WorldWideScience

Sample records for vertical waste emplacement

  1. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions

  2. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in a cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rock. These waste containers are vertically emplaced in the borehole 300 meters just below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3-4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions. The borehole wall temperature history has been found in the previous study, and was estimated to reach a maximum temperature of about 218 degrees C after 18 years from the emplacement. The temperature history of the rock surface is then used for the air-gap simulation. The problem includes convection and radiation heat transfer in a vertical enclosure. This paper will present the results of the convection in the air-gap over one thousand years after the containers' emplacement. During this long simulation period it was also observed that a multi-cellular air flow pattern can be generated in the air gap

  3. Conceptual designs for waste packages for horizontal or vertical emplacement in a repository in salt for reference in the site characterization plan

    International Nuclear Information System (INIS)

    1987-06-01

    This report includes the options of horizontal and vertical emplacement, the addition of a phased repository, an additional waste form (intact spent fuel), revised geotechnical data appropriate for the Deaf Smith County site, new corrosion data for the container, and new repository design data. The waste package consists of waste form and canister within a thick-walled, low-carbon steel container surrounded by packing. The container is a hollow cylinder with a flat head welded to each end. The design concepts for the waste container or vertical and horizontal emplacement are identical. This report discusses the results of analyses of aspects of the reference waste package concept needing changes because of new data and information believed applicable to the Deaf Smith County site. Included are waste package conceptual designs or (1) the reference defense high-level waste form from the Savannah River Plant; (2) intact spent fuel with our pressurized-water-reactor or nine boiling-water-reactor assemblies per package for emplacement during Phase 1 of repository operation; and (3) spent fuel which has been disassembled and consolidated into a segmented cylindrical canister with rods from either 12 pressurized-water-reactor or 30 boiling-water-reactor assemblies per package for emplacement during Phase 2. 30 refs., 61 figs., 30 tabs

  4. Waste package emplacement borehole option study

    International Nuclear Information System (INIS)

    Streeter, W.S.

    1992-03-01

    This study evaluates the cost and thermal effects of various waste package emplacement configurations that differ in emplacement orientation, number of containers per borehole, and standoff distance at the potential Yucca Mountain nuclear waste repository. In this study, eight additional alternatives to the vertical and horizontal orientation options presented in the Site Characterization Plan Conceptual Design Report are considered. Typical panel layout configurations based on thermal analysis of the waste and cost estimates for design and construction, operations, and closure and decommissioning were made for each emplacement option. For the thermal analysis average waste 10 years out of reactor and the SIM code were used to determine whether the various configurations temperatures would exceed the design criteria for temperature. This study does not make a recommendation for emplacement configuration, but does provide information for comparison of alternatives

  5. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs

  6. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  7. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    Bennett, D.G.; Hicks, T.W.

    2005-10-01

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  8. ERG [Engineering Review Group] and GRG [Geologic Review Group] review of the horizontal versus vertical modes of waste emplacement at the Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    Chytrowski, B.R.

    1988-01-01

    The Engineering Review Group (ERG) and Geologic Review Group (GRG) were established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate specific issues in the US Department of Energy's nuclear waste repository program. The December 1985 meeting and the February 1986 meeting dealt with the evaluation of the Fluor Technology, Inc., architect-engineer recommendation of the horizontal mode of waste package emplacement for the Site Characterization Plan Conceptual Design Report (SCP-CDR). The ONWI recommendation regarding horizontal and vertical modes of waste package emplacement and associated studies was reviewed. This report documents the ERG and GRG's comments and recommendations on this subject and ONWI responses to the specific points raised by these groups. The ERG and GRG joint review groups concurred with ONWI recommendations that additional studies are required in order to reach a decision on the method of emplacement to be used. In the opinion of these groups, both methods can be implemented; however, should the decision be reached today the vertical mode would be preferred

  9. Performance implications of waste package emplacement orientation

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1991-05-01

    Emplacement borehole orientation directly impacts many aspects of the Engineered Barrier System (EBS) and interactions with the near field environment. This paper considers the impacts of orientation on the hydrologic portion of the environment and its interactions with the EBS. The hydrologic environment is considered from a conceptual standpoint, the numerical analyses are left for subsequent work. As reported in this paper, several aspects of the hydrological environment are more favorable for long term performance of vertically oriented rather than horizontally oriented Waste Packages. 19 refs., 15 figs

  10. Salt Repository Project waste emplacement mode decision paper: Revison 1

    International Nuclear Information System (INIS)

    1987-08-01

    This paper provides a recommendation as to the mode of waste emplacement to be used as the current basis for site characterization activity for the Deaf Smith County, Texas, high level nuclear waste repository site. It also presents a plan for implementing the recommendation so as to provide a high level of confidence in the project's success. Since evaluations of high-level waste disposal in geologic repositories began in the 1950s, most studies emplacement in salt formations employed the vertical orientation for emplacing waste packages in boreholes in the floor of the underground facility. This orientation was used in trials at Project Salt Vault in the 1960s. The Waste Isolation Pilot Plant (WIPP) has recently settled on a combination of vertical and horizontal modes for various waste types. This paper analyzes the information available and develops a project position upon which to base current site characterization activities. The position recommended is that the SRP should continue to use the vertical waste emplacement mode as the reference design and to carry the horizontal mode as a ''passive'' alternative. This position was developed based upon the conclusions of a decision analysis, risk assessment, and cost/schedule impact assessment. 52 refs., 6 figs., 1 tab

  11. WIPP waste package testing on simulated DHLW: emplacement

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1984-01-01

    Several series of simulated (nonradioactive) defense high-level waste (DHLW) package tests have been emplaced in the WIPP, a research and development facility authorized to demonstrate the safe disposal of defense-related wastes. The primary purpose of these 3-to-7 year duration tests is to evaluate the in situ materials performance of waste package barriers (canisters, overpacks, backfills, and nonradioactive DHLW glass waste form) for possible future application to a licensed waste repository in salt. This paper describes all test materials, instrumentation, and emplacement and testing techniques, and discusses progress of the various tests. These tests are intended to provide information on materials behavior (i.e., corrosion, metallurgical and geochemical alterations, waste form durability, surface interactions, etc.), as well as comparison between several waste package designs, fabrications details, and actual costs. These experiments involve 18 full-size simulated DHLW packages (approximately 3.0 m x 0.6 m diameter) emplaced in vertical boreholes in the salt drift floor. Six of the test packages contain internal electrical heaters (470 W/canister), and were emplace under approximately reference DHLW repository conditions. Twelve other simulated DHLW packages were emplaced under accelerated-aging or overtest conditions, including the artificial introduction of brine, and a thermal loading approximately three to four times higher than reference. Eight of these 12 test packages contain 1500 W/canister electrical heaters; the other four are filled with DHLW glass. 9 refs., 1 fig

  12. Automated emplacement and retrieval of hazardous waste

    International Nuclear Information System (INIS)

    Slocum, A.H.; Hou, W.M.

    1987-01-01

    The design of several dedicated machines to perform simple tasks often results in higher system reliability and efficiency than the design of a single, multifunctional machine. Similarly, a reliable system for emplacement and retrieval of nuclear waste can be realized if emplacement/retrieval operations are decomposed into a well-defined series of independent tasks. The basic methodology is to design a system that eliminates contact between the waste package and the vehicle in the event of machine failure. The disabled vehicle can then be withdrawn to a safe location, repaired, and set back to resume normal operation

  13. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  14. Concept of Operations for Waste Transport, Emplacement, and Retrieval

    International Nuclear Information System (INIS)

    Raczka, Norman T.

    2001-01-01

    The preparation of this technical report has two objectives. The first objective is to discuss the base case concepts of waste transport, emplacement, and retrieval operations and evaluate these operations relative to a lower-temperature repository design. Aspects of the operations involved in waste transport, emplacement and retrieval may be affected by the lower-temperature operating schemes. This report evaluates the effects the lower-temperature alternatives may have on the operational concepts involved in emplacing and retrieving waste. The second objective is to provide backup material for the design description, in a traceable and defensible format, for Section 2 of the Waste Emplacement/Retrieval System Description Document

  15. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Scully, L.W.; Fisk, A.; deBakker, P.; Friant, J.; Anderson, A.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a result of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 1000 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste will be discussed. Various options in concept will be presented as well as their advantages and disadvantages. The operating scenario of the selected concept will be described as well as solutions to potential problems encountered

  16. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Fisk, A.; Friant, J.; Scully, L.W.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a resul of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 100 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste is discussed. Various options in concept are presented as well as their advantages and disadvantages. The operating scenario of the selected concept is described as well as solutions to potential problems encountered

  17. Parameters and criteria influencing the selection of waste emplacement configurations in mined geologic repositories

    International Nuclear Information System (INIS)

    Bechthold, W.; Closs, K.D.; Papp, R.

    1988-01-01

    Reference concepts for repositories in deep geological formations have been developed in several countries. For these concepts, emplacement configurations vary within a wide range that comprises drift emplacement of unshielded or self-shielded packages and horizontal or vertical borehole emplacement. This is caused by different parameters, criteria, and criteria weighting factors. Examples for parameters are the country's nuclear power program and waste management policy, its geological situation, and safety requirements, examples for criteria and repository area requirements, expenditures of mining and drilling, and efforts for emplacement and, if required, retrieval. Due to the variety of these factors and their ranking in different countries, requirements for a safe, dependable and cost-effective disposal of radioactive waste can be met in various ways

  18. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for postclosure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to License Application Design (LAD). The quality assurance (QA) program applicable to the Architect/Engineer (A/E) activities during the repository conceptual design effort is defined in Chapter 9. 146 refs., 44 figs., 21 tabs

  19. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  20. Emplacement technology for the direct disposal of spent fuel into deep vertical boreholes

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Filbert, W.; Wehrmann, J.

    2008-01-01

    In the early sixties it was decided to investigate salt formations on its suitability to host heat generating radioactive waste in Germany. In the reference repository concept consequently the emplacement of vitrified waste canisters in deep vertical boreholes inside a salt mine was considered whereas spent fuel should be disposed of in self shielding casks (type POLLUX) in horizontal drifts. The POLLUX casks, 65 t heavy carbon steel casks, will be laid down on the floor of a horizontal drift in one of the disposal zones to be constructed in the salt dome at the 870 m level. The space between casks and drift walls will be backfilled with crushed salt. The transport, the handling und the emplacement of POLLUX casks were subject of successfully performed demonstration and in situ tests in the nineties and resulted in an adjustment of the atomic law. The borehole disposal concept comprises the emplacement of unshielded canisters with vitrified HLW in boreholes with a diameter of 60 cm and a depth of up to 300 m. In order to facilitate the fast encapsulation of the waste canister by the host rock (rock salt), no lining of the boreholes is planned. With regard to harmonize and optimize the emplacement technology for both categories of packages (vitrified waste and spent fuel) alternatives were developed. In this context the borehole emplacement technique for consolidated spent fuel as already foreseen for high-level reprocessing waste was reconsidered. This review resulted in the design of a new disposal package, a fuel rod canister (type 'BSK 3'), and an appropriate modified transport and emplacement technology. This concept (called BSK 3-concept) provides the following optimization possibilities: (i) A new steel canister of the same diameter (43 cm) as the standardized HLW canisters applied for high-level waste and compacted technological waste from reprocessing abroad can be filled with fuel rods of 3 PWR or 9 BWR fuel assemblies. (II) The standardized canister

  1. Post emplacement environment of waste packages

    International Nuclear Information System (INIS)

    Knauss, K.G.; Oversby, V.M.; Wolery, T.J.

    1983-01-01

    Experiments have been conducted as part of the Nevada Nuclear Waste Storage Investigations Project to determine the changes in water chemistry due to reaction of the Topopah Spring tuff with natural groundwater at temperatures up to 150 0 C. The reaction extent has been investigated as a function of rock-to-water ratio, temperature, reaction time, physical state of the samples, and geographic location of the samples within the tuff unit. Results of these experiments will be used to provide information on the water chemistry to be expected if a high-level waste repository were to be constructed in the Topopah Spring tuff. 6 references, 5 figures, 1 table

  2. Operational considerations in drift emplacement of waste packages

    International Nuclear Information System (INIS)

    Benton, H.A.

    1993-01-01

    This paper discusses the operational considerations as well as the advantages and disadvantages of emplacing waste packages in drifts in a repository. The considerations apply particularly to the potential repository for spent nuclear fuel and high-level waste glass at Yucca Mountain, although most of the considerations and the advantages and disadvantages discussed in this paper do not necessarily represent the official views of the DOE or of the Management and Operations Contractor, since most of these considerations are still under active discussion and the final decisions will not be made for some time - perhaps years. This paper describes the issues, suggests some principles upon which decisions should be based, and states some of the most significant advantages and disadvantages of the emplacement modes, and the associated waste package types and thermal loadings

  3. Sediment mechanical response due to emplacement of a waste canister

    International Nuclear Information System (INIS)

    Karnes, C.H.; Dawson, P.R.; Silva, A.J.; Brown, W.T.

    1980-01-01

    Preliminary studies have been conducted to determine the interaction between a waste canister and seabed sediment during and after emplacement. Empirical and approximate methods for determining the depth reached by a freefall penetrator indicate that a boosted penetrator emplacement method may be necessary. Hole closure is necessary, but has not been verified because calculations and laboratory experiments show sensitivity to boundary conditions which control the degree of dynamic hole closure. Laboratory studies show that closure will take place by creep deformation but closure times in seabed environments are uncertain. For assumed thermomechanical properties of sediments, it is shown that a heat generating waste canister will probably not move a significant distancce during the heat generation period

  4. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  5. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes

    International Nuclear Information System (INIS)

    Cochran, John R.; Hardin, Ernest

    2015-01-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward-Clyde in 1983 in which waste packages are assembled into ''strings'' and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  6. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses

    International Nuclear Information System (INIS)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs

  7. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    International Nuclear Information System (INIS)

    Channell, J.K.; Walker, B.A.

    2000-01-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations

  8. CLASSIFICATION OF THE MGR WASTE EMPLACEMENT/RETRIEVAL SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    2000-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste emplacement/retrieved system structures, systems and components (SSCs) performed by the MGR Preclosure Safety and Systems Engineering Section. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 2000). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, Quality Assurance Requirements and Description (QARD) (DOE 2000). This QA classification incorporates the current MGR design and the results of the ''Design Basis Event Frequency and Dose Calculation for Site Recommendation'' (CRWMS M andO 2000a). The content and technical approach of this analysis is in accordance with the development plan ''QA Classification of MGR Structures, Systems, and Components'' (CRWMS M andO 1999b)

  9. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-01-01

    The age of nuclear waste - the length of time between its removal from the reactor cores and its emplacement in a repository - is a significant factor in determining the thermal loading of a repository. The surface cooling period as well as the density and sequence of waste emplacement affects both the near-field repository structure and the far-field geologic environment. To investigate these issues, a comprehensive review was made of the available literature pertaining to thermal effects and thermal properties of mined geologic repositories. This included a careful evaluation of the effects of different surface cooling periods of the wastes, which is important for understanding the optimal thermal loading of a repository. The results led to a clearer understanding of the importance of surface cooling in evaluating the overall thermal effects of a radioactive waste repository. The principal findings from these investigations are summarized in this paper

  10. Conceptual designs of automated systems for underground emplacement and retrieval of nuclear waste

    International Nuclear Information System (INIS)

    Slocum, A.H.; Hou, W.M.; Park, K.; Hochmuth, C.; Thurston, D.C.

    1987-01-01

    Current designs of underground nuclear waste repositories have not adequately addressed the possibility of automated, unmanned emplacement and retrieval. This report will present design methodologies for development of an automated system for underground emplacement of nuclear waste. By scaling generic issues to different repositories, it is shown that a two vehicle automated waste emplacement/retrieval system can be designed to operate in a fail-safe mode. Evaluation of cost at this time is not possible. Significant gains in worker safety, however, can be realized by minimizing the possibility of human exposure

  11. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc., report and position paper concerning waste emplacement mode and its effect on repository conceptual design

    International Nuclear Information System (INIS)

    Hambley, D.F.; Russell, J.E.; Whitfield, R.G.

    1987-02-01

    Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration [vertical emplacement] on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions

  12. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  13. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste

  14. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-01-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase

  15. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  16. High level waste canister emplacement and retrieval concepts study

    International Nuclear Information System (INIS)

    1975-09-01

    Several concepts are described for the interim (20 to 30 years) storage of canisters containing high level waste, cladding waste, and intermediate level-TRU wastes. It includes requirements, ground rules and assumptions for the entire storage pilot plant. Concepts are generally evaluated and the most promising are selected for additional work. Follow-on recommendations are made

  17. STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE

    International Nuclear Information System (INIS)

    S. Mastilovic

    2000-01-01

    The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes

  18. Engineering studies: high-level radioactive waste repositories task 3 - review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The report reviews proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository with particular reference to: waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development. In carrying out this programme due attention was given to work already carried out both in the U.K. and overseas and where appropriate comparisons with this work have been made to substantiate and explain the observations made in this report. The examination and use of this previous work however has been confined to those proposals which were considered capable of meeting the basic design criterion for a U.K. based repository, that the maximum temperature achieved by the host rock should not exceed 100/sup 0/C.

  19. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement

    International Nuclear Information System (INIS)

    Bury, M.R.C.

    1983-08-01

    This report describes the second phase of a study of the feasibility of disposal and isolation of high level radioactive waste in holes drilled deep into the sediments of the ocean. In this phase, work has concentrated on establishing the state of the art of the various operations and developing the design, in particular the drilling operation, the loading of flasks containing waste canisters from supply vessels onto the platform, the handling of radioactive waste on board, and its emplacement into predrilled holes. In addition, an outline design of the offshore platform has been prepared. (author)

  20. Far-field thermomechanical response of argillaceous rock to emplacement of a nuclear-waste repository

    International Nuclear Information System (INIS)

    McVey, D.F.; Thomas, R.K.; Lappin, A.R.

    1980-08-01

    Before heat-producing wastes can be emplaced safely in any argillaceous rock, it will be necessary to understand the far-field thermal and thermomechanical response of this rock to waste emplacement. This report presents the results of a first series of calculations aimed at estimating the far-field response of argillite to waste emplacement. Because the thermal and mechanical properties of argillite are affected by its content of expandable clay, its behavior is briefly compared and contrasted with that of a shale having the same matrix thermal properties, but containing no expandable clay. Under this assumption, modeled temperatures are the same for the two rock types at equivalent power densities and reflect the large dependence of in-situ temperatures on both initial power density and waste type. Thermomechanical calculations indicate that inclusion of contraction behavior of expandable clays in the assumed argillite thermal expansion behavior results, in some cases, in generation of a large zone in and near the repository that has undergone volumetric contraction but is surrounded by uniformly compressive stresses. Information available to date indicates that this contraction would likely result in locally increased fluid permeability and decreased in-situ thermal conductivity, but might well be advantageous as regards radionuclide retention, because of the increased surface area within the contracted zone. Assumption of continuous and positive expansion behavior for the shale eliminates the near-repository contraction and tensional zones, but results in near-surface tensional zones directly above the repository

  1. Uncertainty and sensitivity results for pre-waste-emplacement groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1992-01-01

    In this paper uncertainty and sensitivity analyses for pre-waste-emplacement groundwater travel time conducted. Although preliminary, a numbed of interesting results were obtained. Uncertainty in the ground water travel time statistics, as measured by the coefficient of variation, increases and then decrease as the modeled system transitions from matrix-dominated to fracture-dominated flow. The uncertainty analysis also suggests that the median, as opposed to the mean, may be a better indicator of performance with respect to the regulatory criterion. The sensitivity analysis shows a strong correlation between an effective fracture property, fracture porosity, and failure to meet the regulatory pre-waste-emplacement groundwater travel time criterion of 1,000 years

  2. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.

  3. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2 , is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt antilcines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as ''marker beds.'' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement

  4. Operational procedures for receiving, packaging, emplacing, and retrieving high-level and transuranic waste in a geologic repository in TUFF

    International Nuclear Information System (INIS)

    Dennis, A.W.; Mulkin, R.

    1984-01-01

    The Nevada Nuclear Waste Storage Investigations Project, directed by the Nevada Operations Office of the Department of Energy, is currently developing conceptual designs for a commercial nuclear waste repository. In this paper, the preliminary repository operating plans are identified and the proposed repository waste inventory is discussed. The receipt rates for truck and rail car shipments of waste are determined as are the required repository waste emplacement rates

  5. The offshore disposal of radioactive waste by drilled emplacement: A feasibility study

    International Nuclear Information System (INIS)

    Bury, M.R.C.

    1985-01-01

    This book is a report, based on a study by Taylor Woodrow Construction Limited, on the overall feasibility of the disposal of high-level radioactive waste in boreholes drilled deep into the ocean bed. The work comprises an engineering appraisal of the disposal process with a view to establishing technical and operational feasibility and providing overall cost information to enable an economic assessment to be made. Contents: Summary report; Reference criteria; Drilling operation; Transfer of radioactive waste, personnel and other supplies; Handling of radioactive waste on board; Lowering strings of canisters; Emplacement and backfilling of canisters; Preliminary design of marine platform; Retrieval of flasks or canisters lost or misplaced; Variations to the features of the lowering system; Logistics of the operation; Construction cost estimate; Operational costs; Appendix

  6. Waste package transfer, emplacement and retrievability in the French deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Alain; Delort, Daniel; Herve, Jean Francois; Bosgiraud, Jean Michel; Guenin, Jean Jacques [Technical Department ANDRA (France)

    2009-06-15

    Safe, reliable and reversible handling of waste is a significant issue related to the design and safety assessment of deep geological repository in France. The first step taken was to study various waste handling solutions. ANDRA also decided to fabricate and demonstrate industrial scale handling equipment for HLW (since 2003) and for ILW-LL wastes (since 2008). We will review the main equipment developed for the transfer process in the repository, for both types of waste, and underline the benefits of developing industrial demonstrators within the framework of international cooperation agreements. Waste retrieval capability will be simultaneously examined. Two types of waste have to be handled underground in Andra's repository. The HLW disposal package for vitrified waste is a 2 ton carbon steel cylindrical canister with a diameter of 600 mm. The weight of ILW-LL concrete disposal packages range from a minimum of 6 tonnes to over 20 tonnes, and their volume from approximately 5 to 10 m3. The underground transfer to the disposal drift requires moving the disposal package within a shielded transfer cask placed on a trailer. Transfer cask design has evolved since 2005, due to optimisation studies and as a result of industrial feedback from SKB. For HLW handling equipment two design options have been studied. In the first solution (Andra's Dossier 2005), the waste package are emplaced, one at a time, in the disposal drift by a pushing robot. Successive steps in design and proto-typing have lead to improve the design of the equipment and to gain confidence. Recently a fully integrated process has been successfully demonstrated, at full scale, (in a 100 m long mock up drift) as part of the EC funded ESDRED Project. This demonstrator is now on display in Andra's Technology Centre at Saudron, near the Bure Underground Laboratory. The second disposal option which has been investigated is based on a concept of utilising an external apparatus to push a row of

  7. Quarter-scale modeling of room convergence effects on CH [contact-handled] TRU drum waste emplacements using WIPP [Waste Isolation Pilot Plant] reference design geometries

    International Nuclear Information System (INIS)

    VandeKraats, J.

    1987-11-01

    This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs

  8. Landsat investigations of the northern Paradox basin, Utah and Colorado: implications for radioactive waste emplacement

    Science.gov (United States)

    Friedman, Jules D.; Simpson, Shirley L.

    1978-01-01

    The first stages of a remote-sensing project on the Paradox basin, part of the USGS (U.S. Geological Survey) radioactive waste-emplacement program, consisted of a review and selection of the best available satellite scanner images to use in geomorphologic and tectonic investigations of the region. High-quality Landsat images in several spectral bands (E-2260-17124 and E-5165-17030), taken under low sun angle October 9 and 10, 1975, were processed via computer for planimetric rectification, histogram analysis, linear transformation of radiance values, and edge enhancement. A lineament map of the northern Paradox basin was subsequently compiled at 1:400,000 using the enhanced Landsat base. Numerous previously unmapped northeast-trending lineaments between the Green River and Yellowcat dome; confirmatory detail on the structural control of major segments of the Colorado, Gunnison, and Dolores Rivers; and new evidence for late Phanerozoic reactivation of Precambrian basement structures are among the new contributions to the tectonics of the region. Lineament trends appear to be compatible with the postulated Colorado lineament zone, with geophysical potential-field anomalies, and with a northeast-trending basement fault pattern. Combined Landsat, geologic, and geophysical field evidence for this interpretation includes the sinuousity of the composite Salt Valley anticline, the transection of the Moab-Spanish Valley anticline on its southeastern end by northeast-striking faults, and possible transection (?) of the Moab diapir. Similarly, northeast-trending lineaments in Cottonwood Canyon and elsewhere are interpreted as manifestations of structures associated with northeasterly trends in the magnetic and gravity fields of the La Sal Mountains region. Other long northwesterly lineaments near the western termination of the Ryan Creek fault zone. may be associated with the fault zone separating the Uncompahgre horst uplift from the Paradox basin. Implications of the

  9. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1979-01-01

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement of the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers

  10. Preliminary uncertainty analysis of pre-waste-emplacement groundwater travel times for a proposed repository in basalt

    International Nuclear Information System (INIS)

    Clifton, P.M.; Arnett, R.C.

    1984-01-01

    Preliminary uncertainty analyses of pre-waste-emplacement groundwater travel times are presented for a potential high-level nuclear waste repository in the deep basalts beneath the Hanford Site, Washington State. The uncertainty analyses are carried out by means of a Monte Carlo technique, which requires the uncertain inputs to be described as either random variables or spatial stochastic processes. Pre-waste-emplacement groundwater travel times are modeled in a continuous, flat-lying basalt flow top that is assumed to overlie the repository horizon. Two-dimensional, steady state groundwater flow is assumed, and transmissivity, effective thickness, and regional hydraulic gradient are considered as uncertain inputs. Groundwater travel time distributions corresponding to three groundwater models are presented and compared. Limitations of these preliminary simulation results are discussed in detail

  11. Evaluation of the post-emplacement environment of high level radioactive waste packages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Glassley, W.

    1989-01-01

    Evaluation of the post-emplacement environment around high-level radioactive waste containers is required by federal regulations. The information derived from this evaluation will be used to determine the service performance of the waste containers, the chemical and hydrological conditions that may influence radionuclide release and transport if containers are breached, and retrievability of the waste containers prior to closure of the repository. Laboratory studies, numerical simulations, and field experiments and tests are used to provide data necessary for this evaluation. Results obtained to date demonstrate that the post-emplacement environment in the welded tuff at Yucca Mountain, Nevada maintains relatively benign chemical features (i.e., near neutral pH, low concentrations of dissolved species) for most scenarios. The hydrological environment appears to be one of low flow volume and rates for the expected condition of an unsaturated medium. Emplacement borehole stability will be a function of fracture density and orientation, which may be influenced by microcrack development. Field studies and numerical simulations are in progress that will extend the results of laboratory studies to long time periods. The extent to which chemical, hydrological and mechanical processes can be adequately coupled through numerical simulations remains a matter of concern

  12. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain

  13. Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

    2002-01-01

    The evolution of fluid chemistry and mineral alteration around a potential waste emplacement tunnel (drift) is evaluated using numerical modeling. The model considers the flow of water, gas, and heat, plus reactions between minerals, CO 2 gas, and aqueous species, and porosity permeability-capillary pressure coupling for a dual permeability (fractures and matrix) medium. Two possible operating temperature modes are investigated: a ''high-temperature'' case with temperatures exceeding the boiling point of water for several hundred years, and a ''loW--temperature'' case with temperatures remaining below boiling for the entire life of the repository. In both cases, possible seepage waters are characterized by dilute to moderate salinities and mildly alkaline pH values. These trends in fluid composition and mineral alteration are controlled by various coupled mechanisms. For example, upon heating and boiling, CO 2 exsolution from pore waters raises pH and causes calcite precipitation. In condensation zones, this CO 2 redissolves, resulting in a decrease in pH that causes calcite dissolution and enhances feldspar alteration to clays. Heat also enhances dissolution of wallrock minerals leading to elevated silica concentrations. Amorphous silica precipitates through evaporative concentration caused by boiling in the high-temperature case, but does not precipitate in the loW--temperature case. Some alteration of feldspars to clays and zeolites is predicted in the high-temperature case. In both cases, calcite precipitates when percolating waters are heated near the drift. The predicted porosity decrease around drifts in the high-temperature case (several percent of the fracture volume) is larger by at least one order of magnitude than in the low temperature case. Although there are important differences between the two investigated temperature modes in the predicted evolution of fluid compositions and mineral alteration around drifts, these differences are small relative to

  14. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  15. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    International Nuclear Information System (INIS)

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses

  16. Engineered barrier emplacement experiment in Opalinus clay for the disposal of radioactive waste in underground repositories

    International Nuclear Information System (INIS)

    Mayor, J. C.; Garcia-Sineriz, J. L.; Alonso, E.; Alheid, H. J.; Blumbling, P.

    2005-01-01

    The EB project aims at demonstrating the technical feasibility and studying the behaviour of near field components of a high level radioactive waste repository in clay rock. The project consists of an in situ test, a series of complementary laboratory tests as well as modelling work. The project is coordinated by ENRESA (Spain) and the work is being executed by the following organizations: AITEMIN and UPC-DIT (Spain) NAGRA (Switzerland) BGR (Germany) The project is co-funded by the European Commission (contract FIKW-CT-2000-00017) and by the Swiss Federal Office for Education and Science. This report includes a synthesized description of the project from its conception until approximately one and a half years after completion of the installation of the large-scale test (October 2000 to November 30, 2003). The project is described in detail in a series of specific reports. Chapter 9, References, includes the titles of these reports. Although each participating group wrote the sections on their particular work, this report is the result of the technical review, and editing carried out by M. Velasco and J. Farias (Technical Secretariat, ST) under the direction of J.C. Mayor (Project Director, ENRESA). In addition to this preface, and the following executive summary, the report is structured on the basis of nine chapters, the general contents of which are indicated below. Chapter 1 describes, in general terms, the different parts of the project, as well as the justification, objectives, expected results, and anticipated uncertainties. This chapter has been written by the ST, but the ideas are those of all the participating groups. Chapter 2 refers to the in situ test, describing the different test components and systems. Exception is made of the Granular Bentonite Material (GBM), which is described in Chapter 3, and of the geophysical systems for the seismic and electric characterization of near field of the clay rock, which are described in Chapter 4. Chapter 3 is

  17. Engineered barrier emplacement experiment in opalinus clay for the disposal of radioactive waste in underground repositories

    International Nuclear Information System (INIS)

    Mayor, J. C.; Garcia-Sineriz, J. L.; Alonso, E.; Alheid, H. J.; Blumbling, P.

    2005-01-01

    The EB project aims at demonstrating the technical feasibility and studying the behaviour of near field components of a high level radioactive waste repository in clay rock. The project consists of an in situ test, a series of complementary laboratory tests as well as modelling work. The project is coordinated by ENRESA (Spain) and the work is being executed by the following organizations:AITEMIN and UPC-DIT (Spain) NAGRA (Switzerland) BGR (Germany) The project is co-funded by the European Commission (contract FIKW-CT-2000-00017) and by the Swiss Federal Office for Education and Science. This report includes a synthesized description of the project from its conception until approximately one and a half years after completion of the installation of the large-scale test (October 2000 to November 30, 2003). The project is described in detail in a series of specific reports. Chapter 9, References, includes the titles of these reports. Although each participating group wrote the sections on their particular work, this report is the result of the technical review, and editing carried out by M. Velasco and J. Farias (Technical Secretariat, ST) under the direction of J.C. Mayor (Project Director, ENRESA). In addition to this preface, and the following executive summary, the report is structured on the basis of nine chapters, the general contents of which are indicated below. Chapter 1 describes, in general terms, the different parts of the project, as well as the justification, objectives, expected results, and anticipated uncertainties. This chapter has been written by the ST, but the ideas are those of all the participating groups. Chapter 2 refers to the in situ test, describing the different test components and systems. Exception is made of the Granular Bentonite Material (GBM), which is described in Chapter 3, and of the geophysical systems for the seismic and electric characterization of near field of the clay rock, which are described in Chapter 4. Chapter 3 is

  18. Feasibility studies of air placed techniques as emplacement means of different backfilling materials in underground radioactive waste disposal

    International Nuclear Information System (INIS)

    Atabek, R.; Conche, P.; Lajudie, A.; Revertegat, E.

