WorldWideScience

Sample records for vertical visual target

  1. Extrapolation of vertical target motion through a brief visual occlusion.

    Science.gov (United States)

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  2. Differential effects of visual feedback on subjective visual vertical accuracy and precision.

    Directory of Open Access Journals (Sweden)

    Daniel Bjasch

    Full Text Available The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV, occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A-/E-effect are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps. After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross. Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg, errors were reduced significantly (p0.05 influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18-24 min (post-feedback block, i.e., was still significantly (p<0.002 different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision - depending mostly on otolith input - was not affected by visual

  3. Investigating Methods for Serving Visualizations of Vertical Profiles

    Science.gov (United States)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  4. Subjective visual vertical after treatment of benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Maristela Mian Ferreira

    Full Text Available Abstract Introduction: Otolith function can be studied by testing the subjective visual vertical, because the tilt of the vertical line beyond the normal range is a sign of vestibular dysfunction. Benign paroxysmal positional vertigo is a disorder of one or more labyrinthine semicircular canals caused by fractions of otoliths derived from the utricular macula. Objective: To compare the subjective visual vertical with the bucket test before and immediately after the particle repositioning maneuver in patients with benign paroxysmal positional vertigo. Methods: We evaluated 20 patients. The estimated position where a fluorescent line within a bucket reached the vertical position was measured before and immediately after the particle repositioning maneuver. Data were tabulated and statistically analyzed. Results: Before repositioning maneuver, 9 patients (45.0% had absolute values of the subjective visual vertical above the reference standard and 2 (10.0% after the maneuver; the mean of the absolute values of the vertical deviation was significantly lower after the intervention (p < 0.001. Conclusion: There is a reduction of the deviations of the subjective visual vertical, evaluated by the bucket test, immediately after the particle repositioning maneuver in patients with benign paroxysmal positional vertigo.

  5. Subjective visual vertical assessment with mobile virtual reality system

    Directory of Open Access Journals (Sweden)

    Ingrida Ulozienė

    Full Text Available Background and objective: The subjective visual vertical (SVV is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. Materials and methods: In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions – static, dynamic and an immersive real-world (“boat in the sea” SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. Results: There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two

  6. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    Science.gov (United States)

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    A common complaint of the elderly is difficulty identifying and localizing auditory and visual sources, particularly in competing background noise. Spatial errors in the elderly may pose challenges and even threats to self and others during everyday activities, such as localizing sounds in a crowded room or driving in traffic. In this study, we investigated the influence of aging, spatial memory, and ocular fixation on the localization of auditory, visual, and combined auditory-visual (bimodal) targets. Head-restrained young and elderly subjects localized targets in a dark, echo-attenuated room using a manual laser pointer. Localization accuracy and precision (repeatability) were quantified for both ongoing and transient (remembered) targets at response delays up to 10 s. Because eye movements bias auditory spatial perception, localization was assessed under target fixation (eyes free, pointer guided by foveal vision) and central fixation (eyes fixed straight ahead, pointer guided by peripheral vision) conditions. Spatial localization across the frontal field in young adults demonstrated (1) horizontal overshoot and vertical undershoot for ongoing auditory targets under target fixation conditions, but near-ideal horizontal localization with central fixation; (2) accurate and precise localization of ongoing visual targets guided by foveal vision under target fixation that degraded when guided by peripheral vision during central fixation; (3) overestimation in horizontal central space (±10°) of remembered auditory, visual, and bimodal targets with increasing response delay. In comparison with young adults, elderly subjects showed (1) worse precision in most paradigms, especially when localizing with peripheral vision under central fixation; (2) greatly impaired vertical localization of auditory and bimodal targets; (3) increased horizontal overshoot in the central field for remembered visual and bimodal targets across response delays; (4) greater vulnerability to

  7. Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation

    Science.gov (United States)

    Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott

    2010-01-01

    The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.

  8. Patients with migraine correctly estimate the visual verticality.

    Science.gov (United States)

    Crevits, Luc; Vanacker, Leen; Verraes, Anouk

    2012-05-01

    We wanted to study otolith function by measuring the static subjective visual vertical (SVV) in migraine patients and in controls with and without kinetosis (motion sickness). Forty-seven patients with moderately severe migraine and 96 healthy controls were enrolled. Using a questionnaire, persons with kinetosis were identified. The SVV test was performed in a totally dark room. Subjects wore a stiffneck to stabilize the head in an erect position. They were required to adjust an infrared line to the gravitational vertical with a hand-held infrared remote controlled potentiometer. The deviation of SVV in the group of migraine patients was not significantly different from that of controls, regardless of whether an aura was associated. SVV was not significantly influenced by the presence of dizziness/non specific vertigo or kinetosis. Patients with moderately severe migraine under prophylactic medication correctly estimate the visual verticality in the headache-free period. It is suggested that a deviation of SVV in a headache-free migraine patient may not be attributed to his migraine disorder as such regardless whether kinetosis is associated. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Attentional sensitivity and asymmetries of vertical saccade generation in monkey

    Science.gov (United States)

    Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.

  10. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  11. Interplay of Gravicentric, Egocentric, and Visual Cues About the Vertical in the Control of Arm Movement Direction.

    Science.gov (United States)

    Bock, Otmar; Bury, Nils

    2018-03-01

    Our perception of the vertical corresponds to the weighted sum of gravicentric, egocentric, and visual cues. Here we evaluate the interplay of those cues not for the perceived but rather for the motor vertical. Participants were asked to flip an omnidirectional switch down while their egocentric vertical was dissociated from their visual-gravicentric vertical. Responses were directed mid-between the two verticals; specifically, the data suggest that the relative weight of congruent visual-gravicentric cues averages 0.62, and correspondingly, the relative weight of egocentric cues averages 0.38. We conclude that the interplay of visual-gravicentric cues with egocentric cues is similar for the motor and for the perceived vertical. Unexpectedly, we observed a consistent dependence of the motor vertical on hand position, possibly mediated by hand orientation or by spatial selective attention.

  12. Vertical visual features have a strong influence on cuttlefish camouflage.

    Science.gov (United States)

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  13. Contrasting vertical and horizontal representations of affect in emotional visual search.

    Science.gov (United States)

    Damjanovic, Ljubica; Santiago, Julio

    2016-02-01

    Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings.

  14. Saccadic foveation of a moving visual target in the rhesus monkey.

    Science.gov (United States)

    Fleuriet, Jérome; Hugues, Sandrine; Perrinet, Laurent; Goffart, Laurent

    2011-02-01

    When generating a saccade toward a moving target, the target displacement that occurs during the period spanning from its detection to the saccade end must be taken into account to accurately foveate the target and to initiate its pursuit. Previous studies have shown that these saccades are characterized by a lower peak velocity and a prolonged deceleration phase. In some cases, a second peak eye velocity appears during the deceleration phase, presumably reflecting the late influence of a mechanism that compensates for the target displacement occurring before saccade end. The goal of this work was to further determine in the head restrained monkey the dynamics of this putative compensatory mechanism. A step-ramp paradigm, where the target motion was orthogonal to a target step occurring along the primary axes, was used to estimate from the generated saccades: a component induced by the target step and another one induced by the target motion. Resulting oblique saccades were compared with saccades to a static target with matched horizontal and vertical amplitudes. This study permitted to estimate the time taken for visual motion-related signals to update the programming and execution of saccades. The amplitude of the motion-related component was slightly hypometric with an undershoot that increased with target speed. Moreover, it matched with the eccentricity that the target had 40-60 ms before saccade end. The lack of significant difference in the delay between the onsets of the horizontal and vertical components between saccades directed toward a static target and those aimed at a moving target questions the late influence of the compensatory mechanism. The results are discussed within the framework of the "dual drive" and "remapping" hypotheses.

  15. Postdictive modulation of visual orientation.

    Science.gov (United States)

    Kawabe, Takahiro

    2012-01-01

    The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1) or whether the target was vertical or not (Supplementary experiment). The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation). The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2). Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process.

  16. Visualizing Energy on Target: Molecular Dynamics Simulations

    Science.gov (United States)

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  17. Avaliação da vertical visual subjetiva em indivíduos brasileiros normais Subjective visual vertical evaluation in normal Brazilian subjects

    Directory of Open Access Journals (Sweden)

    Aline M. Kozoroski Kanashiro

    2007-06-01

    Full Text Available A função otolítica pode ser avaliada pela Vertical Visual Subjetiva (VVS que determina a capacidade de um indivíduo julgar se objetos estão na posição vertical na ausência de outras referências visuais. O objetivo deste estudo foi avaliar a VVS em indivíduos brasileiros normais usando um aparelho portátil. As medidas da VVS foram realizadas em 160 indivíduos (16 a 85 anos. O valor médio da VVS foi obtido após dez ajustes. A VVS teve valores médios entre -2,0º e +2,4º (média=0,18º, e DP=0,77º. Não houve diferença entre as médias da VVS em relação à idade (teste de Kruskal-Wallis; p=0,40, mas as faixas etárias maiores tiveram variância maior (teste de Levene; p=0,016. Os valores da VVS encontrados neste estudo foram semelhantes aos registrados na literatura. Não houve diferença nas médias das inclinações da VVS de acordo com a idade, mas foi encontrada maior variância entre indivíduos mais idosos.Otolith function can be evaluated by subjective visual vertical (SVV that determine the capacity of a subject to judge if the objects are on vertical position with absence of any visual reference. The aim of this study was to evaluate the SVV in a sample of normal Brazilian subjects using a portable device. Measurements of SVV were performed in 160 normal subjects (aged from 16 to 85. SVV mean value was obtained after ten adjustments. SVV mean values ranged from -2.0º to +2.4º (mean=0.18º, and SD=0.77. Considering all age groups, there was no difference of SVV mean values (Kruskal-Wallis test; p=0.40, but older groups had a greater variance (Levene test; p=0.016. SVV values observed in this study are comparable to those described in previous studies. Although there was no difference in mean SVV-inclination according to age, there was a greater variance in older subjects.

  18. Perception of the dynamic visual vertical during sinusoidal linear motion.

    Science.gov (United States)

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the

  19. Postdictive modulation of visual orientation.

    Directory of Open Access Journals (Sweden)

    Takahiro Kawabe

    Full Text Available The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1 or whether the target was vertical or not (Supplementary experiment. The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation. The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2. Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process.

  20. The target effect: visual memory for unnamed search targets.

    Science.gov (United States)

    Thomas, Mark D; Williams, Carrick C

    2014-01-01

    Search targets are typically remembered much better than other objects even when they are viewed for less time. However, targets have two advantages that other objects in search displays do not have: They are identified categorically before the search, and finding them represents the goal of the search task. The current research investigated the contributions of both of these types of information to the long-term visual memory representations of search targets. Participants completed either a predefined search or a unique-object search in which targets were not defined with specific categorical labels before searching. Subsequent memory results indicated that search target memory was better than distractor memory even following ambiguously defined searches and when the distractors were viewed significantly longer. Superior target memory appears to result from a qualitatively different representation from those of distractor objects, indicating that decision processes influence visual memory.

  1. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    Science.gov (United States)

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

  2. Automatic Attraction of Visual Attention by Supraletter Features of Former Target Strings

    Directory of Open Access Journals (Sweden)

    Søren eKyllingsbæk

    2014-11-01

    Full Text Available Observers were trained to search for a particular horizontal string of 3 capital letters presented among similar strings consisting of exactly the same letters in different orders. The training was followed by a test in which the observers searched for a new target that was identical to one of the former distractors. The new distractor set consisted of the remaining former distractors plus the former target. On each trial, three letter-strings were displayed, which included the target string with a probability of .5. In Experiment 1, the strings were centered at different locations on the circumference of an imaginary circle around the fixation point. The training phase of Experiment 2 was similar, but in the test phase of the experiment, the strings were located in a vertical array centered on fixation, and in target-present arrays, the target always appeared at fixation. In both experiments, performance (d’ degraded on trials in which former targets were present, suggesting that the former targets automatically drew processing resources away from the current targets. Apparently, the two experiments showed automatic attraction of visual attention by supraletter features of former target strings.

  3. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    Science.gov (United States)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  4. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  5. Distraction by deviance: comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-01-01

    We report the results of oddball experiments in which an irrelevant stimulus (standard, deviant) was presented before a target stimulus and the modality of these stimuli was manipulated orthogonally (visual/auditory). Experiment 1 showed that auditory deviants yielded distraction irrespective of the target's modality while visual deviants did not impact on performance. When participants were forced to attend the distractors in order to detect a rare target ("target-distractor"), auditory deviants yielded distraction irrespective of the target's modality and visual deviants yielded a small distraction effect when targets were auditory (Experiments 2 & 3). Visual deviants only produced distraction for visual targets when deviant stimuli were not visually distinct from the other distractors (Experiment 4). Our results indicate that while auditory deviants yield distraction irrespective of the targets' modality, visual deviants only do so when attended and under selective conditions, at least when irrelevant and target stimuli are temporally and perceptually decoupled.

  6. Impact of Target Distance, Target Size, and Visual Acuity on the Video Head Impulse Test.

    Science.gov (United States)

    Judge, Paul D; Rodriguez, Amanda I; Barin, Kamran; Janky, Kristen L

    2018-05-01

    The video head impulse test (vHIT) assesses the vestibulo-ocular reflex. Few have evaluated whether environmental factors or visual acuity influence the vHIT. The purpose of this study was to evaluate the influence of target distance, target size, and visual acuity on vHIT outcomes. Thirty-eight normal controls and 8 subjects with vestibular loss (VL) participated. vHIT was completed at 3 distances and with 3 target sizes. Normal controls were subdivided on the basis of visual acuity. Corrective saccade frequency, corrective saccade amplitude, and gain were tabulated. In the normal control group, there were no significant effects of target size or visual acuity for any vHIT outcome parameters; however, gain increased as target distance decreased. The VL group demonstrated higher corrective saccade frequency and amplitude and lower gain as compared with controls. In conclusion, decreasing target distance increases gain for normal controls but not subjects with VL. Preliminarily, visual acuity does not affect vHIT outcomes.

  7. Memory for found targets interferes with subsequent performance in multiple-target visual search.

    Science.gov (United States)

    Cain, Matthew S; Mitroff, Stephen R

    2013-10-01

    Multiple-target visual searches--when more than 1 target can appear in a given search display--are commonplace in radiology, airport security screening, and the military. Whereas 1 target is often found accurately, additional targets are more likely to be missed in multiple-target searches. To better understand this decrement in 2nd-target detection, here we examined 2 potential forms of interference that can arise from finding a 1st target: interference from the perceptual salience of the 1st target (a now highly relevant distractor in a known location) and interference from a newly created memory representation for the 1st target. Here, we found that removing found targets from the display or making them salient and easily segregated color singletons improved subsequent search accuracy. However, replacing found targets with random distractor items did not improve subsequent search accuracy. Removing and highlighting found targets likely reduced both a target's visual salience and its memory load, whereas replacing a target removed its visual salience but not its representation in memory. Collectively, the current experiments suggest that the working memory load of a found target has a larger effect on subsequent search accuracy than does its perceptual salience. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. Assessing cross-modal target transition effects with a visual-auditory oddball.

    Science.gov (United States)

    Kiat, John E

    2018-04-30

    Prior research has shown contextual manipulations involving temporal and sequence related factors significantly moderate attention-related responses, as indexed by the P3b event-related-potential, towards infrequent (i.e., deviant) target oddball stimuli. However, significantly less research has looked at the influence of cross-modal switching on P3b responding, with the impact of target-to-target cross-modal transitions being virtually unstudied. To address this gap, this study recorded high-density (256 electrodes) EEG data from twenty-five participants as they completed a cross-modal visual-auditory oddball task. This task was comprised of unimodal visual (70% Nontargets: 30% Deviant-targets) and auditory (70% Nontargets: 30% Deviant-targets) oddballs presented in fixed alternating order (i.e., visual-auditory-visual-auditory, etc.) with participants being tasked with detecting deviant-targets in both modalities. Differences in the P3b response towards deviant-targets as a function of preceding deviant-target's presentation modality was analyzed using temporal-spatial PCA decomposition. In line with predictions, the results indicate that the ERP response to auditory deviant-targets preceded by visual deviant-targets exhibits an elevated P3b, relative to the processing of auditory deviant-targets preceded by auditory deviant-targets. However, the processing of visual deviant-targets preceded by auditory deviant-targets exhibited a reduced P3b response, relative to the P3b response towards visual deviant-targets preceded by visual deviant-targets. These findings provide the first demonstration of temporally and perceptually decoupled target-to-target cross-modal transitions moderating P3b responses on the oddball paradigm, generally providing support for the context-updating interpretation of the P3b response. Copyright © 2017. Published by Elsevier B.V.

  9. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  10. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Science.gov (United States)

    2010-10-01

    ... Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... transmission of data, processed information, or any other communication in either a digital or analog mode. (b....646 Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. (a...

  11. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue

    Directory of Open Access Journals (Sweden)

    Ashley J Booth

    2015-06-01

    Full Text Available The ease of synchronising movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronising with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g. a dot following an oscillatory trajectory. Similarly, when synchronising with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals’ ability to synchronise movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centred on a large projection screen. The target dot was surrounded by 2, 8 or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100 or 200ms. We found participants’ timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14. This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronise movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

  12. Vertical displacement of the brain and the target area during open stereotaxic neurosurgery

    International Nuclear Information System (INIS)

    Wester, K.; Kraekenes, J.

    2001-01-01

    During stereotaxic thalamotomies, we observed that the brain surface was sinking. The study was carried out to investigate to what extent the target area also was displaced and how this would affect the accuracy of the stereotaxic procedure. In 12 thalamotomies, with the patients operated on in the sitting position, we found that the cortical surface sank 0-9 (mean 5) mm during the operation. The vertical co-ordinate of the thalamic target was consequently adjusted per-operatively, and the electrodes were advanced on additional distance of 1-5.5 (mean 3.5) mm in an attempt to compensate for the assumed sinking of the target. This per-operative adjustment was based on the surgeon's experience and the results of macro-stimulation studies. The exact location of the thalamotomy lesion, and thereby the accuracy of the adjustment, was evaluated on 3 months postoperative CT scans. These showed that the intended target was hit with a sufficient degree of accuracy in all the patients, although the vertical co-ordinate had been slightly over-adjusted, as the center of the lesion on the average was located 1 mm below the intended location. Thus, if the vertical position had not been adjusted, the lesion would on the average have been located 2.5 mm too high compared with the intended target. Patients undergoing thalamotomy and other stereotaxic procedures, where a high degree of accuracy is needed, should be operated on in the sitting position. At the thalamic level, the vertical displacement of the target should be adjusted for by additional advancement of the stereotaxic probe. On average, this compensatory adjustment should be about half the per-operative sinking of the cortical surface. (author)

  13. Honeybees (Apis mellifera exhibit flexible visual search strategies for vertical targets presented at various heights [v2; ref status: indexed, http://f1000r.es/51p

    Directory of Open Access Journals (Sweden)

    Linde Morawetz

    2015-02-01

    Full Text Available When honeybees are presented with a colour discrimination task, they tend to choose swiftly and accurately when objects are presented in the ventral part of their frontal visual field. In contrast, poor performance is observed when objects appear in the dorsal part. Here we investigate if this asymmetry is caused by fixed search patterns or if bees can increase their detection ability of objects in search scenarios when targets appear frequently or exclusively in the dorsal area of the visual field. We trained individual honeybees to choose an orange rewarded target among blue distractors. Target and distractors were presented in the ventral visual field, the dorsal field or both. Bees presented with targets in the ventral visual field consistently had the highest search efficiency, with rapid decisions, high accuracy and direct flight paths. In contrast, search performance for dorsally located targets was inaccurate and slow at the beginning of the experimental phase, but bees increased their search performance significantly after a few foraging bouts: they found the target faster, made fewer errors and flew in a straight line towards the target. However, bees needed thrice as long to improve the search for a dorsally located target when the target’s position changed randomly between the ventral and the dorsal visual field. We propose that honeybees form expectations of the location of the target’s appearance and adapt their search strategy accordingly. A variety of possible mechanisms underlying this behavioural adaptation, for example spatial attention, are discussed.

  14. Spatiotemporal Relationships among Audiovisual Stimuli Modulate Auditory Facilitation of Visual Target Discrimination.

    Science.gov (United States)

    Li, Qi; Yang, Huamin; Sun, Fang; Wu, Jinglong

    2015-03-01

    Sensory information is multimodal; through audiovisual interaction, task-irrelevant auditory stimuli tend to speed response times and increase visual perception accuracy. However, mechanisms underlying these performance enhancements have remained unclear. We hypothesize that task-irrelevant auditory stimuli might provide reliable temporal and spatial cues for visual target discrimination and behavioral response enhancement. Using signal detection theory, the present study investigated the effects of spatiotemporal relationships on auditory facilitation of visual target discrimination. Three experiments were conducted where an auditory stimulus maintained reliable temporal and/or spatial relationships with visual target stimuli. Results showed that perception sensitivity (d') to visual target stimuli was enhanced only when a task-irrelevant auditory stimulus maintained reliable spatiotemporal relationships with a visual target stimulus. When only reliable spatial or temporal information was contained, perception sensitivity was not enhanced. These results suggest that reliable spatiotemporal relationships between visual and auditory signals are required for audiovisual integration during a visual discrimination task, most likely due to a spread of attention. These results also indicate that auditory facilitation of visual target discrimination follows from late-stage cognitive processes rather than early stage sensory processes. © 2015 SAGE Publications.

  15. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  16. Visual target distance, but not visual cursor path length produces shifts in motor behavior

    Directory of Open Access Journals (Sweden)

    Nike eWendker

    2014-03-01

    Full Text Available When using tools effects in body space and distant space often do not correspond. Findings so far demonstrated that in this case visual feedback has more impact on action control than proprioceptive feedback. The present study varies the dimensional overlap between visual and proprioceptive action effects and investigates its impact on aftereffects in motor responses. In two experiments participants perform linear hand movements on a covered digitizer tablet to produce ∩-shaped cursor trajectories on the display. The shape of hand motion and cursor motion (linear vs. curved is dissimilar and therefore does not overlap. In one condition the length of hand amplitude and visual target distance is similar and constant while the length of the cursor path is dissimilar and varies. In another condition the length of the hand amplitude varies while the lengths of visual target distance (similar or dissimilar and cursor path (dissimilar are constant. First, we found that aftereffects depended on the relation between hand path length and visual target distance, and not on the relation between hand and cursor path length. Second, increasing contextual interference did not reveal larger aftereffects. Finally, data exploration demonstrated a considerable benefit from gain repetitions across trials when compared to gain switches. In conclusion, dimensional overlap between visual and proprioceptive action effects modulates human information processing in visually controlled actions. However, adjustment of the internal model seems to occur very fast for this kind of simple linear transformation, so that the impact of prior visual feedback is fleeting.

  17. Air-To-Air Visual Target Acquisition Pilot Interview Survey.

    Science.gov (United States)

    1979-01-01

    8217top’ 5 p~lots in air-tu-air visual target acqui- sition in your squadron," would/could you do it? yes no Comment : 2. Is the term "acquisition" as...meaningful as "spotting" and "seeing" in 1he con- text of visually detecting a "bogey" or another aircraft? yes no Comment : 3. Would/could you rank all...squadron pilots on the basis of their visual target acquisition capability? yes no Comment : 4. Is there a minimum number of observations requi.red for

  18. High or Low Target Prevalence Increases the Dual-Target Cost in Visual Search

    Science.gov (United States)

    Menneer, Tamaryn; Donnelly, Nick; Godwin, Hayward J.; Cave, Kyle R.

    2010-01-01

    Previous studies have demonstrated a dual-target cost in visual search. In the current study, the relationship between search for one and search for two targets was investigated to examine the effects of target prevalence and practice. Color-shape conjunction stimuli were used with response time, accuracy and signal detection measures. Performance…

  19. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.

    Science.gov (United States)

    Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea

    2017-05-01

    Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic

  20. Dynamic interactions between visual working memory and saccade target selection

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  1. Dynamic interactions between visual working memory and saccade target selection.

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-09-16

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. © 2014 ARVO.

  2. Visual search performance among persons with schizophrenia as a function of target eccentricity.

    Science.gov (United States)

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2010-03-01

    The current study investigated one possible mechanism of impaired visual attention among patients with schizophrenia: a reduced visual span. Visual span is the region of the visual field from which one can extract information during a single eye fixation. This study hypothesized that schizophrenia-related visual search impairment is mediated, in part, by a smaller visual span. To test this hypothesis, 23 patients with schizophrenia and 22 healthy controls completed a visual search task where the target was pseudorandomly presented at different distances from the center of the display. Response times were analyzed as a function of search condition (feature vs. conjunctive), display size, and target eccentricity. Consistent with previous reports, patient search times were more adversely affected as the number of search items increased in the conjunctive search condition. It was important however, that patients' conjunctive search times were also impacted to a greater degree by target eccentricity. Moreover, a significant impairment in patients' visual search performance was only evident when targets were more eccentric and their performance was more similar to healthy controls when the target was located closer to the center of the search display. These results support the hypothesis that a narrower visual span may underlie impaired visual search performance among patients with schizophrenia. Copyright 2010 APA, all rights reserved

  3. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  4. Filling gaps in visual motion for target capture

    Directory of Open Access Journals (Sweden)

    Gianfranco eBosco

    2015-02-01

    Full Text Available A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.

  5. Filling gaps in visual motion for target capture

    Science.gov (United States)

    Bosco, Gianfranco; Delle Monache, Sergio; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation. PMID:25755637

  6. Filling gaps in visual motion for target capture.

    Science.gov (United States)

    Bosco, Gianfranco; Monache, Sergio Delle; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.

  7. High-Resolution Remotely Sensed Small Target Detection by Imitating Fly Visual Perception Mechanism

    Directory of Open Access Journals (Sweden)

    Fengchen Huang

    2012-01-01

    Full Text Available The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  8. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    Science.gov (United States)

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  9. Effects of visual motion consistent or inconsistent with gravity on postural sway.

    Science.gov (United States)

    Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo

    2017-07-01

    Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.

  10. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  11. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  12. Foraging through multiple target categories reveals the flexibility of visual working memory.

