flexible VAWTs can have improved performance in part-load applications. - Abstract: A novel flexible blade concept with the ability to morph and geometrically adapt to changing flow conditions has been proposed to improve part-load performance of horizontal-axis wind turbines. The extension of these benefits to a vertical axis wind turbine would make wind technology a more competitive player in the energy market. Both flexible and rigid wind turbine rotor blades for vertical axis application were modeled, designed, manufactured and tested. Their performances were tested in a low speed wind tunnel. The predicted magnitude and direction of blade morph was validated using a high speed camera as well as finite element analysis. The comparative results of straight rigid and straight morphing blades show that the coefficient of performance greatly depends on the tip speed ratio. Overall, the morphing blade has better performance at low RPMs, but the rigid blade performed better at high RPMs. It was observed that the flexible blade self-started in the majority of the experiments. At high RPM, the centrifugal force overwhelmed the lift force, bending the flexible blade out of phase in an undesired direction increasing drag and therefore reducing the coefficient of performance

  18. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  19. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    OpenAIRE

    Hesam Mirzaei Rafsanjani; John Dalsgaard Sørensen

    2015-01-01

    Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves an...

  20. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    Floating vertical axis wind turbines (VAWTs) are promising solutions for exploiting the wind energy resource in deep waters due to their potential cost-of-energy reduction. The number of blades is one of the main concerns when designing a VAWT for offshore application. In this paper, the effect...

  1. A short review of recent research activities for characterization of aerodynamic optimization of vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    There is a growing interest in wind energy harvesting in the built environment. Vertical axis wind turbines (VAWT) seem to represent an ideal candidate for this purpose due to their omni-directional operation. However, as a result of a comparatively small amount of research on VAWTs during the last

  2. Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades

    International Nuclear Information System (INIS)

    Wang, Ying; Sun, Xiaojing; Dong, Xiaohua; Zhu, Bing; Huang, Diangui; Zheng, Zhongquan

    2016-01-01

    Highlights: • A novel vertical axis wind turbine with deformed blades is designed. • The universal tendency of power characteristics for simulated turbine is found. • The whole flow field of different turbines from the aspect of vortex is analyzed. • The tracking analysis of vortex at different positions for a blade is conducted. • The aerodynamic performance of turbine with three deformed blades is analyzed. - Abstract: In this paper, a novel Darrieus vertical axis wind turbine was designed whose blade can be deformed automatically into a desired geometry and thus achieve a better aerodynamic performance. A series of numerical simulations were conducted by utilizing the United Computational Fluid Dynamics code. Firstly, analysis and comparison of the performance of undeformed and deformed blades for the rotors having different blades were conducted. Then, the power characteristics of each simulated turbine were summarized and a universal tendency was found. Secondly, investigation on the effect of blade number and solidity on the power performance of Darrieus vertical axis wind turbine with deformable and undeformable blades was carried out. The results indicated that compared to conventional turbines with same solidity, the maximum percentage increase in power coefficient that the low solidity turbine with three deformable blades can achieve is about 14.56%. When solidity is high and also turbine operates at low tip speed ratio of less than the optimum value, the maximum power coefficient increase for the turbines with two and four deformable blades are 7.51% and 8.07%, respectively. However, beyond the optimal tip speed ratio, the power improvement of the turbine using the deformable blades seems not significant and even slightly worse than the conventional turbines. The last section studied the transient behavior of vortex and turbulent flow structures around the deformable rotor blade to explore the physical mechanism of improving aerodynamic

  3. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    Science.gov (United States)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  4. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  5. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    Science.gov (United States)

    Klimas, P. C.; Sladky, J. F., Jr.

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  6. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    Science.gov (United States)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  7. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    Science.gov (United States)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  8. Experimental and Computational Investigations of Vertical Axis Wind Turbine Enclosed with Flanged Diffuser

    Science.gov (United States)

    Surya Raj, G.; Sangeetha, N.; Prince, M.

    2018-02-01

    Generation of wind energy is a must to meet out additional demand. To meet out the additional demand several long term plans were considered now being taken up for generation of energy for the fast developing industries. Detailed researches were since taken up to improve the efficiency of such vertical axis wind turbine (VAWT). In this work VAWT with diffuser and without diffuser arrangement are considered for experimental and analysis. Five diffusers were since provided around its blades of VAWT which will be placed inside a pentagon shaped fabricated structure. In this power output of the diffuser based VAWT arrangement were studied in both numerical and experimental methods and related with that of a bared VAWT. Finally, it was found that the output power of diffuser based VAWT generates approximately two times than that of bared VAWT.

  9. The development of a prototype facility for a large diameter vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    A proposal is made in this document for the design, construction, assembly and test of a demonstration wind turbine generator system. The specific objective of the program will be to demonstrate that the proposed system satisfies the need for cheap power generation at those remote meteorological stations which currently rely exclusively on fossil fuel that must be transported to the site at great cost. It intends to demonstrate that a large vertical axis wind turbine system is within the current state-of-art, is practical and is economically attractive. The program will include a conceptual design phase, a detail design phase, a construction and assembly phase at a selected site and a demonstration phase during which data will be gathered on operation at this large scale. A theory of operation of the proposed design is included. 4 refs., 3 figs.

  10. Aerodynamic characteristics of an oscillating airfoil. [For Vertical Axis Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Wickens, R H

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted. 13 references.

  11. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    Science.gov (United States)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  12. Study of Vertical Axis Wind Turbine for Energy Harvester in A Fishing Boat

    Science.gov (United States)

    Budi, E. M.; Banjarnahor, D. A.; Hanifan, M.

    2017-07-01

    The wind speed in the southern beach of West Java Indonesia is quite promising for wind energy harvesting. A field survey reported that the wind speed reached 10 m/s, while the average recorded in a year is about 4.7 m/s. In this study, two vertical axis wind turbines (VAWT) were compared to be used in that area through calculation as well as experiments. The experiments measured that the turbines can produce about 7.82W and 2.33W of electricity respectively. These experiments are compared with theoretical calculation to obtain the performance of both turbines used. The coefficient of performance (cp) experimentally is 0.09 for Turbine 1 (hybrid Savonius-Darrieus rotor) and 0.14 for Turbine 2 (Savonius rotor). While, rotor’s mechanical performance Cpr, obtained theoritically through calculation, is 0.36 for Turbine 1 and 0.12 for Turbine 2. These results are analysed from mechanical and electrical view.

  13. Fish schooling as a basis for vertical axis wind turbine farm design.

    Science.gov (United States)

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  14. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  15. Fish schooling as a basis for vertical axis wind turbine farm design

    International Nuclear Information System (INIS)

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-01-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  16. Numerical and Computational Analysis of a New Vertical Axis Wind Turbine, Named KIONAS

    Directory of Open Access Journals (Sweden)

    Eleni Douvi

    2017-01-01

    Full Text Available This paper concentrates on a new configuration for a wind turbine, named KIONAS. The main purpose is to determine the performance and aerodynamic behavior of KIONAS, which is a vertical axis wind turbine with a stator over the rotor and a special feature in that it can consist of several stages. Notably, the stator is shaped in such a way that it increases the velocity of the air impacting the rotor blades. Moreover, each stage’s performance can be increased with the increase of the total number of stages. The effects of wind velocity, the various numbers of inclined rotor blades, the rotor diameter, the stator’s shape and the number of stages on the performance of KIONAS were studied. A FORTRAN code was developed in order to predict the power in several cases by solving the equations of continuity and momentum. Subsequently, further knowledge on the flow field was obtained by using a commercial Computational Fluid Dynamics code. Based on the results, it can be concluded that higher wind velocities and a greater number of blades produce more power. Furthermore, higher performance was found for a stator with curved guide vanes and for a KIONAS configuration with more stages.

  17. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    Science.gov (United States)

    Sutherland, Herbert J.; Stephenson, William A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.

  18. A method of calculation on the airloading of vertical axis wind turbine

    Science.gov (United States)

    Azuma, A.; Kimura, S.

    A new method of analyzing the aerodynamic characteristics of the Darrieus Vertical-Axis Wind Turbine (VAWT) by applying the local circulation method is described. The validity of this method is confirmed by analyzing the air load acting on a curved blade. The azimuthwise variation of spanwise airloading, torque, and longitudinal forces are accurately calculated for a variety of operational conditions. The results are found to be in good agreement with experimental ones obtained elsewhere. It is concluded that the present approach can calculate the aerodynamic characteristics of the VAWT with much less computational time than that used by the free vortex model.

  19. Kinematics of a vertical axis wind turbine with a variable pitch angle

    Science.gov (United States)

    Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel

    2018-01-01

    A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.

  20. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  1. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Science.gov (United States)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  2. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, J.L.; Guenard, V. [LSEET, CNRS/Univ. de Toulon, La Garde (France); Benech, B.; Campistron, B. [CRA/LA, CNRS/Obs. Midi-Pyrenees, Campistrous (France); Drobinski, P. [IPSL/SA, CNRS/Univ. de Paris VI, Paris (France)

    2004-07-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhone-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhone-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (mesoscale alpine program) in autumn 1999, and ESCOMPTE (Experience sur Site pour COntraindre les Modeles de Pollution atmospheriques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhone valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of ''flow around'' and ''flow over'' mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with

  3. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2012-07-01

    In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.

  4. Principal component structure and sport-specific differences in the running one-leg vertical jump.

    Science.gov (United States)

    Laffaye, G; Bardy, B G; Durey, A

    2007-05-01

    The aim of this study is to identify the kinetic principal components involved in one-leg running vertical jumps, as well as the potential differences between specialists from different sports. The sample was composed of 25 regional skilled athletes who play different jumping sports (volleyball players, handball players, basketball players, high jumpers and novices), who performed a running one-leg jump. A principal component analysis was performed on the data obtained from the 200 tested jumps in order to identify the principal components summarizing the six variables extracted from the force-time curve. Two principal components including six variables accounted for 78 % of the variance in jump height. Running one-leg vertical jump performance was predicted by a temporal component (that brings together impulse time, eccentric time and vertical displacement of the center of mass) and a force component (who brings together relative peak of force and power, and rate of force development). A comparison made among athletes revealed a temporal-prevailing profile for volleyball players, and a force-dominant profile for Fosbury high jumpers. Novices showed an ineffective utilization of the force component, while handball and basketball players showed heterogeneous and neutral component profiles. Participants will use a jumping strategy in which variables related to either the magnitude or timing of force production will be closely coupled; athletes from different sporting backgrounds will use a jumping strategy that reflects the inherent demands of their chosen sport.

  5. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    Science.gov (United States)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot

  6. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  7. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  8. The effect of vertical earthquake component on the uplift of the nuclear reactor building

    International Nuclear Information System (INIS)

    Kobayashi, Toshio

    1986-01-01

    During a strong earthquake, the base mat of a nuclear reactor building may be lifted partially by the response overturning moment. And it causes geometrical nonlinear interaction between the base mat and rock foundation beneath it. In order to avoid this uplift phenomena, the base mat and/or plan of the building is enlarged in some cases. These special design need more cost and/or time in construction. In the evaluation of the uplift phenomena, a parameter ''η'' named ''contact ratio'' is used defined as the ratio of compression stress zone area of base mat for total area of base mat. Usually this contact ratio is calculated under the combination of the maximum overturning moment obtained by the linear earthquake response analysis and the normal force by the gravity considering the effect of the vertical earthquake component. In this report, the effect of vertical earthquake component for the uplift phenomena is studied and it concludes that the vertical earthquake component gives little influence on the contact ratio. In order to obtain more reasonable contact retio, the nonlinear rocking analysis subjected to horizontal and vertical earthquake motions simultaneously is proposed in this report. As the second best method, the combination of the maximum overturning moment obtained by linear analysis and the normal force by only the gravity without the vertical earthquake effect is proposed. (author)

  9. Offshore Wind Power Plant Technology Catalogue - Components of wind power plants, AC collection systems and HVDC systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Antonios Cutululis, Nicolaos

    2017-01-01

    Traditionally, Offshore Wind Power Plants (OWPPs) are connected through many com-ponents as shown in the figure 1. An OWPP consists of controllable, variable speed Wind Turbines (WTs). These WTs are connected through Medium Voltage (MV) sub-marine cables typically at voltage level of upto 33-66 k...... for the cables as well reduce the power losses through them....

  10. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Buffin, S; Caprace, D-G; Winckelmans, G; Bricteux, L; Zeoli, S

    2017-01-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed. (paper)

  11. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  12. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  13. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    Science.gov (United States)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  14. Aerodynamics and Motion Performance of the H-Type Floating Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ying Guo

    2018-02-01

    Full Text Available Aerodynamics and motion performance of the floating vertical wind turbine (VAWT were studied in this paper, where the wind turbine was H-type and the floating foundation was truss spar type. Based on the double-multiple-stream-tube theory, the formulae were deduced to calculate the aerodynamic loads acting on the wind turbine considering the motions of the floating foundation. The surge-heave-pitch nonlinear coupling equations of the H-type floating VAWT were established. Aerodynamics and motion performance of a 5 MW H-type floating VAWT was studied, and the effect of the floating foundation motions on the aerodynamic loads was analyzed. It is shown that the motions of the floating foundation on the aerodynamics cannot be ignored. The motion of the H-type floating VAWT was also compared with that of the Φ-type floating VAWT: they have the same floating foundation, rated output power, mooring system and total displacement. The results show that the H-type floating VAWT has better motion performance, and the mean values of surge, heave and pitch of the H-type floating VAWT are much smaller comparing with the Φ-type floating VAWT.

  15. A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2016-07-01

    Full Text Available This paper presents a review of over a decade of research on Vertical Axis Wind Turbines (VAWTs conducted at Uppsala University. The paper presents, among others, an overview of the 200 kW VAWT located in Falkenberg, Sweden, as well as a description of the work done on the 12 kW prototype VAWT in Marsta, Sweden. Several key aspects have been tested and successfully demonstrated at our two experimental research sites. The effort of the VAWT research has been aimed at developing a robust large scale VAWT technology based on an electrical control system with a direct driven energy converter. This approach allows for a simplification where most or all of the control of the turbines can be managed by the electrical converter system, reducing investment cost and need for maintenance. The concept features an H-rotor that is omnidirectional in regards to wind direction, meaning that it can extract energy from all wind directions without the need for a yaw system. The turbine is connected to a direct driven permanent magnet synchronous generator (PMSG, located at ground level, that is specifically developed to control and extract power from the turbine. The research is ongoing and aims for a multi-megawatt VAWT in the near future.

  16. Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Ting Rui Wen

    2018-03-01

    Full Text Available The applications of floating vertical-axis wind turbines (VAWTs in deep water have been proposed and studied by several researchers recently. However, the feasibility of deploying a floating VAWT at a moderate water depth has not yet been studied. In this paper, this feasibility is thoroughly addressed by comparing the dynamic responses of spar-type VAWTs in deep water and moderate water depth. A short spar VAWT supporting a 5 MW Darrieus rotor at moderate water depth is proposed by following the deep spar concept in deep water. A fully coupled simulation tool, SIMO-RIFLEX-DMS code, is utilized to carry out time domain simulations under turbulent wind and irregular waves. Dynamic responses of the short spar and deep spar VAWTs are analyzed and compared, including the natural periods, wind turbine performance, platform motions, tower base bending moments, and tension of mooring lines. The statistical characteristics of the thrust and power production for both spars are similar. The comparison of platform motions and tower base bending moments demonstrate a good agreement for both spars, but the short spar has better performance in surge/sway motions and side–side bending moments. The 2P response dominates the bending moment spectra for both spars. A significant variation in tension of Mooring Line 1 and a larger corresponding spectrum value are found in the short spar concept. The results indicate that the application of short spar VAWTs is feasible and could become an alternative concept at moderate water depth.