    1992-01-01

    Air placed techniques are likely to be used as emplacement means of different backfilling materials in underground waste repositories. A literature survey of the air placed techniques and equipments leads to the choice of the dry process taking into account the emplacement constraints (distance: 300 m, flow: 10 m 3 /h) and the large variety of materials to be placed. Tests performed in the case of cement-based materials (with and without addition of silica fumes), for different types of cement and as a function of the incidence of the jet, show that it is possible to put in place mortars of good quality. However heterogeneity in the material composition is found when the jet is stopped. This problem may be partly solved by a better automation of the process. Complementary tests, carried out with the preselected clay of Fourges Cahaignes, clearly demonstrate the ability of the air placed technique to put in place pure clay: a dry density of 1.50kg/m 3 is reached in the case of coarse material and for a final water content of 30% (in weight). Feasibility tests performed on clay-sand mixtures are not conclusive due to an unappropriate granulometry distribution of the sand. 11 figs., 9 tabs

  19. Development and demonstration of prototype transportation equipment for emplacing HL vitrified waste canisters into small diameter bored horizontal disposal cells

    International Nuclear Information System (INIS)

    Seidler, Wolf K.; Bosgiraud, Jean-Michel; Londe, Louis

    2008-01-01

    Over a period of 4 and years the National Radioactive Waste Management Agency (Andra), working with a variety of Contractors mostly specializing in nuclear orientated mechanical applications, successfully designed, fabricated and demonstrated 2 very different prototype high level waste transport systems. The first system, based on air cushion technology, was developed primarily for very heavy loads (17 to 45 tonnes). The results of this work are described in a separate presentation (Paper 21) at this Conference. The second system, developed by Andra within the framework of the ESDRED Project, generally referred to as the 'Pushing Robot System' for vitrified waste canisters, is the subject of this paper. The 'Pushing Robot System' is a part of the French national disposal concept that is described in Andra's 'Dossier 2005'. The latter is a public document that can be viewed on Andra's web site (www.andra.fr). The 'Pushing Robot System' system is designed for the deep geological disposal (in clay formations) of 'C' type vitrified waste canisters. In its entirety the system provides for the transport, emplacement and, if necessary, the retrieval of those canisters. Nothing in the design of the Andra emplacement equipment would preclude its utilization in horizontal openings in other types of geological settings. Over a period of some 8 years Andra has developed the 'Pushing Robot System' in 3 phases. Initially there was only the 'Conceptual Design' (Phase 1) which was incorporated in the Dossier 2005. This was followed by Phase 2 i.e. the design and fabrication of a simplified full scale prototype system henceforth referred to a P1, which includes a Pushing Robot, a Dummy Canister and a Test Bench. P1 details were also incorporated in the Dossier 2005. Finally, during Phase 3, a second more comprehensive full scale prototype system P2 has been designed and is being assembled and tested this month. This system includes a Transport Shuttle, a Transfer Shielding Cask, a

  20. A feasibility study of the offshore disposal of radioactive waste by drilled emplacement

    International Nuclear Information System (INIS)

    1984-01-01

    This report describes the third phase of a study of the feasibility of disposal and isolation of high level radioactive waste in holes drilled deep into the sediments of the ocean. In this phase, work has concentrated on establishing the logistics of disposing of up to 400 cubic metres of vitrified waste per year, and on the capital and running costs of doing so. The report concludes that the disposal of waste in the form produced by the AVM process is operationally feasible, and that disposal in this way will add approximately 0.2% to the cost of generation of the energy contributing to the waste. (author)

  1. Preliminary assessment of the thermal effects of an annular air space surrounding an emplaced nuclear waste canister

    International Nuclear Information System (INIS)

    Davis, B.W.

    1979-01-01

    Modeling results have previously shown that the presence of a large air space (e.g., a repository room) within a nuclear waste repository is expected to cause a waste canister's temperature to remain cooler than it would otherwise be. Results presented herein show that an annular air space surrounding the waste canisters can have similar cooling effects under certain prescribable conditions; for a 16 ft x 1 ft diameter canister containing 650 PWR rods which initially generate a total of 4.61 kw, analysis will show that annular air spaces greater than 11 in will permit the canister surface to attain peak temperatures lower than that which would result from a zero-gap/perfect thermal contact. It was determined that the peak radial temperature gradient in the salt varies in proportion to the inverse of the drill hole radius. Thermal radiation is shown to be the dominant mode of heat transfer across an annular air space during the first two years after emplacement. Finally, a methodology is presented which will allow investigators to easily model radiation and convection heat transfer through air spaces by treating the space as a conduction element that possesses non-linear temperature dependent conductivity

  2. Emplacement and retrieval equipment design considerations for a repository in salt

    International Nuclear Information System (INIS)

    Nair, B.R.; Bahorich, R.J.

    1987-01-01

    The current design concept for the disposal of nuclear high level waste packages in a repository in salt is based on the emplacement of individual packages in vertical boreholes in the underground mine floor. A key requirement is that the waste packages be capable of being retrieved during the last 26 years of the 76-year repository operating period. The unique design considerations relating to the retrieval of waste packages emplaced in bedded salt are presented in this paper. The information is based on the experience developed during the design of vertical emplacement and retrieval equipment in support of the Sandia Defense High Level Waste experiments at the Waste Isolation Pilot Plant. Also included are the impact of retrievability on the design of the equipment, the special salt cutting technology that was developed for this application, and a description of the equipment

  3. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacment mode: Volume 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packaging, and other surface facility operations are described. Operations in the shafts and underground are described, including waste hoisting, transfer, and horizontal emplacement. This report specifically addresses the horizontal emplacement mode, the passive alternate design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs

  4. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    International Nuclear Information System (INIS)

    Wilson, T.; Novotny, R.

    1999-01-01

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES)

  5. Design of a nuclear-waste package for emplacement in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Rothman, A.J.; Gregg, D.W.; Hockman, J.N.; Revelli, M.A.; Russell, E.W.; Schornhorst, J.R.

    1983-01-01

    Design, modeling, and testing activities are under way at LLNL in the development of high level nuclear waste package designs. We discuss the geological characteristics affecting design, the 10CFR60 design requirements, conceptual designs, metals for containment barriers, economic analysis, thermal modeling, and performance modeling

  6. Conditions for the test emplacement of intermediate-level radioactive wastes in chamber 8a of the 511 m level of the Asse Salt Mine

    International Nuclear Information System (INIS)

    1984-01-01

    The Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF) emplaces intermediate-level radioactive wastes which accumulate in an activity involving the use of radioactive materials that is licensed or reported in the Federal Republic of Germany or which are stored on an interim basis by the appropriate licensing or inspection agencies in chamber 8a of the 511 m level of the Asse Salt Mine in Remlingen near Wolfenbuettel in conjunction with an engineering test program. The type and form of the intermediate-level wastes must conform to certain conditions so that there are no hazards to personnel and the repository during transfer and subsequent storage. It is therefore necessary for the radioactive wastes to be treated and packaged before delivery in such a way that they satisfy the conditions presented in this document. The GSF shall inform the companies and organizations delivering wastes about its experiences with emplacement operations. The Conditions for the Test Emplacement of Intermediate-Level Radioactive Wastes in Chamber 8a of the 511 m Level of the Asse Salt Mine must be adapted to conform to the latest state of science and the art. The GSF must therefore reserve the right to modify the conditions, allowing for an appropriate transition period

  7. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  8. TRANSPORT AND EMPLACEMENT EQUIPMENT DESCRIPTIONS

    International Nuclear Information System (INIS)

    1997-01-01

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) Transport and Emplacement in the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. The Transport and Emplacement equipment described in this document consists of the following: (1) WP Transporter; (2) Reusable Rail Car; (3) Emplacement Gantry; (4) Gantry Carrier; and (5) Transport Locomotive

  9. Elements of transport and emplacement system

    International Nuclear Information System (INIS)

    1981-02-01

    This report, undertaken to review proposals for transport, handling and emplacement of high-level radioactive wastes in an underground repository, appropriate to the U.K. context, falls under the headings: basic design concepts; waste block size and configuration; self-shielded or partially shielded blocks; concept of emplacement in long boreholes; concept of emplacement in short boreholes; concept of emplacement in tunnels; methods of emplacement; stages of disposal; repository access by adit, incline or shaft; handling techniques within repository; conventional and radiological safety; costs; areas for further research and development. (U.K.)

  10. Emplacement engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Ernest E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Emplacement Engineering can be defined as that portion of a nuclear explosive project that is concerned with the emplacement of the explosive. This definition would then include virtually everything except the design and fabrication of the explosive and the post-shot-effects program. For future commercial application, the post-shot-effects program will essentially disappear. This emplacement portion of a nuclear explosive project constitutes a large fraction of the total project cost, but it has largely been overshadowed by the explosive and explosive-effects portions. As we move into commercial applications. Emplacement Engineering must receive more attention from both industry and government. To place emplacement costs in their proper relationship with total projects costs, we have performed a study of commercial underground nuclear explosive applications such as gas stimulation. Although there are many intangibles in such a study, we have been able to at least obtain some feel for the relative fractional costs of the non-explosive costs compared with the explosive costs. This study involved estimating the cost elements for applications using a single explosive at 5,000 ft, 10,000 ft, and 15,000 ft. For each depth, the cost estimates were made for a range of emplacement hole and explosive diameters. Results of these estimates for explosive-related costs, hole-related costs, and total costs are shown for the three depths. Note that the explosive package outside diameter is assumed as 2 inches less than the hole (or casing) inside diameter for all cases. For the 5,000-ft application the explosive-related costs dominate, and of particular importance is the indicated diameter for minimum total cost which occurs at approximately a 17.5-in. hole (15.5-in. explosive). The hole-related costs are in 'the same range as the explosive-related costs for the 10,000-ft application. For this case, the minimum total cost occurs at approximately a 14-in. hole (12-in. explosive

  11. Thermal/thermomechanical analyses for the room region with horizontal and vertial modes of emplacement

    International Nuclear Information System (INIS)

    1988-01-01

    Extensive thermal/thermomechanical analyses of the Site Characterization Plan-Conceptual Design at the Deaf Smith county Site, Texas, have been carried out for the room region with horizontal and vertical modes of emplacement. The main purpose of this study is to make a good comparison between these two modes of emplacement in this region. Homogeneous and nonhomogeneous strata under isothermal or transient temperature conditions cases were considered in the analyses. Furthermore, various pillar widths for the vertical mode emplacement were also taken into consideration. Only spent fuel (SF) waste was considered in this study. Finite element method was used throughout the analyses. The thermal responses were evaluated using SPECTROM-41 while the thermomechanical responses were calculated using SPECTROM-32. Thermal and thermomechanical comparisons between the two modes of emplacement for various cases were presented in this paper

  12. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  13. Vertical Drop Of 21-PWR Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-01

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only

  14. Construction, emplacement, and retrievability (preclosure)

    International Nuclear Information System (INIS)

    McClain, W.

    1985-01-01

    Each of the three preclosure subgroups of the Construction, Emplacement, and Retrievability Working Group adopted a six-step approach to identify and assess current needs in geotechnical modeling and characterization. This approach may be summarized as follows: identify phenomena related to emplacement of high-level nuclear wastes, identify types of models which are required to calculate the phenomena, establish the input data needs for the models, assess the current availability of the models, assess the current status of documentation, verification, and validation of the models, and determine the adequacy of instrumentation and measurement techniques to (a) validate the models, where necessary, and (b) obtain input data for design. Systematic application of these six steps leads to the establishment of the research requirements for geotechnical modeling and characterization. A summary of modeling techniques which apply to the three subsequent sections on construction, emplacement, and retrievability is presented. Research needs, which apply to all preclosure activities, are summarized

  15. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)

  16. Mont Terri Project - Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    International Nuclear Information System (INIS)

    Mayor, J. C.; Garcia-Sineriz, J.; Alonso, E.; Alheid, H.-J.; Bluemling, P.

    2007-01-01

    The Engineered Barrier (EB) experiment was a full-scale test for the demonstration, in a horizontal drift, of an emplacement technics of the clay barrier, using a granular bentonite material in the upper part of this barrier and bentonite blocks at the bottom. The test has been carried out in a 6 m long section of a niche excavated in Opalinus Clay of the Mont Terri underground laboratory. A steel dummy canister, with the same dimensions and weight as the real reference canisters, was placed on top of a bed of highly compacted bentonite blocks (in turn lying on a concrete bed), and the rest of the clay barrier volume was backfilled with a Granular Bentonite Material (GBM), made of very highly compacted pellets of different sizes. Hydro-mechanical instrumentation and an artificial hydration system (to accelerate the saturation of the clay barrier) were installed, and the test section sealed with a concrete plug. The evolution of the hydro-mechanical parameters along the hydration, both in the barrier and in the clayey rock formation, has been monitored during about 1.5 years, and modelled using the CODE-BRIGHT code. The EB experiment has proved that fully automated production of a Granular Bentonite Material (GBM) is possible and large quantities can be produced in due time in the required quality. Only minor modifications of existing production lines in industry for other applications were necessary to achieve this result. In the EB test section, a dry density of 1.36 g/cm 3 of the emplaced GBM has been obtained. With this value it is estimated that the hydraulic conductivity of this material is lower than 5 x 10 -12 m/s and the swelling pressure is about 1.3 MPa. Even though the EB test section conditions are now not considered as representative of a true demonstration, it is deemed that the model emplacement testing results (dry density of about 1.40 g/cm 3 ) serve well to demonstrate the achievable densities expected in the real world setting. The artificial

  17. Mont Terri Project - Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J. C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Alonso, E. [Centre Internacional de Metodos Numerics en Ingenyeria (CIMNE), Barcelona (Spain); Alheid, H.-J. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Bluemling, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland)

    2007-07-01

    The Engineered Barrier (EB) experiment was a full-scale test for the demonstration, in a horizontal drift, of an emplacement technics of the clay barrier, using a granular bentonite material in the upper part of this barrier and bentonite blocks at the bottom. The test has been carried out in a 6 m long section of a niche excavated in Opalinus Clay of the Mont Terri underground laboratory. A steel dummy canister, with the same dimensions and weight as the real reference canisters, was placed on top of a bed of highly compacted bentonite blocks (in turn lying on a concrete bed), and the rest of the clay barrier volume was backfilled with a Granular Bentonite Material (GBM), made of very highly compacted pellets of different sizes. Hydro-mechanical instrumentation and an artificial hydration system (to accelerate the saturation of the clay barrier) were installed, and the test section sealed with a concrete plug. The evolution of the hydro-mechanical parameters along the hydration, both in the barrier and in the clayey rock formation, has been monitored during about 1.5 years, and modelled using the CODE-BRIGHT code. The EB experiment has proved that fully automated production of a Granular Bentonite Material (GBM) is possible and large quantities can be produced in due time in the required quality. Only minor modifications of existing production lines in industry for other applications were necessary to achieve this result. In the EB test section, a dry density of 1.36 g/cm{sup 3} of the emplaced GBM has been obtained. With this value it is estimated that the hydraulic conductivity of this material is lower than 5 x 10{sup -12} m/s and the swelling pressure is about 1.3 MPa. Even though the EB test section conditions are now not considered as representative of a true demonstration, it is deemed that the model emplacement testing results (dry density of about 1.40 g/cm{sup 3}) serve well to demonstrate the achievable densities expected in the real world setting. The

  18. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  19. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  20. Thermal/fluid modeling of the response of saturated marine red clays to emplacement of nuclear waste

    International Nuclear Information System (INIS)

    McVey, D.F.; Gartling, D.K.; Russo, A.J.

    1980-01-01

    In this report, we discuss heat and mass transport in marine red clay sediments being considered as a nuclear waste isolation medium. Development of two computer codes, one to determine temperature and convective velocity fields, the other to analyze the nuclide migration problem, is discussed and preliminary results from the codes reviewed. The calculations indicate that for a maximum allowable sediment/canister temperature range of 200 0 C to 250 0 C, the sediment can absorb about 1.5 kW initial power from waste in a 3 m long by 0.3 m diameter canister. The resulting fluid displacement due to convection is found to be small, less than 1 m. The migration of four nuclides, 239 Pu, 137 Cs, 129 I and 99 Tc were computed for a canister buried 30 m deep in 60 m thick sediment. It was found that the 239 Pu and 137 Cs, which migrate as cations and have relatively high distribution coefficients, are essentially completely contained in the sediment. The anionic species, 129 I and 99 Tc, which have relatively low distribution coefficients, broke through the sediment in about 5000 years. The resultant peak injection rates which occur at about 15,000 years were extremely small (0.5 μCi/year for 129 I and 180 μCi/year for 99 Tc)

  1. Preliminary thermal/thermomechanical analyses of the Site Characterization Plan's Conceptual Design for a repository containing horizontally emplaced waste packages at the Deaf Smith County site

    International Nuclear Information System (INIS)

    Ghantous, N.Y.; Raines, G.E.

    1987-10-01

    This report presents thermal/thermomechanical analyses of the Site Characterization Plan Conceptual Design for horizontal package emplacement at the Deaf Smith County site, Texas. The repository was divided into three geometric regions. Then two-dimensional finite-element models were set up to approximate the three-dimensional nature of each region. Thermal and quasistatic thermomechanical finite-element analyses were performed to evaluate the thermal/thermomechanical responses of the three regions. The exponential-time creep law was used to represent the creep behavior of salt rock. The repository design was evaluated by comparing the thermal/thermomechanical responses obtained for the three regions with interim performance constraints. The preliminary results show that all the performance constraints are met except for those of the waste package. The following factors were considered in interpreting these results: (1) the qualitative description of the analytical responses; (2) the limitations of the analyses; and (3) either the conclusions based on overall evaluation of limitations and analytical results or the conclusions based on the fact that the repository design may be evaluated only after further analyses. Furthermore, a parametric analysis was performed to estimate the effect of material parameters on the predicted thermal/thermomechanical response. 23 refs., 34 figs., 9 tabs

  2. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  3. Numerical studies of fluid and heat flow near high-level nuclear waste packages emplaced in partially saturated fractured tuff

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-11-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous rock. Formation parameters were chosen as representative of the potential repository horizon in the Topopah Spring Unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator ''TOUGH'' used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions for handling the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 35 refs., 14 figs., 4 tabs

  4. The disposal of Canada`s nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    Energy Technology Data Exchange (ETDEWEB)

    Wikjord, A G; Baumgartner, P; Johnson, L H; Stanchell, F W; Zach, R; Goodwin, B W

    1996-06-01

    The concept for disposal of Canada`s nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada`s nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL`s disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs.

  5. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    International Nuclear Information System (INIS)

    Wikjord, A.G.; Baumgartner, P.; Johnson, L.H.; Stanchell, F.W.; Zach, R.; Goodwin, B.W.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada's nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL's disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs

  6. A preliminary investigation of vertical crustal movements in the United Kingdom in the context of subsurface nuclear waste isolation

    International Nuclear Information System (INIS)

    1981-03-01

    Two types of change will influence the environment of a subsurface nuclear waste isolation facility: natural geological changes and changes caused by the construction of the waste repository and introduction of the waste. This report is concerned with vertical crustal movements, which are an expression of natural geological changes. Vertical crustal movements observed outside the United Kingdom are reviewed, and vertical movements in a test region of the UK investigated by comparison of geodetic levellings. The implications of vertical crustal movement to waste isolation facilities and some potentially valuable lines of research are discussed. (author)

  7. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  8. Postclosure performance assessment of the SCP [Site Characterization Plan] conceptual design for horizontal emplacement: Revision 1

    International Nuclear Information System (INIS)

    1987-08-01

    This report is a preliminary postclosure performance assessment of the repository design specified in the Site Characterization Plan Conceptual Design Report (SCP-CDR) for horizontal emplacement of high-level nuclear waste. At the time that these analyses were done, horizontal emplacement was the preferred orientation for the waste packages but vertical emplacement is now the reference design. This assessment consists of (1) a review of the regulatory requirements and strategy to demonstrate compliance with these requirements, (2) an analysis of the performance of the total repository system, (3) an analysis of the thermomechanical behavior of the repository, (4) an analysis of brine mobility in the repository, (5) an analysis of the waste package performance, (6) an analysis of the performance of seals, and (7) comments on the sensitivity of the various performance measures to uncertainties in the data and models. These are preliminary analyses and, in most cases, involve bounding calculations of the repository behavior. They have several purposes including (1) assessing how well this conceptual design ''measures up'' against requirements, (2) gaining experience in implementing the performance assessment strategy and tools and thereby learning where improvements are needed, (3) helping to identify needed data, and (4) helping to indicate required design modifications. 26 refs., 40 figs., 20 tabs

  9. Measurement methods for radiological characterisation of low-active and mid-active radioactive waste for emplacement; Messmethoden fuer die radiologische Charakterisierung von niedrig - und mittelaktiven radioaktiven Abfaellen fuer die Einlagerung

    Energy Technology Data Exchange (ETDEWEB)

    Sokcic-Kostic, Marina; Schultheis, Roland [NUKEM Technologies GmbH, Alzenau (Germany)

    2014-03-15

    For radiological classification and characterisation of radioactive waste - as it is here considered - the specification of a multitude of parameters is necessary. The measurement or rather definition of parameter ought to guarantee, that waste packages can be handled safely, that radioactive waste repository corresponds to the respective waste and that safety of emplacement is assured. From the parameters further properties of waste, such as the share of long-living isotopes, as well as activity limiting values, are deducted. For this purpose necessary measurements can be divided into non-destructive and destructive ones. The validity, sensitiveness and accuracy of both measurement methods differ. For the destructive methods, samples from the waste packages are retrieved and examined at the laboratory. In case of non-destructive methods, the entire package is scanned, whereby depending on the nuclides and their specific emissions (Gamma- and Neutron radiation, both the Beta- as well as Alpha- radiation) specific measurement methods arise. Available methods are evaluated and introduced with regard to accuracy, reliability as well as handling. Regarding the hardware- with exception of neutron evaluation technics - progress lies less in the development of new methods, rather than in the production line of robust and reliable measurement devices, which can be applied in automated infrastructures. During the evaluation routine simulation with the Monte-Carlo-Methods establishes itself more and more. Main focus regarding changes lies nevertheless in the introduction of the Bayes-Theory, which calculates consistently, and reliably measurement values and their errors, as well as trust intervals. (orig.)

  10. Effectiveness of the Vertical Gas Ventilation Pipes for Promoting Waste Stabilization in Post-Closure Phase

    Directory of Open Access Journals (Sweden)

    Yasumasa Tojo

    2015-06-01

    Full Text Available To make inside of the municipal solid waste (MSW landfill aerobic as much as possible is thought to be preferable for promoting waste stabilization, reducing pollutant's load in leachate, minimizing greenhouse gas emission and shortening post-closure-care period. In Japan, installation of semi-aerobic landfill structure has widely spread in order to promote waste stabilization in MSW landfill from 1980s. In semi-aerobic landfill structure, outlet of main leachate collection pipe is opened to atmosphere. Heat generated by aerobic degradation of waste causes natural convection and natural aeration arises from the outlet of leachate collection pipe to the gas vents. It is so-called stack effect. This air flow is thought to be effective for purifying leachate flowing through drainage layer and leachate collection pipes. And it is also thought to be contributing to expanding aerobic region in waste layer in landfill. Recently, measures attempting the promotion of waste stabilization are taken at several landfills at where stabilization of waste delays, in which many vertical gas vents are newly installed and close structure to semi-aerobic landfill is created. However, in many cases, these gas vents are not connected to leachate collection pipes. Many vertical gas vents are just installed without scientific proof regarding whether they can contribute for waste stabilization. In this study, how such installation of gas vents is effective for waste stabilization and aerobization of waste layer was discussed by numerical analysis. In numerical analysis, heat transfer, gas movement by pressure, gas diffusion, biological degradation of organic matter, and heat generation by biodegradation were taken into account. Simulations were carried out by using the general purpose simulator of finite element method. Three types of landfill structure were assumed. As the results, the following information were obtained. In dig-down type landfill, installation of gas

  11. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  12. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  13. Ground Control for Emplacement Drifts for SR

    International Nuclear Information System (INIS)

    Y. Sun

    2000-01-01

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k 0 =0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  14. Vertical Drop of the Naval SNF Long Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic

    2006-01-01

    The purpose of this calculation is to determine the structural response of a Naval SNF (Spent Nuclear Fuel) Long Waste Package (WP) subjected to 2 m-vertical drop on unyielding surface (US). The scope of this document is limited to reporting the calculation results in terms of maximum stress intensities. This calculation is associated with the waste package design; calculation is performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element calculation is performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The result of this calculation is provided in terms of maximum stress intensities

  15. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 2: vault model

    International Nuclear Information System (INIS)

    Johnson, L.H.; LeNeveu, D.M.; King, F.; Shoesmith, D.W.; Kolar, M.; Oscarson, D.W.; Sunder, S.; Onofrei, C.; Crosthwaite, J.L.

    1996-06-01

    A study has been undertaken to evaluate the design and long-term performance of a nuclear fuel waste disposal vault based on a concept of in-room emplacement of copper containers at a depth of 500 m in plutonic rock in the Canadian Shield. The containers, each with 72 used CANDU fuel bundles, would be surrounded by clay-based buffer and backfill materials in an array of parallel rooms, with the excavation boundary assumed to have an excavation-disturbed zone (EDZ) with a higher permeability than the surrounding rock. In the anoxic conditions of deep rock of the Canadian Shield, the copper containers are expected to survive for >10 6 a. Thus container manufacturing defects, which are assumed to affect approximately 1 in 5000 containers, would be the only potential source of radionuclide release in the vault. The vault model is a computer code that simulates the release of radionuclides that would occur upon contact of the used fuel with groundwater, the diffusive transport of these radionuclides through the defect in the container shell and the surrounding buffer, and their dispersive and convective transport through the backfill and EDZ into the surrounding rock. The vault model uses a computationally efficient boundary integral model (BIM) that simulates radionuclide mass transport in the engineered barrier system as a point source (representing the defective container) that releases radionuclides into concentric cylinders, that represent the buffer, backfill and EDZ. A 3-dimensional finite-element model is used to verify the accuracy of the BIM. The results obtained in the present study indicates the effectiveness of a design using in-room emplacement of long-lived containers in providing a safe disposal system even under permeable geosphere conditions. (author). refs., tabs., figs

  16. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  17. Emplacement of small and large buffer blocks

    International Nuclear Information System (INIS)

    Saari, H.; Nikula, M.; Suikki, M.

    2010-05-01

    The report describes emplacement of a buffer structure encircling a spent fuel canister to be deposited in a vertical hole. The report deals with installability of various size blocks and with an emplacement gear, as well as evaluates the achieved quality of emplacement and the time needed for installing the buffer. Two block assembly of unequal size were chosen for examination. A first option involved small blocks, the use of which resulted in a buffer structure consisting of small sector blocks 200 mm in height. A second option involved large blocks, resulting in a buffer structure which consists of eight blocks. In these tests, the material chosen for both block options was concrete instead of bentonite. The emplacement test was a three-phase process. A first phase included stacking a two meter high buffer structure with small blocks for ensuring the operation of test equipment and blocks. A second phase included installing buffer structures with both block options to a height matching that of a canister-encircling cylindrical component. A third phase included testing also the installability of blocks to be placed above the canister by using small blocks. In emplacement tests, special attention was paid to the installability of blocks as well as to the time required for emplacement. Lifters for both blocks worked well. Due to the mass to be lifted, the lifter for large blocks had a more heavy-duty frame structure (and other lifting gear). The employed lifters were suspended in the tests on a single steel wire rope. Stacking was managed with both block sizes at adequate precision and stacked-up towers were steady. The stacking of large blocks was considerably faster. Therefore it is probably that the overall handling of the large blocks will be more convenient at a final disposal site. From the standpoint of reliability in lifting, the small blocks were safer to install above the canister. In large blocks, there are strict shape-related requirements which are

  18. Vertical boreholes in salt - An industrial demonstration program -

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Filbert, W.

    2006-01-01

    In order to synchronize and optimize the emplacement technologies used for both categories of waste (vitrified waste and spent fuel) the borehole emplacement technique for consolidated spent fuel was reconsidered in Germany. The appropriate design resulted in a fuel rod canister of the type 'BSK 3'. This BSK 3 steel canister is of the same diameter as the standard HLW-canister which allows the use of a common transfer and handling technique. The canister is tightly sealed by welding and designed to withstand petrostatic pressure. Thermal calculations showed that the emplacement of a BSK 3-canister into a vertical borehole in a salt repository is possible after only about 3 to 7 years after reactor unloading of the fuel assemblies. Thus, the emplacement of BSK 3-canisters allows a complete revision of the schedule of spent fuel disposal concepts and may lead to a considerable reduction of time and costs. Accordingly, a research program was launched in 2004 within the framework of the 6th European Research Program to develop the transport and emplacement components, the functionality and reliability of which are to be tested in a one-year demonstration phase which will commence at the beginning of 2008. (author)

  19. Design management and stress analysis of a circular rock tunnel and emplacement holes for storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kandalaft-Ladkany, N.; Wyman, R.V.

    1992-01-01

    This paper discusses a critical path method (CPM) diagram and logic net which are used for the design cycle of the rock tunnel system for a high level nuclear waste repository. In the analysis the design tunnel is subjected to pre-existing temperature and overburden loads at time of construction. high thermal stresses develop later due to the long term influx of heat from the canisters stored in vertical emplacement holes. Results indicate that thermal stresses reach a critical level for the rock in the vicinity of the canisters which could lead to local collapse of the rock and damage to the canisters

  20. Longevity of Emplacement Drift Ground Support Materials

    International Nuclear Information System (INIS)

    D.H.Tang

    2001-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4

  1. Longevity of Emplacement Drift Ground Support Materials

    International Nuclear Information System (INIS)

    Tang, D.

    2000-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for selection of materials for ground support that will function throughout the preclosure period. The Development Plan (DP) for this analysis is given in CRWMS M and O (Civilian Radioactive Waste Management System Management and Operating Contractor) (1999a). The candidate materials for ground support are steel (carbon steel, ductile cast iron, galvanized steel, and stainless steel, etc.) and cement. Steel will mainly be used for steel sets, lagging, channels, rock bolts, and wire mesh. Cement usage is only considered in the case of grouted rock bolts. The candidate materials for the invert structure are steel and crushed rock ballast. The materials shall be evaluated for the repository emplacement drift environment under a specific thermal loading condition based on the proposed License Application Design Selection (LADS) design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground control materials for use in emplacement drifts. (2) Review existing documents concerning behavior of candidate ground control materials during the preclosure period. The major criteria to be considered for steel are mechanical and thermal properties, and durability, of which corrosion is the most important concern. (3) Evaluate the available results and develop recommendations for material(s) to be used

  2. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement: 1. A review of alternatives

    International Nuclear Information System (INIS)

    1983-01-01

    This report describes the first stage of an engineering study of the disposal of high level radioactive waste in holes formed deep in the ocean floor. In this phase, the emphasis has been on establishing reference criteria, assessing the problems and evaluating potential solutions. The report concludes that there are no aspects that appear technically infeasible, but questions of safety and reliability of certain aspects require further investigation. (author)

  3. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for post closure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. These discussions are divided into preclosure design analysis, post closure design analysis, and engineering analysis of design. Also discussed are the structures, systems, and components that have been identified as important to safety and the barriers that have been, or need to be, identified as important to waste isolation. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to Licence Application Design. These information needs should be resolved during the site characterization program or by other technology development studies. The discussion of these design issues and data needs is arranged according to the major elements of the repository. Chapter describes the quality assurance program. 146 refs., 40 figs., 22 tabs

  4. Calculation of drift seepage for alternative emplacement designs

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu; Birkholzer, Jens

    1999-01-01

    The calculations presented in this report are performed to obtain seepage rates into drift and boreholes for two alternative designs of drift and waste emplacement at Yucca Mountain. The two designs are defined according to the Scope of Work 14012021M1, activity 399621, drafted October 6, 1998, and further refined in a conference telephone call on October 13, 1998, between Mark Balady, Jim Blink, Rob Howard and Chin-Fu Tsang. The 2 designs considered are: (1) Design A--Horizontal boreholes 1.0 m in diameter on both sides of the drift, with each borehole 8 m long and inclined to the drift axis by 30 degrees. The pillar between boreholes, measured parallel to the drift axis, is 3.3 m. In the current calculations, a simplified model of an isolated horizontal borehole 8 m long will be simulated. The horizontal borehole will be located in a heterogeneous fracture continuum representing the repository layer. Three different realizations will be taken from the heterogeneous field, representing three different locations in the rock. Seepage for each realization is calculated as a function of the percolation flux. Design B--Vertical boreholes, 1.0 m in diameter and 8.0 m deep, drilled from the bottom of an excavated 8.0 m diameter drift. Again, the drift with the vertical borehole will be assumed to be located in a heterogeneous fracture continuum, representing the rock at the repository horizon. Two realizations are considered, and seepage is calculated for the 8-m drift with and without the vertical 1-m borehole at its bottom

  5. Thermal, chemical, and mass-transport processes induced in abyssal sediments by the emplacement of nuclear waste: experimental and modeling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.

    1980-01-01

    This paper discusses heat and mass transport studies of marine red clay sediments being considered as a nuclear waste isolation medium. Numerical models indicate that for a maximum allowable sediment/canister interface temperature of 200 to 250 0 C, the sediment can absorb about 1.5 kW initial power from waste in a 3 m long by 0.3 m dia canister buried 30 m in the sediment. Fluid displacement due to convection is found to be less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment/seawater mixtures indicate that the canister and waste form must be designed to resist a hot, acid (pH 3 to 4) oxidizing environment. Since the thermally altered sediment volume of about 5.5 m 3 is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions are not anticipated to effect the properties of the far field. Using sorption coefficient correlations, the migration of four nuclides 239 Pu, 137 Cs, 129 I, and 99 Tc were computer for a canister buried 30 m deep in a 60 m thick red clay sediment layer. It was found that the 239 Pu and 137 Cs are essentially completely contained in the sediments, while 129 I and 99 Tc broke through the 30 m of sediment in about 5000 years. The resultant peak injection rates of 4.6 x 10 -5 μCi/year-m 2 for 129 I and 1.6 x 10 -2 μCi/year-m 2 for 99 Tc were less than the natural radioactive flux of 226 Ra (3.5 to 8.8 x 10 -4 μCi/year-m 2 ) and 222 Rn

  6. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 3: geosphere model

    International Nuclear Information System (INIS)

    Stanchell, F.W.; Davison, C.C.; Melnyk, T.W.; Scheier, N.W.; Chan, T.