    Science.gov (United States)

    Kristjánsson, Tómas; Kristjánsson, Árni

    2018-02-01

    A key assumption in the literature on visual attention is that templates, actively maintained in visual working memory (VWM), guide visual attention. An important question therefore involves the nature and capacity of VWM. According to load theories, more than one search template can be active at the same time and capacity is determined by the total load rather than a precise number of templates. By an alternative account only one search template can be active within visual working memory at any given time, while other templates are in an accessory state - but do not affect visual selection. We addressed this question by varying the number of targets and distractors in a visual foraging task for 40 targets among 40 distractors in two ways: 1) Fixed-distractor-number, involving two distractor types while target categories varied from one to four. 2) Fixed-color-number (7), so that if the target types were two, distractors types were five, while if target number increased to three, distractor types were four (etc.). The two accounts make differing predictions. Under the single-template account, we should expect large switch costs as target types increase to two, but switch-costs should not increase much as target types increase beyond two. Load accounts predict an approximately linear increase in switch costs with increased target type number. The results were that switch costs increased roughly linearly in both conditions, in line with load accounts. The results are discussed in light of recent proposals that working memory reflects lingering neural activity at various sites that operate on the stimuli in each case and findings showing neurally silent working memory representations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Visiting Richard Serra’s Promenade sculpture improves postural control and judgment of subjective visual vertical.

    Directory of Open Access Journals (Sweden)

    Zoï eKapoula

    2014-12-01

    Full Text Available Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory and proprioceptive inputs. Richard Serra’s Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesised to have stimulated the body’s vertical and longitudinal axes as it showcased 5 monumental rectangular solids pitched at a 1.69° angle.Using computerised dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements before and after walking around and alongside the sculpture (i.e., before and after a promenade. A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway. Eye movement exploration in the depth of the sculpture increased antero-posterior stability (in terms of spectral power and cancelling time of body sway at the expense of medio-lateral stability (in terms of cancelling time. Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto was cancelled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power increased after the promenade.Fourteen additional visitors were asked to sit in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra’s monumental statuary works resulted in significantly improved performances on the subjective visual vertical test.We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic training ground thereby improving the visitors’ overall sense of visual perspective, equilibrium and gravity.

  14. Fundamental Visual Representations of Social Cognition in ASD

    Science.gov (United States)

    2016-12-01

    AWARD NUMBER: W81XWH-14-1-0565 TITLE: Fundamental Visual Representations of Social Cognition in ASD PRINCIPAL INVESTIGATOR: John Foxe, Ph.D...Visual Representations of Social Cognition in ASD 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0565 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... vertical line) adaptation trials are started. This involves moving the target in by 3 degrees of visual angle while the participants eyes are “in

  15. Polarization Calculation and Underwater Target Detection Inspired by Biological Visual Imaging

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2014-04-01

    Full Text Available In challenging underwater environments, the polarization parameter maps calculated by the Stokes model are characterized by the high noise and error, harassing the underwater target detection tasks. In order to solve this problem, this paper proposes a novel bionic polarization calculation and underwater target detection method by modeling the visual system of mantis shrimps. This system includes many operators including a polarization-opposition calculation, a factor optimization and a visual neural network model. A calibration learning method is proposed to search the optimal value of the factors in the linear subtraction model. Finally, a six-channel visual neural network model is proposed to detect the underwater targets. Experimental results proved that the maps produced by the polarization-opposition parameter is more accurate and have lower noise than that produced by the Stokes parameter, achieving better performance in underwater target detection tasks.

  16. Dual-target cost in visual search for multiple unfamiliar faces.

    Science.gov (United States)

    Mestry, Natalie; Menneer, Tamaryn; Cave, Kyle R; Godwin, Hayward J; Donnelly, Nick

    2017-08-01

    The efficiency of visual search for one (single-target) and either of two (dual-target) unfamiliar faces was explored to understand the manifestations of capacity and guidance limitations in face search. The visual similarity of distractor faces to target faces was manipulated using morphing (Experiments 1 and 2) and multidimensional scaling (Experiment 3). A dual-target cost was found in all experiments, evidenced by slower and less accurate search in dual- than single-target conditions. The dual-target cost was unequal across the targets, with performance being maintained on one target and reduced on the other, which we label "preferred" and "non-preferred" respectively. We calculated the capacity for each target face and show reduced capacity for representing the non-preferred target face. However, results show that the capacity for the non-preferred target can be increased when the dual-target condition is conducted after participants complete the single-target conditions. Analyses of eye movements revealed evidence for weak guidance of fixations in single-target search, and when searching for the preferred target in dual-target search. Overall, the experiments show dual-target search for faces is capacity- and guidance-limited, leading to superior search for 1 face over the other in dual-target search. However, learning faces individually may improve capacity with the second face. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    Science.gov (United States)

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  18. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  19. Target-present guessing as a function of target prevalence and accumulated information in visual search.

    Science.gov (United States)

    Peltier, Chad; Becker, Mark W

    2017-05-01

    Target prevalence influences visual search behavior. At low target prevalence, miss rates are high and false alarms are low, while the opposite is true at high prevalence. Several models of search aim to describe search behavior, one of which has been specifically intended to model search at varying prevalence levels. The multiple decision model (Wolfe & Van Wert, Current Biology, 20(2), 121--124, 2010) posits that all searches that end before the observer detects a target result in a target-absent response. However, researchers have found very high false alarms in high-prevalence searches, suggesting that prevalence rates may be used as a source of information to make "educated guesses" after search termination. Here, we further examine the ability for prevalence level and knowledge gained during visual search to influence guessing rates. We manipulate target prevalence and the amount of information that an observer accumulates about a search display prior to making a response to test if these sources of evidence are used to inform target present guess rates. We find that observers use both information about target prevalence rates and information about the proportion of the array inspected prior to making a response allowing them to make an informed and statistically driven guess about the target's presence.

  20. Synchronous Sounds Enhance Visual Sensitivity without Reducing Target Uncertainty

    Directory of Open Access Journals (Sweden)

    Yi-Chuan Chen

    2011-10-01

    Full Text Available We examined the crossmodal effect of the presentation of a simultaneous sound on visual detection and discrimination sensitivity using the equivalent noise paradigm (Dosher & Lu, 1998. In each trial, a tilted Gabor patch was presented in either the first or second of two intervals consisting of dynamic 2D white noise with one of seven possible contrast levels. The results revealed that the sensitivity of participants' visual detection and discrimination performance were both enhanced by the presentation of a simultaneous sound, though only close to the noise level at which participants' target contrast thresholds started to increase with the increasing noise contrast. A further analysis of the psychometric function at this noise level revealed that the increase in sensitivity could not be explained by the reduction of participants' uncertainty regarding the onset time of the visual target. We suggest that this crossmodal facilitatory effect may be accounted for by perceptual enhancement elicited by a simultaneously-presented sound, and that the crossmodal facilitation was easier to observe when the visual system encountered a level of noise that happened to be close to the level of internal noise embedded within the system.

  1. The spatially global control of attentional target selection in visual search

    OpenAIRE

    Berggren, Nick; Jenkins, M.; McCants, C.W.; Eimer, Martin

    2017-01-01

    Glyn Humphreys and his co-workers have made numerous important theoretical and empirical contributions to research on visual search. They have introduced the concept of attentional target templates and investigated the nature of these templates and how they are involved in the control of search performance. In the experiments reported here, we investigated whether feature-specific search template for particular colours can guide target selection independently for different regions of visual s...

  2. High variability of the subjective visual vertical test of vertical perception, in some people with neck pain - Should this be a standard measure of cervical proprioception?

    Science.gov (United States)

    Treleaven, Julia; Takasaki, Hiroshi

    2015-02-01

    Subjective visual vertical (SVV) assesses visual dependence for spacial orientation, via vertical perception testing. Using the computerized rod-and-frame test (CRFT), SVV is thought to be an important measure of cervical proprioception and might be greater in those with whiplash associated disorder (WAD), but to date research findings are inconsistent. The aim of this study was to investigate the most sensitive SVV error measurement to detect group differences between no neck pain control, idiopathic neck pain (INP) and WAD subjects. Cross sectional study. Neck Disability Index (NDI), Dizziness Handicap Inventory short form (DHIsf) and the average constant error (CE), absolute error (AE), root mean square error (RMSE), and variable error (VE) of the SVV were obtained from 142 subjects (48 asymptomatic, 36 INP, 42 WAD). The INP group had significantly (p pain or dizziness handicap. These findings are inconsistent with other measures of cervical proprioception in neck pain and more research is required before the SVV can be considered an important measure and utilized clinically. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    Science.gov (United States)

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Object-based target templates guide attention during visual search

    OpenAIRE

    Berggren, Nick; Eimer, Martin

    2018-01-01

    During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target f...

  5. Object-based target templates guide attention during visual search.

    Science.gov (United States)

    Berggren, Nick; Eimer, Martin

    2018-05-03

    During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (sustained posterior contralateral negativity; SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target features (incorrect conjunction objects, e.g., blue squares). Because feature-based guidance cannot distinguish these objects from targets, any selective bias for targets will reflect object-based attentional control. In Experiment 1, where search displays always contained only one object with target-matching features, targets and incorrect conjunction objects elicited identical N2pc and SPCN components, demonstrating that attentional guidance was entirely feature-based. In Experiment 2, where targets and incorrect conjunction objects could appear in the same display, clear evidence for object-based attentional control was found. The target N2pc became larger than the N2pc to incorrect conjunction objects from 250 ms poststimulus, and only targets elicited SPCN components. This demonstrates that after an initial feature-based guidance phase, object-based templates are activated when they are required to distinguish target and nontarget objects. These templates modulate visual processing and control access to working memory, and their activation may coincide with the start of feature integration processes. Results also suggest that while multiple feature templates can be activated concurrently, only a single object-based target template can guide attention at any given time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    Science.gov (United States)

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  7. Human locomotion through a multiple obstacle environment : Strategy changes as a result of visual field limitation

    NARCIS (Netherlands)

    Jansen, S.E.M.; Toet, A.; Werkhoven, P.J.

    2011-01-01

    This study investigated how human locomotion through an obstacle environment is influenced by visual field limitation. Participants were asked to walk at a comfortable pace to a target location while avoiding multiple vertical objects. During this task, they wore goggles restricting their visual

  8. Automatic attraction of visual attention by supraletter features of former target strings

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Lommel, Sven Van; Bundesen, Claus

    2014-01-01

    , performance (d’) degraded on trials in which former targets were present, suggesting that the former targets automatically drew processing resources away from the current targets. Apparently, the two experiments showed automatic attraction of visual attention by supraletter features of former target strings....

  9. Peripheral Contour Grouping and Saccade Targeting: The Role of Mirror Symmetry

    Directory of Open Access Journals (Sweden)

    Michaël Sassi

    2014-01-01

    Full Text Available Integrating shape contours in the visual periphery is vital to our ability to locate objects and thus make targeted saccadic eye movements to efficiently explore our surroundings. We tested whether global shape symmetry facilitates peripheral contour integration and saccade targeting in three experiments, in which observers responded to a successful peripheral contour detection by making a saccade towards the target shape. The target contours were horizontally (Experiment 1 or vertically (Experiments 2 and 3 mirror symmetric. Observers responded by making a horizontal (Experiments 1 and 2 or vertical (Experiment 3 eye movement. Based on an analysis of the saccadic latency and accuracy, we conclude that the figure-ground cue of global mirror symmetry in the periphery has little effect on contour integration or on the speed and precision with which saccades are targeted towards objects. The role of mirror symmetry may be more apparent under natural viewing conditions with multiple objects competing for attention, where symmetric regions in the visual field can pre-attentively signal the presence of objects, and thus attract eye movements.

  10. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  11. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2003-11-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authours' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evaluation was also carried out for comparison (previous data). The permeation analysis was carried out individually by classifying into the armor region (Carbon Fiber Composites and tungsten) and the slit region without armor (3% of armor surface area) assuming the incident flux and temperature for each region. As the results of the permeation analysis, estimated permeation amount with the authors' data was one order less than that with the previous data at the end of lifetime of the divertor due to authors' small diffusion coefficient of tritium in tungsten. It also indicated the possibility that permeation through the slit region of the armor tiles could dominate total permeation through the vertical target, since tritium permeation amount through tungsten armor with the authors' data was estimated to be reduced drastically smaller than that with the previous evaluation data. The result of a little tritium permeation amount through the vertical target with the authors' data ensured the conservatism of the current evaluation of tritium concentration in the primary cooling water in ITER divertor, as it indicated the possibility of direct drainage of the divertor primary cooling water. (author)

  12. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.

    Science.gov (United States)

    Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo

    2018-04-01

    We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    Directory of Open Access Journals (Sweden)

    Daniel eKress

    2014-09-01

    Full Text Available During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride

  14. Vertical perceptual span and the processing of visual signals in reading.

    Science.gov (United States)

    Cauchard, Fabrice; Eyrolle, Hélène; Cellier, Jean-Marie; Hyönä, Jukka

    2010-02-01

    A previous study by Pollatsek et al. ( 1993 ) claims that the perceptual span in reading is restricted to the fixated line, i.e. readers typically focus their visual attention on the line of text being read. The present study investigated whether readers make use of content structure signals (paragraph indentations and topic headings) present several lines away from the currently fixated line. We reasoned that as these signals are low-resolution visual objects (as opposed to letter and word identity), readers may attend to them even if they are located some distance away from the fixated line. Participants read a hierarchically organized multi-topic expository text containing structure signals in either a normal condition or a window condition, where the text disappeared above and below a vertical 3° gaze-contingent region. After reading, participants were asked to produce a written recall of the text. The results showed that the overall reading rate was not affected by the window. Nevertheless, the headings were reread more in the normal condition than in the window one. In addition, more topics were recalled in the normal than in the window condition. We interpret the results as indicating that the readers visually attend to useful text layout features while considering bigger units than single text lines. The perception of topic headings located away from the fixated line may favour long-range regressions towards them, which in turn may favour text comprehension. This claim is consistent with previous studies that showed that look-back fixations to headings are performed with an integrative intent.

  15. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  16. Early and late inhibitions elicited by a peripheral visual cue on manual response to a visual target: Are they based on Cartesian coordinates?

    Directory of Open Access Journals (Sweden)

    Fábio V. Magalhães

    2005-01-01

    Full Text Available A non-informative cue (C elicits an inhibition of manual reaction time (MRT to a visual target (T. We report an experiment to examine if the spatial distribution of this inhibitory effect follows Polar or Cartesian coordinate systems. C appeared at one out of 8 isoeccentric (7o positions, the C-T angular distances (in polar coordinates were 0º or multiples of 45º and ISI were 100 or 800ms. Our main findings were: (a MRT was maximal when C- T distance was 0o and minimal when C-T distance was 180o and (b besides an angular distance effect, there is a meridian effect. When C and T occurred in the same quadrant, MRT was longer than when T and C occurred at the same distance (45o but on different sides of vertical or horizontal meridians. The latter finding indicates that the spatial distribution of the cue inhibitory effects is based on a Cartesian coordinate system.

  17. Helmet-mounted displays in long-range-target visual acquisition

    Science.gov (United States)

    Wilkins, Donald F.

    1999-07-01

    Aircrews have always sought a tactical advantage within the visual range (WVR) arena -- usually defined as 'see the opponent first.' Even with radar and interrogation foe/friend (IFF) systems, the pilot who visually acquires his opponent first has a significant advantage. The Helmet Mounted Cueing System (HMCS) equipped with a camera offers an opportunity to correct the problems with the previous approaches. By utilizing real-time image enhancement technique and feeding the image to the pilot on the HMD, the target can be visually acquired well beyond the range provided by the unaided eye. This paper will explore the camera and display requirements for such a system and place those requirements within the context of other requirements, such as weight.

  18. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    Science.gov (United States)

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  19. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    Science.gov (United States)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  20. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function...

  1. Visual Search for Feature and Conjunction Targets with an Attention Deficit

    OpenAIRE

    Arguin, Martin; Joanette, Yves; Cavanagh, Patrick

    1993-01-01

    Brain-damaged subjects who had previously been identified as suffering from a visual attention deficit for contralesional stimulation were tested on a series of visual search tasks. The experiments examined the hypothesis that the processing of single features is preattentive but that feature integration, necessary for the correct perception of conjunctions of features, requires attention (Treisman & Gelade, 1980 Treisman & Sato, 1990). Subjects searched for a feature target (orientation or c...

  2. FXR is a molecular target for the effects of vertical sleeve gastrectomy

    DEFF Research Database (Denmark)

    Ryan, Karen K; Tremaroli, Valentina; Clemmensen, Christoffer

    2014-01-01

    Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing......-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG...

  3. Acceptance criteria for the ITER divertor vertical target

    International Nuclear Information System (INIS)

    Fouquet, S.; Schlosser, J.; Merola, M.; Durocher, A.; Escourbiac, F.; Grosman, A.; Missirlian, M.; Portafaix, C.

    2006-01-01

    In the frame of the toroidal pump limiter fabrication for Tore Supra, CEA developed a large experience of infrared test for acceptance of high heat flux components armoured with carbon fibre composite flat tiles. The test is based on a thermal transient induced by an alternative hot/cold water flow in the heat sink structure. The tile surface temperature transients are compared with those of a reference element, the maximum difference for each tile leading to a value called ΔT ref m ax . This method is proposed for the commissioning of plasma facing components for the ITER divertor vertical target. This paper describes the determination of the best acceptance criteria for the 'monoblock' geometry of the carbon part. First, it has been shown that the location and the extension of the defects could reliably be determined by monitoring both top and lateral surfaces during the test. Second, it was possible to fix an acceptance method based on ΔT ref m ax . Samples with calibrated defects are now under fabrication to validate the results

  4. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    Science.gov (United States)

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  5. Visualization of target inspection data at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel, E-mail: potter15@llnl.gov [Lawrence Livermore National Laboratory (United States); Antipa, Nick, E-mail: antipa1@llnl.gov [Lawrence Livermore National Laboratory (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Target surfaces are measured using a phase-shifting diffraction interferometer. Black-Right-Pointing-Pointer Datasets are several gigabytes that consist of tens to hundreds of files. Black-Right-Pointing-Pointer Software tools that provide a high-level overview of the entire dataset. Black-Right-Pointing-Pointer Single datasets loaded into the visualization session can be individually rotated. Black-Right-Pointing-Pointer Multiple datasets with common features are found then datasets can be aligned. - Abstract: As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  6. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  7. [Associative Learning between Orientation and Color in Early Visual Areas].

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  8. Target templates: the precision of mental representations affects attentional guidance and decision-making in visual search.

    Science.gov (United States)

    Hout, Michael C; Goldinger, Stephen D

    2015-01-01

    When people look for things in the environment, they use target templates-mental representations of the objects they are attempting to locate-to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers' templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search.

  9. Visual performance on detection tasks with double-targets of the same and different difficulty.

    Science.gov (United States)

    Chan, Alan H S; Courtney, Alan J; Ma, C W

    2002-10-20

    This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.

  10. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    OpenAIRE

    中村 博文; 西 正孝

    2003-01-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium transport properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authors' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evalua...

  11. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  12. Contextual remapping in visual search after predictable target-location changes.

    Science.gov (United States)

    Conci, Markus; Sun, Luning; Müller, Hermann J

    2011-07-01

    Invariant spatial context can facilitate visual search. For instance, detection of a target is faster if it is presented within a repeatedly encountered, as compared to a novel, layout of nontargets, demonstrating a role of contextual learning for attentional guidance ('contextual cueing'). Here, we investigated how context-based learning adapts to target location (and identity) changes. Three experiments were performed in which, in an initial learning phase, observers learned to associate a given context with a given target location. A subsequent test phase then introduced identity and/or location changes to the target. The results showed that contextual cueing could not compensate for target changes that were not 'predictable' (i.e. learnable). However, for predictable changes, contextual cueing remained effective even immediately after the change. These findings demonstrate that contextual cueing is adaptive to predictable target location changes. Under these conditions, learned contextual associations can be effectively 'remapped' to accommodate new task requirements.

  13. Individual Differences in Search and Monitoring for Color Targets in Dynamic Visual Displays.

    Science.gov (United States)

    Muhl-Richardson, Alex; Godwin, Hayward J; Garner, Matthew; Hadwin, Julie A; Liversedge, Simon P; Donnelly, Nick

    2018-02-01

    Many real-world tasks now involve monitoring visual representations of data that change dynamically over time. Monitoring dynamically changing displays for the onset of targets can be done in two ways: detecting targets directly, post-onset, or predicting their onset from the prior state of distractors. In the present study, participants' eye movements were measured as they monitored arrays of 108 colored squares whose colors changed systematically over time. Across three experiments, the data show that participants detected the onset of targets both directly and predictively. Experiments 1 and 2 showed that predictive detection was only possible when supported by sequential color changes that followed a scale ordered in color space. Experiment 3 included measures of individual differences in working memory capacity (WMC) and anxious affect and a manipulation of target prevalence in the search task. It found that predictive monitoring for targets, and decisions about target onsets, were influenced by interactions between individual differences in verbal and spatial WMC and intolerance of uncertainty, a characteristic that reflects worry about uncertain future events. The results have implications for the selection of individuals tasked with monitoring dynamic visual displays for target onsets. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. A real-time articulatory visual feedback approach with target presentation for second language pronunciation learning.

    Science.gov (United States)

    Suemitsu, Atsuo; Dang, Jianwu; Ito, Takayuki; Tiede, Mark

    2015-10-01

    Articulatory information can support learning or remediating pronunciation of a second language (L2). This paper describes an electromagnetic articulometer-based visual-feedback approach using an articulatory target presented in real-time to facilitate L2 pronunciation learning. This approach trains learners to adjust articulatory positions to match targets for a L2 vowel estimated from productions of vowels that overlap in both L1 and L2. Training of Japanese learners for the American English vowel /æ/ that included visual training improved its pronunciation regardless of whether audio training was also included. Articulatory visual feedback is shown to be an effective method for facilitating L2 pronunciation learning.

  15. Optimal viewing position in vertically and horizontally presented Japanese words.

    Science.gov (United States)

    Kajii, N; Osaka, N

    2000-11-01

    In the present study, the optimal viewing position (OVP) phenomenon in Japanese Hiragana was investigated, with special reference to a comparison between the vertical and the horizontal meridians in the visual field. In the first experiment, word recognition scores were determined while the eyes were fixating predetermined locations in vertically and horizontally displayed words. Similar to what has been reported for Roman scripts, OVP curves, which were asymmetric with respect to the beginning of words, were observed in both conditions. However, this asymmetry was less pronounced for vertically than for horizontally displayed words. In the second experiment, the visibility of individual characters within strings was examined for the vertical and horizontal meridians. As for Roman characters, letter identification scores were better in the right than in the left visual field. However, identification scores did not differ between the upper and the lower sides of fixation along the vertical meridian. The results showed that the model proposed by Nazir, O'Regan, and Jacobs (1991) cannot entirely account for the OVP phenomenon. A model in which visual and lexical factors are combined is proposed instead.

  16. Implied Spatial Meaning and Visuospatial Bias: Conceptual Processing Influences Processing of Visual Targets and Distractors.

    Directory of Open Access Journals (Sweden)

    Davood G Gozli

    Full Text Available Concepts with implicit spatial meaning (e.g., "hat", "boots" can bias visual attention in space. This result is typically found in experiments with a single visual target per trial, which can appear at one of two locations (e.g., above vs. below. Furthermore, the interaction is typically found in the form of speeded responses to targets appearing at the compatible location (e.g., faster responses to a target above fixation, after reading "hat". It has been argued that these concept-space interactions could also result from experimentally-induced associations between the binary set of locations and the conceptual categories with upward and downward meaning. Thus, rather than reflecting a conceptually driven spatial bias, the effect could reflect a benefit for compatible cue-target sequences that occurs only after target onset. We addressed these concerns by going beyond a binary set of locations and employing a search display consisting of four items (above, below, left, and right. Within each search trial, before performing a visual search task, participants performed a conceptual task involving concepts with implicit upward or downward meaning. The search display, in addition to including a target, could also include a salient distractor. Assuming a conceptually driven visual bias, we expected to observe, first, a benefit for target processing at the compatible location and, second, an increase in the cost of the salient distractor. The findings confirmed both predictions, suggesting that concepts do indeed generate a spatial bias. Finally, results from a control experiment, without the conceptual task, suggest the presence of an axis-specific effect, in addition to the location-specific effect, suggesting that concepts might cause both location-specific and axis-specific spatial bias. Taken together, our findings provide additional support for the involvement of spatial processing in conceptual understanding.

  17. Experimental verification of agreement between thermal and real time visual melt-solid interface positions in vertical Bridgman grown germanium

    Science.gov (United States)

    Barber, P. G.; Fripp, A. L.; Debnam, W. J.; Woodell, G.; Berry, R. F.; Simchick, R. T.

    1996-03-01

    Measurements of the liquid-solid interface position during crystal growth were made by observing the discontinuity of the temperature gradient with movable thermocouples in a centerline, quartz capillary placed inside a sealed quartz ampoule of germanium in a vertical Bridgman furnace. Simultaneously, in situ, real time visual observations, using X-ray imaging technology, determined the position of the melt-solid interface. The radiographically detected interface position was several millimeters from the thermal interface position and the direction of displacement depended upon the direction of thermocouple insertion. Minimization of this spurious heat flow was achieved by using an unclad thermocouple that had each of its two wire leads entering the capillary from different ends of the furnace. Using this configuration the visual interface coincided with the thermal interface. Such observations show the utility of using in situ, real time visualization to record the melt-solid interface shape and position during crystal growth; and they suggest improvements in furnace and ampoule designs for use in high thermal gradients.

  18. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    Science.gov (United States)

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  19. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    Science.gov (United States)

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  20. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    Directory of Open Access Journals (Sweden)

    Irineu eLoturco

    2015-11-01

    Full Text Available The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015 between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise and unloaded (squat jump [SJ] height vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9% and 200-m dash (1.43%. In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes’ sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance.

  1. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.

    Science.gov (United States)

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.

  2. Light and dark adaptation of visually perceived eye level controlled by visual pitch.

    Science.gov (United States)

    Matin, L; Li, W

    1995-01-01

    The pitch of a visual field systematically influences the elevation at which a monocularly viewing subject sets a target so as to appear at visually perceived eye level (VPEL). The deviation of the setting from true eye level average approximately 0.6 times the angle of pitch while viewing a fully illuminated complexly structured visual field and is only slightly less with one or two pitched-from-vertical lines in a dark field (Matin & Li, 1994a). The deviation of VPEL from baseline following 20 min of dark adaptation reaches its full value less than 1 min after the onset of illumination of the pitched visual field and decays exponentially in darkness following 5 min of exposure to visual pitch, either 30 degrees topbackward or 20 degrees topforward. The magnitude of the VPEL deviation measured with the dark-adapted right eye following left-eye exposure to pitch was 85% of the deviation that followed pitch exposure of the right eye itself. Time constants for VPEL decay to the dark baseline were the same for same-eye and cross-adaptation conditions and averaged about 4 min. The time constants for decay during dark adaptation were somewhat smaller, and the change during dark adaptation extended over a 16% smaller range following the viewing of the dim two-line pitched-from-vertical stimulus than following the viewing of the complex field. The temporal course of light and dark adaptation of VPEL is virtually identical to the course of light and dark adaptation of the scotopic luminance threshold following exposure to the same luminance. We suggest that, following rod stimulation along particular retinal orientations by portions of the pitched visual field, the storage of the adaptation process resides in the retinogeniculate system and is manifested in the focal system as a change in luminance threshold and in the ambient system as a change in VPEL. The linear model previously developed to account for VPEL, which was based on the interaction of influences from the

  3. Visual Search and Target Cueing: A Comparison of Head-Mounted Versus Hand-Held Displays on the Allocation of Visual Attention

    National Research Council Canada - National Science Library

    Yeh, Michelle; Wickens, Christopher D

    1998-01-01

    We conducted a study to examine the effects of target cueing and conformality with a hand-held or head-mounted display to determine their effects on visual search tasks requiring focused and divided attention...