  17. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    International Nuclear Information System (INIS)

    Yang, C X; Li, S T

    2013-01-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia

  18. A model for the response of vertical axis wind turbines to turbulent flow: Parts 1 and 2

    Science.gov (United States)

    Malcolm, D. R.

    1988-07-01

    This report describes a project intended to incorporate the effects of atmospheric turbulence into the structural response of Darrieus rotor, vertical axis wind turbines. The basis of the technique is the generation of a suitable time series of wind velocities, which are passed through a double multiple streamtube aerodynamic representation of the rotor. The aerodynamic loads are decomposed into components of the real eigenvectors of the rotor and subsequently into full-power and cross-spectral densities. These modal spectra are submitted as input to a modified NASTRAN random load analysis and the power spectra of selected responses are obtained. This procedure appears to be successful. Results at zero turbulence agree with alternative solutions, and when turbulence is included, the predicted stress spectra for the Indal 6400 rotor are in good agreement with field data. The model predicts that the effect of turbulence on harmonic frequency peaks and on all lead-lag bending will not be great. However, it appears that only 11 percent turbulence intensity can almost double the rms of cyclic flatwise blade bending.

  19. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  20. The measurement of the vertical component of hydraulic conductivity in single cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1986-11-01

    The project summarised in the paper aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. The measurements are relevant to the disposal of radioactive waste into argillaceous rocks, where the primary geological barrier to potential leachate migration is the mudrock. Also the prime parameter of interest in the assessment of mudrocks is the vertical component of hydraulic conductivity. A description of the methods of test analysis and interpretation is given. The experimental programme for open borehole testing and cased borehole testing is described, along with the practical and theoretical considerations. (U.K.)

  1. Analysis of vertical wind direction and speed gradients for data from the met. mast at Høvsøre

    DEFF Research Database (Denmark)

    Cariou, Nicolas; Wagner, Rozenn; Gottschall, Julia

    The task of this project has been to study the vertical gradient of the wind direction from experimental data obtained with different measurement instruments at the Høvsøre test site, located at the west coast of Denmark. The major part of the study was based on data measured by wind vanes mounted...... at a meteorological (met.) mast. These measurements enabled us to make an analysis of the variation of the direction with altitude, i.e. the wind direction shear. For this purpose, four years of wind direction measurements at two heights (60 m and 100 m) were analysed with special respect to the diurnal and seasonal...... variations of the direction gradient. The location of the test site close to the sea allowed for an investigation of specific trends for offshore and onshore winds, dependent on the considered wind direction sector. Furthermore, a comparison to lidar measurements showed the existence of an offset between...

  2. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    Science.gov (United States)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  3. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition

    Directory of Open Access Journals (Sweden)

    Seralathan Sivamani

    2017-12-01

    Full Text Available Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s. Keywords: Vertical axis wind turbine, Lenz type, Performance, Two-stage, Open environment measurement

  4. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2

    Science.gov (United States)

    1983-03-01

    The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.

  5. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  6. The Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    Science.gov (United States)

    Sullivan, W. N.

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  7. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    Science.gov (United States)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  8. Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine

    Science.gov (United States)

    Ottermo, Fredric; Möllerström, Erik; Nordborg, Anders; Hylander, Jonny; Bernhoff, Hans

    2017-07-01

    Noise levels emitted from a 200 kW H-rotor vertical-axis wind turbine have been measured using a microphone array at four different positions, each at a hub-height distance from the tower. The microphone array, comprising 48 microphones in a spiral pattern, allows for directional mapping of the noise sources in the range of 500 Hz to 4 kHz. The produced images indicate that most of the noise is generated in a narrow azimuth-angle range, compatible with the location where increased turbulence is known to be present in the flow, as a result of the previous passage of a blade and its support arms. It is also shown that a semi-empirical model for inflow-turbulence noise seems to produce noise levels of the correct order of magnitude, based on the amount of turbulence that could be expected from power extraction considerations.

  9. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  10. Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)

    2012-07-01

    An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)

  11. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-02-01

    Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

  12. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    International Nuclear Information System (INIS)

    Wei, Y; Li, C

    2013-01-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT

  13. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  14. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    The effect of wind mixing on the vertical distribution of buoyant plastic debris

    Science.gov (United States)

    Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.

    2012-04-01

    Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

  15. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  16. The influence of suspension components friction on race car vertical dynamics

    Science.gov (United States)

    Benini, Claudio; Gadola, Marco; Chindamo, Daniel; Uberti, Stefano; Marchesin, Felipe P.; Barbosa, Roberto S.

    2017-03-01

    This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.

  17. Flow measurement behind a pair of vertical-axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  18. A numerical analysis to evaluate Betz's Law for vertical axis wind turbines

    Science.gov (United States)

    Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W.

    2016-09-01

    The upper limit for the energy conversion rate of horizontal axis wind turbines (HAWT) is known as the Betz limit. Often this limit is also applied to vertical axis wind turbines (VAWT). However, a literature review reveals that early analytical and recent numerical approaches predicted values for the maximum power output of VAWTs close to or even higher than the Betz limit. Thus, it can be questioned whether the application of Betz's Law to VAWTs is justified. To answer this question, the current approach combines a free vortex model with a 2D inviscid panel code to represent the flow field of a generic VAWT. To ensure the validity of the model, an active blade pitch control system is used to avoid flow separation. An optimal pitch curve avoiding flow separation is determined for one specific turbine configuration by applying an evolutionary algorithm. The analysis yields a net power output that is slightly (≈6%) above the Betz limit. Besides the numerical result of an increased energy conversion rate, especially the identification of two physical power increasing mechanisms shows, that the application of Betz's Law to VAWTs is not justified.

  19. A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available We develop a reduced order model to represent the complex flow behaviour around vertical axis wind turbines. First, we simulate vertical axis turbines using an accurate high order discontinuous Galerkin–Fourier Navier–Stokes Large Eddy Simulation solver with sliding meshes and extract flow snapshots in time. Subsequently, we construct a reduced order model based on a high order dynamic mode decomposition approach that selects modes based on flow frequency. We show that only a few modes are necessary to reconstruct the flow behaviour of the original simulation, even for blades rotating in turbulent regimes. Furthermore, we prove that an accurate reduced order model can be constructed using snapshots that do not sample one entire turbine rotation (but only a fraction of it, which reduces the cost of generating the reduced order model. Additionally, we compare the reduced order model based on the high order Navier–Stokes solver to fast 2D simulations (using a Reynolds Averaged Navier–Stokes turbulent model to illustrate the good performance of the proposed methodology.

  1. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  2. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater

    DEFF Research Database (Denmark)

    Wang, Kai; Moan, Torgeir; Hansen, Martin Otto Laver

    2016-01-01

    Floating vertical-axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic...... on the response is demonstrated by comparing the floating wind turbine with the equivalent land-based wind turbine. Additionally, by comparing the behaviour of FVAWTs with flexible and rigid rotors, the effect of rotor flexibility is evaluated. Furthermore, the FVAWT is also investigated in the parked condition...... dynamic response analysis of a 5MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi-submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension...

  3. A comparison of two fully coupled codes for integrated dynamic analysis of floating vertical axis wind turbines

    NARCIS (Netherlands)

    Koppenol, Boy; Cheng, Zhengshun; Gao, Zhen; Simao Ferreira, C.; Moan, T; Tande, John Olav Giæver; Kvamsdal, Trond; Muskulus, Michael

    2017-01-01

    This paper presents a comparison of two state-of-the-art codes that are capable of modelling floating vertical axis wind turbines (VAWTs) in fully coupled time-domain simulations, being the HAWC2 by DTU and the SIMO-RIFLEX-AC code by NTNU/MARINTEK. The comparative study focusses on the way

  4. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades

    International Nuclear Information System (INIS)

    Scungio, M.; Arpino, F.; Focanti, V.; Profili, M.; Rotondi, M.

    2016-01-01

    Highlights: • Wind tunnel investigations of Darrieus-style VAWT with auxiliary blades have been made. • Results have been compared with those from standard Darrieus VAWT. • Static and dynamic power and torque coefficients were measured and evaluated. • The auxiliary airfoils have demonstrated to give more torque at the lower wind speeds. • The proposed VAWT configuration is able to work in a wide range of wind speeds. - Abstract: Renewable sources of energy, needed because of the increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in wind energy. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, wind tunnel investigations about the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds, has been made on scaled models. The micro turbine under investigation consists of three pairs of airfoils. Each pair consists of a main and auxiliary airfoil with different chord lengths. A standard Darrieus configuration, consisting of three single airfoils, was also tested for comparison. The experiments were conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). Measured data were reported in terms of dimensionless power and torque coefficients for dynamic performance analysis and static torque coefficient for static performance analysis. The adoption of auxiliary airfoils has demonstrated to give more dynamic torque at the lower wind speeds with respect to a standard Darrieus rotor, resulting in better performance for all the wind speeds considered. In terms of dynamic power coefficient, the standard Darrieus

  5. Aerodynamic Analysis of a Vertical Axis Wind Turbine in a Diffuser

    NARCIS (Netherlands)

    Geurts, B.M.; Simao Ferreira, C.; Van Bussel, G.J.W.

    Wind energy in the urban environment faces complex and often unfavorable wind conditions. High turbulence, lower average wind velocities and rapid changes in the wind direction are common phenomena in the complex built environments. A possible way to improve the cost-efficiency of urban wind

  6. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...... of wind turbine is described by means of specific classes. In the paper, new class combinations are suggested covering the different operating conditions the components are exposed to. The class combinations include factors of climatic, mechanical and chemical character. The factors occur in different...

  7. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  8. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  9. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  10. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  11. The Dermond vertical axis wind turbine : a suitable solution for remote sites; L'eolienne a axe vertical Dermond : une eolienne particulierement bien adaptee aux milieux isoles

    Energy Technology Data Exchange (ETDEWEB)

    Martel, P. [Genivar, Montreal, PQ (Canada); Dery, J. [Dermond Inc., Ada, MI (United States)

    2005-07-01

    A new prototype of a 100 kW truncated Darrieus type vertical axis wind turbine was put into service at the University of Quebec in Abitibi-Temiscamingue. The prototype was developed by Dermond Inc., a subsidiary of Mckenzie Bay International, and has been connected to the internal power distribution network at the University since October 2004. The Dermond turbine is well suited for isolated communities in northern Canada and is an important part of power management that competes with other small autonomous diesel powered systems. In addition to its simple and reliable mechanics, the innovative turbine is easy to install and maintain. It is omni-directional, and as such, is always oriented towards the wind. It is also equipped with an advanced electronic control system that addresses the problem of power quality in small autonomous networks. Since its installation, the prototype has met its performance targets and Dermond Inc. plans to market a new 200 kW wind turbine in 2006 with improved characteristics. Dermond Inc. is confident that this technology can penetrate the markets of remote areas, including northern communities and islands. This paper described the origins of the vertical axis technology and how Dermond Inc. improved upon it to include the possibility of integrating other energy sources or energy storage for additional power gains. 8 figs.

  12. The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane

    International Nuclear Information System (INIS)

    Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B.

    2013-01-01

    Graphical abstract: Solar energy, renewable energy, urban wind energy, environment, augmented wind turbine. Highlights: ► A system for on-site wind–solar hybrid power generation and rain water collection. ► The omni-direction-guide-vane (ODGV) overcomes the weak wind and turbulence conditions in urban areas. ► The ODGV improves the wind turbine performance by speeding-up and guiding the wind. ► The ODGV is designed to blend into the building architecture with safety enhancement. ► The wind tunnel test and CFD simulation results are presented. - Abstract: A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance. Wind tunnel testing was performed to evaluate the performance of a 5-bladed (Wortmann FX63-137 airfoil) H-rotor wind turbine, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV placed on a building. The VAWT shows an improvement on its self-starting behavior where the cut-in speed was reduced with the integration of the ODGV. Since the VAWT is able to self-start at a lower wind speed, the working hour of the wind turbine would increase. At a wind speed of 6 m/s and under free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor rotational speed by 182%. With extra load application at the same wind speed (6 m/s), the wind turbine power output was increased by 3.48 times at its peak torque with the aid of the ODGV. The working concept of the ODGV is to minimize the negative torque zone of a lift-type VAWT and to reduce turbulence and rotational speed fluctuation. It was verified by re-simulating the torque coefficient data of a single bladed (NACA 0015 airfoil) VAWT published by the Sandia National Laboratories. From the simulation results, with the presence of the ODGV, it was shown that the

  13. Objective and subjective assessment of tonal components in noise from UK wind farm sites

    International Nuclear Information System (INIS)

    McKenzie, A.R.

    1997-01-01

    The level of any tonal components in the noise from a wind farm site can be quantified using objective analysis procedures. These procedures are, however, open to a certain amount of interpretation. an automated assessment procedure has, therefore, been developed which is appropriate to the needs of the wind turbine industry. This paper describes a study to compare the results of objective assessments carried out using this method with the results of carefully controlled subjective listening tests for samples of wind turbine noise from nine U.K. wind farm sites. (author)

  14. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-05-01

    Full Text Available Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010 of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers, it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values. This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap

  15. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua

    2018-05-01

    Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into

  16. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    Science.gov (United States)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  17. Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

    Directory of Open Access Journals (Sweden)

    Ola Dwi Sandra Hasan

    2013-09-01

    Full Text Available Salah satu  teknologi sistem konversi energi angin  yang ada adalah turbin Savonius yang merupakan salah satu jenis Vertical Axis Wind Turbine ( VAWT . Turbin Savonius  memiliki  karakteristik strating torsi yang baik, mudah dalam pembutannya dan dapat menerima angin dari segala arah namun kekurangan yang dimiliki adalah coefficient of power (Cp turbin yang rendah. Untuk itu banyak dilakukan penelitian untuk meningkatkan efisiensi dari turbin Savonius. Salah satunya adalah penambahan end plate yang mampu meningkatkan perbedaan tekanan dari kedua sisi sudu sehingga memperbesar drag positif turbin. Untuk itu pada penelitian ini dilakukan variasi jumlah penambahan fin pada sudu. Variasi jumlah fin yang dilakukan adalah 1,2,4 dan 7 fin serta pengujian dengan menggunakan generator dan tanpa generator. Dari hasil pengujian, variasi fin yang dapat meningkatkan Cp turbin Savonius adalah variasi 1 fin jika dibandingkan  turbin standarnya dengan nilai Cp sebesar 0,11.  SKEA turbin Savonius menggunakan generator 12 V;400W dapat  menghasilkan daya maksimal 5,71 Watt pada putaran 134 rpm

  18. Vortex-Induced Vibration of an Airfoil Used in Vertical-Axis Wind Turbines

    Science.gov (United States)

    Benner, Bridget; Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2017-11-01

    In Vertical-axis wind turbines (VAWTs), when the blades are placed at high angles of attack with respect to the incoming flow, they could experience flow-induced oscillations. A series of experiments in a re-circulating water tunnel was conducted to study the possible Vortex-Induced Vibration (VIV) of a fully-submerged, flexibly-mounted NACA 0021 airfoil, which is used in some designs of VAWTs. The airfoil was free to oscillate in the crossflow direction, and the tests were conducted in a Reynolds number range of 600

  19. An LES study of vertical-axis wind turbine wakes aerodynamics

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  20. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  1. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  2. Study of large-scale vertical axis wind turbine wake through numerical modelling and fullscale experiments

    DEFF Research Database (Denmark)

    Immas, Alexandre; Kluczewska-Bordier, Joanna; Beneditti, Pascal

    Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One k...... horizontal axis wind turbine wind farm....... improvement that could make offshore wind more attractive is the reduction of the wake effect [1]. The latter corresponds to the velocity deficit generated by each wind turbine wake which affects the production of the others. This effect accounts for approximately 10% of the energy losses for a typical......Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One key...