    1996-06-01

    This report discusses the approach we used to develop a model of the 3-D network of transport pathways through the geosphere from the location of a nuclear fuel waste disposal vault at a depth of 500 m in a hypothetical permeable plutonic rock mass. The transport pathways correspond to the pathways of advective groundwater movement through this permeable rock from the disposal vault to discharge areas at groundsurface. In this analysis we assumed the permeability of the region of rock immediately surrounding the waste emplacement areas of the disposal vault was considerably higher than the permeability used in the geosphere model for the EIS case study. We also assumed the porosity of the rock could fall within the range 10 -3 to 10 -5 to represent the range of effects by alternative conceptual models of flow through fracture networks in the rock. Advection by the groundwater flow field in the rock surrounding the disposal vault entirely controls the rate and direction of transport from the vault in this geosphere model. The hydrogeological environment we assumed for this geosphere model is entirely hypothetical, unlike the model we developed for the EIS case study which was a conservative, yet realistic, representation of the hydrogeological conditions encountered at the site of our Underground Research Laboratory in the Whiteshell Research Area. We used the same geometry of rock structures for this model as we used in the geosphere model for the EIS case study but we assigned hydrogeologic properties to the various rock domains of the model that result in relatively rapid groundwater flow from the depth of the disposal vault to surface discharge areas. This report desribes the modelling and sensitivity analyses we performed with the MOTIF finite element model to develop the GEONET transport network for this hypothetical geosphere situation. The geosphere model accounts for the effects of natural geothermal heat and vault-induced heat on transport pathways

  7. Thermomechanical analysis of underground excavations in the vicinity of a nuclear waste isolation panel

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-06-01

    This report summarizes the results of a series of analyses of excavations in the vicinity of waste emplacement panels. Specific consideration is given to the access drifts running between adjacent emplacement panels, the drift intersection at the entrance to the emplacement panels, and the waste emplacement excavations. Both horizontal and vertical emplacement models are considered, but greater emphasis is placed on the former. Three numerical modeling procedures were used in this study: a finite-element model was used for three-dimensional stress analysis of the tunnel intersection, a model based on the closed-form solution for point heat sources was used to predict temperatures and stresses in the vicinity of the emplacement panel, and simple two-dimensional boundary-element models were used to predict temperatures and stresses around excavations of various shapes. The results of two-dimensional stress analyses were postprocessed to determine the extent to which the strength of a rock mass, containing a set of vertical joints, was exceeded. The results presented in this report do not indicate that there will be any particular stability problems at the tunnel intersection investigated. Further, the effect of waste emplacement within the adjacent panels is to decrease the vertical rock stresses and increase the horizontal rock stresses at the intersection. These stress changes will tend to enhance the stability of larger-span excavations, including the tunnel intersection and the alcoves necessary for horizontal emplacement of waste canisters. The relatively high horizontal stresses experienced by the access were identified as a potential concern. However, evaluation of recent data on the thermomechanical properties of the rock mass modeled here has indicated that the stress changes will not be as severe as stated herein

  8. Effect of repository underground ventilation on emplacement drift temperature control

    International Nuclear Information System (INIS)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K.

    1996-01-01

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management ampersand Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management

  9. WP EMPLACEMENT CONTROL AND COMMUNICATION EQUIPMENT DESCRIPTIONS

    International Nuclear Information System (INIS)

    Raczka, N.T.

    1997-01-01

    The objective and scope of this document are to list and briefly describe the major control and communication equipment necessary for waste package emplacement at the proposed nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the required equipment are explained and summarized in the individual subsections of this document. This task was evaluated in accordance with QAP-2-0 and found not to be quality affecting. Therefore, this document was prepared in accordance with NAP-MG-012. The following control and communication equipment are addressed in this document: (1) Programmable Logic Controllers (PLC's); (2) Leaky Feeder Radio Frequency Communication Equipment; (3) Slotted Microwave guide Communication Equipment; (4) Vision Systems; (5) Radio Control Equipment; and (6) Enclosure Cooling Systems

  10. Modeling approach to determine short- and long-term thermal and thermomechanical effects of waste emplacement in a repository in basalt

    International Nuclear Information System (INIS)

    Lehnhoff, T.F.; Thirumalai, K.; Krug, A.D.

    1982-01-01

    Basalt, in general, is characteristicaly a jointed and fractured rock. Preliminary field measurements to date, however, indicate that major portions of the deep basalt flows are highly impermeable to groundwater flow because of mineral infilling and large lithostatic pressure. For near-field considerations, the intraflow structures in jointed basalt have a governing influence on the rock mass-property parameters and their response to the repository environment. Much of the early work was done with closed-form solutions or boundary-element methods. These techniques are seen as the only reasonable and practical appraoch to scoping studies. The large number of parameter variations necessary for conceptual design of a repository preclude the initial application of elaborate and detailed finite-element methods. The thermomechanical analysis completed at the BWIP has progressed through much of the scoping phase and is now entering the detailed analysis and design phase in some areas. Methods for detailed analysis are being demonstrated and many uncertainties are being clarified. Final repository-design studies will warrant the special effort necessary to produce extensive finite-element analyses. The resulting finite-element models then permit analysis of design details and can expose various problem areas for inspection and final evaluation. Nonlinear effects of all types can be evaluated to determine if concerns exist as real problems. The detailed finite-element modeling will contribute to the basis for making rational correct decisions that will result in a safe repository in basalt for storing nuclear waste

  11. Vertical removable filters in shielded casing for radioactive cells and process gaseous wastes

    International Nuclear Information System (INIS)

    Prinz, M.

    1983-01-01

    The installation of shielded filtration casing is necessary for highly contaminated active cells and process gaseous wastes containing active aerosols. SGN and COGEMA have developed two filtration casings (for 500 and 3000 m 3 /h flow rates) equipped with a vertically removable filter element. The filter elements fitted with high efficiency glass fiber media, are cylindrical in shape. The top flange of the filter is equipped with a gasket to ensure sealing between the filter element and its casing. The filter element is blindly installed and removed and its orientation, inside the casing, is immaterial. The shielding casing is made of a cast iron, or steel, shielding slab under which is secured the filtration casing itself. This shielding slab is settled on side shielding walls made of concrete or cast iron. The filter element, integral with a plug, is placed in the horizontal slab. The attachment of the filter element under the plug is necessary so that the plug and filter may be removed as one unit, and to keep the filter on its sealing surfaces, according to sealing and seismic resistance requirements. Filter removal is performed with the help of an intervention cask, centered over a removable trap door provided on the shielding slab of the casing. First, the plug and filter element assembly is raised into the cask. Then, the filtering element may be separated from the plug which is decontaminated and salvaged. The whole plug and filter assembly may also be sent to the conditioning waste storage. The installation of a clean filter element in the casing, is also performed with the help of the intervention cask, proceeding as above, but in reverse order. The same intervention cask may also be used to remove the upstream and downstream dampers from the top of the casing

  12. Longevity of Emplacement Drift Ground Support Materials, Rev. 01

    International Nuclear Information System (INIS)

    David H. Tang

    2000-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. The Development Plan (DP) for this analysis is given in Longevity of Emplacement Drift Ground Support Materials (CRWMS M and O 1999a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999b), and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and crushed rock ballast. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts; (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period; (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment; (4) Evaluate factors affecting longevity of cement grouts for fully grouted rock bolt system. Provide updated information on cement grout mix design for fully grouted rock bolt system; and (5) Evaluate longevity of materials for the emplacement drift invert

  13. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    International Nuclear Information System (INIS)

    N.T. Raczka

    1998-01-01

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  14. A preliminary investigation of vertical crustal movements in the United Kingdom in the context of subsurface nuclear waste isolation for the Department of the Environment

    International Nuclear Information System (INIS)

    1981-03-01

    The report falls under the headings: vertical crustal movements - a manifestation of intraplate geological processes (reports of vertical crustal movements observed by geodetic levelling in intraplate environments; vertical crustal movements and the geological record; possible causes of vertical crustal movements); an investigation of recent crustal movements in a test area of the United Kingdom by comparison of geodetic levelling records; vertical crustal movements and the isolation of nuclear waste in intraplate geological systems (conventional methods of site appraisal - a perspective of geological hazard assessment; the role of vertical crustal movements as a tool for rationalisation of hazard assessment, site selection and the assessment of future geological change); research options. (U.K.)

  15. STRUCTURAL CALCULATIONS FOR THE LIFTING IN VERTICAL ORIENTATION OF 5-DHLW/DOE SNF SINGLE CRM WASTE PACKAGES

    International Nuclear Information System (INIS)

    S. Mastilovic

    1999-01-01

    The purpose of this activity is to determine the structural response of the extension of outer shell (which is referred to as skirt throughout this document) designs of both long and short design concepts of 5-Defense High-Level Waste (DHLW) Department of Energy (DOE) spent nuclear fuel (SNF) single corrosion resistant material (CRM) waste packages (WP), subjected to a gravitational load in the course of lifting in vertical orientation. The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This activity is associated with the WP design; calculations are performed by the Waste Package Design group. AP-3.124, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document

  16. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Emplacement Gantry Gap Analysis Study

    International Nuclear Information System (INIS)

    Thornley, R.

    2005-01-01

    To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This

  18. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  19. Ground Control for Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Y. Sun

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c)

  20. Parametric study of waste chicken fat catalytic chemical vapour deposition for controlled synthesis of vertically aligned carbon nanotubes

    Science.gov (United States)

    Suriani, A. B.; Dalila, A. R.; Mohamed, A.; Rosmi, M. S.; Mamat, M. H.; Malek, M. F.; Ahmad, M. K.; Hashim, N.; Isa, I. M.; Soga, T.; Tanemura, M.

    2016-12-01

    High-quality vertically aligned carbon nanotubes (VACNTs) were synthesised using ferrocene-chicken oil mixture utilising a thermal chemical vapour deposition (TCVD) method. Reaction parameters including vaporisation temperature, catalyst concentration and synthesis time were examined for the first time to investigate their influence on the growth of VACNTs. Analysis via field emission scanning electron microscopy and micro-Raman spectroscopy revealed that the growth rate, diameter and crystallinity of VACNTs depend on the varied synthesis parameters. Vaporisation temperature of 570°C, catalyst concentration of 5.33 wt% and synthesis time of 60 min were considered as optimum parameters for the production of VACNTs from waste chicken fat. These parameters are able to produce VACNTs with small diameters in the range of 15-30 nm and good quality (ID/IG 0.39 and purity 76%) which were comparable to those synthesised using conventional carbon precursor. The low turn on and threshold fields of VACNTs synthesised using optimum parameters indicated that the VACNTs synthesised using waste chicken fat are good candidate for field electron emitter. The result of this study therefore can be used to optimise the growth and production of VACNTs from waste chicken fat in a large scale for field emission application.

  1. Field test demonstration of emplacement feasibility of precompacted clay buffer materials in a granitic medium

    International Nuclear Information System (INIS)

    Jorda, M.; Lajudie, A.; Gatabin, C.; Atabek, R.

    1992-01-01

    Field test demonstration of emplacement feasibility of precompacted clay buffer materials in a granitic medium has been successfully carried out in February 1990 at the mining centre of FANAY. SILORD site was selected allowing the drilling through the 'Raise Boring' technique of pits of 30 m depth minimum between two pre-existent galleries. Two pits of 37 m depth were drilled and characterized in detail: mean diameter and vertical deviation measurements, valuation of the surface condition (rugosity) and cracking. The pit which was the most regular was selected for the feasibility test it-self. In parallel, manufacturing and handling techniques for the engineered barrier were improved. The bricks were made from a powdered mixture of clay and 10% sand and formed the barrier which was installed in the pit using iron baskets. The technique used was compacting by uniaxial pressing at 64 MPa. Twenty eight baskets containing the engineered barrier were fabricated at LIBOS (refractory manufactory of CTE Group) and taken to FANAY-SILORD. A maximal diameter of 96.03 cm was determined for the basket passing through (basket height = 1.335 m) and verified by the lowering of basket gauges in the pit. The baskets were stacked up in the pit, without any difficulty, with a mean radial gap of 1.6 cm (for a pit mean diameter of 99.3 cm). Three simulated COGEMA waste containers were then satisfactorily installed. The real volume to be sealed, including residual voids, was estimated at 21.47 m 3 . The engineered barrier weight after emplacement came to 36280 kg leading to a dry density in service, i.e. after the engineered barrier swelling, of 1.69. 30 figs

  2. Emplacement of Columbia River flood basalt

    Science.gov (United States)

    Reidel, Stephen P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  3. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  4. Rootless tephra stratigraphy and emplacement processes

    Science.gov (United States)

    Hamilton, Christopher W.; Fitch, Erin P.; Fagents, Sarah A.; Thordarson, Thorvaldur

    2017-01-01

    Volcanic rootless cones are the products of thermohydraulic explosions involving rapid heat transfer from active lava (fuel) to external sources of water (coolant). Rootless eruptions are attributed to molten fuel-coolant interactions (MFCIs), but previous studies have not performed systematic investigations of rootless tephrostratigraphy and grain-size distributions to establish a baseline for evaluating relationships between environmental factors, MFCI efficiency, fragmentation, and patterns of tephra dispersal. This study examines a 13.55-m-thick vertical section through an archetypal rootless tephra sequence, which includes a rhythmic succession of 28 bed pairs. Each bed pair is interpreted to be the result of a discrete explosion cycle, with fine-grained basal material emplaced dominantly as tephra fall during an energetic opening phase, followed by the deposition of coarser-grained material mainly as ballistic ejecta during a weaker coda phase. Nine additional layers are interleaved throughout the stratigraphy and are interpreted to be dilute pyroclastic density current (PDC) deposits. Overall, the stratigraphy divides into four units: unit 1 contains the largest number of sediment-rich PDC deposits, units 2 and 3 are dominated by a rhythmic succession of bed pairs, and unit 4 includes welded layers. This pattern is consistent with a general decrease in MFCI efficiency due to the depletion of locally available coolant (i.e., groundwater or wet sediments). Changing conduit/vent geometries, mixing conditions, coolant and melt temperatures, and/or coolant impurities may also have affected MFCI efficiency, but the rhythmic nature of the bed pairs implies a periodic explosion process, which can be explained by temporary increases in the water-to-lava mass ratio during cycles of groundwater recharge.

  5. Numerical analysis of thermal process in the near field around vertical disposal of high-level radioactive waste

    Directory of Open Access Journals (Sweden)

    H.G. Zhao

    2014-02-01

    Full Text Available For deep geological disposal of high-level radioactive waste (HLW in granite, the temperature on the HLW canisters is commonly designed to be lower than 100 °C. This criterion dictates the dimension of the repository. Based on the concept of HLW disposal in vertical boreholes, thermal process in the near field (host rock and buffer surrounding HLW canisters has been simulated by using different methods. The results are drawn as follows: (a the initial heat power of HLW canisters is the most important and sensitive parameter for evolution of temperature field; (b the thermal properties and variations of the host rock, the engineered buffer, and possible gaps between canister and buffer and host rock are the additional key factors governing the heat transformation; (c the gaps width and the filling by water or air determine the temperature offsets between them.

  6. Waste package performance allocation system study report

    International Nuclear Information System (INIS)

    Memory, R.D.

    1994-01-01

    The Waste Package Performance Allocation system study was performed in order to provide a technical basis for the selection of the waste package period of substantially complete containment and its resultant contribution to the overall total system performance. This study began with a reference case based on the current Mined Geologic Disposal System (MGDS) baseline design and added a number of alternative designs. The waste package designs were selected from the designs being considered in detail during Advanced Conceptual Design (ACD). The waste packages considered were multi-barrier packages with a 0.95 cm Alloy 825 inner barrier and a 10, 20, or 45 cm thick carbon steel outer barrier. The waste package capacities varied from 6 to 12 to 21 Pressurized Water Reactor (PWR) fuel assemblies. The vertical borehole and in-drift emplacement modes were also considered, as were thermal loadings of 25, 57, and 114 kW/acre. The repository cost analysis indicated that the 21 PWR in-drift emplacement mode option with the 10 cm and 20 cm outer barrier thicknesses are the least expensive and that the 12 PWR in-drift case has approximately the same cost as the 6 PWR vertical borehole. It was also found that the cost increase from the 10 cm outer barrier waste package to the 20 cm waste package was less per centimeter than the increase from the 20 cm outer barrier waste package to the 45 cm outer barrier waste package. However, the repository cost was nearly linear with the outer barrier thickness for the 21 PWR in-drift case. Finally, corrosion rate estimates are provided and the relationship of repository cost versus waste package lifetime is discussed as is cumulative radionuclide release from the waste package and to the accessible environment for time periods of 10,000 years and 100,000 years

  7. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    DEFF Research Database (Denmark)

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS...

  8. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    International Nuclear Information System (INIS)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-01-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  9. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Smitka, Martin, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: martin.smitka@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2014-08-06

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT)

  10. Nornahraun lava morphology and mode of emplacement

    Science.gov (United States)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    and the flow front came to halt on 12 SEPT 18 km from the source vent. Subsequently, a new lobe broke out S of the first lobe and migrated eastward until it came to a halt at a slightly shorter distance from the fissure. This mode of gradual clockwise propagation of new frontal lobes continued from mid-SEPT to end-NOV. Around 15 OCT, a ~0.8 km2 lava pond developed and persists into 2015. As the activity on the southern front dwindled toward end-NOV, verti-cal stacking of insulated flows had commenced and reached the edge of northern front on 26 NOV. Prior to that the entire northern flow front had hardly advanced for two weeks. The main lava channel partly crusted over and by end-NOV a series of insulated flows were overriding the previous emplaced flows, changing transport system to include closed/insultaed pathways in addition to open channels. Resultantly, the area now covered by the flow field has undergone several topographic inversions due to stacking of lava lobes. [1] Macdonald (1967) NY Wiley, 1-61. [2] Swanson (1973) GSAB, 84, 615-626. [3] Thordarson (2000) Surtsey Res. Prog. Rep., XI, 125-142. [4] Guilbaud et al. (2005) Geol. Soc. Am. Spec. Pap., 396, 81-102. [5] Keszthelyi et al. (2004) GGG, 5, Q11014.

  11. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  12. Remote excavation using the telerobotic small emplacement excavator

    International Nuclear Information System (INIS)

    Thompson, D.H.; Burks, B.L.; Killough, S.M.

    1993-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Office of Technology Development, Robotics Technology Development Program. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems

  13. A review and synthesis of international proposals for the disposal of high-level radioactive wastes into crystalline rock formations

    International Nuclear Information System (INIS)

    1981-05-01

    Examination of the broad range of international concepts for the disposal of high-level radioactive wastes into crystalline rock formations has indicated that systems based upon solid waste units provide the greatest degree of engineering control and security. Three particular disposal concepts are considered worthy of detailed evaluation. In order of priority these are:-tunnel networks with 'in-floor' waste emplacement; matrix of vertical emplacement holes drilled from the surface; tunnel networks with 'in-room' waste emplacement. A review of the international literature has shown that at least ten countries have embarked upon study programmes, but only five have developed detailed conceptual design proposals. These are:- Canada, France, Sweden, the United Kingdom, and the United States. Differing economic, environmental, historical and political circumstances have influenced the pattern of international studies and, to the uninitiated, these factors may obscure some of the relevant technical considerations. Nevertheless, a broad technical concensus is apparent in that all countries currently favour tunnel networks with 'in-floor' waste emplacement. The subject is discussed in detail. (author)

  14. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  15. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    International Nuclear Information System (INIS)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ''near-reference'' with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed

  16. Retrieval system for emplaced spent unreprocessed fuel (SURF) in salt bed depository. Baseline concept criteria specifications and mechanical failure probabilities

    International Nuclear Information System (INIS)

    Hudson, E.E.; McCleery, J.E.

    1979-05-01

    One of the integral elements of the Nuclear Waste Management Program is the material handling task of retrieving Canisters containing spent unreprocessed fuel from their emplacement in a deep geologic salt bed Depository. A study of the retrieval concept data base predicated this report. In this report, alternative concepts for the tasks are illustrated and critiqued, a baseline concept in scenario form is derived and basic retrieval subsystem specifications are presented with cyclic failure probabilities predicted. The report is based on the following assumptions: (a) during retrieval, a temporary radiation seal is placed over each Canister emplacement; (b) a sleeve, surrounding the Canister, was initially installed during the original emplacement; (c) the emplacement room's physical and environmental conditions established in this report are maintained while the task is performed

  17. Initial specifications for nuclear waste package external dimensions and materials

    International Nuclear Information System (INIS)

    Gregg, D.W.; O'Neal, W.C.

    1983-09-01

    Initial specifications of external dimensions and materials for waste package conceptual designs are given for Defense High Level Waste (DHLW), Commercial High Level Waste (CHLW) and Spent Fuel (SF). The designs have been developed for use in a high-level waste repository sited in a tuff media in the unsaturated zone. Drawings for reference and alternative package conceptual designs are presented for each waste form for both vertical and horizontal emplacement configurations. Four metal alloys: 304L SS, 321 SS, 316L SS and Incoloy 825 are considered for the canister or overpack; 1020 carbon steel was selected for horizontal borehole liners, and a preliminary packing material selection is either compressed tuff or compressed tuff containing iron bearing smectite clay as a binder

  18. Cryovolcanic Emplacement of Domes on Europa

    Science.gov (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical sin- gularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 10(exp 3) and 10(exp 6) sq m/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  19. TBV 361 RESOLUTION ANALYSIS: EMPLACEMENT DRIFT ORIENTATION

    International Nuclear Information System (INIS)

    Lin, M.; Kicker, D.C.; Sellers, M.D.

    1999-01-01

    The purpose of this To Be Verified/To Be Determined (TBX) resolution analysis is to release ''To Be Verified'' (TBV)-361 related to the emplacement drift orientation. The system design criterion in ''Subsurface Facility System Description Document'' (CRWMS M andO 1998a, p.9) specifies that the emplacement drift orientation relative to the dominant joint orientations should be at least 30 degrees. The specific objectives for this analysis include the following: (1) Collect and evaluate key block data developed for the repository host horizon rock mass. (2) Assess the dominant joint orientations based on available fracture data. (3) Document the maximum block size as a function of drift orientation. (4) Assess the applicability of the drift orientation/joint orientation offset criterion in the ''Subsurface Facility System Description Document'' (CRWMS M andO 1998a, p.9). (5) Consider the effects of seepage on drift orientation. (6) Verify that the viability assessment (VA) drift orientation complies with the drift orientation/joint orientation offset criterion, or provide justifications and make recommendations for modifying the VA emplacement drift layout. In addition to providing direct support to the System Description Document (SDD), the release of TBV-361 will provide support to the Repository Subsurface Design Department. The results from this activity may also provide data and information needs to support the MGR Requirements Department, the MGR Safety Assurance Department, and the Performance Assessment Organization

  20. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 5: radiological assessment

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Andres, T.H.; Hajas, W.C.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in long-lived containers placed in a sealed vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The concept permits a choice of methods, materials, sites and designs. The engineered system would be designed for the geological conditions of the disposal site. The technical feasibility of the disposal concept, and its impact on the environment and human health, have been presented in an Environmental Impact Statement (EIS) (AECL 1994a,b), supported by nine primary references (Davis et al. 1993; Davison et al. 1994a,b; Goodwin et al. 1994; Greber et al. 1994; Grondin et al. 1994; Johnson et al. 1994a,b; Simmons and Baumgartner 1994). In this report, we evaluate the long-term safety of a second hypothetical implementation of the concept that has several notable differences in site and design features compared to the EIS case study. We assume that the containers are constructed from copper, that they are placed within the disposal rooms, and that the vault is located in a more permeable rock domain. In this study, we consider the groundwater transport scenario and the radionuclides expected to be the most important contributors to dose and radiological risk. We use a prototype systems assessment code, comprising the SYVAC3 executive (the third generation of the SYstems Variability Analysis Code) and models representing the vault, geosphere and biosphere. We have not dealt with other, less likely scenarios, other radionuclides, chemically toxic elements, and some aspects of software quality assurance. The present study provides evidence that the second hypothetical implementation of the disposal concept would meet the radiological risk criterion established by the Atomic Energy Control Board by about an order of magnitude. The study illustrates the flexibility for designing engineered barriers to accommodate a permeable host-rock condition in which advection is the

  1. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 4: biosphere model

    International Nuclear Information System (INIS)

    Zach, R.; Amiro, B.D.; Bird, G.A.; Macdonald, C.R.; Sheppard, M.I.; Sheppard, S.C.; Szekely, J.G.

    1996-06-01

    AECL (Atomic Energy of Canada Limited) has developed a disposal concept for Canada's nuclear fuel waste, which calls for a vault deep in plutonic rock of the Canadian Shield. The concept has been fully, documented in an environmental impact statement (EIS) for review by a panel under the Canadian Environmental Assessment Agency. The EIS includes the results of the EIS postclosure assessment case study to address the long term safety of the disposal concept. To more fully demonstrate the flexibility of the disposal concept and our assessment methodology, we are now carrying out another postclosure assessment study, which involves different assumptions and engineering options than those used in the EIS. In response to these changes, we have updated the BIOTRAC (BIOsphere Transport and Assessment Code) model developed for the EIS postclosure assessment case study. The main changes made to the BIOTRAC model are the inclusion of 36 Cl, 137 Cs, 239 Np and 243 Am; animals inhalation pathway; International Commission on Radiological Protection 60/61 human internal dose conversion factors; all the postclosure assessment nuclides in the dose calculations for non-human biota; and groundwater dose limits for 14 C, 16 C1 and 129 I for non-human biota to parallel these limits for humans. We have also reviewed and changed several parameter values, including evasion rates of gaseous nuclides from soil and release fractions of various nuclides from domestic water, and indicated changes that affect the geosphere/biosphere interface model. These changes make the BIOTRAC model more flexible. As a result of all of these changes, the BIOTRAC model has been significantly expanded and improved, although the changes do not greatly affect model predictions. The modified model for the present study is called BIOTRAC2 (BIOTRAC - Version 2). The full documentation of the BIOTRAC2 model includes the report by Davis et al. (1993a) and this report. (author). 105 refs., 13 tabs., 8 figs

  2. The disposal of Canada`s nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 4: biosphere model

    Energy Technology Data Exchange (ETDEWEB)

    Zach, R; Amiro, B D; Bird, G A; Macdonald, C R; Sheppard, M I; Sheppard, S C; Szekely, J G

    1996-06-01

    AECL (Atomic Energy of Canada Limited) has developed a disposal concept for Canada`s nuclear fuel waste, which calls for a vault deep in plutonic rock of the Canadian Shield. The concept has been fully, documented in an environmental impact statement (EIS) for review by a panel under the Canadian Environmental Assessment Agency. The EIS includes the results of the EIS postclosure assessment case study to address the long term safety of the disposal concept. To more fully demonstrate the flexibility of the disposal concept and our assessment methodology, we are now carrying out another postclosure assessment study, which involves different assumptions and engineering options than those used in the EIS. In response to these changes, we have updated the BIOTRAC (BIOsphere Transport and Assessment Code) model developed for the EIS postclosure assessment case study. The main changes made to the BIOTRAC model are the inclusion of {sup 36}Cl, {sup 137}Cs, {sup 239}Np and {sup 243}Am; animals inhalation pathway; International Commission on Radiological Protection 60/61 human internal dose conversion factors; all the postclosure assessment nuclides in the dose calculations for non-human biota; and groundwater dose limits for {sup 14}C, {sup 16}C1 and {sup 129}I for non-human biota to parallel these limits for humans. We have also reviewed and changed several parameter values, including evasion rates of gaseous nuclides from soil and release fractions of various nuclides from domestic water, and indicated changes that affect the geosphere/biosphere interface model. These changes make the BIOTRAC model more flexible. As a result of all of these changes, the BIOTRAC model has been significantly expanded and improved, although the changes do not greatly affect model predictions. The modified model for the present study is called BIOTRAC2 (BIOTRAC - Version 2). The full documentation of the BIOTRAC2 model includes the report by Davis et al. (1993a) and this report. (author). 105

  3. EMPLACEMENT GANTRY ITS STANDARDS IDENTIFICATION STUDY

    International Nuclear Information System (INIS)

    Voegele, M.

    2005-01-01

    To date, the project has established ITS performance requirements for SSCs based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the NSDB. Further, SSCs credited with performing safe functions are classified as ITS. In turn, perform confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the WP Emplacement Gantry ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for LA only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under considered will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on GAP analysis study. Based on the results of this study the GAP analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the GAP analysis will identify non-standard areas of the design that will be subject to a Development Plan. Non-standard components and non-standard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, performance confirmation cannot be

  4. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  5. Remaining Sites Verification Package for the 600-233 Waste Site, Vertical Pipe Near 100-B Electrical Laydown Area. Attachment to Waste Site Reclassification Form 2005-041

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2005-01-01

    The 600-233 waste site consisted of three small-diameter pipelines within the 600-232 waste site, including previously unknown diesel fuel supply lines discovered during site remediation. The 600-233 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  6. Mechanical degradation of Emplacement Drifts at Yucca Mountain - A Modeling Case Study. Part I: Nonlithophysal Rock

    International Nuclear Information System (INIS)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-01-01

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation

  7. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    2015-11-01

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assume that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.

  8. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    International Nuclear Information System (INIS)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    2015-01-01

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assume that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.

  9. Additive Construction with Mobile Emplacement (ACME)

    Science.gov (United States)

    Vickers, John

    2015-01-01

    The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.

  10. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.

    Science.gov (United States)

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han

    2011-01-01

    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Study on a transportation and emplacement system of pre-assembled EBS module for HLW geological disposal

    International Nuclear Information System (INIS)

    Awano, Toshihiko; Kanno, Takeshi; Katsumata, Syunsuke; Kosuge, Kazuhiro

    2009-01-01

    HLW disposal is one of the largest issue to utilize Nuclear power safely. In the past study, the concept, which buffer materials and Overpacked waste were transported into underground respectively, have shown. The concept of pre-assembled engineered barrier has advantage to simplify the logistics and emplacement procedure, however there are difficulties to support heavy weight of pre-assembled package by equipment under the condition of little clearance between tunnel and package. In this study, Combination of air bearing and two degree-of-freedom wheels were suggested for transportation, and air jack was suggested for unloading and emplacement system. Also, whole system for transportation and emplacement procedure was designed, and Scale model test was examined to evaluate the feasibility of these concept and functions. (author)

  12. Emplacement hole drill evaluation and specification study. Volume I

    International Nuclear Information System (INIS)

    1977-01-01

    Results of a conceptual design program are presented for mine floor drilling in preparation for radioactive waste disposal. Two classes of drills can be used to drill emplacement holes in salt. Both are sufficiently rugged and reliable. Raise borers have a higher capital cost and require more modifications, but are more flexible in other applications and require less labor. The life cycle cost for the raise borers and for the auger rigs are about the same, while the life cycle costs of bucket drills are much higher. As long as the hole is 36 inches in diameter or less and 40 feet deep or less in salt, then the auger rig is recommended because of the lower capital cost and lower operating cost. This recommended system represents what is thought to be the best combination of available drill components assembled into a drill rig which will provide at least adequate performance. Furthermore, this drill system can be procured from at least three manufacturers. If the facility criteria change significantly, however, then the drill rig recommendations will have to be reassessed on the merits of the changes. The drill rig manufacturers can be quite flexible in combining components provided the buyer is willing to accept components with which the manufacturer has had experience. If this condition can be met, then most drill rig manufacturers will include the associated design cost as part of the drill cost. If special components are required, however, then the number of manufacturers willing to participate in a procurement may be severely reduced

  13. Ground Control for Non-Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Tang, D.

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository non-emplacement drifts during the preclosure period, and to provide a final ground support method for non-emplacement drifts for the License Application (LA). This calculation will provide input for the development of LA documents. The scope of this calculation is limited to the non-emplacement drifts including access mains, ramps, exhaust mains, turnouts, intersections between access mains and turnouts, and intersections between exhaust mains and emplacement drifts, portals, TBM launch chambers, observation drift and test alcove in the performance confirmation (PC) facilities, etc. The calculation is limited to the non-emplacement drifts subjected to a combined loading of in-situ stress, seismic stress, and/or thermal stress. Other effects such as hydrological and chemical effects are not considered in this analysis

  14. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  16. The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars

    Science.gov (United States)

    Clifford, Stephen M.

    1993-01-01

    Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.

  17. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    Science.gov (United States)

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting

  18. Monte-Carlo based comparison of the personal dose for emplacement scenarios of spent nuclear fuel casks in generic deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Hector Sauri; Becker, Franz; Metz, Volker [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal (INE); Pang, Bo [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal (INE); Shenzhen Univ. (China). College of Physics and Energy

    2017-06-15

    In the operational phase of a deep geological disposal facility for high-level nuclear waste, the radiation field in the vicinity of a waste cask is influenced by the backscattered radiation of the surrounding walls of the emplacement drift. For a comparison of disposal of spent nuclear fuel in various host rocks, it is of interest to investigate the influence of the surrounding materials on the radiation field and the personal radiation exposure. In this generic study individual dosimetry of personnel involved in emplacement of casks with spent nuclear fuel in drifts in rock salt and in a clay formation was modelled.

  19. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  20. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Müller, H.R.; Garitte, B.; Vogt, T.; and others

    2017-04-15

    Opalinus Clay is currently being assessed as the host rock for a deep geological repository for high-level and low- and intermediate-level radioactive wastes in Switzerland. Within this framework, the 'Full-Scale Emplacement' (FE) experiment was initiated at the Mont Terri rock laboratory close to the small town of St-Ursanne in Switzerland. The FE experiment simulates, as realistically as possible, the construction, waste emplacement, backfilling and early post-closure evolution of a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. The main aim of this multiple heater test is the investigation of repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock at this scale and the validation of existing coupled THM models. For this, several hundred sensors were installed in the rock, the tunnel lining, the bentonite buffer, the heaters and the plug. This paper is structured according to the implementation timeline of the FE experiment. It documents relevant details about the instrumentation, the tunnel construction, the production of the bentonite blocks and the highly compacted 'granulated bentonite mixture' (GBM), the development and construction of the prototype 'backfilling machine' (BFM) and its testing for horizontal GBM emplacement. Finally, the plug construction and the start of all 3 heaters (with a thermal output of 1350 Watt each) in February 2015 are briefly described. In this paper, measurement results representative of the different experimental steps are also presented. Tunnel construction aspects are discussed on the basis of tunnel wall displacements, permeability testing and relative humidity measurements around the tunnel. GBM densities achieved with the BFM in the different off-site mock-up tests and, finally, in the FE tunnel are presented. Finally, in situ thermal conductivity and temperature measurements recorded during the first heating months

  1. Repository sealing concepts for the Nevada nuclear waste storage Investigations Project

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Freshley, M.D.

    1984-08-01

    This report describes concepts for sealing a nuclear waste repository in an unsaturated tuff environment. The repository site under consideration is Yucca Mountain, which is on and adjacent to the Nevada Test Site. The hydrogeology of Yucca Mountain, preliminary repository concepts, functional requirements and performance criteria for sealing, federal and state regulations, and hydrological calculations are considered in developing the sealing concepts. Water flow through the unsaturated zone is expected to be small and generally vertically downward with some potential to occur through discrete fault and fracture zones. These assumptions are used in developing sealing concepts for shafts, ramps, and boreholes. Sealing of discrete, water-producing faults and fracture zones encountered in horizontal emplacement holes and in access and emplacement drifts is also described. 49 references, 21 figures, 6 tables

  2. Erratum: Correction to: Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    Science.gov (United States)

    Harp, A. G.; Valentine, G. A.

    2018-06-01

    In the article "Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes", the vertical axis for Fig. 8 a was incorrectly labeled (i.e., the value for dikes per km2).