  4. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    Science.gov (United States)

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  6. Schizophrenia and visual backward masking: a general deficit of target enhancement

    Directory of Open Access Journals (Sweden)

    Michael H Herzog

    2013-05-01

    Full Text Available The obvious symptoms of schizophrenia are of cognitive and psychopathological nature. However, schizophrenia affects also visual processing which becomes particularly evident when stimuli are presented for short durations and are followed by a masking stimulus. Visual deficits are of great interest because they might be related to the genetic variations underlying the disease (endophenotype concept. Visual masking deficits are usually attributed to specific dysfunctions of the visual system such as a hypo- or hyper-active magnocellular system. Here, we propose that visual deficits are a manifestation of a general deficit related to the enhancement of weak neural signals as occurring in all other sorts of information processing. We summarize previous findings with the shine-through masking paradigm where a shortly presented vernier target is followed by a masking grating. The mask deteriorates visual processing of schizophrenic patients by almost an order of magnitude compared to healthy controls. We propose that these deficits are caused by dysfunctions of attention and the cholinergic system leading to weak neural activity corresponding to the vernier. High density electrophysiological recordings (EEG show that indeed neural activity is strongly reduced in schizophrenic patients which we attribute to the lack of vernier enhancement. When only the masking grating is presented, EEG responses are roughly comparable between patients and control. Our hypothesis is supported by findings relating visual masking to genetic deviants of the nicotinic 7 receptor (CHRNA7.

  7. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  8. Rare, but obviously there: effects of target frequency and salience on visual search accuracy.

    Science.gov (United States)

    Biggs, Adam T; Adamo, Stephen H; Mitroff, Stephen R

    2014-10-01

    Accuracy can be extremely important for many visual search tasks. However, numerous factors work to undermine successful search. Several negative influences on search have been well studied, yet one potentially influential factor has gone almost entirely unexplored-namely, how is search performance affected by the likelihood that a specific target might appear? A recent study demonstrated that when specific targets appear infrequently (i.e., once in every thousand trials) they were, on average, not often found. Even so, some infrequently appearing targets were actually found quite often, suggesting that the targets' frequency is not the only factor at play. Here, we investigated whether salience (i.e., the extent to which an item stands out during search) could explain why some infrequent targets are easily found whereas others are almost never found. Using the mobile application Airport Scanner, we assessed how individual target frequency and salience interacted in a visual search task that included a wide array of targets and millions of trials. Target frequency and salience were both significant predictors of search accuracy, although target frequency explained more of the accuracy variance. Further, when examining only the rarest target items (those that appeared on less than 0.15% of all trials), there was a significant relationship between salience and accuracy such that less salient items were less likely to be found. Beyond implications for search theory, these data suggest significant vulnerability for real-world searches that involve targets that are both infrequent and hard-to-spot. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.

    Science.gov (United States)

    Goffart, Laurent; Bourrelly, Clara; Quinet, Julie

    2017-01-01

    In primates, the appearance of an object moving in the peripheral visual field elicits an interceptive saccade that brings the target image onto the foveae. This foveation is then maintained more or less efficiently by slow pursuit eye movements and subsequent catch-up saccades. Sometimes, the tracking is such that the gaze direction looks spatiotemporally locked onto the moving object. Such a spatial synchronism is quite spectacular when one considers that the target-related signals are transmitted to the motor neurons through multiple parallel channels connecting separate neural populations with different conduction speeds and delays. Because of the delays between the changes of retinal activity and the changes of extraocular muscle tension, the maintenance of the target image onto the fovea cannot be driven by the current retinal signals as they correspond to past positions of the target. Yet, the spatiotemporal coincidence observed during pursuit suggests that the oculomotor system is driven by a command estimating continuously the current location of the target, i.e., where it is here and now. This inference is also supported by experimental perturbation studies: when the trajectory of an interceptive saccade is experimentally perturbed, a correction saccade is produced in flight or after a short delay, and brings the gaze next to the location where unperturbed saccades would have landed at about the same time, in the absence of visual feedback. In this chapter, we explain how such correction can be supported by previous visual signals without assuming "predictive" signals encoding future target locations. We also describe the basic neural processes which gradually yield the synchronization of eye movements with the target motion. When the process fails, the gaze is driven by signals related to past locations of the target, not by estimates to its upcoming locations, and a catch-up is made to reinitiate the synchronization. © 2017 Elsevier B.V. All rights

  10. More target features in visual working memory leads to poorer search guidance: Evidence from contralateral delay activity

    OpenAIRE

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J.

    2014-01-01

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewe...

  11. Precision and accuracy of the subjective haptic vertical in the roll plane

    Directory of Open Access Journals (Sweden)

    Bockisch Christopher J

    2010-07-01

    Full Text Available Abstract Background When roll-tilted, the subjective visual vertical (SVV deviates up to 40° from earth-vertical and trial-to-trial variability increases with head roll. Imperfections in the central processing of visual information were postulated to explain these roll-angle dependent errors. For experimental conditions devoid of visual input, e.g. adjustments of body posture or of an object along vertical in darkness, significantly smaller errors were noted. Whereas the accuracy of verticality adjustments seems to depend strongly on the paradigm, we hypothesize that the precision, i.e. the inverse of trial-to-trial variability, is less influenced by the experimental setup and mainly reflects properties of the otoliths. Here we measured the subjective haptic vertical (SHV and compared findings with previously reported SVV data. Twelve healthy right-handed human subjects (handedness assessed based on subjects' verbal report adjusted a rod with the right hand along perceived earth-vertical during static head roll-tilts (0-360°, steps of 20°. Results SHV adjustments showed a tendency for clockwise rod rotations to deviate counter-clockwise and for counter-clockwise rod rotations to deviate clockwise, indicating hysteresis. Clockwise rod rotations resulted in counter-clockwise shifts of perceived earth-vertical up to -11.7° and an average counter-clockwise SHV shift over all roll angles of -3.3° (± 11.0°; ± 1 StdDev. Counter-clockwise rod rotations yielded peak SHV deviations in clockwise direction of 8.9° and an average clockwise SHV shift over all roll angles of 1.8° (± 11.1°. Trial-to-trial variability was minimal in upright position, increased with increasing roll (peaking around 120-140° and decreased to intermediate values in upside-down orientation. Compared to SVV, SHV variability near upright and upside-down was non-significantly (p > 0.05 larger; both showed an m-shaped pattern of variability as a function of roll position

  12. Effects of Multimodal Displays About Threat Location on Target Acquisition and Attention to Visual and Auditory Communications

    National Research Council Canada - National Science Library

    Glumm, Monica M; Kehring, Kathy L; White, Timothy L

    2007-01-01

    This laboratory experiment examined the effects of paired sensory cues that indicate the location of targets on target acquisition performance, the recall of information presented in concurrent visual...

  13. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    Science.gov (United States)

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  14. Manipulation of pre-target activity on the right frontal eye field enhances conscious visual perception in humans.

    Directory of Open Access Journals (Sweden)

    Lorena Chanes

    Full Text Available The right Frontal Eye Field (FEF is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site's ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network.

  15. A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study.

    Science.gov (United States)

    Baier, Bernhard; Thömke, Frank; Wilting, Janine; Heinze, Caroline; Geber, Christian; Dieterich, Marianne

    2012-10-24

    The perceived subjective visual vertical (SVV) is an important sign of a vestibular otolith tone imbalance in the roll plane. Previous studies suggested that unilateral pontomedullary brainstem lesions cause ipsiversive roll-tilt of SVV, whereas pontomesencephalic lesions cause contraversive roll-tilts of SVV. However, previous data were of limited quality and lacked a statistical approach. We therefore tested roll-tilt of the SVV in 79 human patients with acute unilateral brainstem lesions due to stroke by applying modern statistical lesion-behavior mapping analysis. Roll-tilt of the SVV was verified to be a brainstem sign, and for the first time it was confirmed statistically that lesions of the medial longitudinal fasciculus (MLF) and the medial vestibular nucleus are associated with ipsiversive tilt of the SVV, whereas contraversive tilts are associated with lesions affecting the rostral interstitial nucleus of the MLF, the superior cerebellar peduncle, the oculomotor nucleus, and the interstitial nucleus of Cajal. Thus, these structures constitute the anatomical pathway in the brainstem for verticality perception. Present data indicate that graviceptive otolith signals present a predominant role in the multisensory system of verticality perception.

  16. Visual and Vestibular Determinants of Perceived Eye-Level

    Science.gov (United States)

    Cohen, Malcolm Martin

    2003-01-01

    Both gravitational and optical sources of stimulation combine to determine the perceived elevations of visual targets. The ways in which these sources of stimulation combine with one another in operational aeronautical environments are critical for pilots to make accurate judgments of the relative altitudes of other aircraft and of their own altitude relative to the terrain. In a recent study, my colleagues and I required eighteen observers to set visual targets at their apparent horizon while they experienced various levels of G(sub z) in the human centrifuge at NASA-Ames Research Center. The targets were viewed in darkness and also against specific background optical arrays that were oriented at various angles with respect to the vertical; target settings were lowered as Gz was increased; this effect was reduced when the background optical array was visible. Also, target settings were displaced in the direction that the background optical array was pitched. Our results were attributed to the combined influences of otolith-oculomotor mechanisms that underlie the elevator illusion and visual-oculomotor mechanisms (optostatic responses) that underlie the perceptual effects of viewing pitched optical arrays that comprise the background. In this paper, I present a mathematical model that describes the independent and combined effects of G(sub z) intensity and the orientation and structure of background optical arrays; the model predicts quantitative deviations from normal accurate perceptions of target localization under a variety of conditions. Our earlier experimental results and the mathematical model are described in some detail, and the effects of viewing specific optical arrays under various gravitational-inertial conditions encountered in aeronautical environments are discussed.

  17. Gunslinger Effect and Müller-Lyer Illusion: Examining Early Visual Information Processing for Late Limb-Target Control.

    Science.gov (United States)

    Roberts, James W; Lyons, James; Garcia, Daniel B L; Burgess, Raquel; Elliott, Digby

    2017-07-01

    The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and Müller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control.

  18. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    Science.gov (United States)

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.

  19. Manufacturing and testing of a prototypical divertor vertical target for ITER

    Science.gov (United States)

    Merola, M.; Plöchl, L.; Chappuis, Ph; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G.

    2000-12-01

    After an extensive R&D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m 2, 1000 cycles at 10 MW/m 2 and more then 1000 cycles at 15-20 MW/m 2. The final critical heat flux test reached a value in excess of 30 MW/m 2.

  20. Priming of pop-out modulates attentional target selection in visual search: Behavioural and electrophysiological evidence

    OpenAIRE

    Eimer, Martin; Kiss, Monika; Cheung, Theodore

    2009-01-01

    Previous behavioural studies have shown that the repetition of target or distractor features across trials speeds pop-out visual search. We obtained behavioural and event-related brain potential (ERP) measures in two experiments where participants searched for a colour singleton target among homogeneously coloured distractors. An ERP marker of spatially selective attention (N2pc component) was delayed when either target or distractor colours were swapped across successive trials, demonstratin...

  1. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  2. Influence of anaerobic physical effort in the horizontal and vertical peripheral view INFLUENCIA DEL ESFUERZO FÍSICO ANAERÓBICO EN LA VISIÓN PERIFÉRICA VERTICAL Y HORIZONTAL

    Directory of Open Access Journals (Sweden)

    M. Arteaga

    2010-09-01

    Full Text Available

    There now seems to be a generalized tendency to consider that sporting performance declines as the sportsperson becomes fatigued. However, there is little empirical evidence to show that this adversely affects visual function. In some sports it is necessary to see stimuli in zones peripheral to central vision. The aim of this study is to analyze the influence of anaerobic exertion on vertical and horizontal Peripheral Vision. An intra-subject design was used with 14 replications. The visual parameters of Vertical Peripheral Vision and Horizontal Peripheral Vision were measured in different fatigue conditions to analyze the possible negative influence which this could exert on the subject’s visual capacity. The results show that fatigue due to anaerobic effort does not harm the visual abilities studied.
    KEY WORDS: Peripheral Vision, Fatigue, Anaerobic exertion, Visual abilities

    Parece haber una tendencia generalizada a considerar que el rendimiento deportivo disminuye en la medida en que los deportistas acumulan fatiga; sin embargo existen pocas evidencias empíricas que indiquen que la función visual se vea perjudicada por este motivo. En algunos deportes es necesario observar estímulos en zonas periféricas a la visión central. En el presente estudio se pretende analizar la influencia de los esfuerzos anaeeróbicos sobre la Visión Periférica (vertical y horizontal. Se utilizó un diseño intrasujeto A-(B1,B2-A con catorce replicaciones. Se realizaron mediciones de los parámetros visuales: Visión Periférica Vertical y Visión Periférica Horizontal en diferentes condiciones de fatiga para analizar la posible influencia negativa que pudiera ejercer ésta sobre la capacidad visual de los sujetos. Los resultados permiten afirmar que la fatiga debida a esfuerzos de tipo anaeróbico no producen un perjuicio sobre las habilidades visuales estudiadas.
    PALABRAS CLAVE: Visi

  3. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets

    Science.gov (United States)

    De Temmerman, G.; Hirai, T.; Pitts, R. A.

    2018-04-01

    The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i

  4. Classification of Targets and Distractors Present in Visual Hemifields Using Time-Frequency Domain EEG Features

    Directory of Open Access Journals (Sweden)

    Sweeti

    2018-01-01

    Full Text Available This paper presents a classification system to classify the cognitive load corresponding to targets and distractors present in opposite visual hemifields. The approach includes the study of EEG (electroencephalogram signal features acquired in a spatial attention task. The process comprises of EEG feature selection based on the feature distribution, followed by the stepwise discriminant analysis- (SDA- based channel selection. Repeated measure analysis of variance (rANOVA is applied to test the statistical significance of the selected features. Classifiers are developed and compared using the selected features to classify the target and distractor present in visual hemifields. The results provide a maximum classification accuracy of 87.2% and 86.1% and an average classification accuracy of 76.5 ± 4% and 76.2 ± 5.3% over the thirteen subjects corresponding to the two task conditions. These correlates present a step towards building a feature-based neurofeedback system for visual attention.

  5. Words, shape, visual search and visual working memory in 3-year-old children.

    Science.gov (United States)

    Vales, Catarina; Smith, Linda B

    2015-01-01

    Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated search times and to examine one route through which labels could have their effect: By influencing the visual working memory representation of the target. The targets and distractors were pictures of instances of basic-level known categories and the labels were the common name for the target category. We predicted that the label would enhance the visual working memory representation of the target object, guiding attention to objects that better matched the target representation. Experiments 1 and 2 used conjunctive search tasks, and Experiment 3 varied shape discriminability between targets and distractors. Experiment 4 compared the effects of labels to repeated presentations of the visual target, which should also influence the working memory representation of the target. The overall pattern fits contemporary theories of how the contents of visual working memory interact with visual search and attention, and shows that even in very young children heard words affect the processing of visual information. © 2014 John Wiley & Sons Ltd.

  6. Enhanced compressed sensing for visual target tracking in wireless visual sensor networks

    Science.gov (United States)

    Qiang, Guo

    2017-11-01

    Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.

  7. Perceiving the vertical distances of surfaces by means of a hand-held probe.

    Science.gov (United States)

    Chan, T C; Turvey, M T

    1991-05-01

    Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.

  8. Study of target and non-target interplay in spatial attention task.

    Science.gov (United States)

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  9. Distractor dwelling, skipping, and revisiting determine target absent performance in difficult visual search

    Directory of Open Access Journals (Sweden)

    Gernot Horstmann

    2016-08-01

    Full Text Available Some targets in visual search are more difficult to find than others. In particular, a target that is similar to the distractors is more difficult to find than a target that is dissimilar to the distractors. Efficiency differences between easy and difficult searches are manifest not only in target-present trials but also in target-absent trials. In fact, even physically identical displays are searched through with different efficiency depending on the searched-for target. Here, we monitored eye movements in search for a target similar to the distractors (difficult search versus a target dissimilar to the distractors (easy search. We aimed to examine three hypotheses concerning the causes of differential search efficiencies in target-absent trials: (a distractor dwelling (b distractor skipping, and (c distractor revisiting. Reaction times increased with target similarity which is consistent with existing theories and replicates earlier results. Eye movement data indicated guidance in target trials, even though search was very slow. Dwelling, skipping, and revisiting contributed to low search efficiency in difficult search, with dwelling being the strongest factor. It is argued that differences in dwell time account for a large amount of total search time differences.

  10. Distractor Dwelling, Skipping, and Revisiting Determine Target Absent Performance in Difficult Visual Search

    Science.gov (United States)

    Horstmann, Gernot; Herwig, Arvid; Becker, Stefanie I.

    2016-01-01

    Some targets in visual search are more difficult to find than others. In particular, a target that is similar to the distractors is more difficult to find than a target that is dissimilar to the distractors. Efficiency differences between easy and difficult searches are manifest not only in target-present trials but also in target-absent trials. In fact, even physically identical displays are searched through with different efficiency depending on the searched-for target. Here, we monitored eye movements in search for a target similar to the distractors (difficult search) versus a target dissimilar to the distractors (easy search). We aimed to examine three hypotheses concerning the causes of differential search efficiencies in target-absent trials: (a) distractor dwelling (b) distractor skipping, and (c) distractor revisiting. Reaction times increased with target similarity which is consistent with existing theories and replicates earlier results. Eye movement data indicated guidance in target trials, even though search was very slow. Dwelling, skipping, and revisiting contributed to low search efficiency in difficult search, with dwelling being the strongest factor. It is argued that differences in dwell time account for a large amount of total search time differences. PMID:27574510

  11. The effect of vertical and horizontal symmetry on memory for tactile patterns in late blind individuals.

    Science.gov (United States)

    Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B

    2013-02-01

    Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.

  12. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Grattarola, M. E-mail: gratta@ari.ansaldo.it; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F

    2000-11-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components.

  13. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    International Nuclear Information System (INIS)

    Grattarola, M.; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F.

    2000-01-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components

  14. Multirapid Serial Visual Presentation Framework for EEG-Based Target Detection

    Directory of Open Access Journals (Sweden)

    Zhimin Lin

    2017-01-01

    Full Text Available Target image detection based on a rapid serial visual presentation (RSVP paradigm is a typical brain-computer interface system with various applications, such as image retrieval. In an RSVP paradigm, a P300 component is detected to determine target images. This strategy requires high-precision single-trial P300 detection methods. However, the performance of single-trial detection methods is relatively lower than that of multitrial P300 detection methods. Image retrieval based on multitrial P300 is a new research direction. In this paper, we propose a triple-RSVP paradigm with three images being presented simultaneously and a target image appearing three times. Thus, multitrial P300 classification methods can be used to improve detection accuracy. In this study, these mechanisms were extended and validated, and the characteristics of the multi-RSVP framework were further explored. Two different P300 detection algorithms were also utilized in multi-RSVP to demonstrate that the scheme is universally applicable. Results revealed that the detection accuracy of the multi-RSVP paradigm was higher than that of the standard RSVP paradigm. The results validate the effectiveness of the proposed method, and this method can provide a whole new idea in the field of EEG-based target detection.

  15. The Role of Visual Cues in Microgravity Spatial Orientation

    Science.gov (United States)

    Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.

    2003-01-01

    In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body

  16. [WMN: a negative ERPs component related to working memory during non-target visual stimuli processing].

    Science.gov (United States)

    Zhao, Lun; Wei, Jin-he

    2003-10-01

    To study non-target stimuli processing in the brain. Features of the event-related potentials (ERPs) from non-target stimuli during selective response task (SR) was compared with that during visual selective discrimination (DR) task in 26 normal subjects. The stimuli consisted of two color LED flashes (red and green) appeared randomly in left (LVF) or right (RVF) visual field with same probability. ERPs were derived at 9 electrode sites on the scalp under 2 task conditions: a) SR, making switch response to the target (NT) stimuli from LVF or RVF in one direction and making no response to the non-target (NT) ones; b) DR, making switching response to T stimuli differentially, i.e., to the left for T from LVF and to the right for T from RVF. 1) the non-target stimuli in DR conditions, compared with that in SR condition, elicited smaller P2 and P3 components and larger N2 component at the frontal brain areas; 2) a significant negative component, named as WMN (working memory negativity), appeared in the non-target ERPs during DR in the period of 100 to 700 ms post stimulation which was predominant at the frontal brain areas. According to the major difference between brain activities for non-target stimuli during SR and DR, the predominant appearance of WMN at the frontal brain areas demonstrated that the non-target stimulus processing was an active process and was related to working memory, i.e., the temporary elimination and the retrieval of the response mode which was stored in working memory.

  17. Manufacturing and testing of a prototypical divertor vertical target for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M. E-mail: merolam@ipp.mpg.de; Ploechl, L.; Chappuis, Ph.; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G

    2000-12-01

    After an extensive R and D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m{sup 2}, 1000 cycles at 10 MW/m{sup 2} and more then 1000 cycles at 15-20 MW/m{sup 2}. The final critical heat flux test reached a value in excess of 30 MW/m{sup 2}.

  18. Assessment of the perception of verticality and horizontality with self-paced saccades.

    Science.gov (United States)

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  19. Subjective Vertical Conflict Theory and Space Motion Sickness.

    Science.gov (United States)

    Chen, Wei; Chao, Jian-Gang; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2016-02-01

    Space motion sickness (SMS) remains a troublesome problem during spaceflight. The subjective vertical (SV) conflict theory postulates that all motion sickness provoking situations are characterized by a condition in which the SV sensed from gravity and visual and idiotropic cues differs from the expected vertical. This theory has been successfully used to predict motion sickness in different vehicles on Earth. We have summarized the most outstanding and recent studies on the illusions and characteristics associated with spatial disorientation and SMS during weightlessness, such as cognitive map and mental rotation, the visual reorientation and inversion illusions, and orientation preferences between visual scenes and the internal z-axis of the body. The relationships between the SV and the incidence of and susceptibility to SMS as well as spatial disorientation were addressed. A consistent framework was presented to understand and explain SMS characteristics in more detail on the basis of the SV conflict theory, which is expected to be more advantageous in SMS prediction, prevention, and training.

  20. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  1. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  2. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Parallel coding of conjunctions in visual search.

    Science.gov (United States)

    Found, A

    1998-10-01

    Two experiments investigated whether the conjunctive nature of nontarget items influenced search for a conjunction target. Each experiment consisted of two conditions. In both conditions, the target item was a red bar tilted to the right, among white tilted bars and vertical red bars. As well as color and orientation, display items also differed in terms of size. Size was irrelevant to search in that the size of the target varied randomly from trial to trial. In one condition, the size of items correlated with the other attributes of display items (e.g., all red items were big and all white items were small). In the other condition, the size of items varied randomly (i.e., some red items were small and some were big, and some white items were big and some were small). Search was more efficient in the size-correlated condition, consistent with the parallel coding of conjunctions in visual search.

  4. Visually directed vs. software-based targeted biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer.

    Science.gov (United States)

    Valerio, Massimo; McCartan, Neil; Freeman, Alex; Punwani, Shonit; Emberton, Mark; Ahmed, Hashim U

    2015-10-01

    Targeted biopsy based on cognitive or software magnetic resonance imaging (MRI) to transrectal ultrasound registration seems to increase the detection rate of clinically significant prostate cancer as compared with standard biopsy. However, these strategies have not been directly compared against an accurate test yet. The aim of this study was to obtain pilot data on the diagnostic ability of visually directed targeted biopsy vs. software-based targeted biopsy, considering transperineal template mapping (TPM) biopsy as the reference test. Prospective paired cohort study included 50 consecutive men undergoing TPM with one or more visible targets detected on preoperative multiparametric MRI. Targets were contoured on the Biojet software. Patients initially underwent software-based targeted biopsies, then visually directed targeted biopsies, and finally systematic TPM. The detection rate of clinically significant disease (Gleason score ≥3+4 and/or maximum cancer core length ≥4mm) of one strategy against another was compared by 3×3 contingency tables. Secondary analyses were performed using a less stringent threshold of significance (Gleason score ≥4+3 and/or maximum cancer core length ≥6mm). Median age was 68 (interquartile range: 63-73); median prostate-specific antigen level was 7.9ng/mL (6.4-10.2). A total of 79 targets were detected with a mean of 1.6 targets per patient. Of these, 27 (34%), 28 (35%), and 24 (31%) were scored 3, 4, and 5, respectively. At a patient level, the detection rate was 32 (64%), 34 (68%), and 38 (76%) for visually directed targeted, software-based biopsy, and TPM, respectively. Combining the 2 targeted strategies would have led to detection rate of 39 (78%). At a patient level and at a target level, software-based targeted biopsy found more clinically significant diseases than did visually directed targeted biopsy, although this was not statistically significant (22% vs. 14%, P = 0.48; 51.9% vs. 44.3%, P = 0.24). Secondary

  5. Does apparent size capture attention in visual search? Evidence from the Muller-Lyer illusion.

    Science.gov (United States)

    Proulx, Michael J; Green, Monique

    2011-11-23

    Is perceived size a crucial factor for the bottom-up guidance of attention? Here, a visual search experiment was used to examine whether an irrelevantly longer object can capture attention when participants were to detect a vertical target item. The longer object was created by an apparent size manipulation, the Müller-Lyer illusion; however, all objects contained the same number of pixels. The vertical target was detected more efficiently when it was also perceived as the longer item that was defined by apparent size. Further analysis revealed that the longer Müller-Lyer object received a greater degree of attentional priority than published results for other features such as retinal size, luminance contrast, and the abrupt onset of a new object. The present experiment has demonstrated for the first time that apparent size can capture attention and, thus, provide bottom-up guidance on the basis of perceived salience.