  3. Horizontal and vertical winds and temperatures in the equatorial thermosphere: measurements from Natal, Brazil during August-September 1982

    International Nuclear Information System (INIS)

    Biondi, M.A.

    1985-01-01

    Fabry-Perot interferometer measurements of Doppler shifts and widths of the 630.0 nm nightglow line have been used to determine the neutral winds and temperatures in the equatorial thermosphere over Natal, Brazil during August-September 1982. During this period, in the early night (2130 U.T.) the average value of the horizontal wind vector was 95 m s -1 at 100 0 azimuth, and the temperature varied from a low of 950 K during geomagnetically quiet conditions to a high of approx. 1400 K during a storm (6 September). The meridional winds were small, -1 , and the eastward zonal winds reached a maximum value 1-3 h after sunset, in qualitative agreement with TGCM predictions. On 26 August, an observed persistent convergence in the horizontal meridional flow was accompanied by a downward vertical velocity and an increase in the thermospheric temperature measured overhead. Oscillations with periods of 40-45 min in both the zonal and vertical wind velocities were observed during the geomagnetic storm of 6 September, suggesting gravity wave modulation of the equatorial thermospheric flow. (author)

  4. Dynamic behaviour studies of a vertical axis wind turbine blade using Operational Modal Analysis (OMA) and Experimental Modal Analysis (EMA)

    DEFF Research Database (Denmark)

    Najafi, Nadia; Schmidt Paulsen, Uwe; Belloni, F.

    2014-01-01

    Dynamic behavior of a modified blade fitted onto a small 1 kW vertical-axis wind turbine is studied by two different approaches: Classical modal analysis (EMA) is carried out to validate the results of Operational Modal Analysis (OMA). In traditional modal analysis (EMA) one axis accelerometers...... it is excited by random and wind forces. The cameras are programmed in LabView to take pictures at the same time with 180 fps and store them on a high speed hard disk. The output deflection will be investigated in frequency domain by peak picking method, and then AR (Autoregressive) model is applied to describe...

  5. Design Loads on Platforms on Offshore wind Turbine Foundations with Respect to Vertical Wave Run-up

    DEFF Research Database (Denmark)

    Damsgaard, Mathilde L.; Gravesen, Helge; Andersen, Thomas Lykke

    2007-01-01

    reduction in the loads by up to 75%. Furthermore it is indicated, that the fact that offshore wind turbines often are placed on limited water depths thereby increasing the amount of (nearly) breaking waves, seems to increase the run-up height and thereby the pressures on the structure.......Experiences have shown that the vertical run-up generated by waves meeting the offshore wind turbine foundations, can result in rather vigorous loads on appurtenances and platform structures. This study aims to provide a qualitative method of determining run-up height and the following loads...

  6. Simple passive methods for the assessment of the directional and vertical distributions of wind-blown particulates

    International Nuclear Information System (INIS)

    Orza, J. A.G.; Cabello, M.; Mateo, J.

    2009-01-01

    We have designed and tested two types of passive collectors to study aeolian erosion in the field. The first passive sampler is a sticky pad that allows for directional particulate assessment by an automatic particle counting procedure. the second one features an omni-directional capture opening, and mass of retained particles is gravimetric ally quantified. Vertical arrays of these passive collectors have been constructed to obtain vertical profiles of the horizontal particle flux as a function of soil properties, nearby sources and wind speed. We present some first results from field campaigns. (Author) 3 refs.

  7. Features of vertical axis wind turbine and development of airfoils sections; Chokusen yokugata suichoku jiku fusha no tokucho to yokugata ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Yasui, T [Tokai University, Tokyo (Japan); Nakayama, H [Oriental Kiden Company, Osaka (Japan)

    1996-10-27

    Features of a straight wing type vertical axis wind turbine (VAW) and its airfoil sections were studied. The wind turbine in which various aerodynamic work components are mounted on the rotation axis normal to the ground surface is named VAW. Like the airfoil section of aircraft, in lift type VAW, wind turbines were driven by lift 70-90 times as large as drag in some cases. Features of the VAW airfoil section which is a straight wing in plan and a fixed pitch wing (with a fixed angle to a blade support arm) in cross section, and those of wind turbines were studied. Some factors affecting the features, work principle and performance of VAW were clarified. On airfoil sections, products of each weight function and each corresponding aerodynamic factor (lift, drag and pitching moment factors) were plotted on an attack angle ({alpha}) axis. From the conditions for increasing the total sum of areas drawn by the products on the {alpha} axis, various characteristics required for airfoil sections were clarified. Such characteristics nearly agreed between an airfoil section for favorable starting characteristics and that for high efficiency. 3 refs., 7 figs.

  8. CFD simulations of power coefficients for an innovative Darrieus style vertical axis wind turbine with auxiliary straight blades

    Science.gov (United States)

    Arpino, F.; Cortellessa, G.; Dell'Isola, M.; Scungio, M.; Focanti, V.; Profili, M.; Rotondi, M.

    2017-11-01

    The increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in renewable energy sources such as wind energy. Amongst the different typologies of wind generators, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, Computational Fluid Dynamic (CFD) simulations were performed in order to investigate the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds. The micro turbine under investigation is composed of three pairs of airfoils, consisting of a main and auxiliary blades with different chord lengths. The simulations were made using the open source finite volume based CFD toolbox OpenFOAM, considering different turbulence models and adopting a moving mesh approach for the turbine rotor. The simulated data were reported in terms of dimensionless power coefficients for dynamic performance analysis. The results from the simulations were compared to the data obtained from experiments on a scaled model of the same VAWT configuration, conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). From the proposed analysis, it was observed that the most suitable model for the simulation of the performances of the micro turbine under investigation is the one-equation Spalart-Allmaras, even if under the conditions analysed in the present work and for TSR values higher than 1.1, some discrepancies between numerical and experimental data can be observed.

  9. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  10. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  11. Design and fabrication of a low cost Darrieus vertical axis wind turbine system: Phase 2, volume 1: Executive summary

    Science.gov (United States)

    1983-03-01

    Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.

  12. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition.

    Science.gov (United States)

    Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram

    2017-12-01

    Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.

  13. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    Abraham, J.P.; Mowry, G.S.; Erickson, R.A.

    2009-01-01

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  14. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaoperate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying

  15. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    International Nuclear Information System (INIS)

    Hassanein, A.; Sizyuk, T.

    2008-01-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  16. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  17. Wind pressure testing of tornado safe room components made from wood

    Science.gov (United States)

    Robert Falk; Deepak Shrestha

    2016-01-01

    To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...

  18. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    Science.gov (United States)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  19. 4-D-VAR assimilation of disdrometer data and radar spectral reflectivities for raindrop size distribution and vertical wind retrievals

    Science.gov (United States)

    Mercier, François; Chazottes, Aymeric; Barthès, Laurent; Mallet, Cécile

    2016-07-01

    This paper presents a novel framework for retrieving the vertical raindrop size distribution (DSD) and vertical wind profiles during light rain events. This is also intended as a tool to better characterize rainfall microphysical processes. It consists in coupling K band Doppler spectra and ground disdrometer measurements (raindrop fluxes) in a 2-D numerical model propagating the DSD from the clouds to the ground level. The coupling is done via a 4-D-VAR data assimilation algorithm. As a first step, in this paper, the dynamical model and the geometry of the problem are quite simple. They do not allow the complexity implied by all rain microphysical processes to be encompassed (evaporation, coalescence breakup and horizontal air motion are not taken into account). In the end, the model is limited to the fall of droplets under gravity, modulated by the effects of vertical winds. The framework is thus illustrated with light, stratiform rain events. We firstly use simulated data sets (data assimilation twin experiment) to show that the algorithm is able to retrieve the DSD profiles and vertical winds. It also demonstrates the ability of the algorithm to deal with the atmospheric turbulence (broadening of the Doppler spectra) and the instrumental noise. The method is then applied to a real case study which was conducted in the southwest of France during the autumn 2013. The data set collected during a long, quiet event (6 h duration, rain rate between 2 and 7 mm h-1) comes from an optical disdrometer and a 24 GHz vertically pointing Doppler radar. We show that the algorithm is able to reproduce the observations and retrieve realistic DSD and vertical wind profiles, when compared to what could be expected for such a rain event. A goal for this study is to apply it to extended data sets for a validation with independent data, which could not be done with our limited 2013 data. Other data sets would also help to parameterize more processes needed in the model (evaporation

  20. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    Science.gov (United States)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  1. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  2. Economic assessment of the engineering basis for wind power: Perspective of a vertically integrated utility

    International Nuclear Information System (INIS)

    Roy, Sanjoy

    2009-01-01

    If wind park configurations are globally coordinated across the service area of a power utility, then electricity can be generated for the grid with substantial cost advantages. Based on this premise, the paper introduces a model by which large scale assessment of grid connected wind based power generation may be undertaken for a utility service area. The model can be useful to the policy maker for decisions regarding suitable wind portfolio standards (WPS) definition. The utility, on the other hand, may use the model to study its service area for prospective wind based generation. Aspects of the problem modelled include cost-of-energy from individual generating units, daily load variations for the utility with emphasis on limited penetration, features of wind at prospective installation sites, makes of wind energy conversion systems (WECS) available, and recovery of expenditure through revenue. Application of the model to an assessment exercise for the state of Andhra Pradesh (India) is presented as an example. (author)

  3. A Note on the Effect of Wind Waves on Vertical Mixing in Franks Tract, Sacramento–San Joaquin Delta, California

    Directory of Open Access Journals (Sweden)

    Nicole L. Jones

    2008-06-01

    Full Text Available A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations. The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level, and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1, and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  4. Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform with Counter-Rotating Vertical-Axis Wind Turbines

    Science.gov (United States)

    Kanner, Samuel Adam Chinman

    The design and operation of two counter-rotating vertical-axis wind turbines on a floating, semi-submersible platform is studied. The technology, called the Multiple Integrated and Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-rotating turbines, which can achieve a higher power density per planform area because of synergistic interaction effects. The purpose of the research is to control the orientation of the platform and rotational speeds of the turbines by modifying the energy absorbed by each of the generators of the turbines. To analyze the various aspects of the platform and wind turbines, the analysis is drawn from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To study the hydrodynamics of the floating platform in incident monochromatic waves, potential theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady, second-order moments that are spatially dependent (i.e., dependent on the platform's yaw orientation relative to the incident waves) are given special attention since there are no natural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied in collaboration with researchers at the UC Berkeley Mathematics Department using a high-order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the method to a domain with counter-rotating turbines and the effects from the closely-spaced turbines is compared with existing experimental data. Hybrid testing techniques on a model platform are utilized to prove the controllability of the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind turbines are simulated by spinning, controllable actuators that can be updated in real-time of

  5. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Zuijlen, van A.H.; Bijl, H.; Bussel, van G.J.W.; Kuik, van G.A.M.

    2010-01-01

    The implementation of wind energy conversion systems in the built environment has renewed the interest and the research on Vertical Axis Wind Turbines (VAWTs). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack and perceived velocity with azimuth angle.

  6. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer

    2012-01-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  7. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2015-09-01

    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  8. Wind-break walls with optimized setting angles for natural draft dry cooling tower with vertical radiators

    International Nuclear Information System (INIS)

    Ma, Huan; Si, Fengqi; Kong, Yu; Zhu, Kangping; Yan, Wensheng

    2017-01-01

    Highlights: • Aerodynamic field around dry cooling tower is presented with numerical model. • Performances of cooling deltas are figured out by air inflow velocity analysis. • Setting angles of wind-break walls are optimized to improve cooling performance. • Optimized walls can reduce the interference on air inflow at low wind speeds. • Optimized walls create stronger outside secondary flow at high wind speeds. - Abstract: To get larger cooling performance enhancement for natural draft dry cooling tower with vertical cooling deltas under crosswind, setting angles of wind-break walls were optimized. Considering specific structure of each cooling delta, an efficient numerical model was established and validated by some published results. Aerodynamic fields around cooling deltas under various crosswind speeds were presented, and outlet water temperatures of the two columns of cooling delta were exported as well. It was found that for each cooling delta, there was a difference in cooling performance between the two columns, which is closely related to the characteristic of main airflow outside the tower. Using the present model, air inflow deviation angles at cooling deltas’ inlet were calculated, and the effects of air inflow deviation on outlet water temperatures of the two columns for corresponding cooling delta were explained in detail. Subsequently, at cooling deltas’ inlet along radial direction of the tower, setting angles of wind-break walls were optimized equal to air inflow deviation angles when no airflow separation appeared outside the tower, while equal to zero when outside airflow separation occurred. In addition, wind-break walls with optimized setting angles were verified to be extremely effective, compared to the previous radial walls.

  9. Experimental study of the effect of a slat angle on double-element airfoil and application in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Rosendahl, Lasse; Nielsen, Søren R.K.

    2015-01-01

    A design of double-element airfoil is proposed for its use in the vertical axis wind turbine. The double-element airfoil system consists of a main airfoil and a slat airfoil. The design parameters of the double-element airfoil system are given by the position and orientation of the trailing edge......-element airfoil system designed in this paper. Further, the performance of new design of a vertical axis wind turbine shows considerable increase in the power coefficient and the total power output as compared to the reference wind turbine...

  10. Harmonic Stability Analysis of Offshore Wind Farm with Component Connection Method

    DEFF Research Database (Denmark)

    Hou, Peng; Ebrahimzadeh, Esmaeil; Wang, Xiongfei

    2017-01-01

    In this paper, an eigenvalue-based harmonic stability analysis method for offshore wind farm is proposed. Considering the internal cable connection layout, a component connection method (CCM) is adopted to divide the system into individual blocks as current controller of converters, LCL filters...

  11. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads...

  12. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-08-01

    Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.

  13. Implementation and application of the actuator line model by OpenFOAM for a vertical axis wind turbine

    Science.gov (United States)

    Riva, L.; Giljarhus, K.-E.; Hjertager, B.; Kalvig, S. M.