  3. Cost estimate of the Yucca Mountain repository based on the site characterization plan conceptual design: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Gruer, E.R.; Fowler, M.E.; Rocha, G.A.

    1987-06-01

    This report of the life-cycle costs of a mined repository in tuff is based on the site characterization conceptual design and contains estimates of two methods of waste emplacement - vertical and horizontal. The life cycle of the repository progresses from design and construction to emplacement operations that last 25 years. When emplacement has ended, a caretaker period begins and continues until 50 years from emplacement of the first waste. The life of the repository concludes with closure and decommissioning, which includes backfilling and sealing the repository, decontaminating and razing the surface facilities, restoring the land to as near its original condition as possible, and marking the site. The estimates, developed for each phase of the life cycle of the repository, are based on January 1986 constant (unescalated) dollars and include an allowance for contingency. This report mainly comprises explanations of design and operating assumptions, estimating methods, exclusions, definition of cost accounts, calculating procedures, data sources, staffing and other qualifying remarks. Cost estimates are approximations of value and should not be construed as exact. The cost and staffing detail provided in this estimate is commensurate with the detail in the conceptual design

  4. Improvements relating to apparatus for emplacing or replacing a gaiter

    International Nuclear Information System (INIS)

    Chilvers, D.; Morrison, D.M.

    1982-01-01

    The invention relates to apparatus for emplacing or replacing a gaiter of the type which may be used in sealing the hot side of an isolation enclosure which is associated with a master-slave manipulator. (author)

  5. Waste disposal developments within BNFL

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1989-01-01

    British Nuclear Fuels plc has broad involvement in topics of radioactive waste generation, treatment, storage and disposal. The Company's site at Drigg has been used since 1959 for the disposal of low level waste and its facilities are now being upgraded and extended for that purpose. Since September 1987, BNFL on behalf of UK Nirex Limited has been managing an investigation of the Sellafield area to assess its suitability for deep underground emplacement of low and intermediate level radioactive wastes. An approach will be described to establish a partnership with the local community to work towards a concept of monitored, underground emplacement appropriate for each waste category. (author)

  6. Emplacement and stemming of nuclear explosives for Plowshare applications

    International Nuclear Information System (INIS)

    Cramer, J.L.

    1970-01-01

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible

  7. Emplacement and stemming of nuclear explosives for Plowshare applications

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible.

  8. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste

    International Nuclear Information System (INIS)

    Mikkonen, Anu; Hakala, Kati P.; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-01-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC–FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. - Highlights: ► Weathered hydrocarbon contamination and soil quality on landfarm site were studied. ► Silica fractionation of hydrocarbons separated aliphatics, aromatics and polars. ► Polar hydrocarbon metabolites had accumulated in the surface soil. ► Total hydrocarbons and TPH correlated with soil quality changes better than polars. ► Toxic response of soil microbial biomass and activity were seen at low TPH (<0.5%). - Polar metabolites constitute the largest fraction of crude oil-derived contaminants in a landfarming site, but TPH better explains soil microbial and ecotoxicological responses.

  9. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermo-mechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift

  10. The full-scale Emplacement (FE) Experiment at the Mont Terri URL

    International Nuclear Information System (INIS)

    Mueller, H.R.; Weber, H.P.; Koehler, S.; Vogt, T.; Vietor, T.

    2012-01-01

    Document available in extended abstract form only. The Full-Scale Emplacement (FE) Experiment at the Mont Terri underground research laboratory (URL) is a full-scale heater test in a clay-rich formation. It simulates the construction, waste emplacement and backfilling of a spent fuel (SF) / vitrified high-level waste (HLW) repository tunnel as realistically as possible. The entire experiment implementation as well as the post-closure THM(C) evolution will be monitored using several hundred sensors. These are distributed in the host rock in the near- and far-field, the tunnel lining, the engineered barrier system and on the heaters. The aim of this experiment is to investigate HLW repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock and the validation of existing coupled THM models. A further aim is the verification of the technical feasibility of constructing a 50 m repository section at full scale with all relevant components using standard industrial equipment. Finally, the experiment will demonstrate the canister and buffer emplacement procedures for underground conditions based on the Swiss disposal concept. Experimental layout The FE experiment is based on the Swiss disposal concept for SF / HLW. The 50 m long test gallery, at the end of the former MB test tunnel in the Mont Terri URL, will be realised with a diameter of approx. 3 m. In the experiment gallery, 3 heaters with dimensions similar to those of waste canisters will be emplaced on top of abutments built of bentonite blocks. The remaining space will be backfilled with compacted bentonite pellets. The experiment will be sealed off towards the start niche with a concrete plug holding the buffer in place and reducing air and water fluxes. The first scoping calculations and design modelling for the 'far-field' instrumentation have been completed; these works have been carried out using CodeBRIGHT and the multiphase flow simulator TOUGH2. With an initial heat output of 1500 W

  11. Comparative Noise Performance of Portable Broadband Sensor Emplacements

    Science.gov (United States)

    Sweet, Justin; Arias-Dotson, Eliana; Beaudoin, Bruce; Anderson, Kent

    2015-04-01

    IRIS PASSCAL has supported portable broadband seismic experiments for close to 30 years. During that time we have seen a variety of sensor vaults deployed. The vaults deployed fall into two broad categories, a PASSCAL style vault and a Flexible Array style vault. The PASSCAL vault is constructed of materials available in-county and it is the Principle Investigator (PI) who establishes the actual field deployed design. These vaults generally are a large barrel placed in a ~1 m deep hole. A small pier, decoupled from the barrel, is fashioned in the bottom of the vault (either cement, paving stone or tile) for the sensor placement. The sensor is insulated and protected. Finally the vault is sealed and buried under ~30 cm of soil. The Flexible Array vault is provided to PIs by the EarthScope program, offering a uniform portable vault for these deployments. The vault consists of a 30 cm diameter by 0.75 cm tall piece of plastic sewage pipe buried with ~10 cm of pipe above grade. A rubber membrane covers the bottom and cement was poured into the bottom, coupling the pier to the pipe. The vault is sealed and buried under ~30 cm of soil. Cost, logistics, and the availability of materials in-country are usually the deciding factors for PIs when choosing a vault design and frequently trades are made given available resources. Recently a third type of portable broadband installation, direct burial, is being tested. In this case a sensor designed for shallow, direct burial is installed in a ~20 cm diameter by ~1 m deep posthole. Direct burial installation costs are limited to the time and effort required to dig the posthole and emplace the sensor. Our initial analyses suggest that direct burial sensors perform as well and at times better than sensor in vaults on both horizontal and vertical channels across a range of periods (<1 s to 100 s). Moving towards an instrument pool composed entirely of direct burial sensors (some with integrated digitizers) could yield higher

  12. 10 CFR 60.143 - Monitoring and testing waste packages.

    Science.gov (United States)

    2010-01-01

    ....143 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... repository operations area, the environment of the waste packages selected for the waste package monitoring program shall be representative of the environment in which the wastes are to be emplaced. (c) The waste...

  13. Investigative study of the underground excavations for a nuclear waste repository in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-07-01

    Numerical studies were conducted on the behavior of a tuff rock mass within which emplacement drifts for a nuclear waste repository are excavated. The first study evaluated the effects of rockbolting and excavation-induced damage on the behavior of the rock mass round typical drifts. The second study provided a simple means of assessing the significance of drift shape, drift size, and in-situ state of stress on the deformation and stress in the vicinity of drifts for vertical and horizontal emplacement of waste. Neither study considered the effect of heating of the rock mass after emplacement of the waste so the conclusions pertain only to the conditions immediately after excavation of the underground openings. The results of analyses of the rockbolted excavations indicated that rockbolts do not have a significant influence on the states of deformation or stress within the rock mass, and that the rockbolts are subjected to acceptable levels of stress even if installed as close to the face of the excavation as possible. Accordingly, rockbolts were not considered in the study of drift shape, drift size, and the in-situ state of stress. That study indicated that stable openings of the dimensions investigated can be constructed within a tuff rock mass with the properties assumed. Of the parameters investigated, the in-situ state of stress appeared to be most important. Potentially adverse conditions were predicted if the in-situ horizontal stress is very low, but current indications are that it lies within a range which is consistent with good conditions and a stable roof. 28 refs., 49 figs., 11 tabs

  14. Development of waste package designs for disposal in a salt repository

    International Nuclear Information System (INIS)

    Balmert, M.E.

    1983-01-01

    Three package design concepts were developed for CHLW and DHLW forms and spent fuel rods: (1) carbon steel overpack, borehole emplacement, (2) titanium clad, carbon steel reinforced overpack, borehole emplacement, and (3) carbon steel (self-shield) overpack, tunnel emplacement. For a DHLW canister with titanium clad overpack, the concept features a 9.5-cm-thick carbon steel overpack reinforcement supporting a 0.25-cm-thick titanium shell. The overall package dimensions are 84 cm diameter x 340 cm long weighing about 8.8 mtons. By contrast, a monolithic DHLW borehole package has a carbon steel overpack that is 10.4 cm thick, weighing about 9.3 mtons. The titanium clad/carbon steel reinforced borehole package is intended for remote emplacement in a vertical borehole in salt. The carbon steel overpack reinforcement provides structural integrity, primarily to resist external pressure, while the titanium overpack provides the necessary corrosion resistance to meet containment requirements. The carbon steel borehole package concept provides containment integrity for both external pressure and corrosion environments with a thicker carbon steel overpack in place of the titanium/carbon steel concept. A third concept utilizes an even greater thickness of cast steel or iron to resist external pressure and corrosion as well as reduce external shielding requirements. For example, a cast steel DHLW package would have overall dimensions of 125 cm diameter x 390 cm long, weighing 31 mtons. The purpose of this self-shield concept is to minimize handling and emplacement operations by reducing the package surface radiation dose to about 100 mrem/hr. In addition, it may serve as a shipping cask, thereby eliminating the need for a shielded hot cell at the repository for waste package assembly operations. 7 figures

  15. 9+ years of disposal experience at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Rempe, Norbert T.; Nelson, Roger A.

    2008-01-01

    With almost a decade of operating experience, the Waste Isolation Pilot Plant (WIPP) has established an enviable record by clearly demonstrating that a deep geologic repository for unconditioned radioactive waste in rock salt can be operated safely and in compliance with very complex regulations. WIPP has disposed of contact-handled transuranic (TRU) waste since 1999 and remote-handled TRU waste since 2007. Emplacement methods range from directly stacking unshielded 0.21-4.5 m 3 containers inside disposal rooms to remotely inserting highly radioactive 0.89 m 3 canisters into horizontally drilled holes (shield plugs placed in front of canisters protect workers inside active disposal rooms). More than 100 000 waste containers have been emplaced, and one-third of WIPP's authorized repository capacity of 175,000 m 3 has already been consumed. Principal surface operations are conducted in the waste handling building, which is divided into CH and RH waste handling areas. Four vertical shafts extend from the surface to the disposal horizon, 655 m below the surface in a 1000 m thick sequence of Permian bedded salt. The waste disposal area of about 0.5 km 2 is divided into ten panels, each consisting of seven rooms. Vertical closure (creep) rates in disposal rooms range up to 10 cm per year. While one panel is being filled with waste, the next one is being mined. Mined salt is raised to the surface in the salt shaft, and waste is lowered down the waste shaft. Both of these shafts also serve as principal access for personnel and materials. Underground ventilation is divided into separate flow paths, allowing simultaneous mining and disposal. A filter building near the exhaust shaft provides the capability to filter the exhaust air (in reduced ventilation mode) through HEPA filters before release to the atmosphere. WIPP operations have not exposed employees or the public to radiation doses beyond natural background variability. They consistently meet or exceed regulatory

  16. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  17. Thermal simulation of drift emplacement. Geotechnical and geophysical investigations in and around backfilled galleries

    International Nuclear Information System (INIS)

    Schneefub, J.U.; Gommlich, G.E.

    1988-01-01

    The concept for the direct disposal of spent fuel in rock salt foresees the emplacement of large waste canisters on the floor of a disposal gallery. Subsequent to emplacement the drift is backfilled with salt grit. In a demonstration test six cylindrical containments are to be emplaced within distances of 3 m from each other in two parallel galleries of 14 m 2 , separated by a pillar of 10 m thickness. They will be heated up by a power output of approx. 1 kW/m to 200 degree C surface temperature by electrical heaters. The thermal and mechanical response of the salt rock and the backfilling to the artificial heating is to be investigated as follows: (1) measurement of the temperature field at the contained surface, in the backfill and in the rock salt; (2) deformation measurements of the salt rock around the heated drifts; (3) measurements of tunnel convergence in heated and unheated sections; (4) compaction measurements of the backfilling in heated and unheated areas; (5) measurement of rock stresses in areas very close to the galleries; and (6) pressure measurements in the backfilling, between backfilling and rock, and between backfilling and containers. The rock burst monitoring system of the Asse salt mine will be expanded to this special field of the mine to detect seismic events due to thermomechanical effects. Another seismoacoustic system will be installed to observe the compaction of the backfilling. This system must be calibrated for the relation between the density and velocities of seismic waves. It is planned to monitor the density by gamma-gamma log measurements. The changes in overall density during the entire experiment will be observed by gravimeter measurements of high precision

  18. Engineering for a disposal facility using the in-room emplacement method

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, P; Bilinsky, D M; Ates, Y; Read, R S; Crosthwaite, J L; Dixon, D A

    1996-06-01

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author). 72 refs., 15 tabs., 63 figs.

  19. Engineering for a disposal facility using the in-room emplacement method

    International Nuclear Information System (INIS)

    Baumgartner, P.; Bilinsky, D.M.; Ates, Y.; Read, R.S.; Crosthwaite, J.L.; Dixon, D.A.

    1996-06-01

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author)

  20. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement

    Science.gov (United States)

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.

    2017-12-01

    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  1. Magnetotelluric Investigations of the Yellowstone Caldera: Understanding the Emplacement of Crustal Magma Bodies

    Science.gov (United States)

    Gurrola, R. M.; Neal, B. A.; Bennington, N. L.; Cronin, R.; Fry, B.; Hart, L.; Imamura, N.; Kelbert, A.; Bowles-martinez, E.; Miller, D. J.; Scholz, K. J.; Schultz, A.

    2017-12-01

    Wideband magnetotellurics (MT) presents an ideal method for imaging conductive shallow magma bodies associated with contemporary Yellowstone-Snake River Plain (YSRP) magmatism. Particularly, how do these magma bodies accumulate in the mid to upper crust underlying the Yellowstone Caldera, and furthermore, what role do hydrothermal fluids play in their ascent? During the summer 2017 field season, two field teams from Oregon State University and the University of Wisconsin-Madison installed forty-four wideband MT stations within and around the caldera, and using data slated for joint 3-D inversion with existing seismic data, two 2-D vertical conductivity sections of the crust and upper mantle were constructed. These models, in turn, provide preliminary insight into the emplacement of crustal magma bodies and hydrothermal processes in the YSRP region.

  2. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    Science.gov (United States)

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  3. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  4. Thermal analysis of NNWSI conceptual waste package designs

    International Nuclear Information System (INIS)

    Stein, W.; Hockman, J.N.; O'Neal, W.C.

    1984-04-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This report discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 16 references

  5. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    International Nuclear Information System (INIS)

    P. Bernot

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  6. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  7. Granitoid emplacement during syn-convergent transtension: An example from the Huamenlou pluton in North Qinling, central China

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available The Huamenlou pluton, is an elongated granite intrusion with high aspect ratio, emplaced within the southern margin of the North Qinling (central China. Here we investigate this pluton through multiple techniques including the fabric study, microstructural observation and zircon geochronology. Our zircon U–Pb data confirm that the granite crystallized at ca. 462 Ma which is consistent with the ages of other linear plutons in North Qinling. Microstructural observations of the Huamenlou granites illustrate that the pluton has undergone superimposed deformation during its emplacement, from magmatic to high-temperature solid state conditions. The internal fabric obtained by anisotropy of magnetic susceptibility (AMS and shape preferred orientation (SPO show similar results. The fabrics are relatively concordant and generally vary from NE–SW to NEE–SWW which are roughly oblique to the trend of the pluton elongation and the regional structures. Meanwhile, scalar parameters reflect two completely different strain regimes for the pluton and its host rocks, i.e., the fabrics within host rocks are mainly oblate while the central part of the intrusion displays mainly prolate fabrics. It is inferred that the structural pattern recorded in this pluton was caused by local dextral transtension in consequence of oblique convergence between the South and North China Blocks. We propose that the local transtension in convergence setting probably evolved from vertical extrusion tectonics that provided room for the magma emplacement and imparted prolate fabrics in the Huamenlou pluton.

  8. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  9. United Kingdom government policy towards radioactive waste

    International Nuclear Information System (INIS)

    Pritchard, G.

    1986-01-01

    There are three areas of radioactive waste management which exemplify, beyond any reasonable doubt, that the United Kingdom has in the past (and intends in the future), to pursue a policy of dispersal and disposal of radioactive wastes: These are: (I) dumping of low-level waste in the deep ocean and, on a parallel, seabed emplacement of highly active waste; (II) the liquid discharges from Windscale into the Irish Sea; and (III) land dumping of low- and intermediate-level waste

  10. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  11. 10 CFR 63.134 - Monitoring and testing waste packages.

    Science.gov (United States)

    2010-01-01

    ....134 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A... geologic repository operations area, the environment of the waste packages selected for the waste package monitoring program must be representative of the environment in which the wastes are to be emplaced. (c) The...

  12. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  13. Rooted in two Countries? Migrant Heritage, emplacement and the ‘Canon van Nederland’.

    NARCIS (Netherlands)

    van Faassen, M.; Hoekstra, F.G.

    2017-01-01

    Rooted in two Countries? Migrant Heritage, emplacement and the ‘Canon van Nederland’. In the cultural heritage sector theorizing emplacement is considered to be vital for identity: “people need to anchor there identity concretely to a location (emplacement)” (Grever&Van Boxtel, 2014). The question

  14. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  15. Wireless Sensor Networks for Detection of IED Emplacement

    Science.gov (United States)

    2009-06-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but

  16. State of the art for fabricating and emplacing concrete containers into large horizontal disposal caverns in the french geological repository - 59267

    International Nuclear Information System (INIS)

    Bosgiraud, Jean-Michel; Guariso, Maurice; Pineau, Francois

    2012-01-01

    The research and development work presented in this paper was initialized by Andra in 2007. The work necessary for manufacturing and testing a full scale demonstrator is presently implemented. The case story is twofold. The first part is related to the initial development of a high performance concrete formulation used for fabricating concrete storage containers (containing Intermediate Level and Long Lived Waste primary canisters) to be stacked and emplaced into 400-m long concrete lined horizontal disposal vaults (also called cavern), excavated in the Callovo-Oxfordian clay host formation at a 550 to 600-m depth, with an inside diameter of approximately 8-m. The fabrication of the concrete boxes is illustrated. The second part presents the outcome at the end of the detailed design phase, for a system which is now being manufactured (for further test and assembly), for the emplacement of the concrete containers inside the vault. The application was engineered for remote emplacing a pile of 2 concrete containers (the containers are preliminarily stacked in a pile of 2, inside a hot cell, thanks to a ground travelling gantry crane). The emplacement process is justified and the related emplacement synoptic is illustrated. The test campaign is scheduled in 2011-2012. The successful completion of the technical trials is mandatory to confirm the mechanical feasibility of remotely emplacing concrete containers into large horizontal disposal caverns over long distances. The later display of the machinery at work in Andra's showroom will be instrumental for the confidence building process involving the various stakeholders concerned by the public enquiry period (mid-2013) preceding the deep geological repository license application (2014-2015). (authors)

  17. The Sonju Lake layered intrusion, northeast Minnesota: Internal structure and emplacement history inferred from magnetic fabrics

    Science.gov (United States)

    Maes, S.M.; Tikoff, B.; Ferre, E.C.; Brown, P.E.; Miller, J.D.

    2007-01-01

    The Sonju Lake intrusion (SLI), in northeastern Minnesota, is a layered mafic complex of Keweenawan age (1096.1 ?? 0.8 Ma) related to the Midcontinent rift. The cumulate paragenesis of the intrusion is recognized as broadly similar to the Skaergaard intrusion, a classic example of closed-system differentiation of a tholeiitic mafic magma. The SLI represents nearly closed-system differentiation through bottom-up fractional crystallization. Geochemical studies have identified the presence of a stratabound, 50-100 m thick zone anomalously enriched in Au + PGE. Similar to the PGE reefs of the Skaergaard intrusion, this PGE-enriched zone is hosted within oxide gabbro cumulates, about two-third of the way up from the base of the intrusion. We present a petrofabric study using the anisotropy of magnetic susceptibility (AMS) to investigate the emplacement and flow patterns within the Sonju Lake intrusion. Petrographic and electron microprobe studies, combined with AMS and hysteresis measurements indicate the primary source of the magnetic signal is pseudo-single domain (PSD) magnetite or titanomagnetite. Low field AMS was measured at 32 sites within the Sonju Lake intrusion, which provided information about primary igneous fabrics. The magnetic fabrics in the layered series of the Sonju Lake intrusion are consistent with sub-horizontal to inclined emplacement of the intrusion and show evidence that the cumulate layers were deposited in a dynamic environment. Well-aligned magnetic lineations, consistently plunging shallowly toward the southwest, indicate the source of the magma is a vertical sill-like feeder, presumably located beneath the Finland granite. The Finland granite acted as a density trap for the Sonju Lake magmas, forcing lateral flow of magma to the northeast. The strongly oblate magnetic shape fabrics indicate the shallowly dipping planar fabrics were enhanced by compaction of the crystal mush. ?? 2007 Elsevier B.V. All rights reserved.

  18. Sensor-based automated docking of large waste canisters

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1990-01-01

    Sensor-based programmable robots have the potential to speed up remote manipulation operations while protecting operators from exposure to radiation. Conventional master/slave manipulators have proven to be very slow in performing precision remote operations. In addition, inadvertent collisions of remotely manipulated objects with their environment increase the hazards associated with remote handling. This paper describes the development of a robotic system for the sensor-based automated remote manipulation and precision docking of large payloads. Computer vision and proximity sensing are used to control the precision docking of a large object with a passive target cavity. Specifically, a container of nuclear spent fuel on a transport vehicle is mated with an emplacement door on a vertical storage borehole at a waste repository

  19. WASTE PACKAGE TRANSPORTER DESIGN

    International Nuclear Information System (INIS)

    Weddle, D.C.; Novotny, R.; Cron, J.

    1998-01-01

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''

  20. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  1. Emplacement feasibility of a multi-tier, expanded capacity repository at Yucca Mountain, Nevada USA

    International Nuclear Information System (INIS)

    Apted, Michael; Kessler, John; Fairhurst, Charles

    2008-01-01

    A geological repository at Yucca Mountain has been proposed for the disposal of spent fuel from the US commercial reactors and other radioactive waste. A legislative capacity of 70,000 MTHM has been set by the Nuclear Waste Policy Act of 1982, including 63,000 MTHM of commercial spent nuclear fuel (CSNF), the projected amount of CSNF that will be produced by about 2014. Policy issues remain as to how to handle waste that is generated beyond 2014 from a growing nuclear industry in the US. The Electric Power Research Institute (EPRI) is independently evaluating the technical, rather than legislative, limit of CSNF that could be safely disposed at Yucca Mountain. Geological, thermal management, safety and cost factors have been recently evaluated by EPRI (2006; 2007) for grouped emplacement drifts and/or a multi-tier repository. EPRI's evaluation of emplacement feasibility for a multi-tier concept is described here. Expanded capacity concepts as envisioned for Yucca Mountain (EPRI, 2006; 2007) assume excavation of one or two additional levels of drifts parallel to or above and/or below the original drift excavations. For the latter multi-tier concept each 'tier' or 'level' would essentially replicate the original layer with a 30-m separation between tiers. This arrangement essentially doubles or triples the capacity of the repository for a two- or three-tier design, respectively. The main issues that affect the feasibility of expanded capacity design are; (i) ventilation requirements; (ii) radiation hazards; (iii) thermal and thermo-mechanical constraints. (i)Ventilation: The repository design involves waste packages mounted in close proximity to each other in 600-m long drifts that remain open and actively ventilated for at least 50-100 years. Analyses,conservatively assuming that all three repository levels operate simultaneously, indicate no technological obstacles in meeting ventilation requirements for sustained simultaneous operation ba sed on current industrial

  2. Using restored cross sections to evaluate magma emplacement, White Horse Mountains, Eastern Nevada, U.S.A.

    Science.gov (United States)

    Marko, Wayne T.; Yoshinobu, Aaron S.

    2011-03-01

    New field observations and cross section restoration from the Jurassic White Horse pluton-host rock system, Goshute Range, eastern Nevada, USA, indicate a sequential variation of host rock rheology attending magma emplacement. The pluton intruded weakly to nondeformed Devonian-Mississippian limestone, argillite and quartzite at shallow crustal levels (ca. 7 km). The contact aureole is well exposed along the southern, eastern and northern margin of the intrusive body and is less than 1 km wide. Rocks outside of the aureole are sub-horizontal and do not contain a penetrative fabric or are gently folded (interlimb angles > 120°) about sub-vertical axial planes. Within the contact aureole, continuous and discontinuous spaced, axial planar foliations and harmonic to disharmonic, tight to isoclinal folds wrap around the eastern margin of the pluton. Folds verge toward and away from the pluton and rim anticlines, synclines, and monoclines with wavelength in excess of 250 m are preserved along the pluton margin. The spatial proximity of these ductile structures to the pluton and the apparent increase in intensity of structure development approaching the pluton is compatible with contraction within the aureole attending pluton emplacement. However, all of the above structures are truncated by the intrusive contact at various scales. Granodioritic dikes ranging in thickness from 1 m up to ˜ 10 m emanate from the intrusion and cut host rock structure at high angles and turn to propagate towards one another, parallel to the pluton margin and host rock anisotropy. Such features are interpreted to reflect the last stages of diking and brittle deformation that modified the pluton contact after emplacement-related folding of the carbonate rocks, but before final solidification of the pluton. Eight serial geologic cross sections were constructed and evaluated to place geometric constraints on the shape and growth of the White Horse intrusion. Based on line-length restoration of

  3. Transuranic waste management at Savannah River - past, present, and future

    International Nuclear Information System (INIS)

    D'Ambrosia, J.

    1985-01-01

    The major objective of the TRU program at Savannah River is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the Waste Isolation Pilot Plant, (WIPP). Thus, the Savannah River Program also supports WIPP operations. The Savannah River site specific goals to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of Savannah River's Defense TRU waste

  4. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-01-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  5. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  6. Thermally-assisted Magma Emplacement Explains Restless Calderas

    Science.gov (United States)

    Amoruso, A.; Crescentini, L.; D'Antonio, M.; Acocella, V.

    2017-12-01

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei, Italy, which is the best-known, yet most dangerous calderas, lying to the west of Naples and restless since the 1950s at least.Our elaboration of the geodetic data indicates that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust.Our thermal models show that the repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth 3 ka before the last eruption and, in turn, contributed to maintain the thermal anomaly itself. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks.Available information at other calderas highlights similarities to Campi Flegrei, in the pattern and cause of unrest. All monitored restless calderas have either geodetically (Yellowstone, Aira Iwo-Jima, Askja, Fernandina and, partly, Long Valley) or geophysically (Rabaul, Okmok) detected sill-like intrusions inducing repeated unrest. Some calderas (Yellowstone, Long Valley) also show stable deformation pattern, where inflation insists on and mimics the resurgence uplift. The common existence of sill-like sources, also responsible for stable deformation patterns, in restless calderas suggests close similarities to Campi Flegrei. This suggests a wider applicability of our model of thermally-assisted sill emplacement, to be tested by future studies to better understand not only the dynamics of restless

  7. Analogue experiments as benchmarks for models of lava flow emplacement

    Science.gov (United States)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  8. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  9. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  10. Thermally-assisted Magma Emplacement Explains Restless Calderas.

    Science.gov (United States)

    Amoruso, Antonella; Crescentini, Luca; D'Antonio, Massimo; Acocella, Valerio

    2017-08-11

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei caldera, Italy. Campi Flegrei experienced at least 4 major unrest episodes in the last decades. Our results indicate that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust. Our thermal models show that this repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth ~3 ka before the last eruption. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks. Our model of thermally-assisted unrest may have a wider applicability, possibly explaining also the dynamics of other restless calderas.

  11. Salt Repository emplacement mode evaluation and selection: Final report

    International Nuclear Information System (INIS)

    1988-03-01

    This document describes the decision analysis performed to evaluate and compare the emplacement mode for the Salt Repository. The study was commissioned to recommend one emplacement mode to the Salt Repository Project Office using multi-attribute decision analysis. The nature of the decision required analysis of uncertain outcomes and conflicting attributes and offers a high degree of objectivity for these types of decisions since the decision model is structured to allow only the facts to enter into the final decision. The analysis requires an explicit definition of the attributes used to evaluate the alternative (e.g., cost, safety, environmental impact), the definition of a utility function over the attributes which incorporated both risk attitudes and trade-offs between attributes, and the probability distribution over the outcomes that would result from the selection of one alternative over the other. The decision process is described and results are given. A simulation model was developed to evaluate the probability distributions over the attributes. This report documents logic, inputs and results of this model. Final ranking of alternatives is given. Extensive technical backup documentation is included in the appendices to provide the quantitative basis for this decision. 5 refs., 2 figs., 8 tabs

  12. Effects of irregular basement structure on the geometry and emplacement of frontal thrusts and duplexes in the Quebec Appalachians: Interpretations from well and seismic reflection data

    Science.gov (United States)

    Konstantinovskaya, E.; Malo, M.; Badina, F.

    2014-12-01

    Irregular basement geometry may affect thrust propagation in foreland fold-thrust belts creating a perturbation in structural continuity of hydrocarbon fields. Here we investigate how the irregular pattern of normal faults, along with the presence of uplifts and transverse faults in the Grenvillian basement has influenced the geometry and emplacement of frontal thrusts and duplexes in the parautochthonous domain of the southern Quebec Appalachians during the middle-late Ordovician Taconian orogeny. Integration of data from surface geology, wells, and 2D and 3D seismic reflection surveys into a regional-scale structural model is used to reconstruct the 3D geometry and emplacement history of one- and two-horse duplexes in the Joly-Saint-Flavien gas storage area. The normal hinterland to foreland sequence of thrusting in this area is complicated by the differential emplacement of tectonic slices along strike of the orogenic front, starting in the SW and developing subsequently to the NE within each structural level. The shortening related to duplex emplacement decreases laterally over the distance of 20 km from - 49% in the SW (Joly area) to - 31% in the NE (Saint-Flavien area). Duplex emplacement resulted from the differential forward propagation, deflexion and vertical-axis rotation of the roof thrust (Logan's Line), which, in turn, has been induced by the presence of frontal uplift and transverse faults in the basement. The structural-lithological analysis of tectonic slices and restoration of their initial location allows us to consider the lower slice of the Joly duplex as a structural trap comparable to the fractured reservoir in lower Ordovician dolomites of the Saint-Flavien duplex.

  13. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1983-09-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 3 tables

  14. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1984-02-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 4 tables

  15. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  16. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  17. Interaction of nuclear waste panels with shafts and access ramps for a potential repository at Yucca Mountain: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-09-01

    A series of two-dimensional and three-dimensional analyses of a potential nuclear waste repository at Yucca Mountain were performed to estimate the thermal stresses that would be experienced at the possible locations of shafts or ramps providing access to the repository horizon. Two alternative assumptions were made for the initial state of stress, and calculations were performed to investigate behavior at repository scale. The computed states of stress were also used as boundary conditions for a series of analyses of the access ramps and vertical shafts. The results of the repository scale analyses indicated that there is a region above the repository horizon where the horizontal stresses are reduced as a consequence of the thermal loads imposed by waste emplacement. If the initial state of stress is relatively low then the total horizontal stresses near the ground surface above the repository may be tensile. An evaluation of the total stress state relative to the strength of the rock matrix and vertical and near vertical joints indicates that there is no potential for development of new fractures in the matrix, but joints near the surface could be activated if the initial stress state is low. 13 refs., 24 figs., 4 tabs

  18. Structural control on basaltic dike and sill emplacement, Paiute Ridge mafic intrusion complex, southern Nevada

    International Nuclear Information System (INIS)

    Carter Krogh, K.E.; Valentine, G.A.

    1996-08-01

    Late Miocene basaltic sills and dikes in the Paiute Ridge area of southern nevada show evidence that their emplacement was structurally controlled. Basaltic dikes in this area formed by dilating pre-existing vertical to steeply E-dipping normal faults. Magma propagation along these faults must have required less energy than the creation of a self-propagated fracture at dike tips and the magma pressure must have been greater than the compressive stress perpendicular to the fault surface. N- to NE-trending en echelon dikes formed locally and are not obviously attached to the three main dikes in the area. The en echelon segments are probably pieces of deeper dikes, which are segmented perhaps as a result of a documented rotation of the regional stresses. Alternatively, changes in orientation of principal stresses in the vicinity of each en echelon dike could have resulted from local loads associated with paleotopographic highs or nearby structures. Sills locally branched off some dikes within 300 m of the paleosurface. These subhorizontal bodies occur consistently in the hanging wall block of the dike-injected faults, and intrude Tertiary tuffs near the Paleozoic-Tertiary contact. The authors suggest that the change in stresses near the earth's surface, the material strength of the tuff and paleozoic rocks, and the Paleozoic bedding dip direction probably controlled the location of sill formation and direction of sill propagation. The two largest sills deflected the overlying tuffs to form lopoliths, indicating that the magma pressure exceeded vertical stresses at that location and that the shallow level and large size of the sills allowed interaction with the free (earth's) surface. 32 refs., 4 figs., 1 tab

  19. Novel Emplacement Device for a Very Deep Borehole Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Heui-joo; Lee, Jong Yul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There is a worldwide attempt of HLW disposal into a very deep borehole of around 3-5 km depth with the advancement of an underground excavation technology recently. As it goes into deeper underground, the rock becomes more uniform and flawless. And then the underground water circulation system at 3-5 km depth is almost disconnected with near groundwater circulation system. The canister integrity is less important in this very deep borehole disposal system unlike a general geologic disposal system at 500 m. In the deep borehole disposal procedures, one SNF (Spent Nuclear Fuel) assembly is stored in one disposal canister (D30-40cm, H4.7-5.0m), and approximately 10-40 disposal canisters are connected axially, which parade length can leach to around 200m in maximum. The connected canister parade is lowered through a very deep borehole (D40-50cm) by emplacement devices. Therefore the connections between canisters and canister to lowering joint are very important for the safe operation of it. The well-known connection method between canisters is Threaded Coupled Connection method, in which releasing of the connection is almost impossible after thread fastening in the borehole. The novel joint device suggested in this paper can accommodate a canister emplacement and retrieval in the borehole disposal process. The joint can be lowered by bound to a drilling pipe, or high tension cable along 3-5 km distance. This novel device can cope with an accidental event easily without any joint head change. When canisters are damaged or stuck on the borehole wall during their descending, the canisters in trouble can be retrieved simply by the control of a lifting speed.