  6. Priming and the guidance by visual and categorical templates in visual search

    Directory of Open Access Journals (Sweden)

    Anna eWilschut

    2014-02-01

    Full Text Available Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity towards the target feature, i.e. the extent to which observers searched selectively among items of the cued versus uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.

  7. Priming and the guidance by visual and categorical templates in visual search.

    Science.gov (United States)

    Wilschut, Anna; Theeuwes, Jan; Olivers, Christian N L

    2014-01-01

    Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity toward the target feature, i.e., the extent to which observers searched selectively among items of the cued vs. uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.

  8. Visual search in Alzheimer's disease: a deficiency in processing conjunctions of features.

    Science.gov (United States)

    Tales, A; Butler, S R; Fossey, J; Gilchrist, I D; Jones, R W; Troscianko, T

    2002-01-01

    Human vision often needs to encode multiple characteristics of many elements of the visual field, for example their lightness and orientation. The paradigm of visual search allows a quantitative assessment of the function of the underlying mechanisms. It measures the ability to detect a target element among a set of distractor elements. We asked whether Alzheimer's disease (AD) patients are particularly affected in one type of search, where the target is defined by a conjunction of features (orientation and lightness) and where performance depends on some shifting of attention. Two non-conjunction control conditions were employed. The first was a pre-attentive, single-feature, "pop-out" task, detecting a vertical target among horizontal distractors. The second was a single-feature, partly attentive task in which the target element was slightly larger than the distractors-a "size" task. This was chosen to have a similar level of attentional load as the conjunction task (for the control group), but lacked the conjunction of two features. In an experiment, 15 AD patients were compared to age-matched controls. The results suggested that AD patients have a particular impairment in the conjunction task but not in the single-feature size or pre-attentive tasks. This may imply that AD particularly affects those mechanisms which compare across more than one feature type, and spares the other systems and is not therefore simply an 'attention-related' impairment. Additionally, these findings show a double dissociation with previous data on visual search in Parkinson's disease (PD), suggesting a different effect of these diseases on the visual pathway.

  9. Visualization and targeted disruption of protein interactions in living cells

    Science.gov (United States)

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53–HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein–protein interactions in practically any cell type and species. PMID:24154492

  10. EEG and Eye Tracking Signatures of Target Encoding during Structured Visual Search

    Directory of Open Access Journals (Sweden)

    Anne-Marie Brouwer

    2017-05-01

    Full Text Available EEG and eye tracking variables are potential sources of information about the underlying processes of target detection and storage during visual search. Fixation duration, pupil size and event related potentials (ERPs locked to the onset of fixation or saccade (saccade-related potentials, SRPs have been reported to differ dependent on whether a target or a non-target is currently fixated. Here we focus on the question of whether these variables also differ between targets that are subsequently reported (hits and targets that are not (misses. Observers were asked to scan 15 locations that were consecutively highlighted for 1 s in pseudo-random order. Highlighted locations displayed either a target or a non-target stimulus with two, three or four targets per trial. After scanning, participants indicated which locations had displayed a target. To induce memory encoding failures, participants concurrently performed an aurally presented math task (high load condition. In a low load condition, participants ignored the math task. As expected, more targets were missed in the high compared with the low load condition. For both conditions, eye tracking features distinguished better between hits and misses than between targets and non-targets (with larger pupil size and shorter fixations for missed compared with correctly encoded targets. In contrast, SRP features distinguished better between targets and non-targets than between hits and misses (with average SRPs showing larger P300 waveforms for targets than for non-targets. Single trial classification results were consistent with these averages. This work suggests complementary contributions of eye and EEG measures in potential applications to support search and detect tasks. SRPs may be useful to monitor what objects are relevant to an observer, and eye variables may indicate whether the observer should be reminded of them later.

  11. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials

    Directory of Open Access Journals (Sweden)

    Andrey R Nikolaev

    2013-06-01

    Full Text Available In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short scrutinizing but not for long explorative saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades moving up in temperature were preceded by presaccadic activity of higher amplitude than those moving down. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene.

  12. Auditory and Visual Memories in PTSD Patients Targeted with Eye Movements and Counting: The Effect of Modality-Specific Loading of Working Memory

    Directory of Open Access Journals (Sweden)

    Suzy J. M. A. Matthijssen

    2017-11-01

    Full Text Available Introduction: Eye movement desensitization and reprocessing (EMDR therapy is an evidence-based treatment for post-traumatic stress disorder (PTSD. A key element of this therapy is simultaneously recalling an emotionally disturbing memory and performing a dual task that loads working memory. Memories targeted with this therapy are mainly visual, though there is some evidence that auditory memories can also be targeted.Objective: The present study tested whether auditory memories can be targeted with EMDR in PTSD patients. A second objective was to test whether taxing the patient (performing a dual task while recalling a memory in a modality specific way (auditory demanding for auditory memories and visually demanding for visual memories was more effective in reducing the emotionality experienced than taxing in cross-modality.Methods: Thirty-six patients diagnosed with PTSD were asked to recall two disturbing memories, one mainly visual, the other one mainly auditory. They rated the emotionality of the memories before being exposed to any condition. Both memories were then recalled under three alternating conditions [visual taxation, auditory taxation, and a control condition (CC, which comprised staring a non-moving dot] – counterbalanced in order – and patients rerated emotionality after each condition.Results: All three conditions were equally effective in reducing the emotionality of the auditory memory. Auditory loading was more effective in reducing the emotionality in the visual intrusion than the CC, but did not differ from the visual load.Conclusion: Auditory and visual aversive memories were less emotional after working memory taxation (WMT. This has some clinical implications for EMDR therapy, where mainly visual intrusions are targeted. In this study, there was no benefit of modality specificity. Further fundamental research should be conducted to specify the best protocol for WMT.

  13. Auditory and Visual Memories in PTSD Patients Targeted with Eye Movements and Counting: The Effect of Modality-Specific Loading of Working Memory.

    Science.gov (United States)

    Matthijssen, Suzy J M A; Verhoeven, Liselotte C M; van den Hout, Marcel A; Heitland, Ivo

    2017-01-01

    Introduction: Eye movement desensitization and reprocessing (EMDR) therapy is an evidence-based treatment for post-traumatic stress disorder (PTSD). A key element of this therapy is simultaneously recalling an emotionally disturbing memory and performing a dual task that loads working memory. Memories targeted with this therapy are mainly visual, though there is some evidence that auditory memories can also be targeted. Objective: The present study tested whether auditory memories can be targeted with EMDR in PTSD patients. A second objective was to test whether taxing the patient (performing a dual task while recalling a memory) in a modality specific way (auditory demanding for auditory memories and visually demanding for visual memories) was more effective in reducing the emotionality experienced than taxing in cross-modality. Methods: Thirty-six patients diagnosed with PTSD were asked to recall two disturbing memories, one mainly visual, the other one mainly auditory. They rated the emotionality of the memories before being exposed to any condition. Both memories were then recalled under three alternating conditions [visual taxation, auditory taxation, and a control condition (CC), which comprised staring a non-moving dot] - counterbalanced in order - and patients rerated emotionality after each condition. Results: All three conditions were equally effective in reducing the emotionality of the auditory memory. Auditory loading was more effective in reducing the emotionality in the visual intrusion than the CC, but did not differ from the visual load. Conclusion: Auditory and visual aversive memories were less emotional after working memory taxation (WMT). This has some clinical implications for EMDR therapy, where mainly visual intrusions are targeted. In this study, there was no benefit of modality specificity. Further fundamental research should be conducted to specify the best protocol for WMT.

  14. CFD Validation of Gas Injection in Flowing Mercury over Vertical Smooth and Grooved Wall

    International Nuclear Information System (INIS)

    Abdou, Ashraf A.; Wendel, Mark W.; Felde, David K.; Riemer, Bernie

    2009-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL). The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) can be used as a diagnostic tool to see inside the liquid mercury and guide the experimental efforts. In this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over smooth, vertically grooved and horizontally grooved walls are carried out with the commercially available CFD code Fluent-12 from ANSYS. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. V-shaped vertical and horizontal grooves with 0.5 mm pitch and about 0.7 mm depth were machined in the transparent wall of acrylic test sections. Flow visualization data of helium gas coverage through transparent test sections is obtained with a high-speed camera at the ORNL target test facility (TTF). The helium gas mass flow rate is 8 mg/min and introduced through a 0.5 mm diameter port. The local mercury velocity is 0.9 m/s. In this paper, the helium gas flow rate and the local mercury velocity are kept constant for the three cases. Time integration of predicted helium gas volume fraction over time is done to evaluate the gas coverage and calculate the average thickness of the helium gas layer. The predicted time-integrated gas coverage over vertically grooved and horizontally grooved test sections is better than over a smooth wall. The

  15. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation.

  16. A Unique Role of Endogenous Visual-Spatial Attention in Rapid Processing of Multiple Targets

    Science.gov (United States)

    Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru

    2011-01-01

    Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions).…

  17. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  18. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    Science.gov (United States)

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  19. Vertical Launch System Loadout Planner

    Science.gov (United States)

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  20. 3D Visualization of Global Ocean Circulation

    Science.gov (United States)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  1. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman; de Blanck, Steen Riisgaard; Josipovic, Mirjana

    2017-01-01

    Purpose: The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath hold (DISH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients.Methods: Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course...... of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm.Results: A mean...... small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. (C) 2017 Elsevier B.V. All rights reserved....

  2. Distinct neural networks for target feature versus dimension changes in visual search, as revealed by EEG and fMRI.

    Science.gov (United States)

    Becker, Stefanie I; Grubert, Anna; Dux, Paul E

    2014-11-15

    In visual search, responses are slowed, from one trial to the next, both when the target dimension changes (e.g., from a color target to a size target) and when the target feature changes (e.g., from a red target to a green target) relative to being repeated across trials. The present study examined whether such feature and dimension switch costs can be attributed to the same underlying mechanism(s). Contrary to this contention, an EEG study showed that feature changes influenced visual selection of the target (i.e., delayed N2pc onset), whereas dimension changes influenced the later process of response selection (i.e., delayed s-LRP onset). An fMRI study provided convergent evidence for the two-system view: Compared with repetitions, feature changes led to increased activation in the occipital cortex, and superior and inferior parietal lobules, which have been implicated in spatial attention. By contrast, dimension changes led to activation of a fronto-posterior network that is primarily linked with response selection (i.e., pre-motor cortex, supplementary motor area and frontal areas). Taken together, the results suggest that feature and dimension switch costs are based on different processes. Specifically, whereas target feature changes delay attention shifts to the target, target dimension changes interfere with later response selection operations. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  3. Target-nontarget similarity decreases search efficiency and increases stimulus-driven control in visual search.

    Science.gov (United States)

    Barras, Caroline; Kerzel, Dirk

    2017-10-01

    Some points of criticism against the idea that attentional selection is controlled by bottom-up processing were dispelled by the attentional window account. The attentional window account claims that saliency computations during visual search are only performed for stimuli inside the attentional window. Therefore, a small attentional window may avoid attentional capture by salient distractors because it is likely that the salient distractor is located outside the window. In contrast, a large attentional window increases the chances of attentional capture by a salient distractor. Large and small attentional windows have been associated with efficient (parallel) and inefficient (serial) search, respectively. We compared the effect of a salient color singleton on visual search for a shape singleton during efficient and inefficient search. To vary search efficiency, the nontarget shapes were either similar or dissimilar with respect to the shape singleton. We found that interference from the color singleton was larger with inefficient than efficient search, which contradicts the attentional window account. While inconsistent with the attentional window account, our results are predicted by computational models of visual search. Because of target-nontarget similarity, the target was less salient with inefficient than efficient search. Consequently, the relative saliency of the color distractor was higher with inefficient than with efficient search. Accordingly, stronger attentional capture resulted. Overall, the present results show that bottom-up control by stimulus saliency is stronger when search is difficult, which is inconsistent with the attentional window account.

  4. Allocentrically implied target locations are updated in an eye-centred reference frame.

    Science.gov (United States)

    Thompson, Aidan A; Glover, Christopher V; Henriques, Denise Y P

    2012-04-18

    When reaching to remembered target locations following an intervening eye movement a systematic pattern of error is found indicating eye-centred updating of visuospatial memory. Here we investigated if implicit targets, defined only by allocentric visual cues, are also updated in an eye-centred reference frame as explicit targets are. Participants viewed vertical bars separated by varying distances, and horizontal lines of equivalently varying lengths, implying a "target" location at the midpoint of the stimulus. After determining the implied "target" location from only the allocentric stimuli provided, participants saccaded to an eccentric location, and reached to the remembered "target" location. Irrespective of the type of stimulus reaching errors to these implicit targets are gaze-dependent, and do not differ from those found when reaching to remembered explicit targets. Implicit target locations are coded and updated as a function of relative gaze direction with respect to those implied locations just as explicit targets are, even though no target is specifically represented. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    Science.gov (United States)

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  6. Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy.

    Science.gov (United States)

    Sa, Inkyu; Hrabar, Stefan; Corke, Peter

    2015-09-02

    This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations Sensors 2015, 15 22004 and indoor/outdoor (day and night) flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole.

  7. Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy

    Directory of Open Access Journals (Sweden)

    Inkyu Sa

    2015-09-01

    Full Text Available This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS using an Extended Kalman Filter (EKF and estimator-free Image-Based Visual Servoing (IBVS. Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations Sensors 2015, 15 22004 and indoor/outdoor (day and night flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole.

  8. Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy

    Science.gov (United States)

    Sa, Inkyu; Hrabar, Stefan; Corke, Peter

    2015-01-01

    This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations and indoor/outdoor (day and night) flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole. PMID:26340631

  9. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    Science.gov (United States)

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Endpoints of arm movements to visual targets

    NARCIS (Netherlands)

    van den Dobbelsteen, John; Brenner, Eli; Smeets, Jeroen B J

    2001-01-01

    Reaching out for objects with an unseen arm involves using both visual and kinesthetic information. Neither visual nor kinesthetic information is perfect. Each is subject to both constant and variable errors. To evaluate how such errors influence performance in natural goal-directed movements, we

  11. P1-19: Horizontal Vertical Illusion by Touch

    Directory of Open Access Journals (Sweden)

    Yoshinari Kinoshita

    2012-10-01

    Full Text Available Revesz (1934 Zeitschrift fur PsychologieBd. 1, Kap 20 and Bean (1938 Journal of Experimental Psychology 22 283–289. reported almost all the geometrical optical illusions existed in a tactual mode. Such a study can examine theories of visual illusions with modality-free theories. A number of articles have been devoted to the theory that repeated judgments decline the magnitude of visual illusion. In the current study, we examine whether repeated judgments decline the magnitude of geometrical haptic illusion. The Fick illusion (i.e., a horizontal vertical illusion was investigated. A graphics Braille display with 32×48 dots was used to present an inverted T haptically without vision. The horizontal line was consistently 49.2 mm long, and the vertical line was varied in each trial. Three subjects with normal sight participated. They judged which line was longer than the other. The point of subjective equality at which the subject perceives the two lines to be the same was measured using the method of constant stimuli. In the first session the mean PSE was about 13%; to compensate for the illusion, the vertical line must be set physically shorter than the horizontal line. We found that repeated judgments produced a reduction in illusion magnitude and dissolved the illusion entirely.

  12. An individual differences approach to multiple-target visual search errors: How search errors relate to different characteristics of attention.

    Science.gov (United States)

    Adamo, Stephen H; Cain, Matthew S; Mitroff, Stephen R

    2017-12-01

    A persistent problem in visual search is that searchers are more likely to miss a target if they have already found another in the same display. This phenomenon, the Subsequent Search Miss (SSM) effect, has remained despite being a known issue for decades. Increasingly, evidence supports a resource depletion account of SSM errors-a previously detected target consumes attentional resources leaving fewer resources available for the processing of a second target. However, "attention" is broadly defined and is composed of many different characteristics, leaving considerable uncertainty about how attention affects second-target detection. The goal of the current study was to identify which attentional characteristics (i.e., selection, limited capacity, modulation, and vigilance) related to second-target misses. The current study compared second-target misses to an attentional blink task and a vigilance task, which both have established measures that were used to operationally define each of four attentional characteristics. Second-target misses in the multiple-target search were correlated with (1) a measure of the time it took for the second target to recovery from the blink in the attentional blink task (i.e., modulation), and (2) target sensitivity (d') in the vigilance task (i.e., vigilance). Participants with longer recovery and poorer vigilance had more second-target misses in the multiple-target visual search task. The results add further support to a resource depletion account of SSM errors and highlight that worse modulation and poor vigilance reflect a deficit in attentional resources that can account for SSM errors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Visual reinforcement shapes eye movements in visual search.

    Science.gov (United States)

    Paeye, Céline; Schütz, Alexander C; Gegenfurtner, Karl R

    2016-08-01

    We use eye movements to gain information about our visual environment; this information can indirectly be used to affect the environment. Whereas eye movements are affected by explicit rewards such as points or money, it is not clear whether the information gained by finding a hidden target has a similar reward value. Here we tested whether finding a visual target can reinforce eye movements in visual search performed in a noise background, which conforms to natural scene statistics and contains a large number of possible target locations. First we tested whether presenting the target more often in one specific quadrant would modify eye movement search behavior. Surprisingly, participants did not learn to search for the target more often in high probability areas. Presumably, participants could not learn the reward structure of the environment. In two subsequent experiments we used a gaze-contingent display to gain full control over the reinforcement schedule. The target was presented more often after saccades into a specific quadrant or a specific direction. The proportions of saccades meeting the reinforcement criteria increased considerably, and participants matched their search behavior to the relative reinforcement rates of targets. Reinforcement learning seems to serve as the mechanism to optimize search behavior with respect to the statistics of the task.

  14. Objective quality assessment of stereoscopic images with vertical disparity using EEG

    Science.gov (United States)

    Shahbazi Avarvand, Forooz; Bosse, Sebastian; Müller, Klaus-Robert; Schäfer, Ralf; Nolte, Guido; Wiegand, Thomas; Curio, Gabriel; Samek, Wojciech

    2017-08-01

    Objective. Neurophysiological correlates of vertical disparity in 3D images are studied in an objective approach using EEG technique. These disparities are known to negatively affect the quality of experience and to cause visual discomfort in stereoscopic visualizations. Approach. We have presented four conditions to subjects: one in 2D and three conditions in 3D, one without vertical disparity and two with different vertical disparity levels. Event related potentials (ERPs) are measured for each condition and the differences between ERP components are studied. Analysis is also performed on the induced potentials in the time frequency domain. Main results. Results show that there is a significant increase in the amplitude of P1 components in 3D conditions in comparison to 2D. These results are consistent with previous studies which have shown that P1 amplitude increases due to the depth perception in 3D compared to 2D. However the amplitude is significantly smaller for maximum vertical disparity (3D-3) in comparison to 3D with no vertical disparity. Our results therefore suggest that the vertical disparity in 3D-3 condition decreases the perception of depth compared to other 3D conditions and the amplitude of P1 component can be used as a discriminative feature. Significance. The results show that the P1 component increases in amplitude due to the depth perception in the 3D stimuli compared to the 2D stimulus. On the other hand the vertical disparity in the stereoscopic images is studied here. We suggest that the amplitude of P1 component is modulated with this parameter and decreases due to the decrease in the perception of depth.

  15. Perception of self-tilt in a true and illusory vertical plane

    Science.gov (United States)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  16. The study of infrared target recognition at sea background based on visual attention computational model

    Science.gov (United States)

    Wang, Deng-wei; Zhang, Tian-xu; Shi, Wen-jun; Wei, Long-sheng; Wang, Xiao-ping; Ao, Guo-qing

    2009-07-01

    Infrared images at sea background are notorious for the low signal-to-noise ratio, therefore, the target recognition of infrared image through traditional methods is very difficult. In this paper, we present a novel target recognition method based on the integration of visual attention computational model and conventional approach (selective filtering and segmentation). The two distinct techniques for image processing are combined in a manner to utilize the strengths of both. The visual attention algorithm searches the salient regions automatically, and represented them by a set of winner points, at the same time, demonstrated the salient regions in terms of circles centered at these winner points. This provides a priori knowledge for the filtering and segmentation process. Based on the winner point, we construct a rectangular region to facilitate the filtering and segmentation, then the labeling operation will be added selectively by requirement. Making use of the labeled information, from the final segmentation result we obtain the positional information of the interested region, label the centroid on the corresponding original image, and finish the localization for the target. The cost time does not depend on the size of the image but the salient regions, therefore the consumed time is greatly reduced. The method is used in the recognition of several kinds of real infrared images, and the experimental results reveal the effectiveness of the algorithm presented in this paper.

  17. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    Science.gov (United States)

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  18. Inlet effects on vertical-downward air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets

  19. More target features in visual working memory leads to poorer search guidance: evidence from contralateral delay activity.

    Science.gov (United States)

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J

    2014-03-05

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process.

  20. Conceptual and visual features contribute to visual memory for natural images.

    Directory of Open Access Journals (Sweden)

    Gesche M Huebner

    Full Text Available We examined the role of conceptual and visual similarity in a memory task for natural images. The important novelty of our approach was that visual similarity was determined using an algorithm [1] instead of being judged subjectively. This similarity index takes colours and spatial frequencies into account. For each target, four distractors were selected that were (1 conceptually and visually similar, (2 only conceptually similar, (3 only visually similar, or (4 neither conceptually nor visually similar to the target image. Participants viewed 219 images with the instruction to memorize them. Memory for a subset of these images was tested subsequently. In Experiment 1, participants performed a two-alternative forced choice recognition task and in Experiment 2, a yes/no-recognition task. In Experiment 3, testing occurred after a delay of one week. We analyzed the distribution of errors depending on distractor type. Performance was lowest when the distractor image was conceptually and visually similar to the target image, indicating that both factors matter in such a memory task. After delayed testing, these differences disappeared. Overall performance was high, indicating a large-capacity, detailed visual long-term memory.

  1. Stereotactic localization and visualization of the subthalamic nucleus

    Institute of Scientific and Technical Information of China (English)

    SHEN Wei-gao; WANG Hai-yang; LIN Zhi-guo; SHEN Hong; CHEN Xiao-guang; FU Yi-li; GAO Wen-peng

    2009-01-01

    Background The subthalamic nucleus (STN) is widely recognized as one of the most important and commonly targeted nuclei in stereotactic and functional neurosurgery. The success of STN surgery depends on accuracy in target determination. Construction of a digitalized atlas of STN based on stereotactic MRI will play an instrumental role in the accuracy of anatomical localization. The aim of this study was to investigate the three-dimensional (3D) target location of STN in stereotactic space and construct a digitalized atlas of STN to accomplish the visualization of the STN on stereotactic MRI, thus providing clinical guidance on the precise anatomical localization of STN.Methods One hundred and twenty healthy people volunteered to be scanned by 1.5 Tesla MRI scanning with 1-mm-thick slice in the standard stereotactic space between 2005 and 2006. One adult male was selected for 3D reconstruction of STN. The precess of 3D reconstruction included identification, manual segmentation, extraction,conservation and reconstruction.Results There was a significant correlation between the coordinates and age (P <0.05). The volume of left STN was significantly larger than the right STN, and there was a significant negative correlation between volume and age (P <0.05).The surface of the STN nucleus after 3D reconstruction appeared smooth, natural and realistic. The morphological feature of STN on the individual brain could be visualized directly in 3D. The 3D reconstructed STN could be rotated,zoomed and displayed at any direction in the stereotactic space. The anteroposterior diameter of the STN nucleus was longer than the vertical and transverse diameters in 3D space. The 3D reconstruction of STN manifested typical structure of the "dual lens".Conclusions The visualization of individual brain atlas based on stereotactic MRI is feasible. However, software for automated segmentation, extraction and registration of MR images need to be further developed.

  2. How visual working memory contents influence priming of visual attention.

    Science.gov (United States)

    Carlisle, Nancy B; Kristjánsson, Árni

    2017-04-12

    Recent evidence shows that when the contents of visual working memory overlap with targets and distractors in a pop-out search task, intertrial priming is inhibited (Kristjánsson, Sævarsson & Driver, Psychon Bull Rev 20(3):514-521, 2013, Experiment 2, Psychonomic Bulletin and Review). This may reflect an interesting interaction between implicit short-term memory-thought to underlie intertrial priming-and explicit visual working memory. Evidence from a non-pop-out search task suggests that it may specifically be holding distractors in visual working memory that disrupts intertrial priming (Cunningham & Egeth, Psychol Sci 27(4):476-485, 2016, Experiment 2, Psychological Science). We examined whether the inhibition of priming depends on whether feature values in visual working memory overlap with targets or distractors in the pop-out search, and we found that the inhibition of priming resulted from holding distractors in visual working memory. These results are consistent with separate mechanisms of target and distractor effects in intertrial priming, and support the notion that the impact of implicit short-term memory and explicit visual working memory can interact when each provides conflicting attentional signals.

  3. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; hide

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  4. Analysis of vertical stability limits and vertical displacement event behavior on NSTX-U

    Science.gov (United States)

    Boyer, Mark; Battaglia, Devon; Gerhardt, Stefan; Menard, Jonathan; Mueller, Dennis; Myers, Clayton; Sabbagh, Steven; Smith, David

    2017-10-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) completed its first run campaign in 2016, including commissioning a larger center-stack and three new tangentially aimed neutral beam sources. NSTX-U operates at increased aspect ratio due to the larger center-stack, making vertical stabilization more challenging. Since ST performance is improved at high elongation, improvements to the vertical control system were made, including use of multiple up-down-symmetric flux loop pairs for real-time estimation, and filtering to remove noise. Similar operating limits to those on NSTX (in terms of elongation and internal inductance) were achieved, now at higher aspect ratio. To better understand the observed limits and project to future operating points, a database of vertical displacement events and vertical oscillations observed during the plasma current ramp-up on NSTX/NSTX-U has been generated. Shots were clustered based on the characteristics of the VDEs/oscillations, and the plasma parameter regimes associated with the classes of behavior were studied. Results provide guidance for scenario development during ramp-up to avoid large oscillations at the time of diverting, and provide the means to assess stability of target scenarios for the next campaign. Results will also guide plans for improvements to the vertical control system. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  5. Effect of Visual Angle on the Head Movement Caused by Changing Binocular Disparity

    Directory of Open Access Journals (Sweden)

    Toru Maekawa

    2011-10-01

    Full Text Available It has been shown that vertical binocular disparity has no or little effect on the perception of visual direction (Banks et al., 2002. On the other hand, our previous study has reported that a continuous change of vertical disparity causes an involuntary sway of the head (Maekawa et al., 2009. We predict that the difference between those results attributes to the dissociation between the processes for perception and action in the brain. The aim of this study is to investigate in more details the condition that influences the process of disparity information. The present experiment particularly varied the visual angle of stimulus presentation and measured the head movement and body sway caused by changing vertical disparity. Results showed that the head movement was greater as the visual angle of the stimulus was smaller. It has been reported that stimulus of only small visual angle affect depth perception (Erklens et al., 1995. Thus, our result suggests that perception and action produced by vertical disparity are consistent as far as the effect of the stimulus size is concerned.