    2017-12-01

    University of Stavanger has started The Smart Sustainable Campus & Energy Lab project, to gain knowledge and facilitate project based education in the field of renewable and sustainable energy and increase the research effort in the same area. This project includes the future installation of a vertical axis wind turbine on the campus roof. A newly developed Computational Fluid Dynamics (CFD) model by OpenFOAM have been implemented to study the wind behavior over the building and the turbine performance. The online available wind turbine model case from Bachant, Goude and Wosnik from 2016 is used as the starting point. This is a Reynolds-Averaged Navier-Stokes equations (RANS) case set up that uses the Actuator Line Model. The available test case considers a water tank with controlled external parameters. Bachant et al.’s model has been modified to study a VAWT in the atmospheric boundary layer. Various simulations have been performed trying to verify the models use and suitability. Simulation outcomes help to understand the impact of the surroundings on the turbine as well as its reaction to parameters changes. The developed model can be used for wind energy and flow simulations for both onshore and offshore applications.

  14. Design, performance, and economics of 50-kW and 500-kW vertical axis wind turbines

    Science.gov (United States)

    Schienbein, L. A.; Malcolm, D. J.

    1983-11-01

    A review of the development and performance of the DAF Indal 50-kW vertical axis Darrieus wind turbine shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. Details are also presented of a 500-kW VAWT that is currently in production. A discussion of the economics of both the 50-kW and 500-kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance, and efficiency.

  15. Diffusive component of the vertical flux of particulate organic carbon in the north polar Atlantic

    Directory of Open Access Journals (Sweden)

    Małgorzata Stramska

    2006-12-01

    Full Text Available The diffusive component of the vertical flux of particulate organiccarbon (POC from the surface ocean layer has been estimatedusing a combination of the mixed layer model and ocean colordata from the SeaWiFS satellite. The calculations were carriedout for an example location in the north polar Atlantic centeredat 75°N and 0°E for the time period of 1998-2004.The satellite estimates of surface POC derived using a regional ocean coloralgorithm were applied as an input to the model driven by localsurface heat and momentum fluxes. For each year of the examinedperiod, the diffusive POC flux was estimated at 200-m depth fromApril through December. The highest flux is generally observedin the late fall as a result of increased heat loss and convectionalmixing of surface waters. A relatively high diffusive POC fluxis also observed in early spring, when surface waters are weaklystratified. In addition, the model results demonstrate significantinterannual variability. The highest diffusive POC flux occurredin 1999 (about 4500 mg m-2 over the 9-month period. In 1998 and 2002 the estimated flux was about two orders of magnitudelower. The interannual variability of the diffusive POC fluxis associated with mixed layer dynamics and underscores the importanceof atmospheric forcing for POC export from the surface layerto the ocean's interior.

  16. Concept Testing of a Simple Floating Offshore Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    2013-01-01

    The wind energy community is researching new concepts for deeper sea offshore wind turbines. One such concept is the DeepWind concept. The concept is being assessed in a EU-FP7 project, called DeepWind. Objectives of this project are to assess large size wind turbines (5-20MW) based on the concept...... varying wind and wave conditions, and to compare such behaviour with computer code calculations. The concept turbine was designed and constructed by the project task partners, and all parts were assembled and installed at sea in the Roskilde fjord right next to DTU Risø campus. The turbine is under....... One task in the project is to test a 1kW concept rotor (not a scaled down MW size rotor) partly under field conditions in a fjord in Denmark, partly in a water tank under controlled conditions in Netherlands. The objective of testing the 1kW concept turbine is to verify the dynamical behaviour under...

  17. Horizontal and vertical wind power plant. Stromerzeugungsanlage durch Windkraft in waagerechter und senkrechter Konstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Brodersen, K

    1976-10-05

    Wind power machines and associated generating equipment are exposed to the effects of the weather, which causes high maintenance and repair costs. The construction of the wind blades causes turbulence, which has an adverse effect of the efficiency of this plant. The purpose of the invention is therefore to make the construction of the generating equipment such that the protection of the unit and the armature against effects from the weather and greater efficiency are achieved with low plant, maintenance and repair costs. According to the invention, the problem is solved by having the wall of the central room, for pressure and guidance, reinforced at the top, where the guides also provide security against the tilting torque and ensure protection of the unit and armature against effects from the weather. In order to avoid turbulence on the wind blades, a seamless joint between the wind blades and the wind guide surface is provided above the centre of rotation, whereby the stability and free length of the wind blades are increased. The whole plant can be fabricated in a factory and can be transported to the site by helicopters.

  18. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  19. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  20. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu

    2014-01-01

    Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... for the fatigue life, namely LogNormal and Weibull distributions. The statistical analyses are performed using the Maximum Likelihood Method and the statistical uncertainty is estimated. Further, stochastic models for the fatigue life obtained from the statistical analyses are used for illustration to assess...

  1. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    Science.gov (United States)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  2. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    Science.gov (United States)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  3. Measurements of noise immission from wind turbines at receptor locations: Use of a vertical microphone board to improve the signal-to-noise ratio

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    1999-01-01

    The growing interest in wind energy has increased the need of accuracy in wind turbine noise immission measurements and thus, the need of new measurement techniques. This paper shows that mounting the microphone on a vertical board improves the signal-to-noise ratio over the whole frequency range compared to the free microphone technique. Indeed, the wind turbine is perceived two times noisier by the microphone due to the signal reflection by the board while, in addition, the wind noise is reduced. Furthermore, the board shielding effect allows the measurements to be carried out in the presence of reflecting surfaces such as building facades

  4. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  5. Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions

    Science.gov (United States)

    Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.

    2016-09-01

    The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.

  6. Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    Science.gov (United States)

    Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.

    1975-01-01

    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.

  7. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors

    International Nuclear Information System (INIS)

    Bhuyan, S.; Biswas, A.

    2014-01-01

    Highlights: • Hybrid H-Savonius vertical axis wind rotor for built-in environmental wind speeds. • Self-starting characteristics of unsymmetrical H-rotor and Hybrid H-Savonius rotor. • Comparisons between unsymmetrical H-rotor and Hybrid rotor at same experimental conditions. • Insight of the performances of optimum hybrid H-Savonius rotor. • Higher power performance of the optimum rotor compared with some existing VAWT rotors. - Abstract: With recent surge in fossil fuel prices and demands for renewable energy sources, vertical axis wind turbine (VAWT) technologies have emerged out as one of the prime growing sector for small-scale power generation in the built environment. In such an environment, self-starting and high performances are of utmost importance. Amongst all VAWT designs, H-rotor, being a lift-driven device, exhibits a high power coefficient. However, it suffers from poor starting behavior due to its conventional symmetrical NACA airfoil blades. The objective of the present study is to design a VAWT rotor that possesses both self-starting and high power coefficient simultaneously. For this, a three bladed H-rotor with unsymmetrical cambered S818 airfoil blades is investigated, which shows self-starting characteristics at many of the azimuthal angles. However to make the rotor completely self-starting, the same H-rotor is incorporated in a hybrid system with Savonius rotor as its starter. It is found that the hybrid design fully exhibits self-starting capability at all azimuthal positions, signified by the positive static torque coefficient values. For improving power performance of the hybrid rotor, the same is subjected to rigorous experimentations on the wind tunnel at different Reynolds numbers (Re) between 1.44 × 10 5 and 2.31 × 10 5 for five different overlap conditions in the Savonius rotor part. The performance coefficients of the hybrid rotor are compared with the simple H-rotor. Out of all the designs investigated, the maximum Cp

  8. Study of turbine and guide vanes integration to enhance the performance of cross flow vertical axis wind turbine

    Science.gov (United States)

    Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton

    2018-02-01

    The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.

  9. Design Optimization of a 5 MW Floating Offshore Vertical-axis Wind Turbine

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Hattel, Jesper Henri

    2013-01-01

    calculations in ANSYS software. The selected profiles are used in the aero dynamic simulation. Furthermore the simulation code will be demonstrated to show the fully development model, integrating the simulation of turbulent wind inflow, actuator cylinder flow model, power controls, hydraulic floater...

  10. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    Science.gov (United States)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  11. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  12. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  13. Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Nejat, Amir

    2015-01-01

    Operating wind turbines generate tonal and broadband noises affecting the living environment adversely; especially small wind turbines located in the vicinity of human living places. Therefore, it is important to determine the level of noise pollution of such type of wind turbine installation. The current study carries out numerical prediction for aerodynamic noise radiated from an H-Darrieus Vertical Axis Wind Turbine. Incompressible LES (Large Eddy Simulation) is conducted to obtain the instantaneous turbulent flow field. The noise predictions are performed by the Ffowcs Williams and Hawkings (FW–H) acoustic analogy formulation. Simulations are performed for five different tip-speed ratios. First, the mean torque coefficient is compared with the experimental data, and good agreement is observed. Then, the research focuses on the broadband noises of the turbulent boundary layers and the tonal noises due to blade passing frequency. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicate a direct relation between the strength of the radiated noise and the rotational speed. Furthermore, the effect of receiver distance on the OASPL (Overall Sound Pressure Level) is investigated. It is concluded that the OASPL varies with a logarithmic trend with the receiver distance as it was expected. - Highlights: • Large Eddy Simulation has been used to predict the turbulent flow field. • The Ffowcs Williams and Hawkings method was employed to predict radiated noise. • There is a direct relation between the radiated noise and the tip speed ratio. • The quadrupole noises have negligible effect on the tonal noises

  14. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  15. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  16. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Caprace, D-G; Winckelmans, G; Marichal, Y

    2016-01-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features. (paper)

  17. Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-10-01

    Full Text Available Cyclic blade motion during operation of vertical axis wind turbines (VAWTs imposes challenges on the simulations models of the aerodynamics of VAWTs. A two-dimensional vortex model is validated against the new experimental data on a 12-kW straight-bladed VAWT, which is operated at an open site. The results on the normal force on one blade are analyzed. The model is assessed against the measured data in the wide range of tip speed ratios: from 1.8 to 4.6. The predicted results within one revolution have a similar shape and magnitude as the measured data, though the model does not reproduce every detail of the experimental data. The present model can be used when dimensioning the turbine for maximum loads.

  18. Analogy between a flapping wing and a wind turbine with a vertical axis of revolution

    Science.gov (United States)

    Gorelov, D. N.

    2009-03-01

    Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness.

  19. Investigation of the aerodynamics of an innovative vertical-axis wind turbine

    International Nuclear Information System (INIS)

    Kludzinska, K; Tesch, K; Doerffer, P

    2014-01-01

    This paper presents a preliminary three dimensional analysis of the transient aerodynamic phenomena occurring in the innovative modification of classic Savonius wind turbine. An attempt to explain the increased efficiency of the innovative design in comparison with the traditional solution is undertaken. Several vorticity measures such as enstrophy, absolute helicity and the integral of the velocity gradient tensor second invariant are proposed in order to evaluate and compare designs. Discussed criteria are related to the vortex structures and energy dissipation. These structures are generated by the rotor and may affect the efficiency. There are also different vorticity measure taking advantage of eigenvalues of the velocity gradient tensor.

  20. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    Science.gov (United States)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  1. First Simultaneous and Common-Volume Lidar Observations of Na and Fe Metals, Temperatures, and Vertical Winds in Antarctica

    Science.gov (United States)

    Chu, X.

    2017-12-01

    A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.

  2. Analisa Bentuk Profile Dan Jumlah Blade Vertical Axis Wind Turbine Terhadap Putaran Rotor Untuk Menghasilkan Energi Listrik

    Directory of Open Access Journals (Sweden)

    Saiful Saiful Huda

    2014-03-01

    Full Text Available Turbin angin adalah suatu alat untuk mengkonversi energi angin menjadi energi mekanik yang kemudian dikonversi lagi menjadi energi listrik. Putaran pada poros turbin angin dihubungkan pada generator untuk menghasilkan energi listrik. Berdasarkan penelitian yang dilakukan sebelumnya, banyak jenis turbin angin yang ditemukan untuk meningkatkan effisiensi dan torsi yang dihasilkan salah satu contohnya adalah vertical axis wind turbine (VAWT. VAWT merupakan turbin angin dengan sumbu vertical atau tegak lurus terhadap tanah. Tujuan dari tugas akhir ini adalah mengetahui seberapa besar pengaruh peningkatan panjang chord, jumlah blade, sudut pitch dari blade terhadap torsi dan effisiensi yang dihasilkan oleh VAWT dengan pendekatan CFD (Computational Fluid Dynamic. Analisa yang dilakukan untuk melihat efek peningkatan panjang chord, jumlah blade dan sudt pitch dari blade. Setelah analisa berakhir kita membandingkan hasil analisa dalam grafik. Hasil dari analisa tersebut adalah torsi terbesar terdapat pada variasi panjang chord 1.5 m dengan sudut pitch 10o dan jumlah blade 4 buah dengan nilai 134.9452198   Nm.

  3. Residual-strength tests of L-1011 vertical fin components after 10 and 20 years of simulated flight service

    Science.gov (United States)

    Lopez, O. F.

    1984-01-01

    Part of the NASA/ACEE Program was to determine the effect of long-term durability testing on the residual strength of graphite-epoxy cover panel and spar components of the Lockheed L-1011 aircraft vertical stabilizer. The results of these residual strength tests are presented herein. The structural behavior and failure mode of both cover panel and spar components were addressed, and the test results obtained were compared with the static test results generated by Lockheed. The effect of damage on one of the spar specimens was described.

  4. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  5. On risk-based operation and maintenance of offshore wind turbine components

    International Nuclear Information System (INIS)

    Jessen Nielsen, Jannie; Dalsgaard Sorensen, John

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect inspections. Finally the influence of different important parameters, e.g. failure rate, reliability of inspections, inspection interval, and decision rule for repairs, is evaluated.

  6. Blade Simulation of Small H-Vertical Axis Wind Turbine Based on Optimal Wind Power Coefficient%风能利用系数最优小型H型垂直轴风力机叶片模拟

    Institute of Scientific and Technical Information of China (English)

    郭兴文; 刘颖波; 邱勇

    2012-01-01

    A two-dimensional CFD model of the external flow-field for a 1kW H-vertical axis wind turbine is established by using the software of Flunent. The sliding mesh technique and the SST k -to turbulent model are adopted. The model is intended to study the impact of different lengths of chord and different shapes of airfoil on the wind power coefficient for the H-vertical axis wind turbine. By fixing the Gurney flap of different heights on the tail of blade, the efficiency improvement of wind power coefficient is studied, and the curve of wind power coefficient for the H-vertical axis wind turbine with the tip-speed under different situations is derived. The results show that the blade of NACA 0018 with the chord length of 300mm is relatively suitable for an H-vertical axis wind turbine. The H-vertical axis wind turbine works more effectively at a tip-speed ratio from 2.5 to 3.5. The wind power coefficient of H-vertical axis wind turbine is able to be increased 3% by using the Gurney flap with flap height equaled to 1% of chord length and tip-speed ratio of 2.8.%采用移动网格技术,选用SST(剪切力传输)k-ω湍流模型,建立了1kW功率的H型垂直轴风力机风轮外流场CFD模型,研究了不同叶片翼型、不同弦长和翼尾加装Gurney襟翼对风力机风能利用系数的影响.结果表明,300mm弦长的NACA 0018翼型较为适合H型垂直轴风力机;在尖速比为2.5-3.5时,H型垂直轴风力机的工作效率较高;尖速比为2.8时,高度为1%弦长的Gurney襟翼翼型能够提高风能利用系数3%.