  20. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  1. Design of the human computer interface on the telerobotic small emplacement excavator

    International Nuclear Information System (INIS)

    Thompson, D.H.; Killough, S.M.; Burks, B.L.; Draper, J.V.

    1995-01-01

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the U.S. Army for explosive ordinance disposal (EOD) and general utility excavation activities. This project resulted from a joint need in the U.S. Department of Energy (DOE) for a remote controlled excavator for buried waste operations and the U.S. Department of Defense for remote EOD operations. To evaluate the feasibility of removing personnel from the SEE vehicle during high-risk excavation tasks, a development and demonstration project was initiated. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory in a project funded jointly by the U.S. Army and the DOE. The TSEE features teleoperated driving, a telerobotic backhoe with four degrees of freedom, and a teleoperated front loader with two degrees of freedom on the bucket. Remote capabilities include driving (forward, reverse, brake, steering), power takeoff shifting to enable digging modes, deploying stabilizers, excavation, and computer system booting

  2. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  3. Naval Waste Package Design Report

    International Nuclear Information System (INIS)

    M.M. Lewis

    2004-01-01

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository

  4. In-situ containment and stabilization of buried waste

    International Nuclear Information System (INIS)

    Allan, M.L.; Kukacka, L.E.

    1993-10-01

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect

  5. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  6. Deformation mechanisms accommodating the emplacement of an igneous sill-complex in the Irish sector of the Rockall Basin, offshore NW Ireland

    Science.gov (United States)

    Magee, Craig; Jackson, Christopher; Schofield, Nick

    2013-04-01

    . Onlap and truncational relationships observed throughout the folded Palaeocene-Mid-Eocene strata indicate that the folds grew progressively, likely due to the near-continuous intrusion of small magmatic pulses within the sill-complex. Importantly, individual forced folds cannot be attributed to a single intrusion and, instead, appear to have been generated from the incremental emplacement of adjacent and overlapping sills. Furthermore, where the sills are clustered, individual folds have merged together to form broad, compound folds. We show that emplacement depth below the contemporaneous seabed and vertical stacking of the sills strongly influenced forced fold development. Furthermore, magmatic activity occurred for a prolonged (~8 Ma) time period.

  7. Recurrent uranium relocations in distal turbidites emplaced in pelagic conditions

    International Nuclear Information System (INIS)

    Colley, S.; Thomson, J.

    1985-01-01

    The sediments of the Madeira Abyssal Plain, east of Great Meteor Seamount, are dominated by distal turbidite deposition. While the turbidites exhibit a wide compositional range, individual examples can be correlated over a wide area and are relatively homogeneous. Organic C oxidation, by bottom water oxygen, proceeds from the turbidite tops downwards after emplacement in pelagic conditions, and the progress of this oxidation front is marked by a sharp colour contrast in the sediments. In turbidites with Csub(org) > 0.5%, redistribution of authigenic U occurs to form a concentration peak (4 to 9 ppm U), just below the oxidation front or colour change. Several tens μg U/cm 2 may be mobilised, and in all examples studied > 60% of the remobilised U is relocated into the peak. Following burial by subsequent turbidites, such U concentration peaks are persistent as relict indicators of their extinct oxidation fronts for at least 2 x 10 5 years. In the case of thin turbidites where labile Csub(org) is almost exhausted, the U peaks may be located in underlying sedimentary units because of their relationship to the oxidation front. A redox mechanism for U peak formation is suggested from these data rather than a complexation with organic matter. (author)

  8. The Jeffers Brook diorite-granodiorite pluton: style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.

    2018-04-01

    Small appinite plutons ca. 610 Ma outcrop in the peri-Gondwanan Avalon terrane of northern Nova Scotia, with different structural levels exposed. Field mapping shows that the Jeffers Brook pluton is a laccolith emplaced along an upper crustal thrust zone, likely in a dilational jog in a regional dextral strike-slip system. The oldest rocks are probably mafic sills, which heated the area facilitating emplacement of intermediate magmas. Cross-cutting relationships show that both mafic and intermediate magmas were supplied throughout the history of pluton emplacement. The modal composition, mineral chemistry, and bulk chemistry of gabbro, diorite, tonalite, granodiorite, and granite have been studied in the main plutonic phases, dykes, and sills, and mafic microgranular enclaves. As with the type appinites in the Scottish Caledonides, the pluton shows evidence of high water content: the dominance of hornblende, locally within pegmatitic texture; vesicles and irregular felsic patches in enclaves; and late aplite dykes. Analyzed mafic microgranular enclaves are geochemically similar to larger diorite bodies in the pluton. Tonalite-granodiorite is distinct from the diorite in trace-element geochemistry and radiogenic isotopes. Elsewhere to the east, similar rocks of the same age form vertically sheeted complexes in major shear zones; hornblende chemistry shows that they were emplaced at a deeper upper crustal level. This implies that little of the observed geochemical variability in the Jeffers Brook pluton was developed within the pluton. The general requirements to form appinites are proposed to be small magma volumes of subduction-related magmas that reach the upper crust because of continual heating by mafic magmas moving through strike-slip fault pathways and trapping of aqueous fluids rather than venting through volcanic activity.

  9. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  10. Removal of chloride from fly ash produced in hazardous waste incineration by leaching and displacement washing in a vertical filter press.

    Science.gov (United States)

    Kinnarinen, Teemu; Huhtanen, Mikko; Penttilä, Mika; Häkkinen, Antti

    2013-02-01

    Fly ash is generated in large quantities by waste incineration processes. Chloride is commonly present in the fly ash produced by the incineration of hazardous materials, such as polyvinylchloride plastic. Major difficulties related to the disposal and handling of fly ash include the high concentration of easily leachable chlorides, heavy metals and toxic compounds. In order to avoid adverse environmental effects from the disposal of fly ash, the content of soluble chlorides must be reduced. One of the most effective options for chloride removal is leaching and displacement washing in a filter press. The primary aim of this study was to obtain efficient removal of chloride from fly ash by utilizing a leaching and displacement washing process, carried out in a filter press. The secondary objective was to obtain high filtration capacities and low filter cake moisture contents. The slurry was prepared by mixing fly ash with water at an ash:water ratio of 1:2 and filtered to separate the solids from the liquid. After solid-liquid separation, most of the dissolved residual chloride was removed from the filter cake by washing the cake with fresh water in the second stage of separation. It was possible to remove up to 98% of the total chloride and to obtain sufficient filtration capacities. The residual moisture content of the filter cakes varied from 22 to 35 wt%, which meant that the cakes could be disposed of in landfill, or possibly utilized as a construction material.

  11. Engineering design study for storage and disposal of intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, J R; Hackney, S; Richardson, J A; Heafield, W

    1982-11-01

    A conceptual design study is presented which covers both the storage and disposal of intermediate level waste; repositories in several rock formations are considered at a 300m depth. A total system is proposed including an engineered trench for ..beta gamma.. waste, emplacement systems and off site transportation. Safety during the emplacement phase and the radiological effects of human intrusion and geological catastrophies are considered.

  12. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    International Nuclear Information System (INIS)

    Bernot, P.

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  13. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  14. Engineering considerations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Scully, L.W.

    1978-01-01

    The WIPP, located at Los Medanos in New Mexico, is to be used for DOE transuranic and high-level defense wastes. On the surface, there are contact-handled and remote-handled waste facilities. Package size, delivery rates, shipping, shielding and thermal considerations, underground transport and emplacement, retrievability, ventilation, and hoist conveyence safety are discussed

  15. Waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wilhite, E.L.

    1986-01-01

    Waste salt solution, produced during processing of high-level nuclear waste, will be incorporated in a cement matrix for emplacement in an engineered disposal facility. Wasteform characteristics and disposal facility details will be presented along with results of a field test of wasteform contaminant release and of modeling studies to predict releases. 5 refs., 11 figs., 5 tabs

  16. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  17. Mechanisms Of Saucer-Shaped Sill Emplacement: Insight From Experimental Modeling

    Science.gov (United States)

    Galland, O.; Planke, S.; Malthe-Sørenssen, A.; Polteau, S.; Svensen, H.; Podladchikov, Y. Y.

    2006-12-01

    It has been recently demonstrated that magma intrusions in sedimentary basins had a strong impact on petroleum systems. Most of these intrusions are sills, and especially saucer-shaped sills. These features can be observed in many sedimentary basins (i.e. the Karoo basin, South Africa; the Norwegian and North Sea; the Tunguska basin, Siberia; the Neuquén basin in Argentina). The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes. However, the mechanisms that govern their formation remain poorly constrained. Experiments were conducted to simulate the emplacement of saucer-shaped magma intrusions in sedimentary basins. The model rock and magma were fine-grained silica flour and molten vegetable oil, respectively. This modeling technique allows simultaneous simulation of magma emplacement and brittle deformation at a basin scale. For our purpose, we performed our experiments without external deformation. During the experiments, the oil was injected horizontally at constant flow rate within the silica flour. Then the oil initially emplaced in a sill, whereas the surface of the model inflated into a smooth dome. Subsequently, the oil propagated upwards along inclined sheets, finally reaching the surface at the edge of the dome. The resulting geometries of the intrusions were saucer-shaped sills. Then the oil solidified, and the model was cut in serial cross-sections through which the structures of the intrusive body and of the overburden can be observed. In order to constraint the processes governing the emplacement of such features, we performed a parametric study based on a set of experiments in which we systematically varied parameters such as the depth of emplacement and the injection flow rate of the oil. Our results showed that saucer diameters are larger at deeper level of emplacement. Opposite trend was obtained with varying injection flow rates. Based on our results, we conducted a detailed

  18. Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes

    Science.gov (United States)

    Harp, A. G.; Valentine, G. A.

    2018-02-01

    Mafic flank eruptions are common events that pose a serious hazard to the communities and infrastructure often encroaching on the slopes of stratovolcanoes. Flank vent locations are dictated by the propagation path of their feeder dikes. The dikes are commonly thought to propagate either laterally from the central conduit or vertically from a deeper source. However, these interpretations are often based on indirect measurements, such as surface deformation and seismicity at active systems, and several studies at eroded volcanoes indicate the propagation paths may be more complex. We investigated the Oligocene age Summer Coon volcano (Colorado, USA), where erosion has exposed over 700 basaltic-andesitic radial dikes, to constrain the propagation directions, geometries, and spatial distributions of mafic dikes within a stratovolcano. The mean fabric angle of aligned plagioclase crystals was measured in oriented samples from the margins of 77 dikes. Of the 41 dikes with statistically significant flow fabrics, 85% had fabric angles that were inclined—plunging both inward and outward relative to the center of the volcano. After comparing fabric angles to those reported in other studies, we infer that, while most of the dikes with outward-plunging fabrics descended toward the flanks from a source within the edifice and near its axis, dikes with inward-plunging fabrics ascended through the edifice and toward the flanks from a deeper source. A possible control for the inclination of ascending dikes was the ratio between magma overpressure and the normal stress in the host rock. While higher ratios led to high-angle propagation, lower ratios resulted in inclined emplacement. Dikes crop out in higher frequencies within a zone surrounding the volcano axis at 2500 m radial distance from the center and may be the result of ascending dikes, emplaced at similar propagation angles, intersecting the current level of exposure at common distances from the volcano axis. The process

  19. 10 CFR 60.135 - Criteria for the waste package and its components.

    Science.gov (United States)

    2010-01-01

    ... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste package and its interactions with the emplacement environment do not compromise the function of the waste...

  20. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  1. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  2. Magnetic properties and emplacement of the Bishop tuff, California

    Science.gov (United States)

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  3. An optimization procedure for borehole emplacement in fractured media

    International Nuclear Information System (INIS)

    Billaux, D.; Guerin, F.

    1998-01-01

    Specifying the position and orientation of the 'next borehole(s)' in a fractured medium, from prior incomplete knowledge of the fracture field and depending on the objectives assigned to this new borehole(s), is a crucial point in the iterative process of site characterization. The work described here explicitly includes site knowledge and specific objectives in a tractable procedure that checks possible borehole characteristics, and rates all trial boreholes according to their compliance with objectives. The procedure is based on the following ideas : Firstly, the optimization problem is strongly constrained, since feasible borehole head locations and borehole dips are generally limited. Secondly, a borehole is an 'access point' to the fracture network. Finally, when performing a flow or tracer test, the information obtained through the monitoring system will be best if this system detects the largest possible share of the flow induced by the test, and if it cuts the most 'interesting' flow paths. The optimization is carried out in four steps. 1) All possible borehole configurations are defined and stored. Typically, several hundred possible boreholes are created. Existing boreholes are also specified. 2) Stochastic fracture networks reproducing known site characteristics are generated. 3) A purely geometrical rating of all boreholes is used to select the 'geometrically best' boreholes or groups of boreholes. 4) Among the boreholes selected by the geometrical rating, the best one(s) is chosen by simulating the experiment for which it will be used and checking flowrates through possible boreholes. This method is applied to study the emplacement of a set of five monitoring boreholes prior to the sinking of a shaft for a planned underground laboratory in a granite massif in France (Vienne site). Twelve geometrical parameters are considered for each possible borehole. A detailed statistical study helps decide on the shape of a minimization function. This is then used

  4. Analysis of hydraulic gradients across the host rock at the proposed Texas Panhandle nuclear-waste repository site

    International Nuclear Information System (INIS)

    Bair, E.S.

    1987-01-01

    Analysis of the direction of ground-water flow across the host rock at the proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, is complicated by vertical and lateral changes in the density of formation fluids in the various hydrogeologic units that overlie and underlie the proposed host rock. Because the concept of hydraulic head is not valid when evaluating vertical hydraulic gradients in a variably-density flow system, other methods were used to determine the direction and magnitude of vertical hydraulic gradients at the proposed site where the specific gravity of formation fluids varies between 1.00 and 1.28. The direction of ground-water flow across the proposed host rock, an 80-foot-thick salt bed in the Lower San Andres Formation, was determined by calculating vertical hydraulic gradients based on formation pressure and fluid density data, and by analysis of pressure-depth diagrams. Based on data from the vicinity of the proposed site, both methods indicate the potential for downflow across the host rock. Downflow or predominantly horizontal flow is considered a favorable prewaste emplacement condition because it prolongs the travel time to the biosphere of any naturally or accidentally released radionuclides

  5. Analysis of heat and mass transport processes near an emplaced nuclear waste canister

    International Nuclear Information System (INIS)

    Keller, C.

    1990-01-01

    A review has been performed of the models and experimental plans for evaluation of the spent fuel canister environment in a nuclear repository, e.g., the planned Yucca Mountain facilities. Special emphasis was placed on the relevance of the models and experiments to the 100 to 10,000 year prediction. The question was addressed whether one could justify testing in materials other than Yucca Mountain rock and obtain results in a relatively short time which would be relevant to the long time in Yucca Mountain. The paper discusses steam evolution in calculations and experiments, fracture models, possible measurements of relative permeability, and long time scale effects. 5 figs. (MB)

  6. The waste bin: nuclear waste dumping and storage in the Pacific

    International Nuclear Information System (INIS)

    Branch, J.B.

    1984-01-01

    Relatively small amounts of nuclear waste have been stored on Pacific islands and dumped into the Pacific Ocean since 1945. Governments of Pacific countries possessing nuclear power plants are presently seeking permanent waste storage and disposal solutions at Pacific sites including subseabed emplacement of high-level nuclear wastes and ocean dumping of low-level wastes. This article examines these plans and the response of Pacific islanders in their development of policies and international strategies to ban the proposed dumping on a regional basis. Island governments are preparing for a Regional Convention during which a treaty concerned with radioactive waste storage and disposal will be signed. (Author)

  7. Preliminary waste form characteristics report Version 1.0. Revision 1

    International Nuclear Information System (INIS)

    Stout, R.B.; Leider, H.R.

    1991-01-01

    This report focuses on radioactive waste form characteristics that will be used to design a waste package and an engineered barrier system (EBS) for a suitable repository as part of the Yucca Mountain Project. The term waste form refers to irradiated reactor fuel, other high-level waste (HLW) in various physical forms, and other radioactive materials (other than HLW) which are received for emplacement in a geologic repository. Any encapsulating of stabilizing matrix is also referred to as a waste form

  8. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.

    1979-05-07

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  9. Determination of performance criteria for high-level solidified nuclear waste

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.

    1979-01-01

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste

  10. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  11. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  12. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  13. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  14. Progress in waste package and engineered barrier system performance assessment and design

    International Nuclear Information System (INIS)

    Van Luik, A.; Stahl, D.; Harrison, D.

    1993-01-01

    As part of the U.S. Department of Energy's evaluation of site suitability for a potential high-level radioactive waste repository, long-term interactions between the engineered barrier system and the site must be determined. This requires a waste-package/engineered-system design, a description of the environment around the emplacement zone, and models that simulate operative processes describing these engineered/natural systems interactions. Candidate designs are being evaluated, including a more robust, multi-barrier waste package, and a drift emplacement mode. Tools for evaluating designs, and emplacement mode are the currently available waste-package/engineered-system performance assessment codes development for the project. For assessments that support site suitability, environmental impact, or licensing decisions, more capable codes are needed. Code capability requirements are being written, and existing codes are to be evaluated against those requirements. Recommendations are being made to focus waste-packaging/engineered-system code-development

  15. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data

    Science.gov (United States)

    Pedersen, Gro; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Thórdarson, Thorvaldur; Dürig, Tobias; Gudmundsson, Magnus T.; Durmont, Stephanie

    2016-04-01

    spiny pāhoehoe was the main type of lava emplacement. The morphological transitions observed in the field has been summarized in a transformation cycle, where the main cycle revolve from 'a'ā to rubbly and slabby pāhoehoe lava morphologies. As these morphologies come to rest, outbreaks of degassed, cooler and more viscous lava would form irregular spiny lobes. A continued low discharge, high viscosity lava supply to these lobes would result in inflation and new break outs of spiny pahoehoe lobes that eventually would create a compound lava field. Overall, the Holuhraun lava field evolution has been divided into three main phases. Phase 1, which was dominated by open lava channels, and horizontal stacking of 1 km sized 'a'ā branches (31 Augusut to mid-October). Phase 2 was dominated by lava pond formation east of the vent area and became the dominant distributary center for lava emplacement during this period (Mid-October to December). Finally, in phase 3, closed lava pathways, inflation and vertical stacking became increasingly important, dominating type of lava emplacement in the end of the eruption (December to 27th February).

  16. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  18. A preliminary assessment of temperature distributions associated with a radioactive waste vault

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1978-09-01

    The temperature distributions of models which simulated radioactive waste vaults were determined, using a finite difference computer code to solve the transient heat conduction equation. Input parameters to the code included thermal properties for granitic rock and heat generation decay data for wastes that would be separated from CANDU fuel if it were recycled. Due to the preliminary nature of the study, only simple models were analysed. A disc source was utilized to approximate a one-level repository. Various parameters were investigated such as depth of disc, thermal properties of rock, and long-term effects. It was shown that, for a vault at 500 m depth with an initial areal heat flux of 31 W/m 2 , a maximum temperature increase of about 80 deg C occurs at the vault level about 30 years after waste emplacement; maximum increases near the earth's surface occur after about 1000 years and are less than 1 deg C. Modelling the vault by a number of vertical waste boreholes on one horizontal level, instead of by a disc, with the gross areal heat flux again 31 W/m 2 , did not cause serious local temperature increases as long as the initial heat generation rate of each container was less than about 750 W. It was also shown that, by using the vertical dimension available in granitic plutons and constructing either multiple-level vaults or very deep boreholes, initial areal heat fluxes greater than 31 W/m 2 can be utilized without exceeding the 80 deg C maximum temperature increase anywhere in the vault. (author)

  19. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    Science.gov (United States)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  20. Geologic appraisal of Paradox basin salt deposits for water emplacement

    Science.gov (United States)

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    process and that any waste-storage or disposal sites in these structures should remain dry for hundreds of thousands of years.Trace to commercial quantities of oil and gas are found in all of the black shale-dolomite-anhydrite interbeds of the Paradox Member. These hydrocarbons constitute a definite hazard in the construction and operation of underground waste-storage or disposal facilities. However, many individual halite beds are of. sufficient thickness that a protective seal of halite can be left between the openings and the gassy beds.A total of 12 different localities were considered to be potential waste-storage or disposal sites in the Paradox basin. Two Sharer dome and Salt Valley anticline, were considered to have the most favorable characteristics.

  1. Emplacement time of Salai Patai carbonatite, Malakand, Pakistan, from fission track dating of zircon and apatite

    International Nuclear Information System (INIS)

    Qureshi, A.A.; Khan, H.A.

    1991-01-01

    Based on fission track dating of zircon and apatite, the emplacement history of Salai Patai carbonatite has been traced. It has been estimated that the carbonatite was emplaced along the thrust plane associated with the Indian-Eurasian plate collision during the Oligocene period followed by some thermal/tectonic episode during Early Miocene. This negates the previous proposal that all carbonatites found in Pakistan are a part of a 200 km long alkaline province associated with the rifting of Peshawar Valley during Late Cretaceous or early tertiary. (author)

  2. Preoperational checkout of the remote-handled transuranic waste handling at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1987-09-01

    This plan describes the preoperational checkout for handling Remote-Handled Transuranic (RH-TRU) Wastes from their receipt at the Waste Isolation Pilot Plant (WIPP) to their emplacement underground. This plan identifies the handling operations to be performed, personnel groups responsible for executing these operations, and required equipment items. In addition, this plan describes the quality assurance that will be exercised throughout the checkout, and finally, it establishes criteria by which to measure the success of the checkout. 7 refs., 5 figs

  3. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  4. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  5. Reconsolidation of salt as applied to permanent seals for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Callahan, G.D.; Van Sembeek, L.L.

    1993-01-01

    Reconsolidated salt is a fundamental component of the permanent seals for the Waste Isolation Pilot Plant. As regulations are currently understood and seal concepts envisioned, emplaced salt is the sole long-term seal component designed to prevent the shafts from becoming preferred pathways for rating gases or liquids. Studies under way in support of the sealing function of emplaced salt include laboratory testing of crushed salt small-scale in situ tests, constitutive modeling of crushed salt, calculations of the opening responses during operation and closure, and design practicalities including emplacement techniques. This paper briefly summarizes aspects of these efforts and key areas of future work

  6. Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, Jin; Kwon, Sang Ki

    2005-01-01

    In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene and safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low and medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems and real time ventilation simulation, and fire simulation and emergency system in the repository are briefly discussed.

  7. Determination of performance criteria for high-level solidified nuclear waste from the commercial nuclear fuel cycle: a probabilistic safety analysis

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-01-01

    To minimize the radiological risk from the operation of a waste management system for the safe disposal of high-level waste, performance characteristics of the solidified waste form must be specified. The minimum waste form characteristics that must be specified are the radionuclide volatilization fraction, airborne particulate dispersion fraction, and the aqueous dissolution characteristics. The results indicate that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. The actual values of expected risk are sensitive to modeling assumptions and data base uncertainties. The transportation step appears to be the most limiting in determining the required performance characteristics

  8. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE NO.13 - WASTE PACKAGE SELF SHIELDING

    International Nuclear Information System (INIS)

    Owen, J.

    1999-01-01

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes

  9. High-precision 40Ar/39AR age of the gas emplacement into the Songliao Basin

    NARCIS (Netherlands)

    Qiu, H.N.; Wu, H.Y.; Yun, Y.B.; Feng, Z.H.; Xu, Y.G.; Mei, L.F.; Wijbrans, J.R.

    2011-01-01

    The problem of determining an exact isotopic age of hydrocarbon emplacement is complex because minerals suitable for dating with common isotopic methods are often lacking in the sedimentary domain. However, the igneous quartz from the Cretaceous volcanic rocks that host the gas reservoir in the

  10. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu

    2001-01-01

    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  11. From Embodiment to Emplacement: Re-Thinking Competing Bodies, Senses and Spatialities

    Science.gov (United States)

    Pink, Sarah

    2011-01-01

    In this article I discuss how a shift from theories of embodiment to one of emplacement can inform how we understand the performing body in competitive and pedagogical contexts. I argue that recent theoretical advances concerning the senses, human perception and place offer new analytical possibilities for understanding skilled performances and…

  12. Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations

    International Nuclear Information System (INIS)

    Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

    1993-11-01

    The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa

  13. Radioactive waste disposal. Facts, problems and responsible action

    International Nuclear Information System (INIS)

    Finckh, E.; Seitz, M.

    1994-01-01

    In a first part, natural science and technology aspects of waste management are outlined: basic concepts of radioactivity; properties, detection and primary effects of radioactive radiation; biological effect of radioactivity and radiation; general geological bases; composition of spent fuel elements; interim storage and transport; reprocessing of spent fuels; classification and treatment of radioactive wastes; emplacement possibilities for radioactive wastes; possible ways of radionuclides from the repository back into the biosphere; comparative consideration of the risks involved in nuclear waste management. The second part of the paper deals with ethical and theological aspects of radioactive waste management. (orig./HP) [de

  14. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    Science.gov (United States)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  15. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-07-01

    This report is based on an emplacement techniques review prepared for the Department of the Environment in February 1983, which appeared as Chapter III of the Nuclear Energy Agency, Seabed Working Group's Status Report. The original document (DOE/RW/83.032) has been amended to take account of the results of field trials carried out in March 1983 and to better reflect current UK Government policy on ocean disposal of HGW. In particular Figure 7 has been redrawn using more realistic drag factors for the calculation of the terminal velocity in water. This report reviews the work conducted by the SWG member countries into the different techniques of emplacing heat generating radioactive waste into the deep ocean sediments. It covers the waste handling from the port facilities to final emplacement in the seabed and verification of the integrity of the canister isolation system. The two techniques which are currently being considered in detail are drilled emplacement and the free fall penetrator. The feasibility study work in progress for both techniques as well as the mathematical and physical modelling work for embedment depth and hole closure behind the penetrator are reviewed. (author)

  16. Safety principles and technical criteria for the underground disposal of high level radioactive wastes

    International Nuclear Information System (INIS)

    1989-01-01

    The main objective of this book is to set out an internationally agreed set of principles and criteria for the design of deep underground repositories for the disposal of high level radioactive wastes. This book is concerned with the post-closure period. Consideration of the operational requirements which must be met when wastes are being handled, stored and emplaced are not therefore included

  17. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  18. Nuclear waste vault sealing

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded, it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating groundwater. Vault sealing entails four major aspects, i.e.: (a) vault grouting; (b) borehole sealing; (c) buffer packing; and (d) backfilling. Of particular concern in vault sealing are the physical and chemical properties of the sealing material, its long-term durability and stability, and the techniques used for its emplacement. Present sealing technology and sealing materials are reviewed in terms of the particular needs of vault sealing. Areas requiring research and development are indicated

  19. Waste package performance assessment

    International Nuclear Information System (INIS)

    Lester, D.H.

    1981-01-01

    This paper describes work undertaken to assess the life-expectancy and post-failure nuclide release behavior of high-level and waste packages in a geologic repository. The work involved integrating models of individual phenomena (such as heat transfer, corrosion, package deformation, and nuclide transport) and using existing data to make estimates of post-emplacement behavior of waste packages. A package performance assessment code was developed to predict time to package failure in a flooded repository and subsequent transport of nuclides out of the leaking package. The model has been used to evaluate preliminary package designs. The results indicate, that within the limitation of model assumptions and data base, packages lasting a few hundreds of years could be developed. Very long lived packages may be possible but more comprehensive data are needed to confirm this

  20. Waste Isolation Pilot Plant (WIPP) research and development program: in situ testing plan, March 1982

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Christensen, C.L.; Hunter, T.O.; Molecke, M.A.; Munson, D.E.

    1982-12-01

    The WIPP in southeast New Mexico is being developed as an R and D facility to demonstrate the safe disposal of radioactive defense wastes in bedded salt. The tests are done first without radioactive materials and then with transuranic (TRU) waste and Defense High-Level Waste (DHLW). The thermal/structural itneraction experiments include (a) geomechanical evaluations of access drifts, vertical shafts, and isothermal TRU disposal rooms during the Site and Preliminary Validation Program, (b) tests that represent the reference DHLW room configuraton (5.5 m x 5.5 m) and areal thermal loading of 12 W/m 2 , (c) an overtest of the DHLW congfiguration heated to about four times the reference thermal loading; (d) geomechanical evaluations of various room widths up to 9.1 m, variable pillar widths, and a long-drift intersection, (e) an 11-m-dia axisymmetric heated pillar test, and (f) miscellaneous tests to determine stress field and clay seam sliding resistance. The plugging and sealing experiments include (a) salt permeability tests, (b) tests to determine effects of size and scale on behavior of plugs and to determine backfill material behavior and emplacement techniques, and (c) a plug test matrix to evaluate candidate sealing materials. Waste package interaction experiments include (a) simulated-waste package tests that use several design options and engineered barrier materials under reference and accelerated DHLW environments, (b) confirmatory brine migration tests, (c) TRU drum durability tests in dry and wet conditions, (d) options for radiation-source tests using cesium capsules, and (e) actual DHLW tests using up to 40 canisters for technical demonstrations and for addressing concerns of wasteform chemistry, leaching, and near-field radionuclide migration

  1. Emplacement processes of tuffaceous sandstones at IODP Site C0011B, Nankai Trough, derived from modal analysis

    Science.gov (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Freundt, A.

    2011-12-01

    Tuffaceous sandstones are characterized by their high amount (25 to 75%) of pyroclasts in their modal composition. During IODP Expedition 322 three interbeds of tuffaceous sandstones have been found within a moderately lithified and bioturbated silty claystone sequence in the late Miocene (>7.07 to ~9.0 Ma) upper part of the middle Shikoku Basin facies. Of the three sandstones, units 1 and 2 are single beds whereas unit 3 is composed of three beds. Modal analyses of 29 sandstone thin sections reveal systematic vertical changes within each bed. Generally low-density pyroclasts are enriched at the top (50-60 vol%) of each sandstone bed whereas dense lithic components (25-30 vol%) and minerals (25-30 vol%) are enriched at the bottom. The vertically varying abundance of various types of lithic fragments (sedimentary, volcanoclastic and metamorphic) suggests that these have also been segregated according to their respective densities. The highest amount of fine-grained matrix glass is found in the middle of each bed. Pumice and lithic fragments in the middle and upper parts of the sandstone beds carry ash coatings. For sandstone package 3, in contrast to 1 and 2, core pictures and thin section analyses indicate a subdivision in three units showing the same significant variations in top to bottom enrichment. This suggests three sedimentation events following each other in short time intervals. Glass and mineral chemistry of each sandstone bed show no significant vertical variations. Specifically the matrix glass-shard major element compositions are identical to the pumice clast composition in each tuffaceous sandstone bed. The compositions of amphibole and pyroxene crystals differ only slightly between the sandstone packages. Application of the Ridolfi et al. (2009) thermobarometric calculations to amphiboles of sandstone packages 1 and 2 suggests that each of these was derived from a volcanic system comprising both a deep and a shallow magma reservoir. Thickness and

  2. Economic analysis of waste management alternatives for reprocessing wastes

    International Nuclear Information System (INIS)

    McKee, R.W.; Clark, L.L.; Daling, P.M.; Nesbitt, J.F.; Swanson, J.L.

    1984-02-01

    This study describes the results of a cost analysis of a broad range of alternatives for management of reprocessing wastes that would require geologic repository disposal. The intent was to identify cost-effective alternatives and the costs of potential repository performance requirements. Four integrated treatment facility alternatives for transuranic (TRU) wastes are described and compared. These include no treatment, compaction, incineration, and hulls melting. The advantages of reducing high-level wastes (HLW) volume are also evaluated as are waste transportation alternatives and several performance-related alternatives for emplacing waste in a basalt repository. Results show (1) that system costs for disposal of reprocessing waste are likely to be higher than those for disposal of spent fuel; (2) that volume reduction is cost-effective for both remote-handled (RH) TRU wastes and HLW, and that rail transport for HLW is more cost-effective than truck transport; (3) that coemplacement of RH-TRU wastes with HLW does not have a large cost advantage in a basalt repository; and (4) that, relative to performance requirements, the cost impact for elimination of combustibles is about 5%, long-lived containers for RH-TRU wastes can increase repository costs 10% to 20%, and immediate backfill compared to delayed backfill (bentonite/basalt) around the HLW canisters would increase repository costs up to 10% or overall system costs up to about 5%. 13 references, 4 figures, 12 tables

  3. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  4. Comparison of measured and calculated radiation doses in granite around emplacement holes in the spent-fuel test: Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    van Konynenburg, R.A.