  6. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Directory of Open Access Journals (Sweden)

    Xiaojing Wan

    Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  7. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Science.gov (United States)

    Wan, Xiaojing; Meng, Jia; Dai, Yingnan; Zhang, Yina; Yan, Shuang

    2014-01-01

    Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  8. Bow Your Head in Shame, or, Hold Your Head Up with Pride: Semantic Processing of Self-Esteem Concepts Orients Attention Vertically.

    Directory of Open Access Journals (Sweden)

    J Eric T Taylor

    Full Text Available Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space, instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues' semantics is required for conceptual cueing to occur.

  9. Novelty enhances visual perception.

    Directory of Open Access Journals (Sweden)

    Judith Schomaker

    Full Text Available The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception.

  10. Novelty enhances visual perception.

    Science.gov (United States)

    Schomaker, Judith; Meeter, Martijn

    2012-01-01

    The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception.

  11. Results and analysis of high heat flux tests on a full scale vertical target prototype of ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schlosser, J.; Durocher, A.; Bobin-Vastra, I.

    2004-01-01

    After an extensive development program, a Full-Scale Divertor Target prototype (VTFS) manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full mono-block geometry. The lower part (CFC armour) and the upper part (W armour) of each mono-block were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. The CFC mono-block was successfully tested up to 1000 cycles at 23 MW/m 2 without any indication of failure. This value is well beyond the ITER design target of 300 cycles at 20 MW/m 2 . The W mono-block endured ∼600 cycles at 10 MW/m 2 . This value of flux is one order of magnitude higher than the ITER design target for the upper part of the vertical target. Fatigue damage is observed when pursuing the cycling up to 15 MW/m 2 . A first stress analysis seems to predict these factual results. However, macro-graphic examinations should bring a better damage valuation. Meanwhile, the fatigue testing will continue on the W healthy part of the VTFS prototype with castellation located on the heated surface (reducing the stresses close to the W-Cu interface). (authors)

  12. Results and analysis of high heat flux tests on a full scale vertical target prototype of ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M.; Escourbiac, F.; Schlosser, J.; Durocher, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [EFDA Close Support Unit, Garching (Germany); Bobin-Vastra, I. [Framatome, 71 - Le Creusot (France)

    2004-07-01

    After an extensive development program, a Full-Scale Divertor Target prototype (VTFS) manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full mono-block geometry. The lower part (CFC armour) and the upper part (W armour) of each mono-block were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. The CFC mono-block was successfully tested up to 1000 cycles at 23 MW/m{sup 2} without any indication of failure. This value is well beyond the ITER design target of 300 cycles at 20 MW/m{sup 2}. The W mono-block endured {approx}600 cycles at 10 MW/m{sup 2}. This value of flux is one order of magnitude higher than the ITER design target for the upper part of the vertical target. Fatigue damage is observed when pursuing the cycling up to 15 MW/m{sup 2}. A first stress analysis seems to predict these factual results. However, macro-graphic examinations should bring a better damage valuation. Meanwhile, the fatigue testing will continue on the W healthy part of the VTFS prototype with castellation located on the heated surface (reducing the stresses close to the W-Cu interface). (authors)

  13. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    Science.gov (United States)

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka

    2017-04-01

    Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.

  15. Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation.

    Science.gov (United States)

    Wright, William Geoffrey; Glasauer, Stefan

    2003-10-01

    Perceiving one's vertical is an integral part of efficiently functioning in an environment physically polarized along that dimension. How one determines the direction of gravity is not a task left only to inertial sensors, such as the vestibular organs, rather as numerous studies have shown, this task is influenced visually and somatosensorily. In addition, there is evidence that higher order cognitive effects such as expectancies and context are critical in perception of the vertical. One's ability to integrate these various inputs during normal activity is not generally questioned, one's doubts being satisfied by observing a waiter navigating a crowded restaurant with a tray balanced on one hand, neither tripping or dropping an entree. But how these various sources are integrated is still debated. Most research focuses on subjective vertical perception used visual matching/alignment tasks, verbal reports, or saccadic eye movements as a dependent measure. Although a motor task involving a joystick or indicator to be aligned with gravity without visual feedback is used much less frequently, there is good evidence that individuals easily orient limbs to an external gravity-aligned coordinate axis while being statically tilted. By exposure to a dynamic situation, the central nervous system should be no more challenged by the task of determining the subjective vertical than during static conditions, because our spatial orientation systems were likely selected for just that. In addition, the sensitive calibration between visual and other sensory input also must have been key to its selection. This sensory interaction can be tested by changing the relation between the various sources. With the advent of virtual reality technology, a complex and "natural" visual stimulus is achievable and is easily manipulable. How one tests perception of verticality is also a pertinent question when researching spatial orientation systems. The system's performance may be better

  16. Interference control theory : A new perspective on dual-task interference in memorizing and responding to visual targets

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Scholz, Sabine; Broers, Nico

    2015-01-01

    In a recent study, Nieuwenstein and Wyble (2014) showed that the consolidation of a masked visual target can be disrupted for up to one second by a trailing 2-alternative forced choice task. Aside from demonstrating that working memory consolidation involves a time-consuming process that continues

  17. Finding people, papers, and posts: Vertical search algorithms and evaluation

    NARCIS (Netherlands)

    Berendsen, R.W.

    2015-01-01

    There is a growing diversity of information access applications. While general web search has been dominant in the past few decades, a wide variety of so-called vertical search tasks and applications have come to the fore. Vertical search is an often used term for search that targets specific

  18. RVA. 3-D Visualization and Analysis Software to Support Management of Oil and Gas Resources

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, Donald A. [Univ. of Illinois, Champaign, IL (United States); Shaffer, Eric G. [Univ. of Illinois, Champaign, IL (United States); Storsved, Brynne [Univ. of Illinois, Champaign, IL (United States); Vanmoer, Mark [Univ. of Illinois, Champaign, IL (United States); Angrave, Lawrence [Univ. of Illinois, Champaign, IL (United States); Damico, James R. [Univ. of Illinois, Champaign, IL (United States); Grigsby, Nathan [Univ. of Illinois, Champaign, IL (United States)

    2015-12-01

    : sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.

  19. Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink

    NARCIS (Netherlands)

    Van der Burg, Erik; Nieuwenstein, Mark R.; Theeuwes, Jan; Olivers, Christian N. L.

    2013-01-01

    In the present study we investigated whether a task-irrelevant distractor can induce a visual attentional blink pattern. Participants were asked to detect only a visual target letter (A, B, or C) and to ignore the preceding auditory, visual, or audiovisual distractor. An attentional blink was

  20. An anatomical and psychophysical comparison of subjective verticals in patients with right brain damage.

    Science.gov (United States)

    Rousseaux, Marc; Braem, Bérenger; Honoré, Jacques; Saj, Arnaud

    2015-08-01

    Brain hemisphere lesions often cause a contralesional tilt of the subjective vertical (SV) a phenomenon related to spatial neglect and postural disorders. Depending on the method employed, different perceptual systems come into play when this gravitational vertical is assessed. Here, we compared the anatomical and psychophysical characteristics of modality-dependent SV biases in patients with right hemisphere stroke. The SV was measured with visual, haptic and visual-haptic modalities (SV, SVV, SVHV) in 46 patients with a relatively recent stroke. Voxel-based lesion-symptom mapping (performed with NPM(®)) was used to highlight brain areas in which lesions best explained the severity of task biases (p rights reserved.

  1. The effect of mood state on visual search times for detecting a target in noise: An application of smartphone technology.

    Science.gov (United States)

    Maekawa, Toru; Anderson, Stephen J; de Brecht, Matthew; Yamagishi, Noriko

    2018-01-01

    The study of visual perception has largely been completed without regard to the influence that an individual's emotional status may have on their performance in visual tasks. However, there is a growing body of evidence to suggest that mood may affect not only creative abilities and interpersonal skills but also the capacity to perform low-level cognitive tasks. Here, we sought to determine whether rudimentary visual search processes are similarly affected by emotion. Specifically, we examined whether an individual's perceived happiness level affects their ability to detect a target in noise. To do so, we employed pop-out and serial visual search paradigms, implemented using a novel smartphone application that allowed search times and self-rated levels of happiness to be recorded throughout each twenty-four-hour period for two weeks. This experience sampling protocol circumvented the need to alter mood artificially with laboratory-based induction methods. Using our smartphone application, we were able to replicate the classic visual search findings, whereby pop-out search times remained largely unaffected by the number of distractors whereas serial search times increased with increasing number of distractors. While pop-out search times were unaffected by happiness level, serial search times with the maximum numbers of distractors (n = 30) were significantly faster for high happiness levels than low happiness levels (p = 0.02). Our results demonstrate the utility of smartphone applications in assessing ecologically valid measures of human visual performance. We discuss the significance of our findings for the assessment of basic visual functions using search time measures, and for our ability to search effectively for targets in real world settings.

  2. Combined effects of expectations and visual uncertainty upon detection and identification of a target in the fog.

    Science.gov (United States)

    Quétard, Boris; Quinton, Jean-Charles; Colomb, Michèle; Pezzulo, Giovanni; Barca, Laura; Izaute, Marie; Appadoo, Owen Kevin; Mermillod, Martial

    2015-09-01

    Detecting a pedestrian while driving in the fog is one situation where the prior expectation about the target presence is integrated with the noisy visual input. We focus on how these sources of information influence the oculomotor behavior and are integrated within an underlying decision-making process. The participants had to judge whether high-/low-density fog scenes displayed on a computer screen contained a pedestrian or a deer by executing a mouse movement toward the response button (mouse-tracking). A variable road sign was added on the scene to manipulate expectations about target identity. We then analyzed the timing and amplitude of the deviation of mouse trajectories toward the incorrect response and, using an eye tracker, the detection time (before fixating the target) and the identification time (fixations on the target). Results revealed that expectation of the correct target results in earlier decisions with less deviation toward the alternative response, this effect being partially explained by the facilitation of target identification.

  3. Segmentation of foreground apple targets by fusing visual attention mechanism and growth rules of seed points

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.; Shang, W.; Shao, Y.; Wang, D.; Yu, X.; Song, H.

    2015-07-01

    Accurate segmentation of apple targets is one of the most important problems to be solved in the vision system of apple picking robots. This work aimed to solve the difficulties that background targets often bring to foreground targets segmentation, by fusing the visual attention mechanism and the growth rule of seed points. Background targets could be eliminated by extracting the ROI (region of interest) of apple targets; the ROI was roughly segmented on the HSV color space, and then each of the pixels was used as a seed growing point. The growth rule of the seed points was adopted to obtain the whole area of apple targets from seed growing points. The proposed method was tested with 20 images captured in a natural scene, including 54 foreground apple targets and approximately 84 background apple targets. Experimental results showed that the proposed method can remove background targets and focus on foreground targets, while the k-means algorithm and the chromatic aberration algorithm cannot. Additionally, its average segmentation error rate was 13.23%, which is 2.71% higher than that of the k-means algorithm and 2.95% lower than that of the chromatic aberration algorithm. In conclusion, the proposed method contributes to the vision system of apple-picking robots to locate foreground apple targets quickly and accurately under a natural scene. (Author)

  4. Separate visual representations for perception and for visually guided behavior

    Science.gov (United States)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  5. Flow regime visualization and pressure drops of HFO-1234yf, R-134a and R-410A during downward two-phase flow in vertical return bends

    International Nuclear Information System (INIS)

    Padilla, Miguel; Revellin, Rémi; Wallet, Jérémy; Bonjour, Jocelyn

    2013-01-01

    Highlights: ► Visual observation of two-phase flow regimes during downward flow in a return bend. ► Bubble and vapor slug dynamical behaviors in downward slug flow are reported. ► Perturbation lengths up- and downstream of the return bend have been investigated. ► Measurement of 285 pressure drop data points for HFO-1234yf, R-134a and R-410A. -- Abstract: This paper provides a qualitative visual observation of the two-phase flow patterns for HFO-1234yf and R-134a during downward flow in a vertical 6.7 mm inner diameter glass return bend. The different flow regimes observed are: slug, intermittent and annular flows. Bubble and vapor slug dynamical behaviors in downward slug flow are reported for HFO-1234yf. In addition, to determine the perturbation lengths up- and downstream of the return bend, the total pressure drop has been measured at different pressure tap location up- and downstream of the singularity. Furthermore, 285 pressure drop data points measured for two-phase flow of HFO-1234yf, R-134a and R-410A in vertical downward flow return bends are presented. The flow behavior in the return bend, which is subjected to the complex combined actions of gravity and centrifugal force was expressed in terms of the vapor Froude number. This experimental pressure drop database, which is included in the appendix, is compared to four well-known prediction methods available in the literature

  6. Contrast and strength of visual memory and imagery differentially affect visual perception.

    Science.gov (United States)

    Saad, Elyana; Silvanto, Juha

    2013-01-01

    Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes.

  7. Contrast and strength of visual memory and imagery differentially affect visual perception.

    Directory of Open Access Journals (Sweden)

    Elyana Saad

    Full Text Available Visual short-term memory (VSTM and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale, and the visual contrast of the memory/mental image (contrast scale were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes.

  8. Prism therapy and visual rehabilitation in homonymous visual field loss.

    LENUS (Irish Health Repository)

    O'Neill, Evelyn C

    2011-02-01

    Homonymous visual field defects (HVFD) are common and frequently occur after cerebrovascular accidents. They significantly impair visual function and cause disability particularly with regard to visual exploration. The purpose of this study was to assess a novel interventional treatment of monocular prism therapy on visual functioning in patients with HVFD of varied etiology using vision targeted, health-related quality of life (QOL) questionnaires. Our secondary aim was to confirm monocular and binocular visual field expansion pre- and posttreatment.

  9. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets.

  10. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  11. Application of Data Mining and Knowledge Discovery Techniques to Enhance Binary Target Detection and Decision-Making for Compromised Visual Images

    National Research Council Canada - National Science Library

    Repperger, D. W; Phillips, C. A; Schrider, C. D; Smith, E. A

    2004-01-01

    In an effort to improve decision-making on the identity of unknown objects appearing in visual images when the surrounding environment may be noisy and cluttered, a highly sensitive target detection...

  12. Self-reflection Orients Visual Attention Downward.

    Science.gov (United States)

    Liu, Yi; Tong, Yu; Li, Hong

    2017-01-01

    Previous research has demonstrated abstract concepts associated with spatial location (e.g., God in the Heavens) could direct visual attention upward or downward, because thinking about the abstract concepts activates the corresponding vertical perceptual symbols. For self-concept, there are similar metaphors (e.g., "I am above others"). However, whether thinking about the self can induce visual attention orientation is still unknown. Therefore, the current study tested whether self-reflection can direct visual attention. Individuals often display the tendency of self-enhancement in social comparison, which reminds the individual of the higher position one possesses relative to others within the social environment. As the individual is the agent of the attention orientation, and high status tends to make an individual look down upon others to obtain a sense of pride, it was hypothesized that thinking about the self would lead to a downward attention orientation. Using reflection of personality traits and a target discrimination task, Study 1 found that, after self-reflection, visual attention was directed downward. Similar effects were also found after friend-reflection, with the level of downward attention being correlated with the likability rating scores of the friend. Thus, in Study 2, a disliked other was used as a control and the positive self-view was measured with above-average judgment task. We found downward attention orientation after self-reflection, but not after reflection upon the disliked other. Moreover, the attentional bias after self-reflection was correlated with above-average self-view. The current findings provide the first evidence that thinking about the self could direct visual-spatial attention downward, and suggest that this effect is probably derived from a positive self-view within the social context.

  13. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  14. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.

    Science.gov (United States)

    Shirzadeh, Masoud; Amirkhani, Abdollah; Jalali, Aliakbar; Mosavi, Mohammad R

    2015-11-01

    This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Visual acuity and visual field impairment in Usher syndrome.

    Science.gov (United States)

    Edwards, A; Fishman, G A; Anderson, R J; Grover, S; Derlacki, D J

    1998-02-01

    To determine the extent of visual acuity and visual field impairment in patients with types 1 and 2 Usher syndrome. The records of 53 patients with type 1 and 120 patients with type 2 Usher syndrome were reviewed for visual acuity and visual field area at their most recent visit. Visual field areas were determined by planimetry of the II4e and V4e isopters obtained with a Goldmann perimeter. Both ordinary and logistic regression models were used to evaluate differences in visual acuity and visual field impairment between patients with type 1 and type 2 Usher syndrome. The difference in visual acuity of the better eye between patients with type 1 and type 2 varied by patient age (P=.01, based on a multiple regression model). The maximum difference in visual acuity between the 2 groups occurred during the third and fourth decades of life (with the type 1 patients being more impaired), while more similar acuities were seen in both younger and older patients. Fifty-one percent (n=27) of the type 1 patients had a visual acuity of 20/40 or better in at least 1 eye compared with 72% (n=87) of the type 2 patients (age-adjusted odds ratio, 3.9). Visual field area to both the II4e (P=.001) and V4e (Ptype 1 patients than type 2 patients. A concentric central visual field greater than 20 degrees in at least 1 eye was present in 20 (59%) of the available 34 visual fields of type 1 patients compared with 70 (67%) of the available 104 visual fields of type 2 patients (age-adjusted odds ratio, 2.9) with the V4e target and in 6 (21%) of the available 29 visual fields of type 1 patients compared with 36 (38%) of the available 94 visual fields of type 2 patients (age-adjusted odds ratio, 4.9) with the II4e target. The fraction of patients who had a visual acuity of 20/40 or better and a concentric central visual field greater than 20 degrees to the II4e target in at least 1 eye was 17% (n=5) in the type 1 patients and 35% (n=33) in the type 2 patients (age-adjusted odds ratio, 3

  16. Open source tracking and analysis of adult Drosophila locomotion in Buridan's paradigm with and without visual targets.

    Directory of Open Access Journals (Sweden)

    Julien Colomb

    Full Text Available BACKGROUND: Insects have been among the most widely used model systems for studying the control of locomotion by nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan's paradigm, flies walk back and forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position and analyzing its trajectory has probably contributed to the slow acceptance of Buridan's paradigm. METHODOLOGY/PRINCIPAL FINDINGS: We present here a package of open source software designed to track a single animal walking in a homogenous environment (Buritrack and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a Principal Components Analysis (PCA. It was designed to be easily customized to personal requirements. In combination with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were clipped, either in the presence or in the absence of visual targets, and comparing the latter to different computer-generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual targets can alter the orientation of the flies without changing their overall patterns of activity. CONCLUSIONS/SIGNIFICANCE: Using computer generated data, the analysis software was tested, and chance values for some metrics (as well as chance value for their correlation were set. Our results prompt the hypothesis that fixation behavior is observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together with our companion paper, we provide new tools to promote Open Science as well as the collection and

  17. [EEG-markers of vertical postural organization in healthy persons].

    Science.gov (United States)

    Zhavoronkova, L A; Zharikova, A V; Kushnir, E M; Mikhalkova, A A

    2012-01-01

    In 10 healthy persons (22.8 +/- 0.67 years) spectral-coherence parameters of EEG were analyzed in different steps of verticalizations--from gorizontal position to seat and stand one. Maximal changes of all EEG parameters were observed in state with absence of visual control. We observed an increase of power for fast spectral bands of EEG (beta- and gamma-bands) in all conditions and additional increase of these EEG parameters was observed at situation of complication of conditions of vertical pose supporting. Results of EEG coherent analysis in conditions of human verticalization showed specific increase of coherence for the majority of rhythm ranges in the right hemisphere especially in the central-frontal and in occipital-parietal areas and for interhemispheric pairs for these leads. This fact can reflect participation of cortical as well as subcortical structures in these processes. In conditions of complicate conditions of vertical pose supporting the additional increase of EEG coherence in fast bands (beta-rhythm) was observed at the frontal areas. This fact can testify about increasing of executive functions in this conditions.

  18. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization

    Science.gov (United States)

    Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh

    2018-03-01

    The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.

  19. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  20. Getting satisfied with "satisfaction of search": How to measure errors during multiple-target visual search.

    Science.gov (United States)

    Biggs, Adam T

    2017-07-01

    Visual search studies are common in cognitive psychology, and the results generally focus upon accuracy, response times, or both. Most research has focused upon search scenarios where no more than 1 target will be present for any single trial. However, if multiple targets can be present on a single trial, it introduces an additional source of error because the found target can interfere with subsequent search performance. These errors have been studied thoroughly in radiology for decades, although their emphasis in cognitive psychology studies has been more recent. One particular issue with multiple-target search is that these subsequent search errors (i.e., specific errors which occur following a found target) are measured differently by different studies. There is currently no guidance as to which measurement method is best or what impact different measurement methods could have upon various results and conclusions. The current investigation provides two efforts to address these issues. First, the existing literature is reviewed to clarify the appropriate scenarios where subsequent search errors could be observed. Second, several different measurement methods are used with several existing datasets to contrast and compare how each method would have affected the results and conclusions of those studies. The evidence is then used to provide appropriate guidelines for measuring multiple-target search errors in future studies.

  1. The mere exposure effect for visual image.

    Science.gov (United States)

    Inoue, Kazuya; Yagi, Yoshihiko; Sato, Nobuya

    2018-02-01

    Mere exposure effect refers to a phenomenon in which repeated stimuli are evaluated more positively than novel stimuli. We investigated whether this effect occurs for internally generated visual representations (i.e., visual images). In an exposure phase, a 5 × 5 dot array was presented, and a pair of dots corresponding to the neighboring vertices of an invisible polygon was sequentially flashed (in red), creating an invisible polygon. In Experiments 1, 2, and 4, participants visualized and memorized the shapes of invisible polygons based on different sequences of flashed dots, whereas in Experiment 3, participants only memorized positions of these dots. In a subsequent rating phase, participants visualized the shape of the invisible polygon from allocations of numerical characters on its vertices, and then rated their preference for invisible polygons (Experiments 1, 2, and 3). In contrast, in Experiment 4, participants rated the preference for visible polygons. Results showed that the mere exposure effect appeared only when participants visualized the shape of invisible polygons in both the exposure and rating phases (Experiments 1 and 2), suggesting that the mere exposure effect occurred for internalized visual images. This implies that the sensory inputs from repeated stimuli play a minor role in the mere exposure effect. Absence of the mere exposure effect in Experiment 4 suggests that the consistency of processing between exposure and rating phases plays an important role in the mere exposure effect.

  2. Subjective visual vertical before and after treatment of a BPPV episode.

    Science.gov (United States)

    Faralli, Mario; Manzari, Leonardo; Panichi, Roberto; Botti, Fabio; Ricci, Giampietro; Longari, Fabrizio; Pettorossi, Vito Enrico

    2011-06-01

    The study analyses the behavior of subjective visual vertical (SVV) in benign paroxysmal positional vertigo (BPPV) before and after treatment, and offers a clinical-pathogenic interpretation. We studied 30 consecutive patients with BPPV of the posterior semicircular canal treated with the Epley repositioning maneuver. SVV was determined at three different stages: at the time of diagnosis (1st test), after the repositioning maneuver (2nd test), and then 7 days after the resolution of the clinical picture (3rd test). The main study parameter was represented by the mean of 6 consecutive measurements (SVV(0)) for each patient. SVV was also examined in 20 healthy subjects, who represented the control group. The comparison between mean values and standard deviations showed a statistical significance of p<0.05. During the first test, the degree of deviation of SVV was significantly higher in the patient group than in the control group. Tilting towards the affected side was observed in all cases. The 2nd test showed an inversion in the orientation of SVV in 16 patients, and as a result of the Epley maneuver there was a statistically significant variation in SVV(0) values in 20 patients with respect to the previous test (2nd test vs. 1st test). This involved 87% (23 patients) of those who then had a negative Dix-Hallpike test, and none of the ones in whom paroxysmal positional nystagmus persisted. Lastly, no differences emerged in the behavior of the patient group vs. the control group during the third test. SVV is often altered during active BPPV. The degree of otolithic dysfunction is never high and, in all cases, it is brief in duration. Tilting towards the dysfunctional side is essentially a constant in untreated BPPV. This could be due to a substantial loss of otoconia, with a decrease in the density and specific weight of the macula, and thus hypofunction of the receptor. The observation of a significant variation in SVV after therapeutic maneuvers has a favorable

  3. Learning the trajectory of a moving visual target and evolution of its tracking in the monkey

    Science.gov (United States)

    Bourrelly, Clara; Quinet, Julie; Cavanagh, Patrick

    2016-01-01

    An object moving in the visual field triggers a saccade that brings its image onto the fovea. It is followed by a combination of slow eye movements and catch-up saccades that try to keep the target image on the fovea as long as possible. The accuracy of this ability to track the “here-and-now” location of a visual target contrasts with the spatiotemporally distributed nature of its encoding in the brain. We show in six experimentally naive monkeys how this performance is acquired and gradually evolves during successive daily sessions. During the early exposure, the tracking is mostly saltatory, made of relatively large saccades separated by low eye velocity episodes, demonstrating that accurate (here and now) pursuit is not spontaneous and that gaze direction lags behind its location most of the time. Over the sessions, while the pursuit velocity is enhanced, the gaze is more frequently directed toward the current target location as a consequence of a 25% reduction in the number of catch-up saccades and a 37% reduction in size (for the first saccade). This smoothing is observed at several scales: during the course of single trials, across the set of trials within a session, and over successive sessions. We explain the neurophysiological processes responsible for this combined evolution of saccades and pursuit in the absence of stringent training constraints. More generally, our study shows that the oculomotor system can be used to discover the neural mechanisms underlying the ability to synchronize a motor effector with a dynamic external event. PMID:27683886

  4. Words, Shape, Visual Search and Visual Working Memory in 3-Year-Old Children

    Science.gov (United States)

    Vales, Catarina; Smith, Linda B.