  7. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  8. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge

  9. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2016-05-01

    Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the

  10. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Urbahs A.

    2017-10-01

    Full Text Available The theoretical calculation for development of planetary gear unit of wind turbine (WT and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  11. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    Science.gov (United States)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  12. The measurement of the vertical component of hydraulic conductivity in single-cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1987-01-01

    The project aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. A review of existing techniques for both field practice and analysis of the results is reported. After consideration of the various techniques a combination method of testing is proposed. A set of equipment to carry out this combination of tests was designed and built. The uncased testing revealed that it was possible to derive a value for vertical hydraulic conductivity. The doublet method, however, was not particularly successful and numerical simulation was cumbersome. The type-curve approach of appraising whether or not analysis concepts were appropriate proved the most robust method. It is clear that reconnaissance measurements of environmental pressure are very useful in defining where detailed testing should take place. The second phase of testing through perforations proved very difficult. There were many problems associated with location both of the wireline testing system within the borehole and especially of the previous measurements. However, analysis of the results in terms of skin indicated that the perforations produced a negative skin. The measurement of vertical hydraulic conductivity cannot at the moment be regarded as routine

  13. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  14. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities : Guidelines for azimuthal increment, domain size and convergence

    NARCIS (Netherlands)

    Rezaeiha, Abdolrahim; Montazeri, H.; Blocken, B.

    2018-01-01

    The accuracy of CFD simulations of vertical axis wind turbines (VAWTs) is known to be significantly associated with the computational parameters, such as azimuthal increment, domain size and number of turbine revolutions before reaching a statistically steady state condition (convergence). A

  15. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.

    2017-01-01

    Accurate prediction of the performance of a vertical-axis wind turbine (VAWT) using Computational Fluid Dynamics (CFD) simulation requires a domain size that is large enough to minimize the effects of blockage and uncertainties in the boundary conditions on the results. It also requires the

  16. Reply to comment by Mauder on "How well can we measure the vertical wind speed? Implications for fluxes of energy and mass"

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John M. Frank; William J. Massman; Mark W. Heuer

    2013-01-01

    In Kochendorfer et al. (Boundary-Layer Meteorol 145:383-398, 2012, hereafter K2012) the vertical wind speed (w) measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by 12%. Turbulent statistics and eddycovariance fluxes estimated using w were also affected by this underestimate in w. Methodologies used in K2012 are clarified...

  17. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  18. On Different Maintenance Strategies for Casted Components of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    . This maintenance tool uses Crude Monte Carlo Simulations to estimate the expected maintenance costs. Corrective and preventive maintenance strategies with a constant inspection interval or a condition monitoring system are considered. Furthermore, transportation from shore to the wind turbines by boat...... and transportation strategy. The case study shows that the maintenance expenses of casted components correspond to roughly 5% of the overall expected maintenance costs when using a corrective maintenance strategy. This amount can be decreased to roughly 2% when using a condition monitoring system and following...

  19. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  20. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  1. Assessing Customer Evaluation and Revenue Consequences of Component Sharing Across Brands in the Vertical Product Line

    NARCIS (Netherlands)

    P.C. Verhoef (Peter); K.H. Pauwels (Koen)

    2005-01-01

    textabstractComponent sharing may look great in the boardroom, but not in the showroom. Indeed, savings on R&D and production costs could be offset by a plunge in customer brand attractiveness and willingness to pay. This paper investigates the impact of component sharing on customer evaluation of

  2. The DC field components of horizontal and vertical electric dipole sources immersed in three-layered stratified media

    Directory of Open Access Journals (Sweden)

    D. Llanwyn Jones

    Full Text Available Formulas for computing the Cartesian components of the static (DC fields of horizontal electric dipoles ( HEDs and vertical electric dipoles ( VEDs located in the central zone of a three-layer horizontally stratified medium are derived and presented in a summary form suitable for immediate computation. Formulas are given for the electric and magnetic field components in the upper and central regions. In the general case the computation involves the summation of a convergent infinite series. For the particular case of an infinitely thick central region (corresponding to the two-layer problem, the analysis produces relatively simple closed-form equations for the field components which are suitable for a 'hand calculation'. Specimen calculations for dipoles in seawaters are included and the derived results are compared with computations made using an ac model.

  3. The DC field components of horizontal and vertical electric dipole sources immersed in three-layered stratified media

    Directory of Open Access Journals (Sweden)

    D. Llanwyn Jones

    1997-04-01

    Full Text Available Formulas for computing the Cartesian components of the static (DC fields of horizontal electric dipoles ( HEDs and vertical electric dipoles ( VEDs located in the central zone of a three-layer horizontally stratified medium are derived and presented in a summary form suitable for immediate computation. Formulas are given for the electric and magnetic field components in the upper and central regions. In the general case the computation involves the summation of a convergent infinite series. For the particular case of an infinitely thick central region (corresponding to the two-layer problem, the analysis produces relatively simple closed-form equations for the field components which are suitable for a 'hand calculation'. Specimen calculations for dipoles in seawaters are included and the derived results are compared with computations made using an ac model.

  4. A Straight-bladed Vertical Axis Wind Turbine with a Directed Guide Vane Row-Effect of Guide Vane Geometry on the Performance-

    Institute of Scientific and Technical Information of China (English)

    Manabu TAKAO; Hideki KUMA; Takao MAEDA; Yasunari KAMADA; Michiaki OKI; Atsushi MINODA

    2009-01-01

    The objective of this study is to show the effect of guide vane geometry on the performance. In order to over-come the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT) with a directed guide vane row has been proposed and tested by the authors. According to previous studies, it was clarified that the performance of the turbine can be improved by means of the directed guide vane row. However, the guide vane geometry of S-VAWT has not been optimized so far. In order to clarify the effect of guide vane geometry, the effects of setting angle and gap between rotor blade and guide vane on power coefficient and start-ing characteristic were investigated in the experiments. The experimental study of the proposed wind turbine was carded out by a wind tunnel. The wind tunnel with a diameter of 1.8m is open jet type. The wind velocity is 8 m/s in the experiments. The rotor has three straight blades with a profile of NACA0018 and a chord length of 100 mm, a diameter of 0.6 m and a blade height of 0.7 m. The guide vane row consists of 3 arc plates.

  5. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...... in the fault current is used to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using EMTP-RV. The scenarios involve changes in the position and type of fault, and the faulted phases. Results confirm...

  6. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine

    International Nuclear Information System (INIS)

    Lei, Hang; Zhou, Dai; Bao, Yan; Li, Ye; Han, Zhaolong

    2017-01-01

    Highlights: • The Improved Delayed Detached Eddy Simulation and polyhedral mesh are utilized. • Power coefficient and wake velocity are compared between experiments and simulations. • Improved Delayed Detached Eddy Simulation shows more vortices under dynamic stall. • Different scales of flow separations are distinguished by these two models. - Abstract: The aerodynamic performance of a two-bladed vertical axis wind turbine is investigated using the turbulence model of the Improved Delayed Detached Eddy Simulation and the polyhedral mesh. The sliding mesh technique is used to simulate the rotation of the rotor. Meanwhile, the results obtained by the shear stress transport k-ω model are presented as contrast. Then, the simulated power coefficients at different tip speed ratios and the wake velocity are validated by comparison with the experimental data from available literature. It is shown that the power coefficients and wake velocity predicted by the Improved Delayed Detached Eddy Simulation are closer to the experimental data than those by the shear stress transport k-ω model. The pressure distributions predicted by the two turbulence models show different degrees of discrepancies in different scales of flow separation. By comparing the vorticity magnitude graphs, the Improved Delayed Detached Eddy Simulation is found to be able to capture more exquisite vortices after the flow separations. Limited by its inherent ability, the shear stress transport k-ω model predicts vortices that are less realistic than those of Improved Delayed Detached Eddy Simulation. Hence, it may cause some errors in predicting the pressure distributions, especially when the blades suffer dynamic stall. It is demonstrated that the Improved Delayed Detached Eddy Simulation is regarded as a reliable model to analyze the aerodynamic performance of vertical axis wine turbines.

  7. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    Science.gov (United States)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important

  8. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    Science.gov (United States)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  9. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    Science.gov (United States)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  10. Assessing Consequences of Component Sharing across Brands in the Vertical Product Line in the Automotive Market

    NARCIS (Netherlands)

    Verhoef, P.C.; Pauwels, K.; Tuk, M.A.

    Component sharing may look great in the boardroom but not in the showroom. Indeed, savings on research and development and production costs could be offset by a plunge in customer brand attractiveness. The central objective of this paper is to investigate consumer and market responses toward

  11. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.......This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...

  12. Frequency analysis of tangential force measurements on a vertical axis wind turbine

    Science.gov (United States)

    Rossander, Morgan; Goude, Anders; Bernhoff, Hans; Eriksson, Sandra

    2016-09-01

    This paper presents experimental results of the torque ripple obtained from a three bladed 12 kW experimental H-rotor prototype. The measurements are performed by means of load cells installed on the base of the struts and by electrical measurements on the generator. The resulting torques are analysed in terms of frequency spectrum and order spectrum (synchronized with rotation). The measurements are compared to aerodynamic simulations of the turbine. The expected large torque ripple at three times the rotational speed (3 p) is only weakly represented at the hub and in the generator. This suggests that the system is filtering the ripple and/or that the simulations are overestimating the 3 p component. The torque ripple loads on the drive train are therefore lower than anticipated. Even if highly attenuated, most of the low frequencies correlating to aerodynamics are still represented in the generator electrical torque. Given a certain baseline, this opens for possible online monitoring of unbalances in the turbine by electrical measurements.

  13. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, phase 2. Volume 3: Design, fabrication, and site drawing

    Science.gov (United States)

    1983-03-01

    The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.

  14. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  15. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  16. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  17. Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio

    Directory of Open Access Journals (Sweden)

    Dowon Han

    2018-06-01

    Full Text Available A 100-W helical-blade vertical-axis wind turbine was designed, manufactured, and tested in a wind tunnel. A relatively low tip-speed ratio of 1.1 was targeted for usage in an urban environment at a rated wind speed of 9 m/s and a rotational speed of 170 rpm. The basic dimensions were determined through a momentum-based design method according to the IEC 61400-2 protocol. The power output was estimated by a mathematical model that takes into account the aerodynamic performance of the NACA0018 blade shape. The lift and drag of the blade with respect to the angle of attack during rotation were calculated using 2D computational fluid dynamics (CFD simulation to take into account stall region. The average power output calculated by the model was 108.34 W, which satisfies the target output of 100 W. The manufactured wind turbine was tested in a large closed-circuit wind tunnel, and the power outputs were measured for given wind speeds. At the design condition, the measured power output was 114.7 W, which is 5.9% higher than that of the mathematical model. This result validates the proposed design method and power estimation by the mathematical model.

  18. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  19. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  20. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  1. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    Science.gov (United States)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and

  2. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...

  3. Characterization of a New Open Jet Wind Tunnel to Optimize and Test Vertical Axis Wind Turbines Using Flow Visualization and Measurement

    DEFF Research Database (Denmark)

    Tourn, S.; Gilabert, R.; Sánchez, V.

    Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out.......Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out....

  4. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  5. Proportion of various dendromass components of spruce (Picea abies), and partial models for modification of wind speed and radiation by pure spruce stands

    International Nuclear Information System (INIS)

    Wollmerstädt, J.; Sharma, S.C.; Marsch, M.

    1992-01-01

    Means for quantifying dendromass components of spruce stands have been discussed, and partial models for modification of radiation and wind by the pure spruce stand were developed. By means of a sampling procedure, the components needle dry mass and branchwood dry mass without needles of individual trees are recorded. Using the relationship between branch basal diameter and needle respectively branchwood dry mass, the total needle and branchwood dry mass of trees is estimated. Based on that, stand or regional parameters for the allometric function between diameter breast height and needle respectively branchwood dry mass can be determined for defined H/D-clusters. Published data from various sources were used in this paper. The lowest coefficients of determination were found in H/D-cluster 120 (H/D-values over 114). Therefore, further differentiation within this range seems to be necessary. For assimilation models, there should be quantification of needle dry mass separately for needle age classes and morphological characteristics of needles. Basis for the estimate of tree-bole volume is the relationship between H/D-value and oven-dry weight. There are problems as far as methods for quantifying the subterranean dendromass (e.g. dynamics of fine roots) are concerned; this is requiring considerable efforts, too. Spatial structure was also described by allometric functions (crown length and crown cover in relation to diameter breast height). For the partial model to express wind modification by the stand, standardized wind profiles as related to crown canopy density were used. The modification of radiation by the stand is closely related with the vertical needle mass distribution (sum curves). These two partial models have to be considered as an approach for the description of the modifying effect by the stocking [de

  6. Procedures for the design of the main mechanical components of a wind system; Dimensionamento dos componentes mecanicos principais de aerogeradores

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, M.H.; Marco Filho, F. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1990-12-31

    Procedures for the design of the main mechanical components of a wind system were developed. One of the main concerns was related to the possibility of its use in small micro-computers. This goal was reached and an APPLE II computer was used. The resulting algorithm permits a friendly interaction between man and machine. 5 refs., 12 figs

  7. NGA-West2 equations for predicting vertical-component PGA, PGV, and 5%-damped PSA from shallow crustal earthquakes

    Science.gov (United States)

    Stewart, Jonathan P.; Boore, David M.; Seyhan, Emel; Atkinson, Gail M.

    2016-01-01

    We present ground motion prediction equations (GMPEs) for computing natural log means and standard deviations of vertical-component intensity measures (IMs) for shallow crustal earthquakes in active tectonic regions. The equations were derived from a global database with M 3.0–7.9 events. The functions are similar to those for our horizontal GMPEs. We derive equations for the primary M- and distance-dependence of peak acceleration, peak velocity, and 5%-damped pseudo-spectral accelerations at oscillator periods between 0.01–10 s. We observe pronounced M-dependent geometric spreading and region-dependent anelastic attenuation for high-frequency IMs. We do not observe significant region-dependence in site amplification. Aleatory uncertainty is found to decrease with increasing magnitude; within-event variability is independent of distance. Compared to our horizontal-component GMPEs, attenuation rates are broadly comparable (somewhat slower geometric spreading, faster apparent anelastic attenuation), VS30-scaling is reduced, nonlinear site response is much weaker, within-event variability is comparable, and between-event variability is greater.