    1982-01-01

    Lawrence Livermore National Laboratory (LLNL) has emplaced eleven spent nuclear-reactor fuel assemblies in the Climax granite at the Nevada Test Site as part of the DOE Nevada Nuclear-Waste Storage Investigations. One of our objectives is to study radiation effects on the rock. The neutron and gamma-ray doses to the rock have been determined by MORSE-L Monte Carlo calculations and measurements using optical absorption and thermoluminescence dosimeters and metal foils. We compare the results to date. Generally, good agreement is found in the spatial and time dependence of the doses, but some of the absolute dose results appear to differ by more than the expected uncertainties. Although the agreement is judged to be adequate for radiation effects studies, suggestions for improving the precision of the calculations and measurements are made

  5. From steep feeders to tabular plutons - Emplacement controls of syntectonic granitoid plutons in the Damara Belt, Namibia

    Science.gov (United States)

    Hall, Duncan; Kisters, Alexander

    2016-01-01

    Granitoid plutons in the deeply eroded south Central Zone of the Damara Belt in Namibia commonly show tabular geometries and pronounced stratigraphic controls on their emplacement. Subhorizontal, sheet-like pluton geometries record emplacement during regional subhorizontal shortening, but the intrusion of spatially and temporally closely-related granitoid plutons at different structural levels and in distinct structural settings suggests independent controls on their levels of emplacement. We describe and evaluate the controls on the loci of the dyke-to-sill transition that initiated the emplacement of three syntectonic (560-530 Ma) plutons in the basement-cover stratigraphy of the Erongo region. Intrusive relationships highlight the significance of (1) rigidity anisotropies associated with competent sedimentary packages or pre-existing subhorizontal granite sheets and (2) rheological anisotropies associated with the presence of thick ductile marble horizons. These mechanical anisotropies may lead to the initial deflection of steep feeder conduits as well as subsequent pluton assembly by the repeated underaccretion of later magma batches. The upward displacement of regional isotherms due to the heat advection associated with granite emplacement is likely to have a profound effect on the mechanical stratification of the upper crust and, consequently, on the level at which granitoid pluton emplacement is initiated. In this way, pluton emplacement at progressively shallower crustal depths may have resulted in the unusually high apparent geothermal gradients recorded in the upper crustal levels of the Damara Belt during its later evolution.

  6. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J [Harvard Univ., Cambridge, MA (USA). Div. of Applied Sciences; Crouch, E [Harvard Univ., Cambridge, MA (USA). Energy and Environmental Policy Center

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km/sup 2/ of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the waste are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  7. WIPP [Waste Isolation Pilot Plant] test phase plan: Performance assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs

  8. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    Science.gov (United States)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  9. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    Science.gov (United States)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  10. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  11. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1979-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in-situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  12. Alternative-waste-form evaluation for Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Gould, T.H. Jr.; Crandall, J.L.

    1982-01-01

    Results of the waste form evaluation are summarized as: risks of human exposure are comparable and extremely small for either borosilicate glass or Synroc ceramic. Waste form properties are more than adequate for either form. The waste form decision can therefore be made on the basis of practicality and cost effectiveness. Synroc offers lower costs for transportation and emplacement. The borosilicate glass form offers the lowest total disposal cost, much simpler and less costly production, an established and proven process, lower future development costs, and an earlier startup of the DWPF

  13. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  14. Thermal analyses for a nuclear-waste repository in tuff using USW-G1 borehole data

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1982-10-01

    Thermal calculations using properties of tuffs obtained from the USW-G1 borehole, located near the SW margin of the Nevada Test Site (NTS), have been completed for a nuclear waste repository sited in welded tuff below the water table. The analyses considered two wasteforms, high level waste and spent fuel, emplaced at two different, gross thermal loadings, 50 and 75 kW/Acre (20.24 and 30.36 kW/ha). Calculations were made assuming that no boiling of the groundwater occurs; i.e., that the hydrostatic head potential was reestablished soon after waste emplacement. 23 figures, 2 tables

  15. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  16. Effectiveness of interim remedial actions at a radioactive waste facility

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs

  17. Disposal of radioactive wastes by UK NIREX Ltd

    International Nuclear Information System (INIS)

    Ginniff, M.E.

    1989-01-01

    In the United Kingdom UK Nirex Ltd., provides a comprehensive, long-term radioactive waste disposal service for low and intermediate level solid radioactive wastes arising from all radioactive operations in the country. The high level wastes which are not the responsibility of Nirex, are to be vitrified and stored for some 50 years. The low and intermediate wastes are to be emplaced in a deep underground repository and the developments during 1988 towards this objective are presented. Following the publication of a widely circulated consultation document entitled 'The Way Forward', design studies and site selection exercises for a deep underground repository were started. (author)

  18. Thermal modeling of pluton emplacement and associated contact metamorphism:Parashi stock emplacement in the Serranía de Jarara (Alta Guajira, Colombia

    Directory of Open Access Journals (Sweden)

    Zuluaga C. Carlos A.

    2010-12-01

    Full Text Available

    In the northernmost portion of the Serrania de Jarara (Alta Guajira, Colombia, low - medium grade metamorphic rocks from the Etpana Metamorphic Suite were thermally affected by emplacement of a small calc-alkaline intrusion (Parashi Stock. Detailed petrographic analysis in collected rock samples across the NE and NW plutonic contacts show occurrences of textural and mineralogical changes in the country rock fabric that evidence contact metamorphism overprinting regional metamorphism of the Etpana Suite. These changes include growth of andalusite (chiastolite, calcic clinopyroxeneand amphibole porphyroblast crosscutting Sn+1 metamorphicfoliation. Hornblende-plagioclase barometry (ca. 3.1 kbar and cooling models for the stock show maximum time temperature evolution in the country rock at the interpreted depth of intrusion (ca. 11 km and help to evaluate the behavior of the country rock with the changing local geotherm.

  19. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1982

    International Nuclear Information System (INIS)

    Soo, P.

    1983-03-01

    The current effort is part of an ongoing task to evaluate the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt and basalt repositories. Chemical and mechanical failure/degradation modes for the waste package have been reviewed and the licensing data requirements to demonstrate compliance with NRC performance objectives specified

  20. Parametric study of the effects of thermal environment on a waste package for a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J K; Sundberg, W D; Krumhansl, J L [Sandia National Laboratories Albuquerque, NM, (USA)

    1982-12-31

    The thermal environment has been modeled in a simple reference waste package in a tuff repository for a variety of variables. The waste package was composed of the waste form, canister, overpack and backfill. The emplacement hole was 122cm dia. Waste forms used in the calculations were commercial high level waste (CHLW) and spent fuel (SF). Canister loadings varied from 50 to 100 kW/acre. Primary attention was focused on the backfill behavior in the thermal and chemical environment. Results are related to the maximum temperature calculated for the backfill. These calculations raise serious concerns about the effectiveness of the backfill within the context of the total waste package.

  1. Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif

    Science.gov (United States)

    Žák, Jiří; Verner, Kryštof; Sláma, Jiří; Kachlík, Václav; Chlupáčová, Marta

    2013-09-01

    relationships combined with new U-Pb zircon geochronology suggest that the shallow-level Krkonoše-Jizera plutonic complex, northern Bohemian Massif, was assembled successively from bottom to top, starting with emplacement of the separately evolved S-type Tanvald granite (317.3 ± 2.1 Ma), followed by at least two voluminous batches of the I-type porphyritic Liberec (319.5 ± 2.3 Ma) and Jizera (320.1 ± 3.0 Ma and 319.3 ± 3.7 Ma) granites. The intrusive sequence was completed by uppermost, minor intrusions of the equigranular Harrachov (315.0 ± 2.7 Ma) and Krkonoše granites. The I-type granites exhibit an unusually complex pattern of superposed feldspar phenocryst and magnetic fabrics as revealed from the anisotropy of magnetic susceptibility (AMS). The outer Liberec granite preserves margin-parallel foliations and lineations, interpreted to record emplacement-related strain captured by cooling from the pluton floor and walls. In contrast, the inner Jizera, Harrachov, and Krkonoše granites were overprinted by synmagmatic strain resulting from dextral movements along regional strike-slip faults cutting the opposite ends of the plutonic complex. Late-stage felsic dikes in the Liberec and Jizera granites reorient from horizontal to vertical (lineation-perpendicular) attitude in response to changing the least principal stress direction, whereas mafic schlieren do not do so, representing only randomly oriented small-scale thermal-mechanical instabilities in the phenocryst framework. In general, this case example challenges the common approach of inferring pluton-wide magma flow from interpolated foliation, lineation, and schlieren patterns. More likely, magmatic fabrics in large plutons record complex temporal succession of superposed strains resulting from diverse processes at multiple scales.

  2. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed

  3. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  4. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). This experimental-waste characterization program is only one part of the WIPP Test Phase, both in the short- and long-term, to quantify and evaluate the characteristics and behavior of transuranic (TRU) wastes in the repository environment. Other parts include the bin-scale and alcove tests, drum-scale tests, and laboratory experiments. In simplified terms, the purpose of the Program is to provide chemical, physical, and radiochemical data describing the characteristics of the wastes that will be emplaced in the WIPP, while the remaining WIPP Test Phase is directed at examining the behavior of these wastes in the repository environment. 50 refs., 35 figs., 33 tabs

  5. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  6. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  7. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  8. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J; Crouch, E

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km2 of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the water are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  9. Grouting of nuclear waste vault shafts

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating ground water. Of particular concern in vault sealing are the physical and chemical properties of the sealing materials its long-term durability and stability and the techniques used for its emplacement. Present grouting technology and grout material are reviewed in terms of the particular needs of shaft grouting. Areas requiring research and development are indicated

  10. [Duane vertical surgical treatment].

    Science.gov (United States)

    Merino, M L; Gómez de Liaño, P; Merino, P; Franco, G

    2014-04-01

    We report 3 cases with a vertical incomitance in upgaze, narrowing of palpebral fissure, and pseudo-overaction of both inferior oblique muscles. Surgery consisted of an elevation of both lateral rectus muscles with an asymmetrical weakening. A satisfactory result was achieved in 2 cases, whereas a Lambda syndrome appeared in the other case. The surgical technique of upper-insertion with a recession of both lateral rectus muscles improved vertical incomitance in 2 of the 3 patients; however, a residual deviation remains in the majority of cases. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  11. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra......Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids...

  12. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    The security of key exchange and secure channel protocols, such as TLS, has been studied intensively. However, only few works have considered what happens when the established keys are actually used—to run some protocol securely over the established “channel”. We call this a vertical protocol.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  13. Dyke emplacement in a Quaternary active volcano: the exposed swarm of Monte Somma-Vesuvio (Naples, Italy)

    Science.gov (United States)

    Marinoni, L. B.

    2003-04-01

    The Monte Somma-Vesuvius is a famous active stratovolcano located on the Bay of Naples (Italy). Unexpectedly, the intrusive complex of this volcano is poorly known. This work focuses on the moderate-intensity dyke swarm that crops out along the caldera wall cut in the Monte Somma (MS) and its host rock. A detailed field survey of 101 individual intrusions consisted of the recording of about 20 parameters for each intrusion according to a standardised method. The intrusions were located in the framework of a new geological map drawn for the caldera wall at a scale 1:2000. The MS intrusions that crop out from 780 to 1055 m a.s.l., are mostly monogenetic steeply-dipping segmented dykes; inclined sheets are also present, generally dipping towards the outer periphery of the volcano. Apparent crosscut due to dyke segmentation is common; true intersections show ambiguous alternation of dyke strikes. Indicators of initial intrusive flow (opening stage of the dyke-hosting fracture) often differ in direction and sense from late-stage indicators. Frequently, dykes intruded sub-horizontally in an early stage and later sub-vertically. The peak extension for MS, computed according to a standardised method, is 81.7 m in the direction N90°, based on 96 exposed sheets. Very likely, most of MS sheets intruded within ~12 ka, giving a time-averaged minimum extension rate of ~7 mm a-1. On MS, the azimuth pattern and the azimuth of peak extension are different in the two portions in which the caldera wall can be divided, east and west of Canale dell'Arena. This difference may indicate that two fault systems affecting the basement underneath the volcano exert their influence on the feeding system. On the other hand, three main dyke sets (among which the set trending NE-SW is prevalent) exist on MS, and inclined sheets form a significant portion of the intrusions. In addition, the peak extension and the percentage extension are comparable quantitatively in the two different sections of

  14. Geotechnical aspects of deep ocean radioactive waste disposal

    International Nuclear Information System (INIS)

    Freeman, T.J.

    1990-01-01

    The methods that might be used to bury radioactive waste in the deep ocean, and their likely effect on the sediment barrier, have been the subject of an international research program performed during the last ten years. This paper reviews the geotechnical aspects of deep ocean disposal and discusses how far the research performed has gone towards providing the information needed to assess this form of disposal. Considerable progress has been made during the course of the international program towards understanding the processes involved in the emplacement of heat generating waste (HGW) into the deep ocean bed and the subsequent interactions between the waste and the sediments. These processes do not appear to have a deleterious effect on the barrier properties of the sediments, and it is concluded that it is likely that HGW could be emplaced in the deep ocean in such a way that the seabed would provide an effective containment for the radionuclides

  15. Emplacement of rock avalanche material across saturated sediments, Southern Alp, New Zealand

    Science.gov (United States)

    Dufresne, A.; Davies, T. R.; McSaveney, M. J.

    2012-04-01

    The spreading of material from slope failure events is not only influenced by the volume and nature of the source material and the local topography, but also by the materials encountered in the runout path. In this study, evidence of complex interactions between rock avalanche and sedimentary runout path material were investigated at the 45 x 106 m3 long-runout (L: 4.8 km) Round Top rock avalanche deposit, New Zealand. It was sourced within myolinitic schists of the active strike-slip Alpine Fault. The narrow and in-failure-direction elongate source scarp is deep-seated, indicating slope failure was triggered by strong seismic activity. The most striking morphological deposit features are longitudinal ridges aligned radially to source. Trenching and geophysical surveys show bulldozed and sheared substrate material at ridge termini and laterally displaced sedimentary strata. The substrate failed at a minimum depth of 3 m indicating a ploughing motion of the ridges into the saturated material below. Internal avalanche compression features suggest deceleration behind the bulldozed substrate obstacle. Contorted fabric in material ahead of the ridge document substrate disruption by the overriding avalanche material deposited as the next down-motion hummock. Comparison with rock avalanches of similar volume but different emplacement environments places Round Top between longer runout avalanches emplaced over e.g. playa lake sediments and those with shorter travel distances, whose runout was apparently retarded by topographic obstacles or that entrained high-friction debris. These empirical observations indicate the importance of runout path materials on tentative trends in rock avalanche emplacement dynamics and runout behaviour.

  16. Characteristics and Significance of Magma Emplacement Horizons, Black Sturgeon Sill, Nipigon, Ontario

    Science.gov (United States)

    Zieg, M. J.; Hone, S. V.

    2017-12-01

    Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.

  17. Lower Crstal Reflectity bands and Magma Emplacement in Norweigian sea, NE Atlantic

    Science.gov (United States)

    Rai, A.; Breivik, A. J.; Mjelde, R.

    2013-12-01

    In this study we present the OBS data collected along seismic profiles in the norweigian sea. The traveltime modelling of the OBS data provides first-hand information about seismic structure of the subsurface. However, waveform modelling is used to further constrain the fine scale structure, velocity constrast and velocity gradients. By forward modelling and inversion of the seismic waveforms, we show that the multiple bands of reflectivity could be due to multiple episodes of magma emplacements that might have frozen in the form of sills. These mafic intrusions probably intruded into the ductile lower crust during the main rifting phase of Europe and Greenland.

  18. A review of the ascent and emplacement of granitoid bodies into the crust

    Directory of Open Access Journals (Sweden)

    Katarína Bónová

    2005-03-01

    Full Text Available This paper relates to basic information (i.e. mechanical aspects of ascent, indicators faciliting the discriminability of various ascent styles about the models of ascent and emplacement of granitoid bodies, since the purely mechanical aspect of intrusion of magmas is a fascinating subject and it has generated a considerable controversy over many years. Individual models are demonstrated by world-known occurrences and examples from Western Carpathian’s region. The conditions of magma migration are demonstrated as well.

  19. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement

    Science.gov (United States)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald

    2001-01-01

    Galileo data and numerical modeling were used to investigate the summer 1977 eruption at Pillan Patera on Io. This event, now defined as "Pillanian" eruption style, included a high-temperature (greater than 1600 C), possible ultrabasic , 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52 - 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a wide-spread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that this surface may have resulted from: 1. A fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement. 2. Disruption of the lava flow by explosive interaction with a volatile-rich substrate. or 3. A combination of 1 and 2 with or without accumulation of pyroclastic material on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distant part of the flow field.Shadow measurements at flow margins indicate a thickness of-8 - 10 m. We have modeled the emplacement of putative ultrabasic flow from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50 - 150 km on a flat, unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 4.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2 - 7 x 10(exp 3)cu m/s, which is greater

  20. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  1. Vertical Search Engines

    OpenAIRE

    Curran, Kevin; Mc Glinchey, Jude

    2017-01-01

    This paper outlines the growth in popularity of vertical search engines, their origins, the differences between them and well-known broad based search engines such as Google and Yahoo. We also discuss their use in business-to-business, their marketing and advertising costs, what the revenue streams are and who uses them.

  2. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  3. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    -, č. 5 (2009), s. 53-63 ISSN 1801-8483 R&D Projects: GA ČR GA205/08/0328 Institutional research plan: CEZ:AV0Z10030501 Keywords : sea surface topography * satellite altimetry * vertical frames Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Repository thermal response: A preliminary evaluation of the effects of modeled waste stream resolution

    International Nuclear Information System (INIS)

    Ryder, E.E.; Dunn, E.

    1995-09-01

    One of the primary factors that influences our predictions of host-rock thermal response within a high level waste repository is how the waste stream's represented in the models. In the context of thermal modeling, waste stream refers to an itemized listing of the type (pressurized-water or boiling-water reactor), age, burnup, and enrichment of the spent nuclear fuel assemblies entering the repository over the 25-year emplacement phase. The effect of package-by-package variations in spent fuel characteristics on predicted repository thermal response is the focus of this report. A three-year portion of the emplacement period was modeled using three approaches to waste stream resolution. The first assumes that each package type emplaced in a given year is adequately represented by average characteristics. For comparison, two models that explicitly account for each waste package's individual characteristics were run; the first assuming a random selection of packages and the second an ordered approach aimed at locating the higher power output packages toward the center of the emplacement area. Results indicate that the explicit representation of packages results in hot and cold spots that could have performance assessment and design implications. Furthermore, questions are raised regarding the representativeness of average characteristics with respect to integrated energy output and the possible implications of a mass-based repository loading approach

  5. Lithofacies of deep marine basalts emplaced on a Jurassic backarc apron, Baja California (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Busby-Spera, C.J.

    1987-09-01

    Basalts of the mid-Jurassic Gran Canon Formation, Cedros Island, Mexico, were emplaced on a volcaniclastic apron in a deep marine backarc basin. Elongate pillows and lava tubes, as well as paleocurrent data from the volcaniclastic apron, indicate a southward regional paleoslope away from the island arc source. Basalts emplaced on relatively proximal parts of the apron are nearly entirely pillowed and have thick flow units with mega-pillows. Basalts on distal parts of the apron (about 15 to 20 km down paleo-current) are dominated by pillow fragment breccias (flow foot rubble), and individual lava flows are generally thin, with small pillows, suggesting that the distal ends of lava flows, erupted upslope, are represented. These distal flow fronts, however, are interstratified with features that typically form close to a vent, including thick massive to mega-pillowed lavas and lava tubes up to 8 m in diameter. It is inferred that a fissure (or system of fissures) extended from the arc into the backarc basin, erupting basalt lavas onto both proximal and distal parts of the volcaniclastic apron. Such intraplate volcanism may be common on the hot frontal arc side of backarc basins. 26 references.

  6. Geochronological Constraints on the Exhumation and Emplacement of Subcontinental Lithospheric Mantle Peridotites in the Westernmost Mediterranean

    Science.gov (United States)

    Garrido, Carlos J.; Hidas, Károly; Marchesi, Claudio; Varas-Reus, María Isabel; Booth-Rea, Guillermo

    2017-04-01

    Exhumation of subcontinental mantle peridotite in the Western Mediterranean has been attributed to different tectonic processes including pure extension, transpression, or alternating contractive and extensional processes related with continental subduction followed by extension, before final their contractive intracrustal emplacement. Any model trying to explain the exhumation and emplacement of subcontinental lithospheric mantle peridotites in the westernmost Mediterranean should take into account the available geochronological constraints, as well as the petrological and geochemical processes that lead to internal tectono-magmatic zoning so characteristic of the Betic and Rif orogenic peridotites. Different studies have suggested a Hercynian, Cenozoic-Mesozoic or an Alpine age for the late tectono-magmatic evolution and intra-crustal emplacement of Betic-Rif peridotites. The pervasive presence of Mesozoic U-Pb zircon ages in Ronda UHP and HP garnet pyroxenites does not support a Hercynian age for the intracrustal emplacement of the peridotite. A hyper-extended margin setting for is in good agreement with the Jurassic extensional event that pervasively affected ALKAPECA terrains (i.e. the Alboran, Kabylides, Peloritani, and Calabria domains) in the western Mediterranean due to the opening of the Piemonte-Ligurian Ocean. However, a Jurassic age and a passive margin tectonic setting do not account, among other observations, for the late Miocene thermochronological ages recorded in zircons rims (U-Pb) and garnets (Lu-Hf) in garnet pyroxenites from the Betic-Rif peridotites, the pervasive Miocene resetting of U-Pb zircon and monazite ages in the overlying Jubrique crustal section, the supra-subduction radiogenic signature of late pyroxenite intrusive dikes in the Ronda peridotite, and the arc tholeiitic affinity of late mantle-derived, gabbroic dykes intruding in the Ronda and Ojen plagioclase lherzolites. These data are more consistent with a supra

  7. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  8. EVALUATION OF WASTE PACKAGE EXTERNAL ENVIRONMENTAL CONDITION STUDY

    International Nuclear Information System (INIS)

    E. N. Lindner and E. F. Dembowski

    1998-01-01

    The U. S. Department of Energy (DOE) is studying Yucca Mountain as the possible site for a permanent underground repository for disposal of spent nuclear fuel (SNF) and other high-level waste (HLW). The emplacement of high-level radioactive waste in Yucca Mountain will release a large amount of heat into the rock above and below the repository. Due to this heat, the rock temperature will rise, and then decrease when the production of decay heat falls below the rate at which heat escapes from the hot zone. In addition to raising the rock temperature, the heat will vaporize water, which will condense in cooler regions. The condensate water may drain back toward the emplacement drifts or it may ''shed'' through the pillars between emplacement drifts. Other effects, such as coupled chemical and mechanical processes, may influence the movement of water above, within, and below the emplacement drifts. This study examined near field environmental parameters that could have an effect on the waste package, including temperature, humidity, seepage rate, pH of seepage, chemistry (dissolved salts/minerals) of seepage, composition of drift atmosphere, colloids, and biota. This report is a Type I analysis performed in support of the development of System Description Documents (SDDs). A Type I analysis is a quantitative or qualitative analysis that may fulfill any of a variety of purposes associated with the Monitored Geologic Repository (MGR), other than providing direct analytical support for design output documents. A Type I analysis may establish design input, as defined in the ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998). This study establishes a technical basis for emplacement drift (i.e. at the waste package surface) environment criteria to be considered in the development of the waste package design. The information will support development of several SDDs and resolve emplacement drift external environment questions in the criteria of those

  9. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  10. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  11. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  12. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  13. Waste form dissolution in bedded salt

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1980-01-01

    A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon 0 ) K/sub D//epsilon 0 ) (years) epsilon 0 is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO 2 . Steady state rates between 5 x 10 -5 and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10 -7 and 5 x 10 -3 (g/year) with an overpack having porosity of 10 -2

  14. Defense waste processing facility startup progress report

    International Nuclear Information System (INIS)

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing

  15. Shale disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within

  16. Earth science developments in support of waste isolation

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1981-01-01

    Earth science issues in geologic waste isolation can be subdivided into smaller questions that are resolvable. This approach provides a mechanism for focusing research on topics of definable priority and monitoring progress through the status of issue resolution. The status of resolution of major issues in borehole sealing, interpretation of groundwater hydrology, geochemistry, and repository performance assessment is presented. The Waste Terminal Storage Program has reached a point where the selection of sites, underground testing, and emplacement of waste can proceed on a well-defined schedule

  17. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  18. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    Science.gov (United States)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In

  19. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  20. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  1. Application of thermal conduction models to deepsea disposal of radioacitve wastes

    International Nuclear Information System (INIS)

    Schimmel, W.P. Jr.; Hickox, C.E.

    1978-03-01

    Thermal problems associated with the emplacement of radio-active wastes in the deepsea sedimentary layer have been studied. In particular, the nature of the temperature field surrounding and the interstitial water velocity arising from a buried cask have been examined. Worst case estimates indicate that the velocity will be extremely weak and thus not likely to provide a primary transport mechanism for the radioactive material. This statement will, of course, only apply for moderately low levels of heat generation by the decaying radio nuclides. Because of the low interstitial water velocity, thermal conduction models can be used to predict the temperature field in the surrounding sediments as well as the cask surface temperature. This is equivalent to ''decoupling'' the energy and momentum conservation relationships thus simplifying the solution of the temperature field. The present work considers in come detail the temperature field surrounding a vertical circular ''cylinder'' located a distance below a horizontal, isothermal, plane surface. Actually, the isotherm corresponding to the cask surface is an ellipsoid of revolution but the error will be small for large values of the length to diameter ratio. The resulting expression can be usd to estimate temperature of the cask surface for material degradation studies and the effect of temperature upon the ion transport process in the sediments

  2. Technical operations procedure for assembly and emplacement of the soil temperature test--test assembly

    International Nuclear Information System (INIS)

    Weber, A.P.

    1978-01-01

    A description is given of the plan for assembly, instrumentation, emplacement, and operational checkout of the soil temperature test assembly and dry well liner. The activities described cover all operations necessary to accomplish the receiving inspection, instrumentation and pre-construction handling of the dry well liner, plus all operations performed with the test article. Actual details of construction work are not covered by this procedure. Each part and/or section of this procedure is a separate function to be accomplished as required by the nature of the operation. The organization of the procedure is not intended to imply a special operational sequence or schedular requirement. Specific procedure operational sections include: receiving inspection; liner assembly operations; construction operations (by others); prepare shield plug; test article assembly and installation; and operational checkout

  3. Pre-Alleghenian (Pennsylvanian-Permian) hydrocarbon emplacement along Ordovician Knox unconformity, eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, F.M.; Kesler, S.E.

    1989-03-01

    Cores taken during exploration for Mississippi Valley-type lead and zinc ores in the Mascot-Jefferson City zinc district of eastern Tennessee commonly contain hydrocarbon residues in carbonate rocks of the Knox Group immediately below the Lower Ordovician Knox unconformity. The location and number of these residue-bearing strata reveal information about the Paleozoic history of hydrocarbon emplacement in the region. Contour maps, generated from nearly 800 holes covering more than 20 km/sup 2/, indicate that zones with elevated organic content in the uppermost 30 m of the Lower Ordovician Mascot Dolomite show a strong spatial correlation with Middle Ordovician paleotopographic highs. These same zones show no spatial association with present-day structural highs, which were formed during Pennsylvanian-Permian Alleghenian tectonism. This suggests that the physical entrapment of hydrocarbons migrating through the upper permeable units of the Mascot must have occurred prior to the principal tectonism of the Alleghenian orogeny. 7 figures, 1 table.

  4. Biographical Narratives of Encounter: The Significance of Mobility and Emplacement in Shaping Attitudes towards Difference

    Science.gov (United States)

    Sadgrove, Joanna

    2014-01-01

    This paper is located within work in urban studies about the significance of contact with difference as a means for reducing prejudice and achieving social change. Recent approaches, influenced by theories of affect, have emphasised non-conscious everyday negotiations of difference in the city. In this paper it is argued that such approaches lose sight of the significance of the subject: of the reflective judgements of ‘others’ made by individuals; of our ability to make decisions around the control of our feelings and identifications; and of the significance of personal pasts and collective histories in shaping the ways we perceive and react to encounters. Rather, this paper uses a biographical approach focusing on interviewees’ narratives of encounter. Through its attention to processes of mobility and emplacement, it contributes to debates about when contact with difference matters by highlighting the importance of everyday social normativities in the production of moral dispositions. PMID:26300566

  5. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    Science.gov (United States)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  6. Homeless Blogs as Travelogues. Travel as a Struggle for Recognition and Emplacement

    Directory of Open Access Journals (Sweden)

    Halina Gąsiorowska

    2017-07-01

    Full Text Available Applying Clifford’s broad concept of travel, I discuss American homeless blogs as autobiographical travel writing serving the struggle for recognition of the street people. The analysed travelogues are hitchhiker Ruth Rader’s Ruthie in the Sky blog and self-made woman Brianna Karp’s Girl’s Guide to Homelessness – a memoir published on the basis of the blog bearing the same title. In the travelogues I analyse the characteristic features of a personal travel writing: travel of the self, advice for future travelers, geographic information and portrayal of society in which the travel is undertaken. I claim that homeless bloggers recounting their stories of otherness and displacement in the US contribute to (reconstructing American cultural identity their personal Self, just like many other American travelers before. Additionally, homeless blogging about homelessness is shown as the process of emplacement (Casey – the bloggers’ attempt of making themselves at home in the world.

  7. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    Science.gov (United States)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  8. Emplacement of zero-valent metal for remediation of deep contaminant plumes

    International Nuclear Information System (INIS)

    Hubble, D.W.; Gillham, R.W.; Cherry, J.A.

    1997-01-01

    Some groundwater plumes containing chlorinated solvent contaminants are found to be so deep that current in situ remediation technologies cannot be economically applied. Also, source zones are often found to be too deep for removal or inaccessible due to surface features. Plumes emanating from these sources require containment or treatment. Containment technologies are available for shallow sites (< 15 m) and are being developed for greater depths. However, it is important to advance the science of reactive treatment - both for cut off of plumes and to contain and treat source zones. Zero-valent metal technology has been used for remediation of solvent plumes at sites in Canada, the UK and at several industrial and military sites in the USA. To date, all of the plumes treated with zero-valent metal (granular iron) have been at depths less than 15 m. This paper gives preliminary results of research into methods to emplace granular iron at depths in the range of 15 to 60 m. The study included review of available and emerging methods of installing barrier or reactive material and the selection, preliminary design and costing of several methods. The design of a treatment system for a 122 m wide PCE plume that, immediately down gradient from its source, extends from a depth of 24 to 37 m below the ground surface is used as a demonstration site. Both Permeable Reactive Wall and Funnel-and-Gate trademark systems were considered. The emplacement methods selected for preliminary design and costing were slurry wall, driven/vibrated beam, deep soil mixing and hydrofracturing injection. For each of these methods, the iron must be slurried for ease of pumping and placement using biodegradable polymer viscosifiers that leave the iron reactive

  9. Transitions in Lava Emplacement Recorded in the Deccan Traps Sequence (India)

    Science.gov (United States)

    Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.

    2015-12-01

    Transitions in the style of lava flow emplacement are recognized in the stratigraphic sequence of several mafic large igneous provinces (LIPs), including the Etendeka (Namibia), the Faeroe Islands (North Atlantic LIP), the Ethiopian Traps, and the Deccan Traps (India). These transitions, from units dominated by meter-sized pāhoehoe toes and lobes to those dominated by inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, seems to be a fundamental feature of LIP emplacement. In the Deccan, this volcanological transition is thought to coincide with deeper changes to the volcano-magmatic system expressed, notably, in the trace element and isotopic signature of erupted flows. We investigated this transition in the Deccan Traps by logging eight sequences along the Western Ghats, an escarpment in western India where the Deccan province is thickest and best exposed. The Deccan province, which once covered ~1 million km2 of west-central India, is subdivided in eleven chemo-stratigraphic formations in the type sections of the Western Ghats. Where the lower Deccan formations are exposed, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. On this basis, the traditional view that inflated sheet lobes are an exclusive feature of the upper part of the stratigraphy must be challenged. Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.

  10. Emplacement and Deformation of Mesozoic Gabbros of the High Atlas (Morocco): Paleomagnetism and Magnetic Fabrics

    Science.gov (United States)

    Calvín, P.; Ruiz-Martínez, V. C.; Villalaín, J. J.; Casas-Sainz, A. M.; Moussaid, B.

    2017-12-01

    A paleomagnetic and magnetic fabric study is performed in Upper Jurassic gabbros of the central High Atlas (Morocco). These gabbros were emplaced in the core of preexisting structures developed during the extensional stage and linked to basement faults. These structures were reactivated as anticlines during the Cenozoic compressional inversion. Gabbros from 19 out of the 33 sampled sites show a stable characteristic magnetization, carried by magnetite, which has been interpreted as a primary component. This component shows an important dispersion due to postemplacement tectonic movements. The absence of paleoposition markers in these igneous rocks precludes direct restorations. A novel approach analyzing the orientation of the primary magnetization is used here to restore the magmatic bodies and to understand the deformational history recorded by these rocks. Paleomagnetic vectors are distributed along small circles with horizontal axes, indicating horizontal axis rotations of the gabbro bodies. These rotations are higher when the ratio between shales and gabbros in the core of the anticlines increases. Due to the uncertainties inherent to this work (the igneous bodies recording strong rotations), interpretations must be qualitative. The magnetic fabric is carried by ferromagnetic (s.s.) minerals mimicking the magmatic fabric. Anisotropy of magnetic susceptibility (AMS) axes, using the rotation routine inferred from paleomagnetic results, result in more tightly clustered magnetic lineations, which also become horizontal and are considered in terms of magma flow trend during its emplacement: NW-SE (parallel to the general extensional direction) in the western sector and NE-SW (parallel to the main faults) in the easternmost structures.

  11. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  12. Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure

    Science.gov (United States)

    Wilson, Lionel; Head, James W.