    2015-01-01

    Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated…

  5. Should we add visual acuity ratios to referral criteria for potential cerebral visual impairment?

    Science.gov (United States)

    van der Zee, Ymie J; Stiers, Peter; Evenhuis, Heleen M

    To determine whether the assessment of visual acuity ratios might improve the referral of children with (sub)normal visual acuity but at risk of cerebral visual impairment. In an exploratory study, we assessed visual acuity, crowding ratio and the ratios between grating acuity (Teller Acuity Cards-II) and optotype acuity (Cambridge Crowding Cards) in 60 typically developing school children (mean age 5y8m±1y1m), 21 children with ocular abnormalities only (5y7m±1y9m) and 26 children with (suspected) brain damage (5y7m±1y11m). Sensitivities and specificities were calculated for targets and controls from the perspective of different groups of diagnosticians: youth health care professionals (target: children with any visual abnormalities), ophthalmologists and low vision experts (target: children at risk of cerebral visual impairment). For youth health care professionals subnormal visual acuity had the best sensitivity (76%) and specificity (70%). For ophthalmologists and low vision experts the crowding ratio had the best sensitivity (67%) and specificity (79 and 86%). Youth health care professionals best continue applying subnormal visual acuity for screening, whereas ophthalmologists and low vision experts best add the crowding ratio to their routine diagnostics, to distinguish children at risk of visual impairment in the context of brain damage from children with ocular pathology only. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  6. Visualization by PIV of dynamic stall on a vertical axis wind turbine

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Kuik, van G.A.M.; Bussel, van G.J.W.; Scarano, F.

    2009-01-01

    The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle ¿ of the

  7. Adenocarcinoma of the pouch after silastic ring vertical gastroplasty.

    Science.gov (United States)

    Zirak, Christophe; Lemaitre, Jean; Lebrun, Eric; Journé, Stephane; Carlier, Patrick

    2002-10-01

    A 52-year-old woman was admitted because of epigastralgia, anorexia and recently increased vomiting, 2 years after silastic ring vertical gastroplasty. On gastroscopy, a tumor mass was visualized in the pouch near the "neo-pylorus". Biopsies confirmed adenocarcinoma. She underwent total gastrectomy, and has no evidence of recurrence at 1 year. The literature on gastric carcinoma after gastroplasty is reviewed.

  8. Visual-Motor Learning Using Haptic Devices: How Best to Train Surgeons?

    Directory of Open Access Journals (Sweden)

    Oscar Giles

    2012-05-01

    Full Text Available Laparoscopic surgery has revolutionised medicine but requires surgeons to learn new visual-motor mappings. The optimal method for training surgeons is unknown. For instance, it may be easier to learn planar movements when training is constrained to a plane, since this forces the surgeon to develop an appropriate perceptual-motor map. In contrast, allowing the surgeon to move without constraints could improve performance because this provides greater experience of the control dynamics of the device. In order to test between these alternatives, we created an experimental tool that connected a commercially available robotic arm with specialised software that presents visual stimuli and objectively records kinematics. Participants were given the task of generating a series of aiming movements to move a visual cursor to a series of targets. The actions required movement along a horizontal plane, whereas the visual display was a screen positioned perpendicular to this plane (ie, vertically. One group (n=8 received training where the force field constrained their movement to the correct plane of action, whilst a second group (n=8 trained without constraints. On test trials (after training the unconstrained group showed better performance, as indexed by reduced movement duration and reduced path length. These results show that participants who explored the entire action space had an advantage, which highlights the importance of experiencing the full dynamics of a control device and the action space when learning a new visual-motor mapping.

  9. Diffractive optical element for creating visual 3D images.

    Science.gov (United States)

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-02

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc.

  10. Pilots' Visual Scan Patterns and Attention Distribution During the Pursuit of a Dynamic Target.

    Science.gov (United States)

    Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham; Greaves, Matthew

    2016-01-01

    The current research was to investigate pilots' visual scan patterns in order to assess attention distribution during air-to-air maneuvers. A total of 30 qualified mission-ready fighter pilots participated in this research. Eye movement data were collected by a portable head-mounted eye-tracking device, combined with a jet fighter simulator. To complete the task, pilots had to search for, pursue, and lock on a moving target while performing air-to-air tasks. There were significant differences in pilots' saccade duration (ms) in three operating phases, including searching (M = 241, SD = 332), pursuing (M = 311, SD = 392), and lock-on (M = 191, SD = 226). Also, there were significant differences in pilots' pupil sizes (pixel(2)), of which the lock-on phase was the largest (M = 27,237, SD = 6457), followed by pursuit (M = 26,232, SD = 6070), then searching (M = 25,858, SD = 6137). Furthermore, there were significant differences between expert and novice pilots in the percentage of fixation on the head-up display (HUD), time spent looking outside the cockpit, and the performance of situational awareness (SA). Experienced pilots have better SA performance and paid more attention to the HUD, but focused less outside the cockpit when compared with novice pilots. Furthermore, pilots with better SA performance exhibited a smaller pupil size during the operational phase of lock on while pursuing a dynamic target. Understanding pilots' visual scan patterns and attention distribution are beneficial to the design of interface displays in the cockpit and in developing human factors training syllabi to improve the safety of flight operations.

  11. The development of organized visual search

    Science.gov (United States)

    Woods, Adam J.; Goksun, Tilbe; Chatterjee, Anjan; Zelonis, Sarah; Mehta, Anika; Smith, Sabrina E.

    2013-01-01

    Visual search plays an important role in guiding behavior. Children have more difficulty performing conjunction search tasks than adults. The present research evaluates whether developmental differences in children's ability to organize serial visual search (i.e., search organization skills) contribute to performance limitations in a typical conjunction search task. We evaluated 134 children between the ages of 2 and 17 on separate tasks measuring search for targets defined by a conjunction of features or by distinct features. Our results demonstrated that children organize their visual search better as they get older. As children's skills at organizing visual search improve they become more accurate at locating targets with conjunction of features amongst distractors, but not for targets with distinct features. Developmental limitations in children's abilities to organize their visual search of the environment are an important component of poor conjunction search in young children. In addition, our findings provide preliminary evidence that, like other visuospatial tasks, exposure to reading may influence children's spatial orientation to the visual environment when performing a visual search. PMID:23584560

  12. Contrast and Strength of Visual Memory and Imagery Differentially Affect Visual Perception

    OpenAIRE

    Saad, Elyana; Silvanto, Juha

    2013-01-01

    Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on...

  13. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  14. Exclusion of pituitary homeobox 2 gene polymorphism in vertical mandibular asymmetry patients: a preliminary study

    Science.gov (United States)

    Sofyanti, Ervina; Boel, Trelia; Soegiharto, Benny; Ilyas, Syafruddin; Irani Nainggolan, Lidya; Auerkari, Elza Ibrahim

    2018-03-01

    Pituitary Homeobox 2 (PITX2), is an active gene as a paired-related homeobox gene that encodes multiple isoforms. Its Nodal pathway in determination of left-right patterning during embryogenesis has been reported in satellite cells and expressed in adult human skeletal muscle. PITX2A and PITX2B are produced by alternative splicing and used of different promoters. PITX2C uses an alternative promoter located upstream of exon 4. PITX2D is produced by PITX2C alternative promoter and differential splicing. The 5’-primers and 3’- antisense primer were unique for each isoforms. Variability measurement in vertical dimension showed stronger genetic component than sagittal. This study aims to obtain the genotype marker of vertical mandibular asymmetry related to PITX2A and PITX2D isoform by visualization of the amplified product on stained gel to allele specific oligonucleotide between the case and control with Restriction Fragment Length Polymorphism (RFLP). Determination of vertical mandibular asymmetry based on condylar height asymmetry index of pre-treatment panoramic radiograph using Kjellberg’s technique whilst vertical mandibular growth pattern using lateral cephalogram. The differences of condylar height asymmetry in case-control based on vertical growth pattern was compared using Pearson’s chi-squared test. DNA extraction of 129 out-coming orthodontic patients in Universitas Sumatera Utara Dental Hospital were obtained from Buccal swab. Then DNA samples were amplified by Polymerase chain reaction (PCR) and digested with NciI restriction enzyme prior to electrophoresis visualization. There was no significant statistical difference in vertical mandibular asymmetry compared to vertical mandibular growth pattern. The RFLP analysis did not show any polymorphism for PITX2A and PITX2D isoform. All of the samples showed wild type homozygote. Further analysis method, except RFLP, were required to understand the genetic factor in the variance of vertical mandibular

  15. Visual search is modulated by action intentions

    NARCIS (Netherlands)

    Bekkering, H; Neggers, SFW

    The influence of action intentions on visual selection processes was investigated in a visual search paradigm. A predefined target object with a certain orientation and color was presented among distractors, and subjects had to either look and point at the target or look at and grasp the target.

  16. Different target-discrimination times can be followed by the same saccade-initiation timing in different stimulus conditions during visual searches

    Science.gov (United States)

    Tanaka, Tomohiro; Nishida, Satoshi

    2015-01-01

    The neuronal processes that underlie visual searches can be divided into two stages: target discrimination and saccade preparation/generation. This predicts that the length of time of the prediscrimination stage varies according to the search difficulty across different stimulus conditions, whereas the length of the latter postdiscrimination stage is stimulus invariant. However, recent studies have suggested that the length of the postdiscrimination interval changes with different stimulus conditions. To address whether and how the visual stimulus affects determination of the postdiscrimination interval, we recorded single-neuron activity in the lateral intraparietal area (LIP) when monkeys (Macaca fuscata) performed a color-singleton search involving four stimulus conditions that differed regarding luminance (Bright vs. Dim) and target-distractor color similarity (Easy vs. Difficult). We specifically focused on comparing activities between the Bright-Difficult and Dim-Easy conditions, in which the visual stimuli were considerably different, but the mean reaction times were indistinguishable. This allowed us to examine the neuronal activity when the difference in the degree of search speed between different stimulus conditions was minimal. We found that not only prediscrimination but also postdiscrimination intervals varied across stimulus conditions: the postdiscrimination interval was longer in the Dim-Easy condition than in the Bright-Difficult condition. Further analysis revealed that the postdiscrimination interval might vary with stimulus luminance. A computer simulation using an accumulation-to-threshold model suggested that the luminance-related difference in visual response strength at discrimination time could be the cause of different postdiscrimination intervals. PMID:25995344

  17. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0.

    Science.gov (United States)

    Clark, Alex M; Sarker, Malabika; Ekins, Sean

    2014-01-01

    We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool.

  18. Simulation of visual search in the natural 2-D situation

    Directory of Open Access Journals (Sweden)

    Blanka Borin

    2004-08-01

    Full Text Available The goal of this research was to imitate the process of visual search in a natural two-dimensional situation and also to investigate the influence of variable features on the speed of the visual search. The experiment was designed upon one of the most influential theories in the research field of the visual search phenomenon – The Feature Integration Theory (Treisman, 1982. Although the FIT theory claims, that in case of a larger number of synchronous targets the mechanism of attention serially directs the mental processing from one target towards another, the results of our experiment has shown the possibility of not just serial but also parallel visual search. The results of the experiment have also shown that the similarity between features of the target and its surroundings takes effect on the speed of the target recognition. If the features are very similar or if there is no difference between the target and its surroundings, the visual search for the target is longer in comparison to the visual search for the target, which features don't resemble the target's surroundings.

  19. Conditional Probability Modulates Visual Search Efficiency

    Directory of Open Access Journals (Sweden)

    Bryan eCort

    2013-10-01

    Full Text Available We investigated the effects of probability on visual search. Previous work has shown that people can utilize spatial and sequential probability information to improve target detection. We hypothesized that performance improvements from probability information would extend to the efficiency of visual search. Our task was a simple visual search in which the target was always present among a field of distractors, and could take one of two colors. The absolute probability of the target being either color was 0.5; however, the conditional probability – the likelihood of a particular color given a particular combination of two cues – varied from 0.1 to 0.9. We found that participants searched more efficiently for high conditional probability targets and less efficiently for low conditional probability targets, but only when they were explicitly informed of the probability relationship between cues and target color.

  20. Tactical decisions for changeable cuttlefish camouflage: visual cues for choosing masquerade are relevant from a greater distance than visual cues used for background matching.

    Science.gov (United States)

    Buresch, Kendra C; Ulmer, Kimberly M; Cramer, Corinne; McAnulty, Sarah; Davison, William; Mäthger, Lydia M; Hanlon, Roger T

    2015-10-01

    Cuttlefish use multiple camouflage tactics to evade their predators. Two common tactics are background matching (resembling the background to hinder detection) and masquerade (resembling an uninteresting or inanimate object to impede detection or recognition). We investigated how the distance and orientation of visual stimuli affected the choice of these two camouflage tactics. In the current experiments, cuttlefish were presented with three visual cues: 2D horizontal floor, 2D vertical wall, and 3D object. Each was placed at several distances: directly beneath (in a circle whose diameter was one body length (BL); at zero BL [(0BL); i.e., directly beside, but not beneath the cuttlefish]; at 1BL; and at 2BL. Cuttlefish continued to respond to 3D visual cues from a greater distance than to a horizontal or vertical stimulus. It appears that background matching is chosen when visual cues are relevant only in the immediate benthic surroundings. However, for masquerade, objects located multiple body lengths away remained relevant for choice of camouflage. © 2015 Marine Biological Laboratory.

  1. Orientation is different: Interaction between contour integration and feature contrasts in visual search.

    Science.gov (United States)

    Jingling, Li; Tseng, Chia-Huei; Zhaoping, Li

    2013-09-10

    Salient items usually capture attention and are beneficial to visual search. Jingling and Tseng (2013), nevertheless, have discovered that a salient collinear column can impair local visual search. The display used in that study had 21 rows and 27 columns of bars, all uniformly horizontal (or vertical) except for one column of bars orthogonally oriented to all other bars, making this unique column of collinear (or noncollinear) bars salient in the display. Observers discriminated an oblique target bar superimposed on one of the bars either in the salient column or in the background. Interestingly, responses were slower for a target in a salient collinear column than in the background. This opens a theoretical question of how contour integration interacts with salience computation, which is addressed here by an examination of how salience modulated the search impairment from the collinear column. We show that the collinear column needs to have a high orientation contrast with its neighbors to exert search interference. A collinear column of high contrast in color or luminance did not produce the same impairment. Our results show that orientation-defined salience interacted with collinear contour differently from other feature dimensions, which is consistent with the neuronal properties in V1.

  2. A low complexity visualization tool that helps to perform complex systems analysis

    International Nuclear Information System (INIS)

    Beiro, M G; Alvarez-Hamelin, J I; Busch, J R

    2008-01-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n√n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  3. A low complexity visualization tool that helps to perform complex systems analysis

    Science.gov (United States)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  4. Unconscious analyses of visual scenes based on feature conjunctions.

    Science.gov (United States)

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  5. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, A. [Saitama Industrial Technology Center, Japan Society for the Promotion of Science, Kawaguchi (Japan). Domestic Research Fellowship; Hashiride, M.; Morimoto, R.; Nagai, Y. [Saitama Industrial Technology Center, Kawaguchi (Japan). Materials Engineering Division; Aogaki, R. [Polytechnic University, Sagamihara (Japan). Department of Product Design

    2004-11-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected. (author)

  6. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    International Nuclear Information System (INIS)

    Sugiyama, Atsushi; Hashiride, Makoto; Morimoto, Ryoichi; Nagai, Yutaka; Aogaki, Ryoichi

    2004-01-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected

  7. Erratum to Visual priming through a boost of the target signal : Evidence from saccadic landing positions (Atten Percept Psychophys, 10.3758/s13414-013-0516-z)

    NARCIS (Netherlands)

    Meeter, M.; Van der Stigchel, S.

    2014-01-01

    Searching for a target is slower when target features change from trial to trial than when they are repeated. Although heavily studied, it is still not wholly clear what process is influenced by such visual priming. Here, we introduce a new measure to study priming. When a target and distractor are

  8. Auditory Emotional Cues Enhance Visual Perception

    Science.gov (United States)

    Zeelenberg, Rene; Bocanegra, Bruno R.

    2010-01-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…

  9. How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

    Science.gov (United States)

    Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L

    2014-11-01

    Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A severe capacity limit in the consolidation of orientation information into visual short-term memory.

    Science.gov (United States)

    Becker, Mark W; Miller, James R; Liu, Taosheng

    2013-04-01

    Previous research has suggested that two color patches can be consolidated into visual short-term memory (VSTM) via an unlimited parallel process. Here we examined whether the same unlimited-capacity parallel process occurs for two oriented grating patches. Participants viewed two gratings that were presented briefly and masked. In blocks of trials, the gratings were presented either simultaneously or sequentially. In Experiments 1 and 2, the presentation of the stimuli was followed by a location cue that indicated the grating on which to base one's response. In Experiment 1, participants responded whether the target grating was oriented clockwise or counterclockwise with respect to vertical. In Experiment 2, participants indicated whether the target grating was oriented along one of the cardinal directions (vertical or horizontal) or was obliquely oriented. Finally, in Experiment 3, the location cue was replaced with a third grating that appeared at fixation, and participants indicated whether either of the two test gratings matched this probe. Despite the fact that these responses required fairly coarse coding of the orientation information, across all methods of responding we found superior performance for sequential over simultaneous presentations. These findings suggest that the consolidation of oriented gratings into VSTM is severely limited in capacity and differs from the consolidation of color information.

  11. Branes in the GL(1 vertical stroke 1) WZNW-Model

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, T.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). KdV Inst. for Mathematics

    2007-08-15

    We initiate a systematic study of boundary conditions in conformal field theories with target space supersymmetry. The WZNW model on GL(1 vertical stroke 1) is used as a prototypical example for which we find the complete set of maximally symmetric branes. This includes a unique brane of maximal super-dimension 2 vertical stroke 2, a 2-parameter family of branes with super-dimension 0 vertical stroke 2 and an infinite set of fully localized branes possessing a single modulus. Members of the latter family can only exist along certain lines on the bosonic base, much like fractional branes at orbifold singularities. Our results establish that all essential algebraic features of Cardy-type boundary theories carry over to the non-rational logarithmic WZNW model on GL(1 vertical stroke 1). (orig.)

  12. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    International Nuclear Information System (INIS)

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D.; Driemeyer, D.E.; Kubik, D.L.; Slattery, K.T.; Hellwig, T.H.

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles

  13. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D. [Sandia National Labs., Albuquerque, NM (United States); Driemeyer, D.E. Kubik, D.L.; Slattery, K.T.; Hellwig, T.H. [McDonnell Douglas Aerospace, St. Louis, MO (United States)

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles.

  14. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    Science.gov (United States)

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  15. Three-dimensional visual feature representation in the primary visual cortex.

    Science.gov (United States)

    Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2011-12-01

    In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of the same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a

  16. Tuning perception: Visual working memory biases the quality of visual awareness.

    Science.gov (United States)

    Salahub, Christine M; Emrich, Stephen M

    2016-12-01

    Studies of consciousness reveal that it is possible to manipulate subjective awareness of a visual stimulus. For example, items held in visual working memory (VWM) that match target features increase the speed with which the target reaches visual awareness. To examine the effect of VWM on perception, previous studies have mainly used coarse measures of awareness, such as present/absent or forced-choice judgments. These methods can reveal whether or not an individual has seen an item, but they do not provide information about the quality with which the item was seen. Using continuous report methods it has been shown that the fidelity of a perceived item can be affected by whether or not that item is masked. In the present study, we used an object-substitution masking task to examine whether items held in VWM would influence the quality with which a masked target reached awareness, or whether the threshold for awareness was instead affected by stimuli held in memory. We observed that targets matching the contents of VWM were recalled with greater precision compared to items that did not match the contents of VWM. Importantly, this effect occurred without affecting the likelihood of the target being perceived. These results suggest that VWM plays a greater role in modulating the fidelity of perceived representations than in lowering the overall threshold of awareness.

  17. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    Science.gov (United States)

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  18. Data-Driven Visualization and Group Analysis of Multichannel EEG Coherence with Functional Units

    NARCIS (Netherlands)

    Caat, Michael ten; Maurits, Natasha M.; Roerdink, Jos B.T.M.

    2008-01-01

    A typical data- driven visualization of electroencephalography ( EEG) coherence is a graph layout, with vertices representing electrodes and edges representing significant coherences between electrode signals. A drawback of this layout is its visual clutter for multichannel EEG. To reduce clutter,

  19. Visual Information and Support Surface for Postural Control in Visual Search Task.

    Science.gov (United States)

    Huang, Chia-Chun; Yang, Chih-Mei

    2016-10-01

    When standing on a reduced support surface, people increase their reliance on visual information to control posture. This assertion was tested in the current study. The effects of imposed motion and support surface on postural control during visual search were investigated. Twelve participants (aged 21 ± 1.8 years; six men and six women) stood on a reduced support surface (45% base of support). In a room that moved back and forth along the anteroposterior axis, participants performed visual search for a given letter in an article. Postural sway variability and head-room coupling were measured. The results of head-room coupling, but not postural sway, supported the assertion that people increase reliance on visual information when standing on a reduced support surface. Whether standing on a whole or reduced surface, people stabilized their posture to perform the visual search tasks. Compared to a fixed target, searching on a hand-held target showed greater head-room coupling when standing on a reduced surface. © The Author(s) 2016.

  20. Vertical transmission of macular telangiectasia type 2.

    Science.gov (United States)

    Delaere, Lien; Spielberg, Leigh; Leys, Anita M

    2012-01-01

    The purpose of this study was to report vertical transmission of macular telangiectasia type 2 and type 2 diabetes mellitus in 3 families. In this retrospective interventional case series, the charts of patients with inherited macular telangiectasia type 2 were reviewed. A large spectrum of presentations of macular telangiectasia type 2 was observed and has been studied with different techniques including best-corrected visual acuity, microperimetry, confocal blue reflectance fundus autofluorescence, fluorescein angiography, and time domain and spectral domain optical coherence tomography. Vertical transmission of macular telangiectasia type 2 and associated type 2 diabetes mellitus is described in 3 families. Symptomatic as well as asymptomatic eyes with macular telangiectasia type 2 were identified. In 2 families, a mother and son experienced visual loss and were diagnosed with macular telangiectasia type 2. All 4 patients had type 2 diabetes. Diabetic retinopathy was observed in one mother and her son. In the third family, the index patient was diagnosed macular telangiectasia type 2 after complaints of metamorphopsia. She and her family members had type 2 diabetes mellitus, and further screening of her family revealed familial macular telangiectasia type 2. None of the patients were treated for macular telangiectasia type 2. Macular telangiectasia type 2 may be more common than previously assumed, as vision can remain preserved and patients may go undiagnosed. Screening of family members is indicated, and detection of mild anomalies is possible using fundus autofluorescence and spectral domain optical coherence tomography.

  1. Vertical binocular disparity is encoded implicitly within a model neuronal population tuned to horizontal disparity and orientation.

    Directory of Open Access Journals (Sweden)

    Jenny C A Read

    2010-04-01

    Full Text Available Primary visual cortex is often viewed as a "cyclopean retina", performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea, the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations.

  2. [Objective assessment of disorders of visual perception following unilateral vestibular loss. Studies of the so-called Dandy symptom].

    Science.gov (United States)

    Stoll, W; Werner, F; Kauffmann, G

    1991-02-01

    Visual ability and compensatory eye movements during defined vertical oscillation were investigated in 20 patients with unilateral lesions of labyrinthine function and in 20 normal subjects. Oscillation frequencies were performed at the rate of 1 to 1.5 Hz with an amplitude of 5 cm, comparative to head locomotions of a running person. In synchronism with this, the visual function was tested with Landolt rings. Patients complaining of subjective visual disturbance during walking and running, also presented a measurable blur of vision under test conditions. In addition, eye movements were recorded and classified into three types. However, these eye movements showed no relation to gaze function. Our results suggest that the otolith-ocular reflex may participate in adjusting the vertical eye position during vertical stimulations at low frequencies. The effect of visual disturbances in patients with labyrinthine lesions is explained by the "efference-copy" initially described by von Holst. The efference-copy is responsible for the neutralisation of provoked retinal perceptions.

  3. Auditory and visual capture during focused visual attention

    OpenAIRE

    Koelewijn, T.; Bronkhorst, A.W.; Theeuwes, J.

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies have not differentiated between capture by onsets presented at a nontarget (invalid) location and possible performance benefits occurring when the target location is (validly) cued. In this study, th...

  4. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  5. Altered visual information processing systems in bipolar disorder: evidence from visual MMN and P3

    Directory of Open Access Journals (Sweden)

    Toshihiko eMaekawa

    2013-07-01

    Full Text Available Objective: Mismatch negativity (MMN and P3 are unique ERP components that provide objective indices of human cognitive functions such as short-term memory and prediction. Bipolar disorder (BD is an endogenous psychiatric disorder characterized by extreme shifts in mood, energy, and ability to function socially. BD patients usually show cognitive dysfunction, and the goal of this study was to access their altered visual information processing via visual MMN (vMMN and P3 using windmill pattern stimuli.Methods: Twenty patients with BD and 20 healthy controls matched for age, gender, and handedness participated in this study. Subjects were seated in front of a monitor and listened to a story via earphones. Two types of windmill patterns (standard and deviant and white circle (target stimuli were randomly presented on the monitor. All stimuli were presented in random order at 200-ms durations with an 800-ms inter-stimulus interval. Stimuli were presented at 80% (standard, 10% (deviant, and 10% (target probabilities. The participants were instructed to attend to the story and press a button as soon as possible when the target stimuli were presented. Event-related potentials were recorded throughout the experiment using 128-channel EEG equipment. vMMN was obtained by subtracting standard from deviant stimuli responses, and P3 was evoked from the target stimulus.Results: Mean reaction times for target stimuli in the BD group were significantly higher than those in the control group. Additionally, mean vMMN-amplitudes and peak P3-amplitudes were significantly lower in the BD group than in controls.Conclusions: Abnormal vMMN and P3 in patients indicate a deficit of visual information processing in bipolar disorder, which is consistent with their increased reaction time to visual target stimuli.Significance: Both bottom-up and top-down visual information processing are likely altered in BD.

  6. Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness

    Directory of Open Access Journals (Sweden)

    Roberta Riccelli

    2017-10-01

    Full Text Available BackgroundPersistent postural-perceptual dizziness (PPPD is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues—a phenomenon termed visual dependence and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field.MethodsWe tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs. We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD.ResultsHCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3 in patients with PPPD.ConclusionWe provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual

  7. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  8. Making the invisible visible: verbal but not visual cues enhance visual detection.

    Science.gov (United States)

    Lupyan, Gary; Spivey, Michael J

    2010-07-07

    Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.

  9. Making the invisible visible: verbal but not visual cues enhance visual detection.

    Directory of Open Access Journals (Sweden)

    Gary Lupyan

    Full Text Available BACKGROUND: Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'. A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. CONCLUSIONS/SIGNIFICANCE: Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.