  8. Statistical and time domain signal analysis of the thermal behaviour of wind turbine drive train components under dynamic operation conditions

    International Nuclear Information System (INIS)

    Nienhaus, K; Baltes, R; Bernet, C; Hilbert, M

    2012-01-01

    Gearboxes and generators are fundamental components of all electrical machines and the backbone of all electricity generation. Since the wind energy represents one of the key energy sources of the future, the number of wind turbines installed worldwide is rapidly increasing. Unlike in the past wind turbines are more often positioned in arctic as well as in desert like regions, and thereby exposed to harsh environmental conditions. Especially the temperature in those regions is a key factor that defines the design and choice of components and materials of the drive train. To optimize the design and health monitoring under varying temperatures it is important to understand the thermal behaviour dependent on environmental and machine parameters. This paper investigates the behaviour of the stator temperature of the double fed induction generator of a wind turbine. Therefore, different scenarios such as start of the turbine after a long period of no load, stop of the turbine after a long period of full load and others are isolated and analysed. For each scenario the dependences of the temperature on multiple wind turbine parameters such as power, speed and torque are studied. With the help of the regression analysis for multiple variables, it is pointed out which parameters have high impact on the thermal behaviour. Furthermore, an analysis was done to study the dependences in the time domain. The research conducted is based on 10 months of data of a 2 MW wind turbine using an adapted data acquisition system for high sampled data. The results appear promising, and lead to a better understanding of the thermal behaviour of a wind turbine drive train. Furthermore, the results represent the base of future research of drive trains under harsh environmental conditions, and it can be used to improve the fault diagnosis and design of electrical machines.

  9. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitiveness...

  10. Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine

    Science.gov (United States)

    Schienbein, L. A.; Malcolm, D. J.

    1982-03-01

    A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.

  11. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    Science.gov (United States)

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A NEW THREE-DIMENSIONAL SOLAR WIND MODEL IN SPHERICAL COORDINATES WITH A SIX-COMPONENT GRID

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xueshang; Zhang, Man; Zhou, Yufen, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-09-01

    In this paper, we introduce a new three-dimensional magnetohydrodynamics numerical model to simulate the steady state ambient solar wind from the solar surface to 215 R {sub s} or beyond, and the model adopts a splitting finite-volume scheme based on a six-component grid system in spherical coordinates. By splitting the magnetohydrodynamics equations into a fluid part and a magnetic part, a finite volume method can be used for the fluid part and a constrained-transport method able to maintain the divergence-free constraint on the magnetic field can be used for the magnetic induction part. This new second-order model in space and time is validated when modeling the large-scale structure of the solar wind. The numerical results for Carrington rotation 2064 show its ability to produce structured solar wind in agreement with observations.

  13. On the ideal and real energy conversion in a straight bladed vertical axis wind turbine. The actuator cylinder flow model compared with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aaagard Madsen, H.

    1983-01-01

    The ideal and the real energy conversion in a straight bladed vertical axis wind turbine (VAWT) with variable pitch has been studied on basis of the actuator cylinder flow model and experimental data from free wind tests on a 9 m/sup 2/ turbine. Particularly, the theoretical upper power limit of VAWT's has been focused upon in the light of the already existing theories for horizontal axis wind turbines (HAWT's). A remarkable result, differing from prior theories, has turned out through the computations with the actuator cylinder flow model and that is: The maximum ideal power coefficient for VAWT's seams neither to be bounded by the Lanchester-Betz power coefficient limit of 16/27 (actuator disc concept), nor by Glauert's ideal power coefficient curve (taking into account the tip speed ratio), both limits derived with particular reference to HAWT's. Concerning the agreement between analysis and the measurements of the power coefficient, the rotor drag coefficient and the flow velocity vector adjacent to the swept area, it was in general found to be good. However, there seems still to be need for future research on the influence of turbulence in the free wind and dynamic stall on the real energy conversion in VAWT's.

  14. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  15. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    of the WindScanner data is high, although the fidelity of the estimated vertical velocity component is significantly limited by the elevation angles of the scanner heads. The system of long-range WindScanners presented in this paper is close to being fully operational, with the pilot study herein serving...

  16. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  17. Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2018-06-01

    Full Text Available The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT. In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.

  18. Evaluation of the aerodynamic performances of a new vertical axis wind turbine type derived from the Savonius rotor; Prevision des performances aerodynamiques d'un nouveau type d'eolienne a axe vertical derivee du rotor Savonius

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Luc Menet [Ecole Nationale Superieure d' Ingenieurs en Informatique Automatique Mecanique energetique electronique de Valenciennes, Universite de Valenciennes, Le Mont Houy F-59313 Valenciennes Cedex 9, (France); Andrew Leiper [Department of Engineering, University of Aberdeen, Aberdeen, Scotland (United Kingdom)

    2005-07-01

    The Savonius rotor is a slow running vertical axis wind turbine, the advantages of which are numerous; however, it has a poor aerodynamic efficiency. We present a study aiming to raise this efficiency by adjusting several geometrical parameters, in particular the overlap of the paddles and their respective position. The results are coming from a bidimensional numerical simulation, using the CFD code Fluent v6.0. First the numerical model is validated on the conventional Savonius rotor. Then the geometry of an optimised Savonius rotor is proposed, the overlap ratio of which is 0.242. Last a different positioning of the paddles leads to an optimal paddle angle of about 55 degrees, corresponding to the maximum of the mean starting torque coefficient. (authors)

  19. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder......, or on an adjacent feeder from those on the connected feeder, on the collection bus, at an inter-tie or at a grid. For the former faults, the relay should remain stable and inoperative whilst the instantaneous or delayed tripping is required for the latter faults. At stage 2, the fault type is first evaluated using...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  20. Pultrusion of a vertical axis wind turbine blade part-I: 3D thermo-chemical process simulation

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.; Akkerman, Remko

    2015-01-01

    A novel three dimensional thermo-chemical simulation of the pultrusion process is presented. A simulation is performed for the pultrusion of a NACA0018 blade profile having a curved geometry, as a part of the DeepWind project. The finite element/nodal control volume (FE/NCV) technique is used.

  1. Pultrusion of a vertical axis wind turbine blade part-I: 3D thermo-chemical process simulation

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2015-01-01

    novel three dimensional thermo-chemical simulation of the pultrusion process is presented. A simulation is performed for the pultrusion of a NACA0018 blade profile having a curved geometry, as a part of the DeepWind project. The finite element/nodal control volume (FE/NCV) technique is used. First...

  2. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  3. Long-term global response analysis of a vertical axis wind turbine supported on a semi-submersible floating platform: Comparison between operating and non-operating wind turbine load cases

    DEFF Research Database (Denmark)

    Collu, Maurizio; Manuel, Lance; Borg, Michael

    2015-01-01

    This study continues [1] the examination of the long-term global response of a floating vertical axis wind turbine (VAWT) situated off the Portuguese coast in the Atlantic Ocean. The VAWT, which consists of a 5-MW 3-bladed H-type rotor developed as part of the EU-FP7 H2OCEAN project, is assumed...... is adopted, as well as also taking into account the drag generated by the wind turbine tower. Short-term turbine load and platform motion statistics are established for individual sea states that are analysed. The long-term reliability yields estimates of 50-year loads and platform motions that takes...... to be mounted on the OC4 semi-submersible floating platform. Adding a non-operational load case (wind speed 35m/s), the sea states identified are used to carry out coupled dynamics simulations using the FloVAWT design tool, for which an improved wave elevation and relative force/moment time signals approach...

  4. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    Science.gov (United States)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  5. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-09

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  6. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  7. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  8. ROTOR DESIGN FOR VERTICAL AXIS WIND TURBINES, SUITABLE FOR URBAN SEASHORE ENVIRONMENT OR NAVAL INDUSTRY IMPLEMENTATION (NUMERICAL METHODS AND ANALYTHICAL CALCULUS

    Directory of Open Access Journals (Sweden)

    IONESCU Raluca Dora

    2014-09-01

    Full Text Available In this paper it is investigated the best solution for a new Vertical Axis Wind Turbine (VAWT design that has as objective the augmentation of power with minimum changes and without movable parts. It is investigated a classical Darrieus rotor with SANDIA shape, to which are studied both the influence of different aspect ratios as well as the influence of aerodynamic profile. Hence are used a NACA0012 and NACA0018 blade profile, aiming to improve the rotor characteristics. It is concluded that both the aspect ratio as well as the aerodynamic profile have a substantial importance on the power curve and thus, it encourages the further studies regarding their effect on the turbine performance.

  9. Analysis and Design of a Permanent-Magnet Outer-Rotor Synchronous Generator for a Direct-Drive Vertical-Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    H. A. Lari

    2014-12-01

    Full Text Available In Permanent-Magnet Synchronous Generators (PMSGs the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.

  10. Investigation of the Optimal Omni-Direction-Guide-Vane Design for Vertical Axis Wind Turbines Based on Unsteady Flow CFD Simulation

    Directory of Open Access Journals (Sweden)

    Behzad Shahizare

    2016-03-01

    Full Text Available With soaring energy demands, the desire to explore alternate and renewable energy resources has become the focal point of various active research fronts. Therefore, the scientific community is revisiting the notion to tap wind resources in more rigorous and novel ways. In this study, a two-dimensional computational investigation of the vertical axis wind turbine (VAWT with omni-direction-guide-vane (ODGV is proposed to determine the effects of this guide vane. In addition, the mesh and time step (dt size dependency test, as well as the effect of the different turbulence models on results accuracy are investigated. Eight different shape ratios (R of the omni-direction-guide-vane were also examined in this study. Further, the CFD model is validated by comparing the numerical results with the experimental data. Validation results show a good agreement in terms of shape and trend in CFD simulation. Based on these results, all the shape ratios, except two ratios including 0.3 and 0.4 at TSR of 1.3 to 3, have a positive effect on the power and torque coefficient improvement. Moreover, results show that the best case has a shape ratio of 0.55, which improves the power coefficient by 48% and the torque coefficient up to 58%.

  11. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  12. The role of technology transfer for the development of a local wind component industry in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario

    2011-01-01

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: → We analyse the case of a Chilean company starting up wind blades production. → Technology transfer is required as the relevant knowledge is not available in the country. → We examine the factors that enable technology transfer to draw policy conclusions. → We highlight the particularities of medium sized developing countries.

  13. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  14. Casting defects and fatigue behaviour of ductile cast iron for wind turbine components: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Haerkegaard, G. [Norwegian University of Science and Technology, Dept. of Engineering Design and Materials, Trondheim (Norway); Shirani, M.

    2011-12-15

    Two types of EN-GJS-400-18-LT ductile cast iron were investigated in this research, clean baseline material in the shape of castings with different thicknesses and also defective material from a rejected wind turbine hub. P-S-N curves for baseline EN-GJS-400-18-LT specimens with different dimensions and from castings with different thicknesses at different load ratios were established. Geometrical size effect, technological size effects and mean stress effect on fatigue strength of baseline EN-GJS-400-18-LT were evaluated. Fatigue strength of baseline EN-GJS-400-18-LT was compared with that of defective material from the rejected hub. The effect of defects type, shape, size and position on fatigue strength of this material was evaluated. The hypothesis that the endurance observed in an S-N test can be predicted based on the analysis of crack growth from casting defects through defect-free 'base' material was tested for the analyzed defective material. 3D X-ray computed tomography was use to detect defects in defective specimens and find the defect size distribution. The obtained defect size distribution for the defective material was used in random defect analysis to establish the scatter of fatigue life for defective specimens. Finally both safe-life design and damage tolerant design of wind turbine castings were analyzed and compared. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  16. Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine

    Science.gov (United States)

    Möllerström, E.; Eriksson, S.; Goude, A.; Ottermo, F.; Hylander, J.

    2016-09-01

    The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp_max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp_max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp_max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.

  17. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  18. Correlation of horizontal and vertical components of strong ground motion for response-history analysis of safety-related nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin-Nan, E-mail: ynhuang@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: b01501059@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)

    2016-12-15

    Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.

  19. A call for conservation scientists to evaluate opportunities and risks from operation of vertical axis wind turbines

    Science.gov (United States)

    Santangeli, Andrea; Katzner, Todd E.

    2015-01-01

    A new conservation paradigm (Kareiva and Marvier, 2012) emphasizes the need for scientists to embrace a holistic approach taking into account the social and natural dimensions of conservation in human-dominated landscapes. While there is heavy debate over the new approach (Tallis and Lubchenco, 2014), most conservation scientists seem to agree on to the need to cooperate with corporations when such interaction can benefit people and the environment (Miller et al., 2014;Tallis and Lubchenco, 2014). Cooperation can be most productive when established in the early phases of development, but this requires a high capacity for forward looking pre-emptive action (i.e., anticipating potential forthcoming issues before they arise; Sutherland and Woodroof, 2009). This framework is particularly salient for rapidly developing and expanding technologies such as those for harvesting renewable energy sources. Here the stakes are very high, as they concern mitigating negative consequences to global climate while generating energy without impacting wildlife. In this vein, past experience is instructional. The environmental impacts of biofuels and wind, among others, have been identified and evaluated rather late (Sutherland and Woodroof, 2009), so that implementation of best management practices on existing facilities is now often prohibitively expensive.

  20. Mesoscale modeling of smoke transport over Central Africa: influences of trade winds, subtropical high, ITCZ and vertical statistics

    Science.gov (United States)

    Yang, Z.; Wang, J.; Hyer, E. J.; Ichoku, C. M.

    2012-12-01

    A fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem), is used to simulate the transport of smoke aerosol over the Central Africa during February 2008. Smoke emission used in this study is specified from the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance is evaluated using MODIS true color images, measured Aerosol Optical Depth (AOD) from space-borne MODIS (550 nm) and ground-based AERONET (500 nm), and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) level 1 and 2 products. The simulated smoke transport is in good agreement with the validation data. Analyzing from three smoke events, smoke is constrained in a narrow belt between the Equator and 10°N near the surface, with the interplay of trade winds, subtropical high, and ITCZ. At the 700 hpa level, smoke expands farther meridionally. Topography blocks the smoke transport to the southeast of study area, because of high mountains located near the Great Rift Valley region. The simulation with injection height of 650 m is consistent with CALIOP measurements. The particular phenomenon, aerosol above cloud, is studied statistically from CALIOP observations. The total percentage of aerosol above cloud is about 5%.

  1. 垂直轴风力发电机叶片气动性能研究%The research of the vertical-axis wind turbine blade's aerodynamic performance

    Institute of Scientific and Technical Information of China (English)

    戴湘晖; 徐海波

    2011-01-01

    性能优越的垂直轴风力发电机正越来越受到关注.优良的风叶是使垂直风力发电机获得最大风能利用系数和良好经济效益的基础.垂直风力发电机叶型的气动性能研究是当前叶片设计的重要内容.利用ANSYS FLUENT12.0对NACA4412、FX76MPl2、DU86-137-25以及C型四种不同叶片的气动性能进行了仿真和分析,得出C型叶片相对其他三种叶片有着更好的气动性能,能为垂直风力发电机叶片的设计起到指导作用.%Now researchers of many countries are paying more and more attention to the vertical-axis wind turbine for its superexcellent perfrmance. Excellent wind turbine blade is the foundation to get the most wind power coefficient and economic efficiency of the vertical-axis wind turbine. Research the aerodynamic performance of the vertical-axis wind turbine blade is the important content of the blade design at present. Use ANSYS FLUENT12.0 to simulate and analysis the aerodynamic performance of four different kinds of blades such as NACA4412,FX76MP12,DU86-137-25 and C,and conclude the C-shaped blade with a better aerodynamic performance compared with other three kinds of blades. The conclusion can play a guiding role in the design of the vertical-axis wind turbine blade.

  2. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  3. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  4. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.; Jackson, Charles S.; Yao, Fengchao; Zedler, Sarah; Hoteit, Ibrahim

    2014-01-01

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  5. A consistent decomposition of the redistributive, vertical, and horizontal effects of health care finance by factor components.