    2018-05-01

    within ∼300 m of the surface, and thus eruptions, rather than intrusions, would be very likely to occur; instead, dynamical considerations strongly favor the sub-crustal breccia lens as the location of the physical property contrast localizing lateral intrusion, at a depth of several kilometers. The end of lateral and vertical sill growth occurs when the internal magma pressure equals the external pressure (the intrusion just supports the weight of the overlying crust). Dynamical considerations lead to the conclusion that dike magma volumes are up to ∼1100 km3, and are generally insufficient to form FFCs on the lunar farside; the estimated magma volumes available for injection into sills on the lunar nearside (up to ∼800 km3) are comparable to the observed floor uplift in many smaller FFCs, and thus consistent with these FFCs forming from a single dike emplacement event. In contrast, the thickest intrusions in the largest craters imply volumes requiring multiple dike contributions; these are likely to be events well-separated in time, rather than injection of new magma into a recently-formed and still-cooling intrusion. We present a temporal sequence of 1) dike emplacement, 2) sill formation and surface deformation, 3) bubble rise, foam layer formation and collapse, 4) intrusion cooling, and a synthesis of predicted deformation sequence and eruption styles. Initial lateral injection of the sill at a depth well below the upper dike tip initiates upbowing of the overburden, leveraging deformation of the crater floor melt sheet above. This is followed by lateral spreading of the sill toward the edges of the crater floor, where crater wall and rim deposit overburden inhibit further lateral growth, and the sill grows vertically into a laccolith or bysmalith, uplifting the entire floor above the intrusion. Subsidiary dikes can be emplaced in the fractures at the uplift margins and will rise to the isostatic level of the initial dike tip; if these contain sufficient

  13. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  14. Parameter-sensitivity analysis of near-field radionuclide transport in buffer material and rock for an underground nuclear fuel waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-08-01

    An analytical model has been developed for radionuclide transport in the vicinity of a nuclear fuel waste container emplaced in a borehole. The model considers diffusion in the buffer surrounding the waste container, and both diffusion and groundwater convection in the rock around the borehole. A parameter-sensitivity analysis has been done to study the effects on radionuclide flux of (a) Darcian velocity of groundwater in the rock, (b) effective porosity of the buffer, (c) porosity of the rock, (d) radial buffer thickness, and (e) radius and length of the container. It is found that the radionuclide flux, Fsub(R), and the total integrated flux, Fsub(T), are greater for horizontal flow than for vertical flow; Fsub(R) decreases with increasing radial buffer thickness for all Darcian velocities, whereas Fsub(T) decreases at high velocities but increases at low velocities. The rate of change of Fsub(R) and of Fsub(T) decreases with decreasing flow velocity and increasing buffer thickness; Fsub(R) is greater for higher effective porosity of buffer or rock; and Fsub(R) increases and Fsub(T) decreases with decreasing container radius or length

  15. Vertical vector face lift.

    Science.gov (United States)

    Somoano, Brian; Chan, Joanna; Morganroth, Greg

    2011-01-01

    Facial rejuvenation using local anesthesia has evolved in the past decade as a safer option for patients seeking fewer complications and minimal downtime. Mini- and short-scar face lifts using more conservative incision lengths and extent of undermining can be effective in the younger patient with lower face laxity and minimal loose, elastotic neck skin. By incorporating both an anterior and posterior approach and using an incision length between the mini and more traditional face lift, the Vertical Vector Face Lift can achieve longer-lasting and natural results with lesser cost and risk. Submentoplasty and liposuction of the neck and jawline, fundamental components of the vertical vector face lift, act synergistically with superficial musculoaponeurotic system plication to reestablish a more youthful, sculpted cervicomental angle, even in patients with prominent jowls. Dramatic results can be achieved in the right patient by combining with other procedures such as injectable fillers, chin implants, laser resurfacing, or upper and lower blepharoplasties. © 2011 Wiley Periodicals, Inc.

  16. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  17. Thermomechanical scoping calculations for the waste package environment tests

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Yow, J.L. Jr.

    1986-03-01

    During the site characterization phase of the Nevada Nuclear Waste Storage Investigation Project, tests are planned to provide field information on the hydrological and thermomechanical environment. These results are needed for assessing performance of stored waste packages emplaced at depth in excavations in a rock mass. Scoping calculations were performed to provide information on displacements and stress levels attained around excavations in the rock mass from imposing a thermal load designed to simulate the heat produced by radioactive decay. In this way, approximate levels of stresses and displacements are available for choosing instrumentation type and sensitivity as well as providing indications for optimizing instrument emplacement during the test. 7 refs., 9 figs., 1 tab

  18. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  19. Overview of the waste/barrier/rock interactions program of the basalt waste isolation project

    International Nuclear Information System (INIS)

    Salter, P.F.; Burnell, J.R.; Lane, D.L.

    1986-01-01

    The waste package waste/barrier/rock interactions testing program of the Basalt Waste Isolation Project is designed to assess the interactions between nuclear waste forms, other waste package components, and the environment in order to evaluate long-term waste package isolation (radionuclide release) behavior. The program involves reacting fully radioactive waste forms with combinations of steel or copper container material and basalt/bentonite packing material in site-specific ground water under anticipated repository conditions to obtain the steady state radionuclide concentrations required to predictively model waste package radionuclide concentrations required to predictively model waste package radionuclide releases. Both static and flow-through autoclaves are being used in the test program to determine radionuclide concentrations as a function of time and groundwater flow rate, and to evaluate the solid phase and water chemistry changes that control those concentrations. This test program, when combined with project hydrologic and geochemical testing and modeling efforts, and natural analog studies, provides the information required to evaluate long-term radionuclide mobility within a waste package emplaced in a basalt repository

  20. Determination of emplacement mechanism of Zafarghand granitoid Pluton (Southeast of Ardestan by using anisotropy of magnetic susceptibility method (AMS

    Directory of Open Access Journals (Sweden)

    Mahmoud Sadeghian

    2017-03-01

    Full Text Available Zafarghand granitoid pluton with compositional range from gabbro to granite and early to middle Miocene age cropped out about 35 km of SE Ardestan. This pluton intrudedthe Eocene volcanic and volcanosedimentary rocks of the Urumieh - Dokhtar structuralzone. In this research, for the first time, the emplacement mechanism of Zafarghandgranitoidic pluton method has been investigated using of anisotropy of magneticsusceptibility (AMS. Based on field observations, as well as petrography andinterpretations of magnetic parameters, Zafarghand pluton divided into 5 domains (1A,1B, 2, 3, 4 and 5. Domain 1, in turn, is divided into 1A and 1B. Domains 2 and 4 arelithologically, gabbro to quartzdiorite and have been emplaced first. They have playedas feeder zones. Domains 1A, 1B, 3, and 5 are dominantly granodioritic to graniticcomposition and have been emplaced as a big and low dip magmatic flow (or possibly as a sill. The occurrence of gabbro to quartzdiorite as well as grandiorite, granite andtonalite in the margin borders of the body, are all indication of magma mixing. It isshould be noted that during emplacement of the pluton studied, fractionalcrystallization, magma mixing and crustal contamination contributed to its generationand the evolution as well.

  1. Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; Cyziene, Jolanta; Sliaupa, Saulius

    2008-01-01

    Currently, the question of whether or not the presence of oil in sandstone inhibits quartz cementation and preserves porosity is still debated. Data from a number of Cambrian sandstone oil fields and dry fields have been studied to determine the effects of oil emplacement on quartz cementation. T...

  2. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsur¬face sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  3. Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: The Stare Sedlo complex, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Chadima, Martin

    2015-01-01

    Roč. 87, JUL (2015), s. 50-66 ISSN 0264-3707 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * Bohemian Massif * pluton emplacement * granite * transtension * Variscan orogeny Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.926, year: 2015

  4. TOUGH - a numerical model for nonisothermal unsaturated flow to study waste canister heating effects

    International Nuclear Information System (INIS)

    Pruess, K.; Wang, J.S.Y.

    1984-01-01

    The physical processes modeled and the mathematical and numerical methods employed in a simulator for non-isothermal flow of water, vapor, and air in permeable media are briefly summarized. The simulator has been applied to study thermohydrological conditions in the near vicinity of high-level nuclear waste packages emplaced in unsaturated rocks. The studies reported here specifically address the question whether or not the waste canister environment will dry up in the thermal phase. 13 references, 8 figures, 2 tables

  5. Durability of cemented waste in repository and under simulated conditions

    International Nuclear Information System (INIS)

    Dragolici, F.; Nicu, M.; Lungu, L.; Turcanu, C.; Rotarescu, Gh.

    2000-01-01

    The Romanian Radioactive Waste National Repository for low level and intermediate level radioactive waste was built in Baita - Bihor county, in an extinct uranium exploitation. The site is at 840 m above sea level and the host rock is crystalline with a low porosity, a good chemical homogeneity and impermeability, keeping these qualities over a considerable horizontal and vertical spans. To obtain the experimental data necessary for the waste form and package characterization together with the back-filling material behaviour in the repository environment, a medium term research programme (1996 - 2010) was implemented. The purpose of this experimental programme is to obtain a part of the data base necessary for the approach of medium and long term assessment of the safety and performance of Baita - Bihor Repository. The programme will provide: a deeper knowledge of the chemical species and reaction mechanisms, the structure, properties and performances of the final products. For safety reasons the behaviour of waste package, which is a main barrier, must be properly known in terms of long term durability in real repository conditions. Characterization of the behaviour includes many interactions between the waste package itself and the surrounding near field conditions such as mineralogy, hydrogeology and groundwater chemistry. To obtain a more deeper knowledge of the species and physical-chemical reactions participating in the matrix formation, as well as their future behaviour during the disposal period, a thorough XRD study started in 1998. For Romanian Radioactive Waste National Repository (DNDR) Baita - Bihor the following steps are planned for the conditioned waste matrix characterization in simulated and real conditions: - preparation and characterization of normal reference matrices based on different cement formulations; - preparation of reference simulated sludge cemented matrices containing iron hydroxide and iron phosphate; - selection of real and

  6. Wastes options

    International Nuclear Information System (INIS)

    Maes, M.

    1992-01-01

    After a description of the EEC environmental policy, some wastes families are described: bio-contaminant wastes (municipal and industrial), hospitals wastes, toxic wastes in dispersed quantities, nuclear wastes (radioactive and thermal), plastics compounds wastes, volatiles organic compounds, hydrocarbons and used solvents. Sources, quantities and treatments are given. (A.B.). refs., figs., tabs

  7. Intermediate depth burial of classified transuranic wastes in arid alluvium

    International Nuclear Information System (INIS)

    Cochran, J.R.; Crowe, B.M.; Di Sanza, F.

    1999-01-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE's Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency's (EPA's) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA's 40 CFR 191 requirements. This paper describes DOE's actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA's requirements, and are, therefore, protective of human health

  8. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  9. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  10. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  11. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  12. Shallow land burial of radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Rose, R.R.

    1985-01-01

    The authors discuss low-level, solid radioactive wastes buried in the ground since the startup of nuclear operations by the Manhattan Engineer District in the early 1940's. These operations were originally intended to be temporary so the primary consideration in locating land burial sites was their accessibility from the source of waste production. Early land-burial facilities were located on large reservations owned by the U.S. Atomic Energy Commission (AEC) and operated by their prime contractors. Shallow land burial consists of excavating a trench or vault, emplacing the waste, minimizing void space within the disposal unit, and covering the waste with earth to control access to the waste. Problems encountered in the land-burial of radioactive wastes are classified into areas which relate to the environmental characteristics of the sites, waste characteristics, operational practices and control, and predictive capability. The most serious environmentally related problems involve water management. Water provides primary vehicle for both erosional processes, which affect the structural integrity of the waste trenches, and for the migration of radionuclides. Although there is consensus that the current level of off-site movement of radionuclides from operating burial grounds does not constitute an immediate health hazard, there is less certainty with respect to the ability of the facilities to provide long-term containment and isolation

  13. Effect on localized waste-container failure on radionuclide transport from an underground nuclear waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-07-01

    In the geological disposal of nuclear fuel waste, one option is to emplace the waste container in a borehole drilled into the floor of the underground vault. In the borehole, the waste container is surrounded by a compacted soil material known as the buffer. A finite-element simulation has been performed to study the effect of localized partial failure of the waste container on the steady-state radionuclide transport by diffusion from the container through the buffer to the surrounding rock and/or backfill. In this study, the radionuclide concentration at the buffer-backfill interface is assumed to be zero. Two cases are considered at the interface between the buffer and the rock. In case 1, a no-flux boundary condition is used to simulate intact rock. In case 2, a constant radionuclide concentration condition is used to simulate fractured rock with groundwater flow. The results show that the effect of localized partial failure of the waste container on the total flux is dependent on the boundary condition at the buffer-rock interface. For the intact rock condition, the total flux is mainly dependent on the location of the failure. The total flux increases as the location changes from the bottom to the top of the emplaced waste container. For a given localized failure of the waste container, the total flux remains unaffected by the area of failed surface below the top of the failure. For fractured rock, the total flux is directly proportional to the failed surface area of the waste container regardless of the failure location

  14. Evaluation of emplacement sensors for detecting radiation and volatile organic compounds and for long-term monitoring access tubes for the BWCS

    International Nuclear Information System (INIS)

    Lord, D.L.; Averill, R.H.

    1997-10-01

    This document evaluates sensors for detecting contaminants in the excavated waste generated by the Buried Waste Containment System (BWCS). The Barrier Placement Machine (BPM) removes spoils from under a landfill or plume and places it on a conveyor belt on the left and right sides of the BPM. The spoils will travel down the conveyor belts past assay monitors and be deposited on top of the site being worked. The belts are 5 ft wide and transport approximately 15 ft3 /minute of spoils. This corresponds to a 10 ft per hour BPM advance rate. With a 2 in. spoils height the belt speed would be 3.6 in. per second. The spoils being removed are expected to be open-quotes cleanclose quotes (no radiation or volatile organics above background levels). To ensure that the equipment is not digging through a contaminated area, assay equipment will monitor the spoils for mg radiation and volatile organic compounds (VOCs). The radiation monitors will check for gross radiation indication. Upon detection of radiation levels above a predetermined setpoint, further evaluation will be performed to determine the isotopes present and their quantity. This will require hand held monitors and a remote monitoring station. Simultaneously, VOC monitors will monitor for predetermined volatile/semi-volatile organic compounds. A Fourier-Transform Infrared Spectrometer (FTIR) monitor is recommended for this operation. Specific site requirements and regulations will determine setpoints and operation scenarios. If VOCs are detected, the data will be collected and recorded. A flat panel display will be mounted in the BPM operator''s cab showing the radio nuclide and VOC monitoring data. As the BPM advances, a 3-in. diameter PVC tube will be placed on the bottom of the barrier slot in front of the 12 to 16-in. containment barrier being emplaced

  15. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  16. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    International Nuclear Information System (INIS)

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs

  17. Analysis of the geological stability of a hypothetical radioactive waste repository in a bedded salt formation

    International Nuclear Information System (INIS)

    Tierney, M.S.; Lusso, F.; Shaw, H.R.

    1978-01-01

    This document reports on the development of mathematical models used in preliminary studies of the long-term safety of radioactive wastes deeply buried in bedded salt formations. Two analytical approaches to estimating the geological stability of a waste repository in bedded salt are described: (a) use of probabilistic models to estimate the a priori likelihoods of release of radionuclides from the repository through certain idealized natural and anthropogenic causes, and (b) a numerical simulation of certain feedback effects of emplacement of waste materials upon ground-water access to the repository's host rocks. These models are applied to an idealized waste repository for the sake of illustration

  18. No-migration variance petition for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Duff, M.; Carnes, R.; Hart, J.; Hansen, R.

    1991-01-01

    The US Department of Energy (DOE) is petitioning the US Environmental Protection Agency (EPA) to allow the emplacement of hazardous wastes subject to the Resource Conservation and Recovery Act (RCRA) land disposal restrictions in the Waste Isolation Pilot Plant (WIPP). The basis of the petition is that there will be no migration of hazardous constituents from the repository for as long as the wastes remain hazardous. The EPA regulations in 40 CFR Section 268.6 identify specific criteria that must be addressed in making a demonstration of no migration. EPA's approval of this petition will allow the WIPP facility to accept wastes otherwise prohibited or restricted from land disposal. 5 refs

  19. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  20. Symmetric Rock Fall on Waste Package

    International Nuclear Information System (INIS)

    Sreten Mastilovic

    2001-01-01

    The objective of this calculation is to determine the structural response of the Naval SNF (spent nuclear fuel) Waste Package (WP) and the emplacement pallet (EP) subjected to the rock fall DBE (design basis event) dynamic loads. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities and residual stresses in the WP, and stress intensities and maximum permanent downward displacements of the EP-lifting surface. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP and EP considered in this calculation, and all obtained results are valid for those designs only. This calculation is associated with the waste package design and is performed by the Waste Package Design Section in accordance with Reference 24. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  1. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees

    Science.gov (United States)

    Soula, Jean-Claude

    Gneiss domes and plutonic granitoid domes make up almost 50% of the pre-Hercynian terrains in the Central and Eastern Pyrenees. From a structural study of the shape and internal structure of the domes and of their relationships with the enclosing rocks, it can be shown that both types of domes were emplaced diapirically during the major regional deformation phase and the peak of regional metamorphism. The study also shows that the internal structure, the overall shape and general behaviour relative to the host rocks are similar for plutonic domes and for gneiss domes. This appears to be in good agreement with H. Ramberg's (1967, Gravity Deformation and the Earth's Crust. Academic Press, London; 1970, Model studies in relation to intrusion of plutonic bodies. In: Mechanisms of Igneous Intrusion (edited by Newall, G. & Rast, N.) Geol. J. Spec. Issue2, 261-286.) model studies showing that dome or mushroom-like structures, similar to those observed, develop when there is a small viscosity ratio between the rising body and its enclosing medium. This implies a high crystal content for the granitoid magma. This crystal content has been estimated by (i) calculating the viscosity and density in natural conditions from petrological data for the magma considered as a suspension, using the model and program of J. P. Carron et al. (1978 Bull Soc. géol. Fr.20, 739-744.); (ii) using the recent results of experimental deformation of partially melted granites of I. van der Molen & M. S. Paterson (1979, Contr. Miner. Petrol.70, 299-318.) and (ii) comparing the preceding results with the data obtained by deformation experiments on rocks similar to those enclosing the domes. The minimum crystal content for the development of a dome-like structure has been, thus, estimated to about 70%, i.e. a value very close to that estimated by van der Molen & Paterson (1979) to be the critical value separating the granular framework flow from suspension-like behaviour. The effect of small

  2. Waste Isolation Pilot Plant in situ experimental program for HLW

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1977-01-01

    The Waste Isolation Pilot Plant (WIPP) will be a facility to demonstrate the environmental and operational safety of storing radioactive wastes in a deep geologic bedded salt facility. The WIPP will be located in southeastern New Mexico, approximately 30 miles east of the city of Carlsbad. The major focus of the pilot plant operation involves ERDA defense related low and intermediate-level transuranic wastes. The scope of the project also specifically includes experimentation utilizing commercially generated high-level wastes, or alternatively, spent unreprocessed fuel elements. WIPP HLW experiments are being conducted in an inter-related laboratory, bench-scale, and in situ mode. This presentation focuses on the planned in situ experiments which, depending on the availability of commercially reprocessed waste plus delays in the construction schedule of the WIPP, will begin in approximately 1985. Such experiments are necessary to validate preceding laboratory results and to provide actual, total conditions of geologic storage which cannot be adequately simulated. One set of planned experiments involves emplacing bare HLW fragments into direct contact with the bedded salt environment. A second set utilizes full-size canisters of waste emplaced in the salt in the same manner as planned for a future HLW repository. The bare waste experiments will study in an accelerated manner waste-salt bed-brine interactions including matrix integrity/degradation, brine leaching, system chemistry, and potential radionuclide migration through the salt bed. Utilization of full-size canisters of HLW in situ permits us to demonstrate operational effectiveness and safety. Experiments will evaluate corrosion and compatibility interactions between the waste matrix, canister and overpack materials, getter materials, stored energy, waste buoyancy, etc. Using full size canisters also allows us to demonstrate engineered retrievability of wastes, if necessary, at the end of experimentation

  3. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  4. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  5. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  6. Performance testing of waste forms in a tuff environment

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1983-11-01

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 10 5 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  7. Developing an institutional strategy for transporting defense transuranic waste materials

    International Nuclear Information System (INIS)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations

  8. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  9. NWTS program criteria for mined geologic disposal of nuclear waste: functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy (DOE) has primary federal responsibility for the development and implementation of safe and environmentally acceptable nuclear waste disposal methods. Currently, the principal emphasis in the program is on emplacement of nuclear wastes in mined geologic repositories well beneath the earth's surface. A brief description of the mined geologic disposal system is provided. The National Waste Terminal Storage (NWTS) program was established under DOE's predecessor, the Energy Research and Development Administration, to provide facilities for the mined geologic disposal of radioactive wastes. The NWTS program includes both the development and the implementation of the technology necessary for designing, constructing, licensing, and operating repositories. The program does not include the management of processing radioactive wastes or of transporting the wastes to repositories. The NWTS-33 series, of which this document is a part, provides guidance for the NWTS program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and transuranic (TRU) wastes. This document presents the functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel. A separate document to be developed, NWTS-33(4b), will present the requirements and criteria for waste packages for TRU wastes. The hierarchy and application of these requirements and criteria are discussed in Section 2.2

  10. Buried waste containment system materials. Final Report

    International Nuclear Information System (INIS)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers

  11. Remote-handled transuranic waste study

    International Nuclear Information System (INIS)

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation's defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs

  12. Defense transuranic waste program strategy document

    International Nuclear Information System (INIS)

    1982-07-01

    This document summarizes the strategy for managing transuranic (TRU) wastes generated in defense and research activities regulated by the US Department of Energy. It supercedes a document issued in July 1980. In addition to showing how current strategies of the Defense Transuranic Waste Program (DTWP) are consistent with the national objective of isolating radioactive wastes from the biosphere, this document includes information about the activities of the Transuranic Lead Organization (TLO). To explain how the DTWP strategy is implemented, this document also discusses how the TLO coordinates and integrates the six separate elements of the DTWP: (1) Waste Generation Site Activities, (2) Storage Site Activities, (3) Burial Site Activities, (4) Technology Development, (5) Transportation Development, and (6) Permanent Disposal. Storage practices for TRU wastes do not pose short-term hazards to public health and safety or to the environment. Isolation of TRU wastes in a deep-mined geologic repository is considered the most promising of the waste disposal alternatives available. This assessment is supported by the DOE Record of Decision to proceed with research and development work at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico - a deep-mined geologic research and development project. In support of the WIPP research project and the permanent disposal of TRU waste, the DTWP strategy for the near term will concentrate on completion of procedures and the design and construction of all facilities necessary to certify newly-generated (NG) and stored TRU wastes for emplacement in the WIPP. In addition, the strategy involves evaluating alternatives for disposing of some transuranic wastes by methods which may allow for on-site disposal of these wastes and yet preserve adequate margins of safety to protect public health and the environment

  13. Acceptance criteria considerations for miscellaneous wastes

    International Nuclear Information System (INIS)

    Irvine, A.R.; Forsberg, C.W.

    1987-01-01

    EPA standards set forth limitations regarding releases to the accessible environment adjacent to a geologic repository. The NRC criteria pertaining to waste form and engineered barrier performance place certain restrictions on the physical and chemical nature of the waste form and require substantially complete confinement of radioactivity until the high-heat-production period is past. After this period, the annual release of radionuclides from the waste package is normally limited to 1 part in 100,000 of the amounts calculated to be present at 1000-y decay. The regulation permits deviation from these criteria in exceptional circumstances. One such circumstance might be the absence of a significant perturbation in temperature around the stored waste. The lack of significant heat release will eliminate the hydrologic driving force for dispersal of radionuclides. Exceptional circumstances which potentially could justify a less stringent long-term release criterion are: small quantity of radioactivity, the nature of the radioactive species, and the nature of the geology in which the waste is to be emplaced. Because the MW after a suitable decay period have low heat release rates per unit volume, they apparently could be so emplaced in a repository that there would be no compelling need, according to the reasoning presented in 10 CFR 60, for a 1000-y container. Regarding attainment of the specified long-term release rate criterion, neither the solubility limits for the various waste forms nor the conductance of potential migration barriers are currently adequately characterized. The relatively small total heat generation rate for the MW in combination with the usual low volumetric heat generation rate apparently will allow application of migration barriers in a low temperature environment where barrier performance would be expected to be unchanged with time

  14. A perspective on the management of low-level radioactive waste

    International Nuclear Information System (INIS)

    Champ, D.R.; Charlesworth, D.H.

    1994-01-01

    In Canada, low-level radioactive waste (LLRW) is defined as all radioactive waste except spent fuel waste and tailings. At the time of the conference, the current practice was storage, but programs are underway to dispose of LLRW. AECL has applied for licensing of an intrusion-resistant underground structure. A comprehensive approach to LLRW management calls for: waste stream identification, waste characterization, waste segregation and characterization, waste processing, waste emplacement (storage or disposal); general principles are discussed under these headings. Performance assessment of disposal involves mathematical modelling. Progress has been slow, so if the Canadian nuclear industry does not eventually decide on a joint strategy for LLRW disposal, the federal government may have to impose a solution. 10 refs., 2 figs

  15. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  16. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks - a principal study with application to the Goetemar and Uthammar granites. Site-descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Cruden, Alexander R.

    2008-12-01

    The c. 1.80 Ga old bedrock in the Laxemar-Simpevarp area, which is the focus of the site investigation at Oskarshamn, is dominated by intrusive rocks belonging to the c. 1.86-1.65 Ga Transscandinavian Igneous Belt (TIB). However, the site investigation area is situated in between two c. 1.45 Ga old anorogenic granites, the Goetemar granite in the north and the Uthammar granite in the south. This study evaluates the emplacement mechanism of these intrusions and their structural influence on the older bedrock. Field observations and structural measurements indicate that both the Goetemar and the Uthammar granites are discordant and have not imposed any significant ductile deformation on their wall-rocks. The apparent conformity of geological contacts and fabrics in the wall rocks and the southern margin of the Goetemar granite is coincidental and inherited from the pattern of Svecokarelian deformation of the TIB. However, interpretation of regional aeromagnetic data suggests that the granites occur within a broad, NNE-SSW trending linear belt, pointing to deep seated tectonic control on their generation, ascent and emplacement. Thermochronology indicates that the granites were emplaced at depths between 4 and 8 km into brittle wall rocks. The 3-D shape of the Goetemar and Uthammar plutons has been investigated by 2.75D forward modelling of the residual gravity anomalies due to both granites. Both granites are associated with strong residual gravity anomalies of up to -10 mgal. Constraints on the geometry of the plutons at the surface are provided from surface geology maps and several deep boreholes located on or close to the model profiles. A further variable in the gravity modelling is introduced by either allowing the upper contact of the plutons to assume the most suitable orientation to produce the best fit between the modelled and observed gravity ('unconstrained models') or by forcing the near surface orientation of the contacts to be vertical ('constrained

  17. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks - a principal study with application to the Goetemar and Uthammar granites. Site-descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Cruden, Alexander R. (Dept. of Geology, Univ. of Toronto (Canada))

    2008-12-15

    The c. 1.80 Ga old bedrock in the Laxemar-Simpevarp area, which is the focus of the site investigation at Oskarshamn, is dominated by intrusive rocks belonging to the c. 1.86-1.65 Ga Transscandinavian Igneous Belt (TIB). However, the site investigation area is situated in between two c. 1.45 Ga old anorogenic granites, the Goetemar granite in the north and the Uthammar granite in the south. This study evaluates the emplacement mechanism of these intrusions and their structural influence on the older bedrock. Field observations and structural measurements indicate that both the Goetemar and the Uthammar granites are discordant and have not imposed any significant ductile deformation on their wall-rocks. The apparent conformity of geological contacts and fabrics in the wall rocks and the southern margin of the Goetemar granite is coincidental and inherited from the pattern of Svecokarelian deformation of the TIB. However, interpretation of regional aeromagnetic data suggests that the granites occur within a broad, NNE-SSW trending linear belt, pointing to deep seated tectonic control on their generation, ascent and emplacement. Thermochronology indicates that the granites were emplaced at depths between 4 and 8 km into brittle wall rocks. The 3-D shape of the Goetemar and Uthammar plutons has been investigated by 2.75D forward modelling of the residual gravity anomalies due to both granites. Both granites are associated with strong residual gravity anomalies of up to -10 mgal. Constraints on the geometry of the plutons at the surface are provided from surface geology maps and several deep boreholes located on or close to the model profiles. A further variable in the gravity modelling is introduced by either allowing the upper contact of the plutons to assume the most suitable orientation to produce the best fit between the modelled and observed gravity ('unconstrained models') or by forcing the near surface orientation of the contacts to be vertical (&apos

  18. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    Science.gov (United States)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  19. Alteration, age, and emplacement of the Tangihua Complex ophiolite, New Zealand

    International Nuclear Information System (INIS)

    Nicholson, K.N.; Black, P.M.; Picard, C.; Cooper, P.; Hall, C.M.; Itaya, T.

    2007-01-01

    The Tangihua Complex, New Zealand, represents an upper sequence of Late Cretaceous oceanic crustal material: massive basalt flows, pillow lavas, and dolerites. Three phases of alteration are preserved within the complex, each characterised by zeolite precipitation, which correlate to stratigraphic position. The mylonitised sole contains greenschist assemblages (c. 325 degrees C) grading upwards into the initial phase of alteration (250-300 degrees C), and is characterised by actinolite, epidote, albite, and Na-rich zeolites. This phase is cut by lower temperature veins of chlorite-smectite and Ca-rich zeolites. The final alteration phase ( + and Ca 2+ rich minerals, including apophyllite and calcite. Disruption of Ar/Ar spectra around 50 Ma correlate with rifting in the Loyalty Basin and initiation of obduction along the Loyalty-Three Kings Ridge system. We suggest that these events resulted in initial dismemberment, alteration, and movement of the ophiolite, whereas Ar/Ar plateaux at 25-35 Ma correspond to ophiolite emplacement and the last phases of alteration. (author). 49 refs., 5 figs., 3 tabs

  20. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    Science.gov (United States)

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  1. Conodont geothermometry in pyroclastic kimberlite: constraints on emplacement temperatures and cooling histories

    Science.gov (United States)

    Pell, Jennifer; Russell, James K.; Zhang, Shunxin

    2018-03-01

    Kimberlite pipes from Chidliak, Baffin Island, Nunavut, Canada host surface-derived Paleozoic carbonate xenoliths containing conodonts. Conodonts are phosphatic marine microfossils that experience progressive, cumulative and irreversible colour changes upon heating that are experimentally calibrated as a conodont colour alteration index (CAI). CAI values permit us to estimate the temperatures to which conodont-bearing rocks have been heated. Conodonts have been recovered from 118 samples from 89 carbonate xenoliths collected from 12 of the pipes and CAI values within individual carbonate xenoliths show four types of CAI distributions: (1) CAI values that are uniform throughout the xenolith; (2) lower CAIs in core of a xenolith than the rim; (3) CAIs that increase from one side of the xenolith to the other; and, (4) in one xenolith, higher CAIs in the xenolith core than at the rim. We have used thermal models for post-emplacement conductive cooling of kimberlite pipes and synchronous heating of conodont-bearing xenoliths to establish the temperature-time history of individual xenoliths within the kimberlite bodies. Model results suggest that the time-spans for xenoliths to reach the peak temperatures recorded by CAIs varies from hours for the smallest xenoliths to 2 or 3 years for the largest xenoliths. The thermal modelling shows the first three CAI patterns to be consistent with in situ conductive heating of the xenoliths coupled to the cooling host kimberlite. The fourth pattern remains an anomaly.

  2. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  3. Vertical guidance of shearers

    International Nuclear Information System (INIS)

    Pocock, J.

    1985-01-01

    Mining Engineers have always been aware of the basic need to avoid contamination of the mined product, by controlling the cutting horizon at the coal face. The ability to maintain the optimum cutting horizon results in more effective roof control and ensures a safer and more efficient working environment, for men and machinery. The cost of treatment in the surface coal preparation plant is reduced. Transportation through the total mine system of material finally destined for the spoil heap is minimised. A reduction in product contamination is achieved and makes more effective use of the mine capacity. These benefits make possible significant improvements in productivity and financial returns. Exploitation of micro computer based systems has enabled the successful development of equipment which employs sensors to detect the very low natural gamma radiation from roof strata; to determine and allow control of the position of the cut relative to the roof and floor. This paper reviews the experience gained by the National Coal Board, particularly in South Yorkshire Area, with the vertical steering of ranging drum shearers. It outlines the benefits and considers the future for this technology and its contribution to total coal face automation

  4. SEAMIST trademark in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Lowry, W.E.; Dunn, S.D.; Cremer, S.C.; Williams, C.

    1994-01-01

    The SEAMIST trademark inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST trademark lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST trademark system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST trademark vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented

  5. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Silva, M.K.; Neill, R.H.

    1994-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs

  6. Liquid waste processing device

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Obe, Etsuji; Wakamatsu, Toshifumi.

    1989-01-01

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  7. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input or final-goods trade is liberalised and when the fixed cost of vertical integration is reduced. At the same time, one observes firms that shift away from either vertical integration, offshoring, or exporting. Further, we provide guidance for testing the open...

  8. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  9. Geology and tectonic magmatic of emplacement of a longitudinal dyke swarm of Nico Perez(Minas) URUGUAY

    International Nuclear Information System (INIS)

    Gonzalez, P.; Poire, D.; Canalicchio, J.; Garcia Repetto, F.

    2004-01-01

    The Mina Verdun Group (Precambrian) was deposited prior to the subvolcanic emplacement of a longitudinal dyke swarm of basaltic to andesitic composition (Minas Subvolcanic Swarm of the Mina Verdun quarry - Nico Perez Terrane, Minas, Uruguay). The swarm and its country rocks predated a tectono-metamorphic event that produced fragileductile shear zones associated with very low- to low-grade dislocation metamorphism. We interpreted a K-Ar whole rock datum of 485,2 ± 12,5 Ma (andesitic dyke) as a minimum cooling age in relation with late- to post-swarm emplacement deuteric alteration stage. Another K-Ar whole rock datum of 108,5 ± 2,9 Ma on a basaltic dyke was assumed here as a degasification stage, while its geological meaning is still matter of debate. The Minas Subvolcanic Dyke Swarm was intruded at high crustal levels, suggesting that the Minas region was affected by a period of extensional tectonics [es

  10. Innovative hazardous waste treatment technology

    International Nuclear Information System (INIS)

    Freeman, H.M.; Sferra, P.R.

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils

  11. Emplacement dynamics of phonolite magma into maar-diatreme structures - Correlation of field, thermal modeling and AMS analogue modeling data

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Dědeček, Petr; Mach, K.; Lexa, O.; Potužák, M.

    2011-01-01

    Roč. 201, č. 1-4 (2011), s. 210-226 ISSN 0377-0273 R&D Projects: GA MŠk ME09011; GA AV ČR KJB301110703 Institutional research plan: CEZ:AV0Z30120515 Keywords : phonolite * maar-diatreme * magma emplacement dynamics * thermal modeling * AMS analogue modeling * cavitation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.978, year: 2011

  12. Disposal costs for SRP high-level wastes in borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    Rozsa, R.B.; Campbell, J.H.