  10. Prism therapy and visual rehabilitation in homonymous visual field loss.

    LENUS (Irish Health Repository)

    O'Neill, Evelyn C

    2012-02-01

    PURPOSE: Homonymous visual field defects (HVFD) are common and frequently occur after cerebrovascular accidents. They significantly impair visual function and cause disability particularly with regard to visual exploration. The purpose of this study was to assess a novel interventional treatment of monocular prism therapy on visual functioning in patients with HVFD of varied etiology using vision targeted, health-related quality of life (QOL) questionnaires. Our secondary aim was to confirm monocular and binocular visual field expansion pre- and posttreatment. METHODS: Twelve patients with acquired, documented HVFD were eligible to be included. All patients underwent specific vision-targeted, health-related QOL questionnaire and monocular and binocular Goldmann perimetry before commencing prism therapy. Patients were fitted with monocular prisms on the side of the HVFD with the base-in the direction of the field defect creating a peripheral optical exotropia and field expansion. After the treatment period, QOL questionnaires and perimetry were repeated. RESULTS: Twelve patients were included in the treatment group, 10 of whom were included in data analysis. Overall, there was significant improvement within multiple vision-related, QOL functioning parameters, specifically within the domains of general health (p < 0.01), general vision (p < 0.05), distance vision (p < 0.01), peripheral vision (p < 0.05), role difficulties (p < 0.05), dependency (p < 0.05), and social functioning (p < 0.05). Visual field expansion was shown when measured monocularly and binocularly during the study period in comparison with pretreatment baselines. CONCLUSIONS: Patients with HVFD demonstrate decreased QOL. Monocular sector prisms can improve the QOL and expand the visual field in these patients.

  11. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    International Nuclear Information System (INIS)

    Visca, Eliseo; Roccella, S.; Candura, D.; Palermo, M.; Rossi, P.; Pizzuto, A.; Sanguinetti, G.P.; Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G.

    2015-01-01

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m 2 but the capability to remove up to 20 MW/m 2 during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  12. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  13. Top-down contextual knowledge guides visual attention in infancy.

    Science.gov (United States)

    Tummeltshammer, Kristen; Amso, Dima

    2017-10-26

    The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.

  14. Visual search of Mooney faces

    Directory of Open Access Journals (Sweden)

    Jessica Emeline Goold

    2016-02-01

    Full Text Available Faces spontaneously capture attention. However, which special attributes of a face underlie this effect are unclear. To address this question, we investigate how gist information, specific visual properties and differing amounts of experience with faces affect the time required to detect a face. Three visual search experiments were conducted investigating the rapidness of human observers to detect Mooney face images. Mooney images are two-toned, ambiguous images. They were used in order to have stimuli that maintain gist information but limit low-level image properties. Results from the experiments show: 1 although upright Mooney faces were searched inefficiently, they were detected more rapidly than inverted Mooney face targets, demonstrating the important role of gist information in guiding attention towards a face. 2 Several specific Mooney face identities were searched efficiently while others were not, suggesting the involvement of specific visual properties in face detection. 3 By providing participants with unambiguous gray-scale versions of the Mooney face targets prior to the visual search task, the targets were detected significantly more efficiently, suggesting that prior experience with Mooney faces improves the ability to extract gist information for rapid face detection. However, a week of training with Mooney face categorization did not lead to even more efficient visual search of Mooney face targets. In summary, these results reveal that specific local image properties cannot account for how faces capture attention. On the other hand, gist information alone cannot account for how faces capture attention either. Prior experience facilitates the effect of gist on visual search of faces, making faces a special object category for guiding attention.

  15. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.

    Science.gov (United States)

    Spering, Miriam; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2011-04-01

    Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.

  16. Python data visualization cookbook

    CERN Document Server

    Milovanovic, Igor

    2013-01-01

    This book is written in a Cookbook style targeted towards an advanced audience. It covers the advanced topics of data visualization in Python.Python Data Visualization Cookbook is for developers that already know about Python programming in general. If you have heard about data visualization but you don't know where to start, then this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data.You will need to know some general programming concepts, and any kind of programming experience will be helpful, but the co

  17. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    Science.gov (United States)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  18. Active listening impairs visual perception and selectivity: an ERP study of auditory dual-task costs on visual attention.

    Science.gov (United States)

    Gherri, Elena; Eimer, Martin

    2011-04-01

    The ability to drive safely is disrupted by cell phone conversations, and this has been attributed to a diversion of attention from the visual environment. We employed behavioral and ERP measures to study whether the attentive processing of spoken messages is, in itself, sufficient to produce visual-attentional deficits. Participants searched for visual targets defined by a unique feature (Experiment 1) or feature conjunction (Experiment 2), and simultaneously listened to narrated text passages that had to be recalled later (encoding condition), or heard backward-played speech sounds that could be ignored (control condition). Responses to targets were slower in the encoding condition, and ERPs revealed that the visual processing of search arrays and the attentional selection of target stimuli were less efficient in the encoding relative to the control condition. Results demonstrate that the attentional processing of visual information is impaired when concurrent spoken messages are encoded and maintained, in line with cross-modal links in selective attention, but inconsistent with the view that attentional resources are modality-specific. The distraction of visual attention by active listening could contribute to the adverse effects of cell phone use on driving performance.

  19. Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.

    2013-01-01

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience. PMID:24190909

  20. Visual working memory modulates low-level saccade target selection: evidence from rapidly generated saccades in the global effect paradigm.

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J

    2013-11-04

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience.

  1. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    Science.gov (United States)

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-06

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Visual and Haptic Mental Rotation

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri

    2011-10-01

    Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.

  3. Study on the adaptation of the VICKSI-accelerator to the beam guidance system. Model of a target position with a vertical beam. Pt. 1, 2

    International Nuclear Information System (INIS)

    Hinterberger, F.

    1974-09-01

    The problem of matching an extracted beam onto the entrance slit of a monochromator system is studied under the special assumption of very restricted free space. The investigation refers to the matching of the VICKSI beam. Systems of 2, 3 and 4 quadrupole lenses are discussed. The constraints which have to be imposed upon the phase space distribution of the extracted beam are established in a general form. In order to realize a target area with vertical incoming beam two designs are proposed which can be combined with the planned beam handling system. Each one of the two designs provides the additional installation of only one 90 0 -bending magnet. It is shown that the ionoptical problem to focus the beam onto the target can be solved in a satisfactory manner. (orig.) [de

  4. Accumulation and Decay of Visual Capture and the Ventriloquism Aftereffect Caused by Brief Audio-Visual Disparities

    Science.gov (United States)

    Bosen, Adam K.; Fleming, Justin T.; Allen, Paul D.; O’Neill, William E.; Paige, Gary D.

    2016-01-01

    Visual capture and the ventriloquism aftereffect resolve spatial disparities of incongruent auditory-visual (AV) objects by shifting auditory spatial perception to align with vision. Here, we demonstrated the distinct temporal characteristics of visual capture and the ventriloquism aftereffect in response to brief AV disparities. In a set of experiments, subjects localized either the auditory component of AV targets (A within AV) or a second sound presented at varying delays (1-20s) after AV exposure (A2 after AV). AV targets were trains of brief presentations (1 or 20), covering a ±30° azimuthal range, and with ±8° (R or L) disparity. We found that the magnitude of visual capture generally reached its peak within a single AV pair and did not dissipate with time, while the ventriloquism aftereffect accumulated with repetitions of AV pairs and dissipated with time. Additionally, the magnitude of the auditory shift induced by each phenomenon was uncorrelated across listeners and visual capture was unaffected by subsequent auditory targets, indicating that visual capture and the ventriloquism aftereffect are separate mechanisms with distinct effects on auditory spatial perception. Our results indicate that visual capture is a ‘sample-and-hold’ process that binds related objects and stores the combined percept in memory, whereas the ventriloquism aftereffect is a ‘leaky integrator’ process that accumulates with experience and decays with time to compensate for cross-modal disparities. PMID:27837258

  5. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    Science.gov (United States)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  6. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    Science.gov (United States)

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  7. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  8. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  9. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    Science.gov (United States)

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  10. Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.

    Science.gov (United States)

    Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta

    2015-05-01

    Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).

  11. THREE-DIMENSIONAL SIMULATIONS OF VERTICAL MAGNETIC FLUX IN THE IMMEDIATE VICINITY OF BLACK HOLES

    International Nuclear Information System (INIS)

    Punsly, Brian; Igumenshchev, Igor V.; Hirose, Shigenobu

    2009-01-01

    This article reports on three-dimensional MHD simulations of non-rotating and rapidly rotating black holes and the adjacent black hole accretion disk magnetospheres. A particular emphasis is placed on the vertical magnetic flux that is advected inward from large radii and threads the equatorial plane near the event horizon. In both cases of non-rotating and rotating black holes, the existence of a significant vertical magnetic field in this region is like a switch that creates powerful jets. There are many similarities in the vertical flux dynamics in these two cases in spite of the tremendous enhancement of azimuthal twisting of the field lines and enhancement of the jet power because of an 'ergospheric disk' in the Kerr metric. A three-dimensional approach is essential because two-dimensional axisymmetric flows are incapable of revealing the nature of the vertical flux near a black hole. Poloidal field lines from the ergospheric accretion region have been visualized in three dimensions and much of the article is devoted to a formal classification of the different manifestations of the vertical flux in the Kerr case.

  12. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  13. Unipedal balance in healthy adults: effect of visual environments yielding decreased lateral velocity feedback.

    Science.gov (United States)

    Deyer, T W; Ashton-Miller, J A

    1999-09-01

    To test the (null) hypotheses that the reliability of unipedal balance is unaffected by the attenuation of visual velocity feedback and that, relative to baseline performance, deterioration of balance success rates from attenuated visual velocity feedback will not differ between groups of young men and older women, and the presence (or absence) of a vertical foreground object will not affect balance success rates. Single blind, single case study. University research laboratory. Two volunteer samples: 26 healthy young men (mean age, 20.0yrs; SD, 1.6); 23 healthy older women (mean age, 64.9 yrs; SD, 7.8). Normalized success rates in unipedal balance task. Subjects were asked to transfer to and maintain unipedal stance for 5 seconds in a task near the limit of their balance capabilities. Subjects completed 64 trials: 54 trials of three experimental visual scenes in blocked randomized sequences of 18 trials and 10 trials in a normal visual environment. The experimental scenes included two that provided strong velocity/weak position feedback, one of which had a vertical foreground object (SVWP+) and one without (SVWP-), and one scene providing weak velocity/strong position (WVSP) feedback. Subjects' success rates in the experimental environments were normalized by the success rate in the normal environment in order to allow comparisons between subjects using a mixed model repeated measures analysis of variance. The normalized success rate was significantly greater in SVWP+ than in WVSP (p = .0001) and SVWP- (p = .013). Visual feedback significantly affected the normalized unipedal balance success rates (p = .001); neither the group effect nor the group X visual environment interaction was significant (p = .9362 and p = .5634, respectively). Normalized success rates did not differ significantly between the young men and older women in any visual environment. Near the limit of the young men's or older women's balance capability, the reliability of transfer to unipedal

  14. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  15. Evaluating the Performance of a Visually Guided Hearing Aid Using a Dynamic Auditory-Visual Word Congruence Task.

    Science.gov (United States)

    Roverud, Elin; Best, Virginia; Mason, Christine R; Streeter, Timothy; Kidd, Gerald

    2017-12-15

    The "visually guided hearing aid" (VGHA), consisting of a beamforming microphone array steered by eye gaze, is an experimental device being tested for effectiveness in laboratory settings. Previous studies have found that beamforming without visual steering can provide significant benefits (relative to natural binaural listening) for speech identification in spatialized speech or noise maskers when sound sources are fixed in location. The aim of the present study was to evaluate the performance of the VGHA in listening conditions in which target speech could switch locations unpredictably, requiring visual steering of the beamforming. To address this aim, the present study tested an experimental simulation of the VGHA in a newly designed dynamic auditory-visual word congruence task. Ten young normal-hearing (NH) and 11 young hearing-impaired (HI) adults participated. On each trial, three simultaneous spoken words were presented from three source positions (-30, 0, and 30 azimuth). An auditory-visual word congruence task was used in which participants indicated whether there was a match between the word printed on a screen at a location corresponding to the target source and the spoken target word presented acoustically from that location. Performance was compared for a natural binaural condition (stimuli presented using impulse responses measured on KEMAR), a simulated VGHA condition (BEAM), and a hybrid condition that combined lowpass-filtered KEMAR and highpass-filtered BEAM information (BEAMAR). In some blocks, the target remained fixed at one location across trials, and in other blocks, the target could transition in location between one trial and the next with a fixed but low probability. Large individual variability in performance was observed. There were significant benefits for the hybrid BEAMAR condition relative to the KEMAR condition on average for both NH and HI groups when the targets were fixed. Although not apparent in the averaged data, some

  16. The contributions of visual and central attention to visual working memory.

    Science.gov (United States)

    Souza, Alessandra S; Oberauer, Klaus

    2017-10-01

    We investigated the role of two kinds of attention-visual and central attention-for the maintenance of visual representations in working memory (WM). In Experiment 1 we directed attention to individual items in WM by presenting cues during the retention interval of a continuous delayed-estimation task, and instructing participants to think of the cued items. Attending to items improved recall commensurate with the frequency with which items were attended (0, 1, or 2 times). Experiments 1 and 3 further tested which kind of attention-visual or central-was involved in WM maintenance. We assessed the dual-task costs of two types of distractor tasks, one tapping sustained visual attention and one tapping central attention. Only the central attention task yielded substantial dual-task costs, implying that central attention substantially contributes to maintenance of visual information in WM. Experiment 2 confirmed that the visual-attention distractor task was demanding enough to disrupt performance in a task relying on visual attention. We combined the visual-attention and the central-attention distractor tasks with a multiple object tracking (MOT) task. Distracting visual attention, but not central attention, impaired MOT performance. Jointly, the three experiments provide a double dissociation between visual and central attention, and between visual WM and visual object tracking: Whereas tracking multiple targets across the visual filed depends on visual attention, visual WM depends mostly on central attention.

  17. Measuring of vertical stroke Vub vertical stroke in the forthcoming decade

    International Nuclear Information System (INIS)

    Kim, C.S.

    1997-01-01

    I first introduce the importance of measuring V ub precisely. Then, from a theoretician's point of view, I review (a) past history, (b) present trials, and (c) possible future alternatives on measuring vertical stroke V ub vertical stroke and/or vertical stroke V ub /V cb vertical stroke. As of my main topic, I introduce a model-independent method, which predicts Γ(B→X u lν)/Γ(B→X c lν)≡(γ u /γ c ) x vertical stroke V ub /V cb vertical stroke 2 ≅(1.83±0.28) x vertical stroke V ub /V cb vertical stroke 2 and vertical stroke V ub /V cb vertical stroke ≡(γ c /γ u ) 1/2 x [B(B→X u lν)/B(B→ X c lν]) 1/2 ≅(0.74±0.06) x [B(B→X u lν/)B(B→X c lν)] 1/2 , based on the heavy quark effective theory I also explore the possible experimental options to separate B→X u lν from the dominant B→X c lν: the measurement of inclusive hadronic invariant mass distributions, and the 'D-π' (and 'K-π') separation conditions I also clarify the relevant experimental backgrounds. (orig.)

  18. Scotoma analysis of 10-2 visual field testing with a white target in screening for hydroxychloroquine retinopathy

    Directory of Open Access Journals (Sweden)

    Browning DJ

    2015-05-01

    Full Text Available David J Browning, Chong Lee Department of Ophthalmology, Charlotte Eye, Ear, Nose and Throat Associates, Charlotte, NC, USA Objective: To quantify the variability of scotomas detected by 10-2 visual field (VF testing in patients taking hydroxychloroquine without and with retinopathy.Design: Retrospective review of clinical charts and visual fields.Subjects: Twenty-one patients taking hydroxychloroquine without retinopathy, and nine patients taking hydroxychloroquine and one patient taking chloroquine with retinopathy.Methods: Retinopathy was defined by annular scotomas on 10-2 VF testing with corroborative spectral domain optical coherence tomographic outer retinal changes and multifocal electroretinographic changes leading to cessation of hydroxychloroquine or chloroquine. Location and depth of scotoma points on 10-2 VF testing were recorded and their fates followed in serial, reliable 10-2 VFs performed with a white target over time.Main outcome measures: Number of scotoma points and locations, percentage of persistent scotoma points, size of scotomas, location of scotomas, and percentage of scotomas deepening.Results: A median of five, interquartile range (IQR 3–8 scotoma points per VF occurred in patients without retinopathy. A median of 86%, IQR 63%–100% of these points resolve on the subsequent field. For patients with retinopathy, a median of 22%, IQR 10%–59% resolve. The median percentage of scotoma points in the zone 2–8 degrees from fixation in eyes with retinopathy was 79%, IQR 68%–85% compared to 60%, IQR 54%–75% in eyes without retinopathy (P=0.0094. Single-point scotomas were more common in eyes without than with retinopathy. Scotomas consisting of more than four contiguous scotoma points were generally indicative of retinopathy.Conclusion: Point scotomas are common and variable in 10-2 VF testing with a white target for hydroxychloroquine retinopathy in subjects without retinopathy. The annular zone 2 to 8

  19. Endogenous visuospatial attention increases visual awareness independent of visual discrimination sensitivity.

    Science.gov (United States)

    Vernet, Marine; Japee, Shruti; Lokey, Savannah; Ahmed, Sara; Zachariou, Valentinos; Ungerleider, Leslie G

    2017-08-12

    Visuospatial attention often improves task performance by increasing signal gain at attended locations and decreasing noise at unattended locations. Attention is also believed to be the mechanism that allows information to enter awareness. In this experiment, we assessed whether orienting endogenous visuospatial attention with cues differentially affects visual discrimination sensitivity (an objective task performance) and visual awareness (the subjective feeling of perceiving) during the same discrimination task. Gabor patch targets were presented laterally, either at low contrast (contrast stimuli) or at high contrast embedded in noise (noise stimuli). Participants reported their orientation either in a 3-alternative choice task (clockwise, counterclockwise, unknown) that allowed for both objective and subjective reports, or in a 2-alternative choice task (clockwise, counterclockwise) that provided a control for objective reports. Signal detection theory models were fit to the experimental data: estimated perceptual sensitivity reflected objective performance; decision criteria, or subjective biases, were a proxy for visual awareness. Attention increased sensitivity (i.e., improved objective performance) for the contrast, but not for the noise stimuli. Indeed, with the latter, attention did not further enhance the already high target signal or reduce the already low uncertainty on its position. Interestingly, for both contrast and noise stimuli, attention resulted in more liberal criteria, i.e., awareness increased. The noise condition is thus an experimental configuration where people think they see the targets they attend to better, even if they do not. This could be explained by an internal representation of their attentional state, which influences awareness independent of objective visual signals. Copyright © 2017. Published by Elsevier Ltd.

  20. Binocular perception of slant about oblique axes relative to a visual frame of reference

    NARCIS (Netherlands)

    Ee, R. van; Erkelens, Casper J.

    1995-01-01

    From the literature it is known that the processing of disparity for slant is different in the presence and in the absence of a visual frame of reference. We elaborate the experimental finding that vertical disparity is not processed for slant perception in the presence of a visual reference. This

  1. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory.

    Science.gov (United States)

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.

  2. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    Science.gov (United States)

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  3. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    Directory of Open Access Journals (Sweden)

    Marc R. Kamke

    2014-06-01

    Full Text Available The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color. In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  4. Can Visual Illusions Be Used to Facilitate Sport Skill Learning?

    Science.gov (United States)

    Cañal-Bruland, Rouwen; van der Meer, Yor; Moerman, Jelle

    2016-01-01

    Recently it has been reported that practicing putting with visual illusions that make the hole appear larger than it actually is leads to longer-lasting performance improvements. Interestingly, from a motor control and learning perspective, it may be possible to actually predict the opposite to occur, as facing a smaller appearing target should enforce performers to be more precise. To test this idea the authors invited participants to practice an aiming task (i.e., a marble-shooting task) with either a visual illusion that made the target appear larger or a visual illusion that made the target appear smaller. They applied a pre-post test design, included a control group training without any illusory effects and increased the amount of practice to 450 trials. In contrast to earlier reports, the results revealed that the group that trained with the visual illusion that made the target look smaller improved performance from pre- to posttest, whereas the group practicing with visual illusions that made the target appear larger did not show any improvements. Notably, also the control group improved from pre- to posttest. The authors conclude that more research is needed to improve our understanding of whether and how visual illusions may be useful training tools for sport skill learning.

  5. Stable statistical representations facilitate visual search.

    Science.gov (United States)

    Corbett, Jennifer E; Melcher, David

    2014-10-01

    Observers represent the average properties of object ensembles even when they cannot identify individual elements. To investigate the functional role of ensemble statistics, we examined how modulating statistical stability affects visual search. We varied the mean and/or individual sizes of an array of Gabor patches while observers searched for a tilted target. In "stable" blocks, the mean and/or local sizes of the Gabors were constant over successive displays, whereas in "unstable" baseline blocks they changed from trial to trial. Although there was no relationship between the context and the spatial location of the target, observers found targets faster (as indexed by faster correct responses and fewer saccades) as the global mean size became stable over several displays. Building statistical stability also facilitated scanning the scene, as measured by larger saccadic amplitudes, faster saccadic reaction times, and shorter fixation durations. These findings suggest a central role for peripheral visual information, creating context to free resources for detailed processing of salient targets and maintaining the illusion of visual stability.

  6. Mapping the Vertical Battlespace:Towards a Legal Cartography of Aerial Sovereignty

    DEFF Research Database (Denmark)

    Munro, Campbell Alexander Omoluaye

    2014-01-01

    Proliferating drone violence has instantiated the notion of an unbounded global battlespace. Mapping the vertical battlespace layered over the target zones of the imperial periphery discloses how antecedent legalities legitimate violence exercised exclusively from above, and reveals the imperial...

  7. Gambling in the visual periphery: a conjoint-measurement analysis of human ability to judge visual uncertainty.

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    Full Text Available Recent work in motor control demonstrates that humans take their own motor uncertainty into account, adjusting the timing and goals of movement so as to maximize expected gain. Visual sensitivity varies dramatically with retinal location and target, and models of optimal visual search typically assume that the visual system takes retinal inhomogeneity into account in planning eye movements. Such models can then use the entire retina rather than just the fovea to speed search. Using a simple decision task, we evaluated human ability to compensate for retinal inhomogeneity. We first measured observers' sensitivity for targets, varying contrast and eccentricity. Observers then repeatedly chose between targets differing in eccentricity and contrast, selecting the one they would prefer to attempt: e.g., a low contrast target at 2° versus a high contrast target at 10°. Observers knew they would later attempt some of their chosen targets and receive rewards for correct classifications. We evaluated performance in three ways. Equivalence: Do observers' judgments agree with their actual performance? Do they correctly trade off eccentricity and contrast and select the more discriminable target in each pair? Transitivity: Are observers' choices self-consistent? Dominance: Do observers understand that increased contrast improves performance? Decreased eccentricity? All observers exhibited patterned failures of equivalence, and seven out of eight observers failed transitivity. There were significant but small failures of dominance. All these failures together reduced their winnings by 10%-18%.

  8. Priming T2 in a Visual and Auditory Attentional Blink Task

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J.

    2008-01-01

    Participants performed an attentional blink (AB) task including digits as targets and letters as distractors within the visual and auditory domains. Prior to the rapid serial visual presentation, a visual or auditory prime was presented in the form of a digit that was identical to the second target

  9. Internal wave-mediated shading causes frequent vertical migrations in fishes

    KAUST Repository

    Kaartvedt, Stein

    2012-04-25

    We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of fish created an overlapping zone. Near-bottom fish correspondingly left the benthic boundary zone at the wave trough, ascending into an acoustic scattering layer likely consisting of zooplankton and then descending to the benthic boundary zone at the wave crest. We suggest that this vertical fish migration is a response to fluctuations in light intensity of 3 to 4 orders of magnitude caused by shading from a turbid surface layer that had chlorophyll a values of 3 to 4 mg m−3 and varied in thickness from ~15 to 50 m at a temporal scale corresponding to the internal wave period (30 min). This migration frequency thus is much higher than that of the common and widespread light-associated diel vertical migration. Vertical movements affect prey encounters, growth, and survival. We hypothesize that FVM increase the likelihood of prey encounters and the time for safe visual foraging among planktivorous fish, thereby contributing to efficient trophic transfer in major upwelling areas.

  10. Construction and test of the Bonn frozen spin target

    International Nuclear Information System (INIS)

    Dutz, H.

    1989-04-01

    For γN→ΠN and γd→pn scattering experiments at the PHOENICS detector, a new 'bonn frozen spin target' (BOFROST) is developed. The target with a maximum volume of 30 cm 3 is cooled in a vertical 3 He- 4 He dilution kryostat. The lowest temperature of the dilution kryostat in the frozen spin mode should be 50 mk. In a first stage, the magnet system consist of two superconducting solenoids: A polarisation magnet with a maximum field of 7 T with a homogenity of 10 -5 over the target area and a 'vertical holding' magnet with a maximum field in the target area of 0.57 T. This work describes the construction and the set-up of the 'frozen spin target' in the laboratory and the first tests of the dilution kryostat and the superconducting magnet system. (orig.) [de

  11. l-Theanine and caffeine improve target-specific attention to visual stimuli by decreasing mind wandering: a human functional magnetic resonance imaging study.

    Science.gov (United States)

    Kahathuduwa, Chanaka N; Dhanasekara, Chathurika S; Chin, Shao-Hua; Davis, Tyler; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Binks, Martin

    2018-01-01

    Oral intake of l-theanine and caffeine supplements is known to be associated with faster stimulus discrimination, possibly via improving attention to stimuli. We hypothesized that l-theanine and caffeine may be bringing about this beneficial effect by increasing attention-related neural resource allocation to target stimuli and decreasing deviation of neural resources to distractors. We used functional magnetic resonance imaging (fMRI) to test this hypothesis. Solutions of 200mg of l-theanine, 160mg of caffeine, their combination, or the vehicle (distilled water; placebo) were administered in a randomized 4-way crossover design to 9 healthy adult men. Sixty minutes after administration, a 20-minute fMRI scan was performed while the subjects performed a visual color stimulus discrimination task. l-Theanine and l-theanine-caffeine combination resulted in faster responses to targets compared with placebo (∆=27.8milliseconds, P=.018 and ∆=26.7milliseconds, P=.037, respectively). l-Theanine was associated with decreased fMRI responses to distractor stimuli in brain regions that regulate visual attention, suggesting that l-theanine may be decreasing neural resource allocation to process distractors, thus allowing to attend to targets more efficiently. l-Theanine-caffeine combination was associated with decreased fMRI responses to target stimuli as compared with distractors in several brain regions that typically show increased activation during mind wandering. Factorial analysis suggested that l-theanine and caffeine seem to have a synergistic action in decreasing mind wandering. Therefore, our hypothesis is that l-theanine and caffeine may be decreasing deviation of attention to distractors (including mind wandering); thus, enhancing attention to target stimuli was confirmed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Spatiotopic updating of visual feature information.