    Science.gov (United States)

    Hierro, Luis A; Gómez-Álvarez, Rosario; Atienza, Pedro

    2014-01-01

    In studies on the redistributive, vertical, and horizontal effects of health care financing, the sum of the contributions calculated for each financial instrument does not equal the total effects. As a consequence, the final calculations tend to be overestimated or underestimated. The solution proposed here involves the adaptation of the Shapley value to achieve additive results for all the effects and reveals the relative contributions of different instruments to the change of whole-system equity. An understanding of this change would help policy makers attain equitable health care financing. We test the method with the public finance and private payments of health care systems in Denmark and the Netherlands. Copyright © 2013 John Wiley & Sons, Ltd.

  6. 垂直轴风力机直驱热泵压缩机匹配特性研究%Study on matching characteristics of vertical axis wind turbine direct-driven heat pump compressor/

    Institute of Scientific and Technical Information of China (English)

    赵斌; 马海鹏; 汪建文; 钟晓晖

    2017-01-01

    风能供热是多风寒冷地区,减少雾霾有效途径之一.针对垂直轴风力机直驱热泵压缩机系统,分析300W垂直轴风力机输出和开启式涡旋压缩机输入扭矩及功率特性,研究不同风速下垂直轴风力机与开启式涡旋压缩机特殊匹配特性.根据效率理论分析匹配特性,系统选型设计时垂直轴风力机输出功率应略高于压缩机所需输入功率,通过选择合理变速比,获得垂直轴风力机设计参数,实现系统按额定工况运行.为风能供热系统参数选型提供理论参考.%Wind energy heating was one of the effective ways to reduce haze in windy cold area.In view of the vertical axis wind turbines direct-drive heat pump compressor system,torque and power characteristics of the 300W vertical axis wind turbine output and opening scroll compressor input were analyzed.Special matching characteristics of opening scroll compressor was studied with the vertical axis wind turbines under different wind speed.In the selection design of the system,results showed that the efficiency of the device should be considered.The vertical axis wind turbine output power should be slightly higher than the compressor power input.Required vertical axis wind turbine design parameters could be obtained by selecting reasonable speed ratio,in order to make the system working in the rated conditions.Research results could lay theoretical basis for the parameter selection of wind energy heating system.

  7. Performance Evaluation of the Multi-stage Tower-type Vertical-axis Wind Turbine%多层塔式H型立轴风机的性能分析

    Institute of Scientific and Technical Information of China (English)

    高振勋; 蒋崇文; 唐金龙; 王德宝

    2011-01-01

    The main ideal of the multi-stage tower type vertical-axis wind turbine is to utilize the superposition of multi group H-type vertical-axis wind turbines to generate power, and fully use the wind energy in different altitude, which is beneficial for the large-scale development of modern wind turbine. The performance compari sons between the multi-stage tower-type vertical-axis wind turbine and traditional wind turbine were performed on many aspects. It was pointed out that the multi-stage tower-type vertical-axis wind turbine can have many advantages, such as easy-machining blades, high power efficiency, avoidance of the yawing system, reasonable structure loading, and low manufacture/maintenance cost. However, some disadvantages exist, such as the aerodynamic drag brought in by the blade supporting structure, complicated tower construction, and incremental requirement for gearbox and shaft joint. Overall considering, the multi stage tower-type vertical-axis wind turbine has extensive prospect of market applications.%多层塔式立轴风机的核心思想是将多组H型立轴风机分层叠加组合发电,结构简单性能优异,非常适合大容量的风电机组,符合现代风机向大型化发展的方向。对多层塔式立轴风机与传统风机的多方面性能进行了对比,指出多层塔式立轴风机具有风能利用率高、叶片制造简单、无需偏航系统、结构载荷合理、制造维护成本低等诸多优点,但也存在一些缺点,如叶片支撑结构会引入气动阻力、塔架设计较复杂、需要多组齿轮箱及联轴器等。总体分析表明,多层塔式立轴风机的方案在技术上和经济上是可行的。

  8. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    Science.gov (United States)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  9. Validation of mixing height determined from vertical profiles of wind and temperature from the DMI-HIRLAM NWP model in comparison with readiosoundings

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A.; Soerensen, J.H.; Nielsen, N.W. [Danish Meteorological Inst., DMI, Copenhagen (Denmark)

    1997-10-01

    A sensitivity study is performed of vertical profiles from the numerical weather prediction model DMI-HIRLAM (DMI-HIgh Resolution Limited Area Model). The study involves profiles of horizontal wind, temperature and humidity in the lower troposphere up to 2500 meter. Detailed comparisons of analysed as well as forecast profiles are made with measured data from several radio-sonde stations throughout Europe. Methods for estimating the Mixing Height (MH) based on a bulk Richardson number method, the Vogelezang and Holtslag method and parcel methods are also studied. The methods are inter-compared, and MH based on data from DMI-HIRLAM are compared with the corresponding MH based on radiosonde data. For convective conditions the MH estimates are also compared with subjective estimates of the MH. In this paper preliminary results mainly based on data from Jaegersborg (Copenhagen) are presented. Results based on data from 1994-95 show that the resemblance between measured profiles and the DMI-HIRLAM profiles is fairly good in general. Also the estimates of the MH based on DMI-HIRLAM data is in general of nearly the same quality as estimations based on observed data. However, especially in convective conditions there is a tendency by DMI-HIRLAM to underestimate the strength of the mixing and thereby relatively large errors in the estimates of the MH can occur. (au)

  10. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  11. Horizontal integration in markets for complementary components and vertical product differentiation: A case-based analysis in the semiconductor industry

    OpenAIRE

    Westbrock, B.

    2005-01-01

    Observations of recent mergers and acquisitions (M&A) in the semiconductor and computer industry indicate that activities concentrate on the technology leaders in this market. The author examines the influence of players’ heterogeneous product technologies on their involvement in M&A. He provides a rationale for the influence with the help of a case study and a two-stage non cooperative game. The case is about an acquisition wave between suppliers in two semiconductor component markets. Exe...

  12. 导叶对涡轮型垂直轴风力机气动性能的影响%Effects of guiding vanes on aerodynamic performance of vortex vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    原红红; 赵振宙; 郑源; 黄娟

    2013-01-01

    To overcome the problem of low efficiency of the traditional vertical axis wind turbine, the structural advantages of the wind turbine with guiding vanes are introduced and the effects of guiding vanes on the vortex vertical axis wind turbine are analyzed in detail. Based on computational fluid dynamics theory, the slippage mesh technique and the k-ε model were used to compare the aerodynamic performance of the vortex vertical axis wind turbine with and without guiding vanes at a design velocity of 12 m/s. Studies have shown that the guiding vanes can effectively prevent the direct impact of the coming flow from acting on the suction section of the blade in the upwind area so as to decrease the drag torque, while the guiding vanes also negatively affect the performance of blades in the downwind area, but the positive effect of the former is more significant, so the performance of a wind turbine with guiding vanes greatly improves. The vortex vertical axis wind turbine with arc-type guiding vanes has a wider operating range, higher optimum tip speed ratio, and higher aerodynamic efficiency. The maximum wind power coefficient can reach 0.24 .%针对传统垂直轴风力机效率低的缺陷,阐述带导叶垂直轴风力机的结构优势,并分析导叶对涡轮型垂直轴风力机的作用。应用计算流体力学理论,在设计风速12 m/s下,采用滑移网格技术及k-着模型对有、无导叶两种涡轮型垂直轴风力机的气动性能进行比较。研究表明,导叶可以有效降低由于来流对逆风区叶片吸力面的直接冲击而造成的阻力扭矩,也会负面影响顺风区叶片的性能,但其负作用效果远不及在逆风区挡流降阻的正作用效果,故加导叶后风轮的性能会有很大提高。带弧线形导叶涡轮型垂直轴风力机最大风能利用系数可达0.24,具有工作范围广、最佳尖速比大的特点。

  13. Bowen emission from Aquila X-1: evidence for multiple components and constraint on the accretion disc vertical structure

    Science.gov (United States)

    Jiménez-Ibarra, F.; Muñoz-Darias, T.; Wang, L.; Casares, J.; Mata Sánchez, D.; Steeghs, D.; Armas Padilla, M.; Charles, P. A.

    2018-03-01

    We present a detailed spectroscopic study of the optical counterpart of the neutron star X-ray transient Aquila X-1 during its 2011, 2013 and 2016 outbursts. We use 65 intermediate resolution GTC-10.4 m spectra with the aim of detecting irradiation-induced Bowen blend emission from the donor star. While Gaussian fitting does not yield conclusive results, our full phase coverage allows us to exploit Doppler mapping techniques to independently constrain the donor star radial velocity. By using the component N III 4640.64/4641.84 Å, we measure Kem = 102 ± 6 km s-1. This highly significant detection (≳13σ) is fully compatible with the true companion star radial velocity obtained from near-infrared spectroscopy during quiescence. Combining these two velocities we determine, for the first time, the accretion disc opening angle and its associated error from direct spectroscopic measurements and detailed modelling, obtaining α = 15.5 ^{+ 2.5}_{-5} deg. This value is consistent with theoretical work if significant X-ray irradiation is taken into account and is important in the light of recent observations of GX339-4, where discrepant results were obtained between the donor's intrinsic radial velocity and the Bowen-inferred value. We also discuss the limitations of the Bowen technique when complete phase coverage is not available.

  14. Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation

    International Nuclear Information System (INIS)

    Shahizare, B.; Nik-Ghazali, N.; Chong, W.T.; Tabatabaeikia, S.; Izadyar, Nima; Esmaeilzadeh, Alireza

    2016-01-01

    Highlights: • Investigation of the Omni-direction-guide-vane impacts on the VAWT performance. • Obtain the best position of the guide vane angles in order to achieve the maximum performance. • Validation of the 3D computational fluid dynamics with experimental data. • Acquire the optimal Omni-direction-guide-vane based on numerical simulation results. - Abstract: The aim of this study is to present the effects of different Omni-direction-guide-vane (ODGV) angles on the performance of the vertical axis wind turbine (VAWT). For this purpose, five different straight-bladed VAWTs have been simulated via three-dimensional (3D) computational fluid dynamics (CFD). Hence, the VAWT without ODGV covering, were simulated and validated via CFD and experimental fluid dynamics (EFD) data, respectively in the first step. Indeed, grid and time step independency test as well as the effect of domain size, have been conducted and a suitable agreement was found based on comparison of the CFD and EFD results. In the next step, the VAWT was shrouded by ODGV cover and the whole system was simulated for 52 angles of the ODGV in four different tip speed ratios (TSR), to investigate the impact of guide vanes angles on the VAWT performance. Results of this study indicated that output power of the VAWT with α = 20° and β = 55° ODGV guide vanes, was improved 40.9%, 36.5%, 35.3% and 33.2%, respectively in four different TSR including 0.745, 1.091, 1.901 and 2.53.

  15. Progressive innovations in applying of wind energy

    International Nuclear Information System (INIS)

    Yershina, Ainakul K.; Yershin, Chingiz Sh.

    2013-01-01

    The article presents the current design of a laboratory model, the so-called model of vertical-axis wind turbine component. Construction work carried out, and then made a valid laboratory model of cross-sectional area S = 0,64 m 2 , which can operate as a conventional Darya, and in the mode of our constructive solutions. The tower that supports the wind turbine installed in the vertical position of the shaft 2, each of which is connected with only one blade and working with their current generator. The shafts are separated by a bearing and can operate autonomously, independently of each other. The mechanical energy of rotation is transferred to two different power generators, ie Each shaft works on his generator. Electricity generated by them is summarized. Thus, the feature of this design is the increased removal of wind energy in two independent working trees with the same swept area. Therefore, effective value of wind energy usage efficiency may be increased to 0.7 in case of high production culture.Vertical - axis turbine component has a special lock that supports the angle between the furs 180 °. Key words: wind turbine Darrieus, shaft, generator current, power, wind speed, blade

  16. Progressive innovations in applying of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Yershina, Ainakul K. [Kazakh State Women Pedogogical University, Almaty (Kazakhstan); Yershin, Chingiz Sh. [Kazakh Natio nal University named by al - Farabi, Almaty (Kazakhstan)

    2013-07-01

    The article presents the current design of a laboratory model, the so-called model of vertical-axis wind turbine component. Construction work carried out, and then made a valid laboratory model of cross-sectional area S = 0,64 m{sup 2} , which can operate as a conventional Darya, and in the mode of our constructive solutions. The tower that supports the wind turbine installed in the vertical position of the shaft 2, each of which is connected with only one blade and working with their current generator. The shafts are separated by a bearing and can operate autonomously, independently of each other. The mechanical energy of rotation is transferred to two different power generators, ie Each shaft works on his generator. Electricity generated by them is summarized. Thus, the feature of this design is the increased removal of wind energy in two independent working trees with the same swept area. Therefore, effective value of wind energy usage efficiency may be increased to 0.7 in case of high production culture.Vertical - axis turbine component has a special lock that supports the angle between the furs 180 °. Key words: wind turbine Darrieus, shaft, generator current, power, wind speed, blade.

  17. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand); Engelbrecht, N. E. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  18. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    International Nuclear Information System (INIS)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K.; Oughton, S.; Engelbrecht, N. E.

    2016-01-01

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  19. Design and Evaluation of a Protection Relay for a Wind Generator Based on the Positive- and Negative-Sequence Fault Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Crossley, P. A.

    2013-01-01

    To avoid undesirable disconnection of healthy wind generators (WGs) or a wind power plant, a WG protection relay should discriminate among faults, so that it can operate instantaneously for WG, connected feeder or connection bus faults, it can operate after a delay for inter-tie or grid faults......, and it can avoid operating for parallel WG or adjacent feeder faults. A WG protection relay based on the positive- and negativesequence fault components is proposed in the paper. At stage 1, the proposed relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults...... at a parallel WG connected to the same feeder or at an adjacent feeder, from other faults at a connected feeder, an inter-tie, or a grid. At stage 2, the fault type is first determined using the relationships between the positive- and negative-sequence fault components. Then, the relay differentiates between...

  20. Toroidal inhomogeneity of the vertical field in a tokamak apparatus

    International Nuclear Information System (INIS)

    Sometani, Taro; Takashima, Hidekazu

    1977-01-01

    An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)

  1. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi

    2014-08-05

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.

  2. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  3. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics

    Science.gov (United States)

    Riley, W. J.; Maggi, F.; Kleber, M.; Torn, M. S.; Tang, J. Y.; Dwivedi, D.; Guerry, N.

    2014-07-01

    Accurate representation of soil organic matter (SOM) dynamics in Earth system models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed an SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic matter (DOM) stocks and fluxes, lignin content, and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and Δ14C vertical profiles are consistent with a representation of SOM consisting of carbon compounds with relatively fast reaction rates, vertical aqueous transport, and dynamic protection on mineral surfaces.

  4. Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Directory of Open Access Journals (Sweden)

    Y. Lehahn

    2010-07-01

    Full Text Available Six years (2003–2008 of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS and surface wind speeds from Quick Scatterometer (QuikSCAT, the Advanced Microwave Scanning Radiometer (AMSR-E, and the Special Sensor Microwave Imager (SSM/I, are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.