    1982-01-01

    Purpose of this document is to compare and contrast the overall burial costs of the glass and ceramic waste forms, including processing, storage, transportation, packaging, and emplacement in a repository. Amount of waste will require approximately 10,300 standard (24 in. i.d. x 9-5/6 ft length) canisters of waste glass, each containing about 3260 lb of waste at 28% waste loading. The ceramic waste form requires about one-third the above number of standard canisters. Approximately $2.5 billion is required to process and dispose of this waste, and the total cost is independent of waste form (glass or ceramic). The major cost items (about 80% of the total cost) for all cases are capital and operating expenses. The capital and 20-year operating costs for the processing facility are the same order of magnitude, and their sum ranges from about one-half of the total for the reference glass case to two-thirds of the total for the ceramic cases

  13. Vertical orbit excursion fixed field alternating gradient accelerators

    Directory of Open Access Journals (Sweden)

    Stephen Brooks

    2013-08-01

    Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  14. Magnetic fabrics in characterization of magma emplacement and tectonic evolution of the Moyar Shear Zone, South India

    Directory of Open Access Journals (Sweden)

    P. Pratheesh

    2013-01-01

    Full Text Available The Moyar Shear Zone (MSZ of the South Indian granulite terrain hosts a prominent syenite pluton (∼560 Ma and associated NW-SE to NE-SW trending mafic dyke swarm (∼65 Ma and 95 Ma. Preliminary magnetic fabric studies in the mafic dykes, using Anisotropy of Magnetic Susceptibly (AMS studies at low-field, indicate successive emplacement and variable magma flow direction. Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites, indicating shear zone guided emplacement. Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated. The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear. Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.

  15. Paleomagnetism in the Determination of the Emplacement Temperature of Cerro Colorado Tuff Cone, El Pinacate Volcanic Field, Sonora, Mexico.

    Science.gov (United States)

    Rodriguez Trejo, A.; Alva-Valdivia, L. M.; Vidal Solano, J. R.; Garcia Amador, B.; Gonzalez-Rangel, J. A.

    2014-12-01

    Cerro Colorado Maar is located at the World Heritage Site, biosphere reserve El Pinacate and Gran Desierto del Altar, at the NNW region of Sonora, Mexico (in El Pinacate Volcanic Field). It is a tuff cone, about 1 km diameter, result of several phreatomagmatic episodes during the late Quaternary. We report paleomagnetic and rock magnetic properties from fusiform volcanic bombs obtained from the borders of Cerro Colorado. This study is based in the thermoremanent magnetization TRM normally acquired by volcanic rocks, which can be used to estimate the emplacement temperature range. We performed the experiments on 20 lithic fragments (10 cm to 20 cm approximately), taking 6-8 paleomagnetic cores from each. Rock magnetic experiments (magnetic susceptibility vs. temperature (k-T), hysteresis curves and FORC analysis, shows that the main magnetic mineral carriers of magnetization are titanomagnetite and titanohematite in different levels of intergrowth. The k-T curves suggest in many cases, only one magnetic phase, but also in other cases a second magnetic phase. Thermal demagnetization was used to demagnetize the specimens in detailed short steps and make a well-defined emplacement temperature determination ranges. We found that temperature emplacement determination range for these two magnetic phases is between 350-450 °C, and 550-580 °C, respectively. These results are consistent with those expected in an eruption of Surtsey type, showing a distinct volcanic activity compared to the other craters from El Pinacate volcanic field.

  16. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    Science.gov (United States)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  17. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  18. Chemical implications for the presence of introduced materials in the post-emplacement environment

    International Nuclear Information System (INIS)

    Meike, A.

    1993-11-01

    This paper addresses our ability to predict the chemical consequences of the presence of introduced materials, many of them man-made, in a radioactive waste repository. The chemical modeling ability required to describe this environment over a 10,000 year period is unique and unprecedented. It requires knowledge of parameters that have never been measured, many of them with respect to introduced materials. This paper discusses considerations that are required to establish the potential significance of introduced materials, especially those that could compromise the lifetime of the waste packages or affect the transport of radionuclides from breached containers. The paper presents issues related to the stability of individual compounds, the potential alteration of predicted natural chemical reactions, the potential moderation of those effects by natural zeolites, and the potential for interactions at elevated temperatures between rock, water, water vapor, radiation, waste package, and introduced materials

  19. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  20. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  1. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    Science.gov (United States)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  2. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    Directory of Open Access Journals (Sweden)

    Yan eLavallée

    2015-02-01

    Full Text Available Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1 fragment during ascent, 2 liquefy and relax during deposition, agglutination and welding (sintering, and 3 quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.

  3. Processes accompanying of mantle plume emplacement into continental lithosphere: Evidence from NW Arabian plate, Western Syria

    Science.gov (United States)

    Sharkov, E. V.

    2015-12-01

    Lower crustal xenoliths occurred in the Middle Cretaceous lamprophyre diatremes in Jabel Ansaria (Western Syria) (Sharkov et al., 1992). They are represented mainly garnet granulites and eclogite-like rocks, which underwent by deformations and retrograde metamorphism, and younger fresh pegmatoid garnet-kaersutite-clinopyroxene (Al-Ti augite) rocks; mantle peridotites are absent in these populations. According to mineralogical geothermobarometers, forming of garnet-granulite suite rocks occurred under pressure 13.5-15.4 kbar (depths 45-54 kn) and temperature 965-1115oC. At the same time, among populations of mantle xenoliths in the Late Cenozoic platobasalts of the region, quite the contrary, lower crustal xenoliths are absent, however, predominated spinel lherzolites (fragments of upper cooled rim of a plume head), derived from the close depths (30-40 km: Sharkov, Bogatikov, 2015). From this follows that ancient continental crust was existed here even in the Middle Cretaceous, but in the Late Cenozoic was removed by extended mantle plume head; at that upper sialic crust was not involved in geomechanic processes, because Precambrian metamorphic rocks survived as a basement for Cambrian to Cenozoic sedimentary cover of Arabian platform. In other words, though cardinal rebuilding of deep-seated structure of the region occurred in the Late Cenozoic but it did not affect on the upper shell of the ancient lithosphere. Because composition of mantle xenolithis in basalts is practically similar worldwide, we suggest that deep-seated processes are analogous also. As emplacement of the mantle plume heads accompanied by powerful basaltic magmatism, very likely that range of lower (mafic) continental crust existence is very convenient for extension of plume heads and their adiabatic melting. If such level, because of whatever reasons, was not reached, melting was limited but appeared excess of volatile matters which led to forming of lamprophyre or even kimberlite.

  4. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  5. The Chimborazo sector collapse and debris avalanche: Deposit characteristics as evidence of emplacement mechanisms

    Science.gov (United States)

    Bernard, Benjamin; van Wyk de Vries, Benjamin; Barba, Diego; Leyrit, Hervé; Robin, Claude; Alcaraz, Samantha; Samaniego, Pablo

    2008-09-01

    Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-I). This left a 4 km wide scar, removing 8.0 ± 0.5 km 3 of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Río Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km 2, and has a volume of > 11 km 3. Two main DAD facies are recognized: block and mixed facies. The block facies is derived predominantly from edifice lava and forms > 80 vol.% of the DAD, with a probable volume increase of 15-25 vol.%. The mixed facies was essentially created by mixing brecciated edifice rock with substratum and is found mainly in distal and marginal areas. The DAD has clear surface ridges and hummocks, and internal structures such as jigsaw cracks, injections, and shear-zone features are widespread. Structures such as stretched blocks along the base contact indicate high basal shear. Substratum incorporation is directly observed at the base and is inferred from the presence of substratum-derived material in the DAD body. Based on the facies and structural interpretation, we propose an emplacement model of a lava-rich avalanche strongly cataclased before and/or during failure initiation. The flow mobilises and incorporates significant substrata (10-14 vol.%) while developing a fine lubricating basal layer. The substrata-dominated mixed facies is transported to the DAD interior and top in dykes invading previously-formed fractures.

  6. Generation and emplacement of fine-grained ejecta in planetary impacts

    Science.gov (United States)

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  7. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  8. Study on retrievability of waste package in geological disposal

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Noda, Masaru

    2002-02-01

    Retrievability of waste packages in geological disposal of high-level radioactive waste has been investigated from a technical aspect in various foreign countries, reflecting a social concern while retrievability is not provided as a technical requirement. This study investigates the concept of reversibility and retrievability in foreign countries and a technical feasibility on retrievability of waste packages in the geological disposal concept shown in the H12 report. The conclusion obtained through this study is as follows: 1. Concept of reversibility and retrievability in foreign countries. Many organizations have reconsidered the retrievability as one option in the geological disposal to improve the reversibility of the stepwise decision-making process and provide the flexibility, even based upon the principle of the geological disposal that retrieval of waste from the repository is not intended. 2. Technical feasibility on the retrievability in disposal concept in the H12 report. It is confirmed to be able to remove the buffer and to retrieve the waste packages by currently available technologies even after the stages following emplacement of the buffer. It must be noted that a large effort and expense would be required for some activities such as the reconstruction of access route if the activities started after a stage of backfilling disposal tunnels. 3. Evaluation of feasibility on the retrievability and extraction of the issues. In the near future, it is necessary to study and confirm the practical workability and economical efficiency for the retrieving method of waste packages proposed in this study, the handling and processing method of removed buffer materials, and the retrieving method of waste packages in the case of degrading the integrity of waste packages or not emplacing the waste packages in the assumed attitude, etc. (author)

  9. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  10. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  11. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  12. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    Science.gov (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  13. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  14. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  15. The transuranic waste management program at Savannah River

    International Nuclear Information System (INIS)

    D'Ambrosia, J.

    1986-01-01

    Defense transuranic waste at the Savannah River site results from the Department of Energy's national defense activities, including the operation of production reactors, fuel reprocessing plants, and research and development activities. TRU waste has been retrievably stored at the Savannah River Plant since 1974 awaiting disposal. The Waste Isolation Pilot Plant, now under construction in New Mexico, is a research and development facility for demonstrating the safe disposal of defense TRU waste, including that in storage at the Savannah River Plant. The major objective of the TRU Program at SR is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the WIPP. Thus, the SR Program also supports WIPP operations. The SR site specific goals are to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of the defense TRU waste. This paper describes the specific activities at SR which will provide for the disposal of this TRU waste

  16. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Snider, C.A. [Department of Energy, Carlsbad, NM (United States); Weston, W.W. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  17. Reference waste package environment report

    International Nuclear Information System (INIS)

    Glassley, W.E.

    1986-01-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of ∼230 0 C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment

  18. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  19. Waste Package Design Methodology Report

    International Nuclear Information System (INIS)

    D.A. Brownson

    2001-01-01

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report

  20. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  1. Statistical analysis of the sustained lava dome emplacement and destruction processes at Popocatépetl volcano, Central México

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; Gómez-Vázquez, Ángel; De la Cruz-Reyna, Servando

    2017-06-01

    Popocatépetl volcano reawakened in 1994 after nearly 70 years of quiescence. Between 1996 and 2015, a succession of at least 38 lava domes have been irregularly emplaced and destroyed, with each dome reaching particular volumes at specific emplacement rates. The complexity of this sequence is analyzed using statistical methods in an attempt to gain insight into the physics and dynamics of the lava dome emplacement and destruction process and to objectively assess the hazards related to that volcano. The time series of emplacements, dome residences, lava effusion lulls, and emplaced dome volumes and thicknesses are modeled using the simple exponential and Weibull distributions, the compound non-homogeneous generalized Pareto-Poisson process (NHPPP), and the mixture of exponentials distribution (MOED). The statistical analysis reveals that the sequence of dome emplacements is a non-stationary, self-regulating process most likely controlled by the balance between buoyancy-driven magma ascent and volatile exsolution crystallization. This balance has supported the sustained effusive activity for decades and may persist for an undetermined amount of time. However, the eruptive history of Popocatépetl includes major Plinian phases that may have resulted from a breach in that balance. Certain criteria to recognize such breaching conditions are inferred from this statistical analysis.

  2. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    International Nuclear Information System (INIS)

    Manaktala, H.K.; Interrante, C.G.

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide ''substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig

  3. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    Energy Technology Data Exchange (ETDEWEB)

    Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  4. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    Science.gov (United States)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  5. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  6. Deep underground disposal of radioactive wastes: Near field effects

    International Nuclear Information System (INIS)

    1985-01-01

    This report reviews the important near-field effects of the disposal of wastes in deep rock formations. The basic characteristics of waste form, container and package, buffer and backfill materials and potential host-rock types are discussed from the perspective of the performance requirements of the total repository system. Effects of waste emplacement on the separate system components and on the system as a whole are discussed. The effects include interactions between groundwater and brines and the other system components, thermal and thermo-mechanical effects, and chemical and geochemical reactions. Special consideration is given to the radiation field that exists in proximity to the waste containers and also to the coupled effects of different phenomena

  7. Requirements on waste forms for the planned Konrad repository based on criticality calculations

    International Nuclear Information System (INIS)

    Berg, H.P.

    1988-02-01

    In the framework of the safety analyses for the planned Konrad repository it has been investigated whether a criticality incident may be possible during the operational phase or in the post-operational phase. The analysis has shown that the criticality safety is ensured by limitation of a mass concentration of the fissile material in the waste form group and by determination of a maximum permissible mass of fissile material per waste package. The resulting requirements of the waste packages, including a mixture in the cross-section of an emplacement room, are explained. (orig.) [de

  8. Responsible and safe management of spent fuel and radioactive waste in Germany

    International Nuclear Information System (INIS)

    Caspers, Mechthild; Schulte, Lukas; Rüger, Jörg

    2016-01-01

    Key points of the National Programme: • Radioactive Waste Management is to be carried out within German national responsibility and disposal is to be on German territory. • Disposal facilities are to be established at two sites: • Konrad facility for waste with negligible heat generation (commissioning expected in 2022, operation for 40 years); • Disposal facility for, in particular, high level waste according to Site Selection Act (site to be determined by 2031). • Dismantling of NPPs and other nuclear facilities is to be executed in due time so that arising LILW can be emplaced in Konrad facility

  9. Electrokinetically Emplaced Amendments for Enhanced Bioremediation of Chlorinated Solvents in Clay: a Pilot Field Test

    Science.gov (United States)

    O'Carroll, D. M.; Inglis, A.; Head, N.; Chowdhury, A. I.; Garcia, A. N.; Reynolds, D. A.; Hogberg, D.; Edwards, E.; Lomheim, L.; Austrins, L. M.; Hayman, J.; Auger, M.; Sidebottom, A.; Eimers, J.; Gerhard, J.

    2017-12-01

    Bioremediation is an increasingly popular treatment technology for contaminated sites due to the proven success of biostimulation and bioaugmentation. However, bioremediation, along with other in-situ remediation technologies, faces limitations due to challenges with amendment delivery in low permeability media. Studies have suggested that electrokinetics (EK) can enhance the delivery of amendments in low permeability soils, such as clay. A pilot field trial was conducted to evaluate the potential for electrokinetics to support anaerobic dechlorination in clay by improving the transport of lactate and microorganisms. The study was performed on a former chlorinated solvent production facility in Ontario, Canada. Five transect cells were set up within the contaminated clay test area. Different amendments were injected in three of these cells to test various remediation strategies under the influence of EK. The other two cells were used as controls, one with EK applied and the other with no EK. This study focuses on the cell that applied electrokinetics for lactate emplacement followed by bioremediation (EK-Bio). This cell had an initial single injection of KB-1 bioaugmentation culture (SiREM, Canada) followed by injection of sodium lactate as a biostimulant while direct current was applied for 45 days between two electrodes 3 m apart. EK can enhance lactate migration by electromigration, while microorganisms have the potential to be influenced by electroosmosis of the bulk fluid or by electrophoresis of the charged bacteria themselves. All monitoring well locations in the EK-Bio cell exhibited evidence of successful lactate delivery corresponding to an increase in dissolved organic carbon. Reduction in chlorinated volatile organic compound (cVOC) concentrations, in particular 1,2-dichloroethane (1,2-DCA), were evident in monitoring locations coinciding with significant lactate breakthrough. Further investigation into the influence of EK-Bio on the abundance and

  10. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  11. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O

  12. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  13. Nuclear waste disposal: Technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1984-01-01

    The authors have arrived at what appears to be a comforting conclusion--that the ultimate disposal of nuclear wastes should be technically feasible and very safe. They find that the environment and health impacts will be negligible in the short-term, being due to the steps that precede the emplacement of the wastes in the repository. Disposal itself, once achieved, offers no short-term threat--unless an unforseen catastrophe of very low probability occurs. The risks appear negligible by comparison with those associated with earlier stages of the fuel cycle. Ultimately -- millinnia hence -- a slow leaching of radionuclides to the surface might begin. But it would be so slow that great dilution of each nuclide will occur. This phase is likely to be researched somewhere in the period 100,000 to 1,000,000 years hence

  14. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  15. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  16. Review of DOE waste package program. Subtask 1.1 - National Waste Package Program, October 1983-March 1984. Volume 6

    International Nuclear Information System (INIS)

    Soo, P.

    1985-03-01

    The present effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluation of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, tuff, and granite repositories. In the current Biannual Report a review of progress in the new crystalline repository (granite) program is described. Other foreign data for this host rock have also been outlined where relevant. The use of crushed salt, and bentonite- and zeolite-containing packing materials is discussed. The effects of temperature and gamma irradiation are shown to be important with respect to defining the localized environmental conditions around a waste package and the long-term integrity of the packing

  17. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables.

  18. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    International Nuclear Information System (INIS)

    Soo, P.

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables

  19. Repository emplacement costs for Al-clad high enriched uranium spent fuel

    International Nuclear Information System (INIS)

    McDonell, W.R.; Parks, P.B.

    1994-01-01

    A range of strategies for treatment and packaging of Al-clad high-enriched uranium (HEU) spent fuels to prevent or delay the onset of criticality in a geologic repository was evaluated in terms of the number of canisters produced and associated repository costs incurred. The results indicated that strategies in which neutron poisons were added to consolidated forms of the U-Al alloy fuel generally produced the lowest number of canisters and associated repository costs. Chemical processing whereby the HEU was removed from the waste form was also a low cost option. The repository costs generally increased for isotopic dilution strategies, because of the substantial depleted uranium added. Chemical dissolution strategies without HEU removal were also penalized because of the inert constituents in the final waste glass form. Avoiding repository criticality by limiting the fissile mass content of each canister incurred the highest repository costs

  20. Waste Isolation Pilot Plant remote-handled transuranic waste disposal strategy

    International Nuclear Information System (INIS)

    1995-01-01

    The remote-handled transuranic (RH-TRU) waste disposal strategy described in this report identifies the process for ensuring that cost-effective initial disposal of RH-TRU waste will begin in Fiscal Year 2002. The strategy also provides a long-term approach for ensuring the efficient and sustained disposal of RH-TRU waste during the operating life of WIPP. Because Oak Ridge National Laboratory stores about 85 percent of the current inventory, the strategy is to assess the effectiveness of modifying their facilities to package waste, rather than constructing new facilities. In addition, the strategy involves identification of ways to prepare waste at other sites to supplement waste from Oak Ridge National Laboratory. DOE will also evaluate alternative packagings, modes of transportation, and waste emplacement configurations, and will select preferred alternatives to ensure initial disposal as scheduled. The long-term strategy provides a systemwide planning approach that will allow sustained disposal of RH-TRU waste during the operating life of WIPP. The DOE's approach is to consider the three relevant systems -- the waste management system at the generator/storage sites, the transportation system, and the WIPP disposal system -- and to evaluate the system components individually and in aggregate against criteria for improving system performance. To ensure full implementation, in Fiscal Years 1996 and 1997 DOE will: (1) decide whether existing facilities at Oak Ridge National Laboratory or new facilities to package and certify waste are necessary; (2) select the optimal packaging and mode of transportation for initial disposal; and (3) select an optimal disposal configuration to ensure that the allowable limits of RH-TRU waste can be disposed. These decisions will be used to identify funding requirements for the three relevant systems and schedules for implementation to ensure that the goal of initial disposal is met

  1. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    Science.gov (United States)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  2. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  3. Understanding the mechanical coupling between magma emplacement and the resulting deformation: the example of saucer-shaped sills

    Science.gov (United States)

    Galland, O.; Neumann, E. R.; Planke, S.

    2009-12-01

    The mechanical coupling between magma intrusions and the surrounding rocks plays a major role in the emplacement of volcanic plumbing systems. The deformation associated with magma emplacement has been widely studied, such as caldera inflation/deflation, volcano deformation during dike intrusion, and doming above laccoliths. However, the feedback processes, i.e. the effect of deformation resulting from intruding magma on the propagation of the intrusion itself, have rarely been studied. Saucer-shaped sills are adequate geological objects to understand such processes. Indeed, observation show that saucer-shaped sills are often associated with dome-like structures affecting the overlying sediments. In addition, there is a clear geometrical relation between the sills and the domes: the dome diameters are almost identical to those of saucers, and the tips of the inclined sheets of saucers are superimposed on the edges of the domes. In this presentation, we report on experimental investigations of the emplacement mechanisms of saucer-shaped sills and associated deformation. The model materials were (1) cohesive fine-grained silica flour, representing brittle crust, and (2) molten low-viscosity oil, representing magma. A weak layer located at the top of the injection inlet simulates strata. The main variable parameter is injection depth. During experiments, the surface of the model is digitalized through a structured light technique based on the moiré projection principle. Such a tool provides topographic maps of the surface of the model and allows a periodic (every 1.5 s) monitoring of the model topography. When the model magma starts intruding, a symmetrical dome rises above the inlet. Subsequently, the dome inflates and widens, and then evolves to a plateau-like feature, with nearly flat upper surface and steep sides. At the end of the experiments, the intruding liquid erupts at the edge of the plateau. The intrusions formed in the experiments are saucer-shaped sills

  4. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS

    Science.gov (United States)

    Golder, K.; Burr, D. M.; Tran, L.

    2017-12-01

    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  5. Emplaced writing figuring as a manifestation of an ecocentric mindset in the narrative art of Petra Müller

    Directory of Open Access Journals (Sweden)

    Susan Meyer

    2014-06-01

    Full Text Available The human-earth connection is a sustained theme in Petra Müller’s oeuvre. The article focuses on this connection as reflected in her narrative art, specifically in accounts that have an autobiographical proclivity. The aim of this article is to outline the nature-centred disposition of Müller’s narrative art in a more definite sense. This is achieved by paying attention to the manner in which the author (the ‘I’ in accounts where the narrator can be identified as the author herself becomes part of the natural environment – whether on a sensory, an emotive, or an intellectual level – where she finds herself and the way she responds to it. At the core of the investigation are the ways in which this reactive engagement is manifested in Müller’s prose work by the implied author and the technique ofemplaced writing. Emplaced writing, a concept created by Linda Russo, was integrated by Susan Smith with Lawrence Buell’s concept of emplacement. This term refers to the technique allowing an active awareness of self and the place physically occupied by the author, as well as how that body fits into this place, to find expression. A broader perspective and greater appreciation of Müller’s work are drawn from the insight into how her close coexistence with the earth is reflected in her narrative art by means of the technique of emplaced writing which is explored in this article as it gives voice to a strong ecocentric disposition.

  6. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  7. Waste Package Component Design Methodology Report

    International Nuclear Information System (INIS)

    D.C. Mecham

    2004-01-01

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational

  8. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  9. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  10. Optimizing transuranic waste management-challenges and opportunities

    International Nuclear Information System (INIS)

    Triay, I.R.; Wu, C.F.; Moody, D.C.; Jennings, S.G.

    2002-01-01

    The opening of the Waste Isolation Pilot Plant (WIPP) for disposal of transuranic (TRU) waste in March of 1999, the granting of the Hazardous Waste Facility Permit in November 1999, and over two years of operational experience have demonstrated the Department of Energy's (DOE'S) capability in closing the nuclear energy cycle. While these achievements resolved several scientific, engineering, regulatory and political issues, the DOE has identified a new set of challenges that represent opportunities for improving programmatic efficiency, cost-effectiveness, and operational safety in managing the nation's TRU waste. The DOE has recognized that the complex administrative and regulatory requirements for characterization, transportation and disposal of TRU waste are costly (1). A review by the National Academy of Sciences (NAS) states that these requirements lead to inefficient waste characterization, handling and transportation operations that in turn can lead to unnecessary radiation exposure to workers without a commensurate decrease in risk to the public and the environment (2). This paper provides an overview of the status of the WJPP repository, explains the principles of the proposed commercial business approach, and describes some of the proposed major enhancements of the TRU waste transportation systems. The DOE is developing a remote-handled (RH) waste program to enable emplacement of RH waste at WPP. This program includes appropriate facility modifications and regulatory changes (3).

  11. Vertical distribution of pelagic photosynthesis

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke

    chlorophyll maxima (DCM) to be a general feature in the ocean. Today, it is generally accepted that DCMs occur in most of our oceans still, despite this empirical knowledge, subsurface primary production is still largely ignored in marine science. The work included in this PhD examines the vertical...... each of the three regions combined with 15 years of survey data for the Baltic Sea transition zone. Overall, the results of this PhD work show that the vertical distribution of phytoplankton and their activity is important for the understanding, dynamics and functioning of pelagic ecosystems. It, thus......, emphasizes that future research and modelling exercises aimed at improving understanding of pelagic ecosystems and their role in the global ocean should include a consideration of the vertical heterogeneity in phytoplankton distributions and activity....

  12. Neglected locked vertical patellar dislocation

    Science.gov (United States)

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  13. Neglected locked vertical patellar dislocation

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Gupta

    2012-01-01

    Full Text Available Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge.

  14. Building a progressive vertical integration

    International Nuclear Information System (INIS)

    Charette, D.

    2008-01-01

    AAER Inc. is a Quebec-based company that manufactures turbines using proven European designs. This presentation discussed the company's business model. The company places an emphasis on identifying strategic and key components currently available for its turbines. Market analyses are performed in order to determine ideal suppliers and define business strategies and needs. The company invests in long-term relationships with its suppliers. Business partners for AAER are of a similar size and have a mutual understanding and respect for the company's business practices. Long-term agreements with suppliers are signed in order to ensure reliability and control over costs. Progressive vertical integration has been achieved by progressively manufacturing key components and integrating a North American supply chain. The company's secure supply chain and progressive vertical integration has significantly reduced financial costs and provided better quality control. It was concluded that vertical integration has also allowed AAER to provide better customer service and reduce transportation costs. tabs., figs

  15. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  16. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  17. Mining wastes

    International Nuclear Information System (INIS)

    Pradel, J.

    1981-01-01

    In this article mining wastes means wastes obtained during extraction and processing of uranium ores including production of uraniferous concentrates. The hazards for the population are irradiation, ingestion, dust or radon inhalation. The different wastes produced are reviewed. Management of liquid effluents, water treatment, contamined materials, gaseous wastes and tailings are examined. Environmental impact of wastes during and after exploitation is discussed. Monitoring and measurements are made to verify that ICRP recommendations are met. Studies in progress to improve mining waste management are given [fr

  18. Waste Isolation Pilot Plant safety analysis report

    International Nuclear Information System (INIS)

    1997-03-01

    The United States Department of Energy (DOE) was authorized by Public Law 96-164 to provide a research and development facility for demonstrating the safe permanent disposal of transuranic (TRU) wastes from national defense activities and programs of the United States exempted from regulations by the US Nuclear Regulatory Commission (NRC). The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico near Carlsbad, was constructed to determine the efficacy of an underground repository for disposal of TRU wastes. In accordance with the 1981 and 1990 Records of Decision (ROD), the development of the WIPP was to proceed with a phased approach. Development of the WIPP began with a siting phase, during which several sites were evaluated and the present site selected based on extensive geotechnical research, supplemented by testing. The site and preliminary design validation phase (SPDV) followed the siting phase, during which two shafts were constructed, an underground testing area was excavated, and various geologic, hydrologic, and other geotechnical features were investigated. The construction phase followed the SPDV phase during which surface structures for receiving waste were built and underground excavations were completed for waste emplacement

  19. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  20. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  1. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...... (18, 19) for receiving light from the grating region (11) is formed within or to be connected to the grating region, and functions as an 5 output coupler for the VCL. Thereby, vertical lasing modes (16) are coupled to lateral in-plane modes (17, 20) of the in-plane waveguide formed in the silicon...

  2. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    International Nuclear Information System (INIS)

    Kwong, S.; Jivkov, A.P.

    2013-01-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  3. Reversibility and retrievability in geologic disposal of radioactive waste. A new Nea report

    International Nuclear Information System (INIS)

    Brown, P.A.; Pascatore, C.; Sumerling, T.

    2001-01-01

    Radioactive waste needs to be managed responsibly to ensure public safety and the protection of the environment, as well as security from unauthorized interference, now and in the future. One of the most challenging tasks is the management of long-lived radioactive waste that must be isolated from the human environment for many thousands, or even hundreds of thousands, of years. There is a consensus among the engaged technical community that engineered geologic disposal provides a safe and ethical method for the long term management of such waste. This method is also cited in the national policies of several countries as either a promising or appropriate method for dealing with long-lived radioactive waste. Engineered geologic disposal means emplacement of waste in repositories constructed deep underground in suitable geologic media. Thus the waste is contained, and safety assured by passive barriers with multiple safety functions, so that there is no need for any further actions by future generations. Primary principles of the engineered geologic disposal concept are that waste will only be emplaced in a repository when there is high confidence in the ultimate long-term safety, and that the long-term safety must not rely on actions following the closure of the repository. This does not mean, however, that actions cannot be taken. Most repository development programmes include the possibility of post-closure activities for security and monitoring purposes. (authors)

  4. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  5. Modeling the design and operations of the federal radioactive waste management system

    International Nuclear Information System (INIS)

    Joy, D.S.; Nehls, J.W. Jr.; Harrison, I.G.; Miller, C.; Vogel, L.W.; Martin, J.D.; Capone, R.L.; Dougherty, L.

    1989-04-01

    Many configuration, transportation and operating alternatives are available to the Office of Civilian Radioactive Waste Management (OCRWM) in the design and operation of the Federal Radioactive Waste Management System (FWMS). Each alternative has different potential impacts on system throughput, efficiency and the thermal and radiological characteristics of the waste to be shipped, stored and emplaced. A need therefore exists for a quantitative means of assessing the ramifications of alternative system designs and operating strategies. We developed the Systems integration Operations/Logistics Model (SOLMOD). That model is used to replicate a user-specified system configuration and simulate the operation of that system -- from waste pickup at reactors to emplacement in a repository -- under a variety of operating strategies. The model can thus be used to assess system performance with or without Monitored Retrievable Storage (MRS), with or without consolidation at the repository, with varying shipping cask availability and so forth. This simulation capability is also intended to provide a tool for examining the impact of facility and equipment capacity and redundancy on overall waste processing capacity and system performance. SOLMOD can measure the impacts on system performance of certain operating contingencies. It can be used to test effects on transportation and waste pickup schedules resulting from a shut-down of one or more hot cells in the waste handling building at the repository or MRS. Simulation can also be used to study operating procedures and rules such as fuel pickup schedules, general freight vs. dedicated freight. 3 refs., 2 figs., 2 tabs

  6. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  7. Radioactive waste processing field

    International Nuclear Information System (INIS)

    Ito, Minoru.

    1993-01-01

    Storing space for radioactive wastes (storage tunnels) are formed underground of the sea bottom along coast. A plurality of boreholes through which sea water flows are pored vertically in a direction intersecting underground streams of brine in the ground between the tunnels and seaside. Sea water introduction pipes are joined to the upper side walls of the boreholes. The sea water introduction pipes have introduction ports protruded under the sea level of the coastal sea area region. Since sea water flows from the introduction ports to the boreholes passing through the sea water introduction pipes, sea water is always filled in the boreholes. Therefore, brine is sufficiently supplied toward the land by sea water from the boreholes, the underground stream of brine is negligibly small. This can prevent radioactive contamination due to flow of the underground water when radioactive wastes are buried in the underground near coast. (I.N.)

  8. Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs

    Directory of Open Access Journals (Sweden)

    Sonja Leonie Philipp

    2013-12-01

    Full Text Available Fractures generated by internal fluid pressure, for example, dykes, mineral veins, many joints and man-made hydraulic fractures, are referred to as hydrofractures. Together with shear fractures, they contribute significantly to the permeability of fluid reservoirs such as those of petroleum, geothermal water, and groundwater. Analytical and numerical models show that – in homogeneous host rocks – any significant overpressure in hydrofractures theoretically generates very high crack tip tensile stresses. Consequently, overpressured hydrofractures should propagate and help to form interconnected fracture systems that would then contribute to the permeability of fluid reservoirs. Field observations, however, show that in heterogeneous and anisotropic, e.g., layered, rocks many hydrofractures become arrested or offset at layer contacts and do not form vertically interconnected networks. The most important factors that contribute to hydrofracture arrest are discontinuities (including contacts, stiffness changes between layers, and stress barriers, where the local stress field is unfavourable to hydrofracture propagation. A necessary condition for a hydrofracture to propagate to the surface is that the stress field along its potential path is everywhere favourable to extension-fracture formation so that the probability of hydrofracture arrest is minimised. Mechanical layering and the resulting heterogeneous stress field largely control whether evolving hydrofractures become confined to single layers (strata¬bound frac¬tures or not (non-stratabound fractures and, there¬fore, if a vertically intercon¬nec¬ted fracture system forms. Non-stratabound hydrofractures may propagate through many layers and generate interconnected fracture systems. Such systems commonly reach the percolation threshold and largely control the overall permeability of the fluid reservoirs within which they develop.

  9. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  10. The controlling role of positive structures over the metallogenesis and emplacement of inter layer oxidation sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Gu Kangheng; Chen Zuyi

    2010-01-01

    The positive structures in this paper mean the geological structures related to the occurrence of U-metallogenic zones or U-deposit such as anticlines, uplifts and uplifted fault-blocks. Occurrence features of interlayer oxidation sandstone type deposit at the southern margin of Yili basin and southwestern margin of Turpan-Hami basin, the northeastern margin of Jiudong basin illustrate that the sandstone-hosted uranium deposits, the U-mineralized sections and the uranium occurrences are alway