  5. Vertical propagation characteristics and seasonal variability of tidal wind oscillations in the MLT region over Trivandrum (8.5° N, 77° E: first results from SKiYMET Meteor Radar

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    2006-11-01

    Full Text Available Tidal activity in the Mesospheric Lower Thermosphere (MLT region over Trivandrum (8.5° N, 77° E is investigated using the observations from newly installed SKiYMET Meteor Radar. The seasonal variability and vertical propagation characteristics of atmospheric tides in the MLT region are addressed in the present communication. The observations revealed that the diurnal tide is more prominent than the semi/terdiurnal components over this latitude. It is also observed that the amplitudes of meridional components are stronger than that of zonal ones. The amplitude and phase structure shows the vertical propagation of diurnal tides with vertical wavelength of ~25 km. However, the vertical wavelength of the semidiurnal tide showed considerable variations. The vertical propagation characteristics of the terdiurnal tide showed some indications of their generating mechanisms. The observed features of tidal components are compared with Global Scale Wave Model (GSWM02 values and they showed a similar amplitude and phase structure for diurnal tides. Month-to-month variations in the tidal amplitudes have shown significant seasonal variation. The observed seasonal variation is discussed in light of the variation in tidal forcing and dissipation.

  6. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbine...... diameter downstream. The results show an earlier wake recovery for the onshore case. The effect of inflow conditions and the wind turbine’s working conditions on wake meandering was investigated. Wake meandering was detected by hot wire anemometry through a low frequency peak in the turbulent power...

  7. Current observations from a looking down vertical V-ADCP: interaction with winds and tide? The case of Giglio Island (Tyrrhenian Sea, Italy

    Directory of Open Access Journals (Sweden)

    Laura Cutroneo

    2017-04-01

    Full Text Available In the context of the environmental monitoring of the Concordia wreck removal project, measurements of currents, winds and sea level height were made along the eastern coast of the Giglio Island, Tyrrhenian Sea (Italy, during 2012–2013. The aim of the study was to investigate the effect of atmospheric forcing and periodic sea-level changes on the coastal currents. Normalised Cross-Correlation Function analysis allowed us to correlate these observations. A marked inter-seasonal variability was found in both current and local wind velocity observations but a significant level of correlation between the data was only found during strong wind events. Current and wind directions appeared to be uncorrelated and current measurements showed a predominant NW–SE direction, presumably linked to the shape and orientation of Giglio Island itself. During strong winds from the SSE, current flow was towards the NNW but it suddenly switched from the NNW to the SE at the end of wind events. The results show that, at Giglio Island, currents are principally dominated by the general cyclonic Tyrrhenian circulation, and, secondly, by strong wind events. The sea level had no effects on the current regime.

  8. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  9. Navy-New Hampshire Wind Energy Program.

    Science.gov (United States)

    1979-11-01

    wind use for both the MOD-2 and Darrieus wind turbine -generators when located on these peaks. lIT...Horizontal Axis WECS 10 2-4 Darrieus Vertical Axis Wind Turbine 12 2-5 Alcoa Design for 500 kW Vertical Axis WECS 13 3-1 Fraction of Wind Observations... Turbines In 1925, G.J.M. Darrieus patented the concept of a vertical axis wind turbine . Today, the Darrieus design has evolved to a fixed-pitch

  10. COMPLETE SEPARATION OF THE VERTICAL AND HORIZONTAL INDEPENDENT COMPONENTS OF THE FLIGHT IN POLICOPTER UAV NAU PKF "AURORA" AND MATHEMATICAL MODEL OF THIS FLIGHT

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-07-01

    Full Text Available Purpose: This article presents a mathematical model and the experimental results of automatic flights of the policopter UAV NAU PKF "Aurora" of oktacopter scheme with additional elektroimpeler engines of horizontal thrust. Methods: UAV NAU PKF "Aurora" is developed for experimental flights in manual, semi-automatic and unmanned modes. The uniqueness and scientific novelty of data of flight testes is in a complete separation and isolation of vertical and horizontal components of the flight, which enables a fundamentally new way of moving of vehicle in the aerial space. This approach gives a ability to obtain all advantages and to eliminate disadvantages of helicopter and airplane in fundamentally new aircraft by structure and by function – namely in the policopter flyer with additional independent engines of the lateral thrust. Results: Obtained a new experimental data that allowed to better understand the nature of the physical forces, providing the flight of the policopter. Discussion: Revised a physical basis of the airscrew (propeller, namely on the example of flight of the policopter proved that most of the thrust of the propeller provided by the mechanical impulse (kinetic energy Ек=mv2/2 by the impulse, that a airscrew receives at his collisions with air molecules,but not by the gradient of air pressure below and above the airscrew. Is put forward a hypothesis of gravitational nature of the flight and introduced the notion of "functional antigravity", that a force completely identical in function and opposite on the direction of the force of gravity (gravity force. Deduced a mathematical formula of "functionally antigravitational" transport, namely:G·M·m/R2 = mI·v2/2 – for the flights of the aircraft with a mass m over universal astronomical body with a mass M, and m·g = mI·v2/2 – for the flights of the aircraft with mass m over a planet Earth.

  11. Tenth ASME wind energy symposium

    International Nuclear Information System (INIS)

    Berg, D.E.; Veers, P.S.

    1991-01-01

    This book contains papers presented at the Fourteenth Annual Energy-Sources Technology Conference and Exhibition. Included are the following papers: Wind Power Farm Site Selection, Turbulence characterization for wind energy development, Effects of insect configuration on wind turbine airfoils, Power fluctuations from horizontal and vertical axis wind turbines, Power regulation by active yaw control for a teetered wind rotor, and economic aspects of wind energy

  12. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata based wind turbine blade

    Directory of Open Access Journals (Sweden)

    Sudarsono S.

    2018-01-01

    Full Text Available In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM and material component is measured with Energy Dispersive X-ray spectrometer (EDS. The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  13. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    Science.gov (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  14. On the relative importance of loads acting on a floating vertical axis wind turbine system when evaluating the global system response

    DEFF Research Database (Denmark)

    Collu, Maurizio; Borg, Michael; Manuel, Lance

    2016-01-01

    Interest in offshore floating wind turbines has been growing over the last decade. While a number of studies have been conducted to model the dynamics of offshore floating HAWT systems (e.g. OC3-Phase IV, OC4-Phase II), relatively few studies have been conducted on floating VAWT systems, despite...... offshore floating VAWT, considering a turbulent wind field and stochastically generated waves, to assess the more critical loads and distinguish them from those with negligible effect, when estimating the global system response. The floating VAWT system considered is comprised of a 5MW rotor supported...

  15. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... are developed, which should provide the basis for microstructure-based correlating of observable and service properties of wood. Some correlations between microstructure, strength and service properties of wood have been established....

  16. Pultrusion of a vertical axis wind turbine blade part-II: combining the manufacturing process simulation with a subsequent loading scenario

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem Celal

    2015-01-01

    This paper in particular deals with the integrated modeling of a pultruded NACA0018 blade profile being a part of EU funded DeepWind project. The manufacturing aspects of the pultrusion process are associated with the preliminary subsequent service loading scenario. A 3D thermochemical analysis...

  17. Pultrusion of a vertical axis wind turbine blade part-II: combining the manufacturing process simulation with a subsequent loading scenario

    NARCIS (Netherlands)

    Baran, Ismet; Hattel, Jesper H.; Tutum, Cem C.; Akkerman, Remko

    2015-01-01

    This paper in particular deals with the integrated modeling of a pultruded NACA0018 blade profile being a part of EU funded DeepWind project. The manufacturing aspects of the pultrusion process are associated with the preliminary subsequent service loading scenario. A 3D thermo-chemical analysis of

  18. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    Science.gov (United States)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  19. Influence of a roughness length error on vertical wind speed extrapolation for 2D ideal hills using an OpenFOAM® RANS simulation

    Directory of Open Access Journals (Sweden)

    Einav-Levy Hanan

    2014-01-01

    Full Text Available In modelling wind flow over a flat and complex terrain, the choice of roughness-length-distribution is critical for accurate wind speed predications. This choice is often made based on the Davenport scale [1]. A satellite or aerial image of the location is used [2–4] and subjective or objective measures are used for translating the image into roughness length - z0 - based on the Davenport scale. The choice of a Davenport table value is generally regarded as within an error of plus or minus one table value, leading to a ±6% error in wind speed predictions for a flat terrain in neutral conditions [5]. In the paper this error is studied for a non-flat terrain, using a series of CFD simulations for 2D hills of various combinations of aspect ratio and steepness. Results show that the wind speed prediction error as a result of a “wrong” parameterization decreases with hill steepness until separation occurs. As a result of separation the error increases slightly, and then decreases again with a further increase in hill steepness.

  20. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  1. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  2. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  3. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  4. Vertical separation of the atmospheric aerosol components by using poliphon retrieval in polarized micro pulse lidar (P-MPL) measurements: case studies of specific climate-relevant aerosol types

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Sicard, Michaël; Ansmann, Albert; Águila, Ana del; Baars, Holger

    2018-04-01

    POLIPHON (POlarization-LIdar PHOtometer Networking) retrieval consists in the vertical separation of two/three particle components in aerosol mixtures, highlighting their relative contributions in terms of the optical properties and mass concentrations. This method is based on the specific particle linear depolarization ratio given for different types of aerosols, and is applied to the new polarized Micro-Pulse Lidar (P-MPL). Case studies of specific climate-relevant aerosols (dust particles, fire smoke, and pollen aerosols, including a clean case as reference) observed over Barcelona (Spain) are presented in order to evaluate firstly the potential of P-MPLs measurements in combination with POLIPHON for retrieving the vertical separation of those particle components forming aerosol mixtures and their properties.

  5. Vertical-axis turbine/propeller for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Barkla, H.M.

    1984-01-01

    There are so many variables in the design and operating conditions of a vertical-axis turbine/propeller for the propulsion of a ship by wind that a preliminary study is offered, based on two simplified models. Study of a linear motion of blades in air and water shows optimum conditions for blade-speed and blade-incidence. Analysis of the second, cyclical model is simplified by the assumption of constant angles of incidence. While the logical superiority of the vertical-axis system, with its low transmission loss, may not alone give it the advantage over all other systems in upwind and downwind sailing, there are indications that in the beam wind it is in a class of its own; the Voith-Schneider-Type propeller then produces a thrust with a major component to windward, so that the combined unit leaves little or no athwartships force.

  6. Assessment of Wind Turbine for Site-Specific Conditions using Probabilistic Methods

    DEFF Research Database (Denmark)

    Heras, Enrique Gómez de las; Gutiérrez, Roberto; Azagra, Elena

    2013-01-01

    turbines, helping to the decision making during the site assessment phase of wind farm designs. First, the design equation for the failure mode of interest is defined, where the loads associated to the site-specific wind conditions are compared with the design limits of the structural component. A limit...... be very dependent on the site. The uncertainties on the wind properties depend on issues like the available wind data, the quality of the measurement sensors, the type of terrain or the accuracy of the engineering models for horizontal and vertical spatial extrapolation. An example is included showing two...

  7. 分布式能源系统垂直轴风机特性的数值模拟与分析%Numerical Simulation and Analysis of Characteristics of Drag Type Vertical Axis Wind Turbine for Distributed Energy Systems

    Institute of Scientific and Technical Information of China (English)

    李争; 高培峰; 孙甜甜; 薛增涛; 王群京

    2017-01-01

    研究了一种小型分布式能源系统用阻力型垂直轴风机(VAWT)的特性,在原有风机基础上,将风轮增加为两层.基于流体动力学(CFD)对风机性能进行计算,依据空气动力学原理,模拟风轮与空气的流固耦合作用,分析流场风速分布以及风机在不同旋转角度下的综合受力情况,根据转矩特性,在Matlab中建立风轮的数学模型,然后使用最大功率跟踪控制方法,建立风机发电系统的数学模型,从而仿真得到发电机的电压、电流等发电特性曲线.最后,与实测数据进行对比,验证了数值仿真和分析的正确性,为今后该类风机结构优化设计和效率提升提供了借鉴和参考.%The properties of the drag type vertical axis wind turbine (VAWT) for small distributed energy systems have been investigated.Based on the original turbine structure, the turbine rotor is increased to two layers.The characteristics are calculated by Computational Fluid Dynamics (CFD) software, according to the aerodynamic principles, the fluid-solid coupling effects of turbine and air flow are simulated, the distribution of wind velocity in the flow field and the integrated force of the turbine at different rotation angles are analyzed, according to the torque characteristics, the mathematical model of the wind turbine is established in Matlab, then the mathematical model of the wind turbine power generation system is established by using the method of maximum power tracking control, and the voltage, current and other power generation curves of the generator can be calculated;Finally, compared with the measured data, the correctness of numerical simulation and analysis is verified.The results provide the guide and reference for further turbine structure optimization and efficiency improvement of same kind of wind turbines.

  8. Alcoa wind turbines

    Science.gov (United States)

    Ai, D. K.

    1979-01-01

    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly.

  9. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  10. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  11. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yoshioka, M; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  12. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    As a wind turbine generates power, induced velocities, lower than the freestream velocity, will be present upstream of the turbine due to perturbation of the flow by the rotor. In this study, the upstream induction zone of a 225kW horizontal axis Vestas V27 wind turbine located at the Danish...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  13. Wind power engine

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P J

    1977-02-10

    The device is a wind-power engine with vertical axis and with one or several wings with airfoil profile fixed on a frame which is pivoted at the vertical axis. Each wing forms at least on one part of its length an angle of inclination with the vertical. The angle increases under the influence of the centrifugal force when the r.p.m. exceed a normal operation range. This method helps to reduce mechanical loads occurring with high wind speeds without requiring a complicated construction.

  14. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow

    Science.gov (United States)

    Hay, Alex E.; Zedel, Len; Cheel, Richard; Dillon, Jeremy

    2012-03-01

    Results are presented from an experimental investigation of rough turbulent oscillatory boundary layers using a prototype wideband bistatic coherent Doppler profiler. The profiler operates in the 1.2 MHz to 2.3 MHz frequency band and uses software-defined radio technologies for digital control of the frequency content and shape of the transmit pulse and for digital complex demodulation of the received signals. Velocity profiles are obtained at sub-millimeter range resolution and 100 Hz profiling rates (each profile being an ensemble average of 10 pulse pairs). The measurements were carried out above beds of fixed sand or gravel particles, with median grain diameters of 0.37 mm and 3.9 mm, respectively, oscillating sinusoidally at a 10 s period through excursions of 0.75 m to 1.5 m. The resulting vertical profiles of horizontal velocity magnitude and phase, with the vertical axis scaled by ℓ = κu∗m/ω, are comparable to similarly scaled profiles obtained using laser Doppler anemometry by Sleath (1987) and Jensen (1988). A key objective of the comparisons between the previous experiments and those reported here was to establish how close to the bed reliable velocity measurements can be made with the sonar. This minimum distance above the bed is estimated to be 5 ± 1 mm, a value approaching the 3 to 4 mm limit set by the path of least time.

  15. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    Science.gov (United States)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity

  16. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2014-01-01

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data

  17. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  18. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  19. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)

    2010-04-30

    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  20. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...