    Science.gov (United States)

    Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R

    2017-10-01

    Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.

  13. Search guidance is proportional to the categorical specificity of a target cue.

    Science.gov (United States)

    Schmidt, Joseph; Zelinsky, Gregory J

    2009-10-01

    Visual search studies typically assume the availability of precise target information to guide search, often a picture of the exact target. However, search targets in the real world are often defined categorically and with varying degrees of visual specificity. In five target preview conditions we manipulated the availability of target visual information in a search task for common real-world objects. Previews were: a picture of the target, an abstract textual description of the target, a precise textual description, an abstract + colour textual description, or a precise + colour textual description. Guidance generally increased as information was added to the target preview. We conclude that the information used for search guidance need not be limited to a picture of the target. Although generally less precise, to the extent that visual information can be extracted from a target label and loaded into working memory, this information too can be used to guide search.

  14. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  15. Using Terrestrial Laser Scanners to Calculate and Map Vertical Bridge Clearance

    Science.gov (United States)

    Zhang, C.; Arditi, D.; Chen, Z.

    2013-08-01

    The vertical clearance of a bridge over a highway is important in preventing oversized vehicles from hitting the bridge. The vertical clearance of a bridge is traditionally measured by using surveying equipment such as leveling rods and total stations. Typically, measurements are taken at multiple locations in order to determine the minimum vertical clearance under the bridge. This process is time and labor consuming. Also, these measurements may not be accurate because of the traffic, the uneven surface, and the reading error caused by the surveyor. Additionally, when one is faced with a multitude of reports especially in large projects with multiple ramps and bridges, it is not easy and it often takes a long time to find the bridge under study. This research provides a highly accurate measurement of the vertical bridge clearance by using terrestrial laser scanners. The clearance can be measured in the office by processing the collected point cloud data. The minimum vertical clearance is easily identified and the measurement is visualized and geo-referenced. An approach to reduce data noise caused by traffic is also introduced in this study. In addition, to help reduce the confusion of finding the bridge under study and to facilitate access to the clearance data, the clearance measurements are geo-referenced to an online mapping system. This system allows access to the final deliverable very easily through a single web portal. Finally, Illinois Department of Transportation's Circle Interchange is used to demonstrate this new method.

  16. Visual-auditory integration for visual search: a behavioral study in barn owls

    Directory of Open Access Journals (Sweden)

    Yael eHazan

    2015-02-01

    Full Text Available Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual- auditory integration at the neuronal level. However, behavioral data on visual- auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention towards salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades. From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely towards the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search

  17. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    Directory of Open Access Journals (Sweden)

    Rosanne L Rademaker

    Full Text Available Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  18. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    Science.gov (United States)

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  19. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  20. Where's Wally: the influence of visual salience on referring expression generation.

    Science.gov (United States)

    Clarke, Alasdair D F; Elsner, Micha; Rohde, Hannah

    2013-01-01

    REFERRING EXPRESSION GENERATION (REG) PRESENTS THE CONVERSE PROBLEM TO VISUAL SEARCH: given a scene and a specified target, how does one generate a description which would allow somebody else to quickly and accurately locate the target?Previous work in psycholinguistics and natural language processing has failed to find an important and integrated role for vision in this task. That previous work, which relies largely on simple scenes, tends to treat vision as a pre-process for extracting feature categories that are relevant to disambiguation. However, the visual search literature suggests that some descriptions are better than others at enabling listeners to search efficiently within complex stimuli. This paper presents a study testing whether participants are sensitive to visual features that allow them to compose such "good" descriptions. Our results show that visual properties (salience, clutter, area, and distance) influence REG for targets embedded in images from the Where's Wally? books. Referring expressions for large targets are shorter than those for smaller targets, and expressions about targets in highly cluttered scenes use more words. We also find that participants are more likely to mention non-target landmarks that are large, salient, and in close proximity to the target. These findings identify a key role for visual salience in language production decisions and highlight the importance of scene complexity for REG.

  1. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    Science.gov (United States)

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  2. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  3. Measurement of vertical stroke Vub vertical stroke using b hadron semileptonic decay

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    The magnitude of the CKM matrix element vertical stroke V ub vertical stroke is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → X u lν event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b → X u lν) to be (1.63 ±0.53 +0.55 -0.62 ) x 10 -3 . The first uncertainty is the statistical error and the second is the systematic error. From this analysis, vertical stroke V ub vertical stroke is determined to be: vertical stroke V ub vertical stroke =(4.00±0.65(stat) +0.67 -0.76 (sys)±0.19(HQE)) x 10 -3 . The last error represents the theoretical uncertainties related to the extraction of vertical stroke V ub vertical stroke from Br(b→X u l ν) using the Heavy Quark Expansion. (orig.)

  4. Shape representation modulating the effect of motion on visual search performance.

    Science.gov (United States)

    Yang, Lindong; Yu, Ruifeng; Lin, Xuelian; Liu, Na

    2017-11-02

    The effect of motion on visual search has been extensively investigated, but that of uniform linear motion of display on search performance for tasks with different target-distractor shape representations has been rarely explored. The present study conducted three visual search experiments. In Experiments 1 and 2, participants finished two search tasks that differed in target-distractor shape representations under static and dynamic conditions. Two tasks with clear and blurred stimuli were performed in Experiment 3. The experiments revealed that target-distractor shape representation modulated the effect of motion on visual search performance. For tasks with low target-distractor shape similarity, motion negatively affected search performance, which was consistent with previous studies. However, for tasks with high target-distractor shape similarity, if the target differed from distractors in that a gap with a linear contour was added to the target, and the corresponding part of distractors had a curved contour, motion positively influenced search performance. Motion blur contributed to the performance enhancement under dynamic conditions. The findings are useful for understanding the influence of target-distractor shape representation on dynamic visual search performance when display had uniform linear motion.

  5. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate

    International Nuclear Information System (INIS)

    Lin Chang; Ho, T.-C.; Chang, S.-C.; Hsieh, S.-C.; Chang, K.-A.

    2005-01-01

    Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet

  6. The primary visual cortex in the neural circuit for visual orienting

    Science.gov (United States)

    Zhaoping, Li

    The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.

  7. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability

    Directory of Open Access Journals (Sweden)

    Mathew Yarossi

    2017-05-01

    Full Text Available Mirror visual feedback (MVF training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1 excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror and presence of a visual target (target present, target absent for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs in the untrained first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4. Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.

  8. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    Science.gov (United States)

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central

  9. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Yi-Tzu Chang

    2017-06-01

    Full Text Available Subjective visual vertical (SVV judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS. Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs, the present study examined the effect of postural control demands (PDs on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group and 13 age-matched adolescents (control group aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion, SVV (accuracy and reaction time, and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1 during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2 the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for

  10. Visualization of graphical information fusion results

    Science.gov (United States)

    Blasch, Erik; Levchuk, Georgiy; Staskevich, Gennady; Burke, Dustin; Aved, Alex

    2014-06-01

    Graphical fusion methods are popular to describe distributed sensor applications such as target tracking and pattern recognition. Additional graphical methods include network analysis for social, communications, and sensor management. With the growing availability of various data modalities, graphical fusion methods are widely used to combine data from multiple sensors and modalities. To better understand the usefulness of graph fusion approaches, we address visualization to increase user comprehension of multi-modal data. The paper demonstrates a use case that combines graphs from text reports and target tracks to associate events and activities of interest visualization for testing Measures of Performance (MOP) and Measures of Effectiveness (MOE). The analysis includes the presentation of the separate graphs and then graph-fusion visualization for linking network graphs for tracking and classification.

  11. Effects of body lean and visual information on the equilibrium maintenance during stance.

    Science.gov (United States)

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  12. An after-market, five-port vertical beam line extension for the PETtrace

    Science.gov (United States)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  13. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    Science.gov (United States)

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Vertical Horopter is Not Adaptable and is Not Adaptive for Viewing Along the Ground

    Directory of Open Access Journals (Sweden)

    M Banks

    2011-04-01

    Full Text Available Helmholtz speculated that the pitch of the vertical horopter is an adaptation for perceiving 3D structure along the ground. We examined this claim by asking whether the horopter is adaptable (ie, whether it is different for people of different heights and whether it can be changed in response to distorting lenses and whether it's adaptive (ie, whether it really is suited for perceiving along the ground. We find that it is not adaptable in that the pitch of the vertical horopter is not correlated with height and in that it does not change in response to one week of altered visual experience. We also find that it is not adaptive for viewing along the ground because the vertical horopter is a convex curve rather than a line. We speculate that it is adaptive for other aspects of natural viewing.

  15. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  16. The gyri of the octopus vertical lobe have distinct neurochemical identities.

    Science.gov (United States)

    Shigeno, Shuichi; Ragsdale, Clifton W

    2015-06-15

    The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well-established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin-releasing hormone (oGNRH), and octopressin-neurophysin (OP-NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP-NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH-containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal-vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry. © 2015 Wiley Periodicals, Inc.

  17. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  18. Broader visual orientation tuning in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Ariel eRokem

    2011-11-01

    Full Text Available Reduced gamma-aminobutyric acid (GABA levels in cerebral cortex are thought to contribute to information processing deficits in patients with schizophrenia (SZ, and we have previously reported lower in vivo GABA levels in the visual cortex of patients with SZ. GABA-mediated inhibition plays a role in sharpening orientation tuning of visual cortical neurons. Therefore, we predicted that tuning for visual stimulus orientation would be wider in SZ. We measured orientation tuning with a psychophysical procedure in which subjects performed a target detection task of a low-contrast oriented grating, following adaptation to a high-contrast grating. Contrast detection thresholds were determined for a range of adapter-target orientation offsets. For both SZ and healthy controls, contrast thresholds decreased as orientation offset increased, suggesting that this tuning curve reflects the selectivity of visual cortical neurons for stimulus orientation. After accounting for generalized deficits in task performance in SZ, there was no difference between patients and controls for detection of target stimuli having either the same orientation as the adapter or orientations far from the adapter. However, patients’ thresholds were significantly higher for intermediate adapter-target offsets. In addition, the mean width parameter of a Gaussian fit to the psychophysical orientation tuning curves was significantly larger for the patient group. We also present preliminary data relating visual cortical GABA levels, as measured with magnetic resonance spectroscopy, and orientation tuning width. These results suggest that our finding of broader orientation tuning in SZ may be due to diminished visual cortical GABA levels.

  19. Exposure to arousal-inducing sounds facilitates visual search.

    Science.gov (United States)

    Asutay, Erkin; Västfjäll, Daniel

    2017-09-04

    Exposure to affective stimuli could enhance perception and facilitate attention via increasing alertness, vigilance, and by decreasing attentional thresholds. However, evidence on the impact of affective sounds on perception and attention is scant. Here, a novel aspect of affective facilitation of attention is studied: whether arousal induced by task-irrelevant auditory stimuli could modulate attention in a visual search. In two experiments, participants performed a visual search task with and without auditory-cues that preceded the search. Participants were faster in locating high-salient targets compared to low-salient targets. Critically, search times and search slopes decreased with increasing auditory-induced arousal while searching for low-salient targets. Taken together, these findings suggest that arousal induced by sounds can facilitate attention in a subsequent visual search. This novel finding provides support for the alerting function of the auditory system by showing an auditory-phasic alerting effect in visual attention. The results also indicate that stimulus arousal modulates the alerting effect. Attention and perception are our everyday tools to navigate our surrounding world and the current findings showing that affective sounds could influence visual attention provide evidence that we make use of affective information during perceptual processing.

  20. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  1. Lateralized visual behavior in bottlenose dolphins (Tursiops truncatus) performing audio-visual tasks: the right visual field advantage.

    Science.gov (United States)

    Delfour, F; Marten, K

    2006-01-10

    Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice.

  2. Imaged-Based Visual Servo Control for a VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Liying Zou

    2017-01-01

    Full Text Available This paper presents a novel control strategy to force a vertical take-off and landing (VTOL aircraft to accomplish the pinpoint landing task. The control development is based on the image-based visual servoing method and the back-stepping technique; its design differs from the existing methods because the controller maps the image errors onto the actuator space via a visual model which does not contain the depth information of the feature point. The novelty of the proposed method is to extend the image-based visual servoing technique to the VTOL aircraft control. In addition, the Lyapunov theory is used to prove the asymptotic stability of the VTOL aircraft visual servoing system, while the image error can converge to zero. Furthermore, simulations have been also conducted to demonstrate the performances of the proposed method.

  3. Effects of chronic alcoholism in the sensitivity to luminance contrast in vertical sinusoidal gratings

    Directory of Open Access Journals (Sweden)

    Éllen Dias Nicácio da Cruz

    2016-01-01

    Full Text Available Abstract The aim of this study was to measure visual contrast sensitivity (CS of luminance using vertical sinusoidal gratings with spatial frequencies of 0.6, 2.5, 5.0 and 20.0 cycles per degree of visual angle in chronic alcoholics in abstinence period. The participants were 20 volunteers (26–59 years of age divided into two groups: the study group (SG consisted of 10 volunteers with a clinical history of chronic alcoholism abstinence and the control group (CG consisted of 10 healthy volunteers. Each group had five female and five male participants. All participants had normal or corrected visual acuity and were free of identifiable diseases. The psychophysical method of forced choice between two temporal alternatives (2AFC was used to measure visual CS of luminance of 41.2 cd/m2. The results showed significant differences between groups for all spatial frequencies tested (p< 0.001. These results suggest alterations in the visual perception related to chronic alcohol consumption even after years of abstinence.

  4. Geometric processing workflow for vertical and oblique hyperspectral frame images collected using UAV

    Science.gov (United States)

    Markelin, L.; Honkavaara, E.; Näsi, R.; Nurminen, K.; Hakala, T.

    2014-08-01

    Remote sensing based on unmanned airborne vehicles (UAVs) is a rapidly developing field of technology. UAVs enable accurate, flexible, low-cost and multiangular measurements of 3D geometric, radiometric, and temporal properties of land and vegetation using various sensors. In this paper we present a geometric processing chain for multiangular measurement system that is designed for measuring object directional reflectance characteristics in a wavelength range of 400-900 nm. The technique is based on a novel, lightweight spectral camera designed for UAV use. The multiangular measurement is conducted by collecting vertical and oblique area-format spectral images. End products of the geometric processing are image exterior orientations, 3D point clouds and digital surface models (DSM). This data is needed for the radiometric processing chain that produces reflectance image mosaics and multiangular bidirectional reflectance factor (BRF) observations. The geometric processing workflow consists of the following three steps: (1) determining approximate image orientations using Visual Structure from Motion (VisualSFM) software, (2) calculating improved orientations and sensor calibration using a method based on self-calibrating bundle block adjustment (standard photogrammetric software) (this step is optional), and finally (3) creating dense 3D point clouds and DSMs using Photogrammetric Surface Reconstruction from Imagery (SURE) software that is based on semi-global-matching algorithm and it is capable of providing a point density corresponding to the pixel size of the image. We have tested the geometric processing workflow over various targets, including test fields, agricultural fields, lakes and complex 3D structures like forests.

  5. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    International Nuclear Information System (INIS)

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-01

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 μm/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-μm-thick coatings. Thick coatings up to 325 μm were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up

  6. Comparison of visual and tactile learning in octopus after lesions to one of the two memory systems.

    Science.gov (United States)

    Bradley, E A; Young, J Z

    1975-01-01

    Sets of animals with lesions to either the vertical lobe or median inferior frontal lobe were trained first visually and then by touch. Lesions of the vertical lobe system did not affect the increase produced by food in tendency to attack a moving figure in the visual field. Any lesion that interrupted the circuit through the vertical lobe greatly impaired the capacity to inhibit attacks on crabs when these attacks resulted in shocks. Removal of the median inferior frontal lobe did not impair this capacity to learn not to attack a crab in the octopus's visual field. The capacity to learn to respond positively to a black disc but to avoid a white one was grossly impaired by an interruption of the vertical lobe circuit. After such operations the animals showed a strong preference for white over black. The capacity to learn to discriminate between black and white was not affected by removal of the median inferior frontal lobe. Animals with interruptions of the vertical lobe circuit could learn to make discrimination between white as a positive figure and black as a negative one, but they made more mistakes than controls. Most mistakes consisted of attacks on the negative (black) figure, but there were also some failures to attack the white. In tactile discrimination between rough and smooth spheres given successively, animals with vertical lobe lesions were, under some circumstances, less accurate than controls. They took more objects than controls. They were less able than controls to reverse the the discrimination. After removal of the median inferior frontal lobe tactile discrimination was greatly impaired. The animals showed a strong preference for rough objects and could not learn to take smooth objects. However, they showed improvement in discrimination when trained with smooth negative and are therefore not wholly incapable of long-term memory storage.

  7. An after-market, five-port vertical beam line extension for the PETtrace

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J. [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Los Alamos National Lab, Los Alamos, NM (United States); Hevesy Laboratory, Danish Technical University, Riso (Denmark); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Department of Radiology, University of Washington, Seattle, WA (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States)

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  8. Spatial Release from Masking with a Moving Target

    Directory of Open Access Journals (Sweden)

    M. Torben Pastore

    2017-12-01

    Full Text Available In the visual domain, a stationary object that is difficult to detect usually becomes far more salient if it moves while the objects around it do not. This “pop out” effect is important for parsing the visual world into figure/ground relationships that allow creatures to detect food, threats, etc. We tested for an auditory correlate to this visual effect by asking listeners to identify a single word, spoken by a female, embedded with two or four masking words spoken by males. Percentage correct scores were analyzed and compared between conditions where target and maskers were presented from the same position vs. when the target was presented from one position while maskers were presented from different positions. In some trials, the target word was moved across the speaker array using amplitude panning, while in other trials that target was played from a single, static position. Results showed a spatial release from masking for all conditions where the target and maskers were not located at the same position, but there was no statistically significant difference between identification performance when the target was moving vs. when it was stationary. These results suggest that, at least for short stimulus durations (0.75 s for the stimuli in this experiment, there is unlikely to be a “pop out” effect for moving target stimuli in the auditory domain as there is in the visual domain.

  9. Assessment of CASP7 structure predictions for template free targets.

    Science.gov (United States)

    Jauch, Ralf; Yeo, Hock Chuan; Kolatkar, Prasanna R; Clarke, Neil D

    2007-01-01

    In CASP7, protein structure prediction targets that lacked substantial similarity to a protein in the PDB at the time of assessment were considered to be free modeling targets (FM). We assessed predictions for 14 FM targets as well as four other targets that were deemed to be on the borderline between FM targets and template based modeling targets (TBM/FM). GDT_TS was used as one measure of model quality. Model quality was also assessed by visual inspection. Visual inspection was performed by three independent assessors who were blinded to GDT_TS scores and other quantitative measures of model quality. The best models by visual inspection tended to rank among the top few percent by GDT_TS, but were typically not the highest scoring models. Thus, visual inspection remains an essential component of assessment for FM targets. Overall, group TS020 (Baker) performed best, but success on individual targets was widely distributed among many groups. Among these other groups, TS024 and TS025 (Zhang and Zhang server) performed notably well without exceptionally large computing resources. This should be considered encouraging for future CASPs. There was a sense of progress in template FM relative to CASP6, but we were unable to demonstrate this progress objectively. (c) 2007 Wiley-Liss, Inc.

  10. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.

    Science.gov (United States)

    Moehler, Tobias; Fiehler, Katja

    2017-11-01

    The current study investigated the role of automatic encoding and maintenance of remembered, past, and present visual distractors for reach movement planning. The previous research on eye movements showed that saccades curve away from locations actively kept in working memory and also from task-irrelevant perceptually present visual distractors, but not from task-irrelevant past distractors. Curvature away has been associated with an inhibitory mechanism resolving the competition between multiple active movement plans. Here, we examined whether reach movements underlie a similar inhibitory mechanism and thus show systematic modulation of reach trajectories when the location of a previously presented distractor has to be (a) maintained in working memory or (b) ignored, or (c) when the distractor is perceptually present. Participants performed vertical reach movements on a computer monitor from a home to a target location. Distractors appeared laterally and near or far from the target (equidistant from central fixation). We found that reaches curved away from the distractors located close to the target when the distractor location had to be memorized and when it was perceptually present, but not when the past distractor had to be ignored. Our findings suggest that automatically encoding present distractors and actively maintaining the location of past distractors in working memory evoke a similar response competition resolved by inhibition, as has been previously shown for saccadic eye movements.

  11. Vision In Stroke cohort: Profile overview of visual impairment.

    Science.gov (United States)

    Rowe, Fiona J

    2017-11-01

    To profile the full range of visual disorders from a large prospective observation study of stroke survivors referred by stroke multidisciplinary teams to orthoptic services with suspected visual problems. Multicenter prospective study undertaken in 20 acute Trust hospitals. Standardized screening/referral forms and investigation forms documented data on referral signs and symptoms plus type and extent of visual impairment. Of 1,345 patients referred with suspected visual impairment, 915 were recruited (59% men; mean age at stroke onset 69 years [SD 14]). Initial visual assessment was at median 22 days post stroke onset. Eight percent had normal visual assessment. Of 92% with confirmed visual impairment, 24% had reduced central visual acuity visual field loss was present in 52%, most commonly homonymous hemianopia. Fifteen percent had visual inattention and 4.6% had other visual perceptual disorders. Overall 84% were visually symptomatic with visual field loss the most common complaint followed by blurred vision, reading difficulty, and diplopia. Treatment options were provided to all with confirmed visual impairment. Targeted advice was most commonly provided along with refraction, prisms, and occlusion. There are a wide range of visual disorders that occur following stroke and, frequently, with visual symptoms. There are equally a wide variety of treatment options available for these individuals. All stroke survivors require screening for visual impairment and warrant referral for specialist assessment and targeted treatment specific to the type of visual impairment.

  12. Visual working memory simultaneously guides facilitation and inhibition during visual search.

    Science.gov (United States)

    Dube, Blaire; Basciano, April; Emrich, Stephen M; Al-Aidroos, Naseem

    2016-07-01

    During visual search, visual working memory (VWM) supports the guidance of attention in two ways: It stores the identity of the search target, facilitating the selection of matching stimuli in the search array, and it maintains a record of the distractors processed during search so that they can be inhibited. In two experiments, we investigated whether the full contents of VWM can be used to support both of these abilities simultaneously. In Experiment 1, participants completed a preview search task in which (a) a subset of search distractors appeared before the remainder of the search items, affording participants the opportunity to inhibit them, and (b) the search target varied from trial to trial, requiring the search target template to be maintained in VWM. We observed the established signature of VWM-based inhibition-reduced ability to ignore previewed distractors when the number of distractors exceeds VWM's capacity-suggesting that VWM can serve this role while also representing the target template. In Experiment 2, we replicated Experiment 1, but added to the search displays a singleton distractor that sometimes matched the color (a task-irrelevant feature) of the search target, to evaluate capture. We again observed the signature of VWM-based preview inhibition along with attentional capture by (and, thus, facilitation of) singletons matching the target template. These findings indicate that more than one VWM representation can bias attention at a time, and that these representations can separately affect selection through either facilitation or inhibition, placing constraints on existing models of the VWM-based guidance of attention.

  13. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    Directory of Open Access Journals (Sweden)

    Amar R Marathe

    2015-08-01

    Full Text Available Brain computer interaction (BCI technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in similar neural activity between the two classes. It is unknown how current neural-based target classification algorithms perform when qualitatively similar target and non-target images are presented. This study address this question by comparing behavioral and neural classification performance across two conditions: first, when targets were the only infrequent stimulus presented amongst frequent background distracters; and second when targets were presented together with infrequent non-targets containing similar visual features to the targets. The resulting findings show that behavior is slower and less accurate when targets are presented together with similar non-targets; moreover, single-trial classification yielded high levels of misclassification when infrequent non-targets are included. Furthermore, we present an approach to mitigate the image misclassification. We use confidence measures to assess the quality of single-trial classification, and demonstrate that a system in which low confidence trials are reclassified through a secondary process can result in improved performance.

  14. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Shihua Zhang

    2018-02-01

    Full Text Available Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black, compound type, target gene(s of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  15. TBC2target: A Resource of Predicted Target Genes of Tea Bioactive Compounds.

    Science.gov (United States)

    Zhang, Shihua; Zhang, Liang; Wang, Yijun; Yang, Jian; Liao, Mingzhi; Bi, Shoudong; Xie, Zhongwen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Tea is one of the most popular non-alcoholic beverages consumed worldwide. Numerous bioactive constituents of tea were confirmed to possess healthy benefits via the mechanisms of regulating gene expressions or protein activities. However, a complete interacting profile between tea bioactive compounds (TBCs) and their target genes is lacking, which put an obstacle in the study of healthy function of tea. To fill this gap, we developed a database of target genes of TBCs (TBC2target, http://camellia.ahau.edu.cn/TBC2target) based on a pharmacophore mapping approach. In TBC2target, 6,226 interactions between 240 TBCs and 673 target genes were documented. TBC2target contains detailed information about each interacting entry, such as TBC, CAS number, PubChem CID, source of compound (e.g., green, black), compound type, target gene(s) of TBC, gene symbol, gene ID, ENSEMBL ID, PDB ID, TBC bioactivity and the reference. Using the TBC-target associations, we constructed a bipartite network and provided users the global network and local sub-network visualization and topological analyses. The entire database is free for online browsing, searching and downloading. In addition, TBC2target provides a BLAST search function to facilitate use of the database. The particular strengths of TBC2target are the inclusion of the comprehensive TBC-target interactions, and the capacity to visualize and analyze the interacting networks, which may help uncovering the beneficial effects of tea on human health as a central resource in tea health community.

  16. Early experience with multiparametric magnetic resonance imaging-targeted biopsies under visual transrectal ultrasound guidance in patients suspicious for prostate cancer undergoing repeated biopsy

    DEFF Research Database (Denmark)

    Boesen, Lars; Noergaard, Nis; Chabanova, Elizaveta

    2015-01-01

    OBJECTIVES: The purpose of this study was to investigate the detection rate of prostate cancer (PCa) by multiparametric magnetic resonance imaging-targeted biopsies (mp-MRI-bx) in patients with prior negative transrectal ultrasound biopsy (TRUS-bx) sessions without previous experience of this......-RADS) and Likert classification. All underwent repeated TRUS-bx (10 cores) and mp-MRI-bx under visual TRUS guidance of any mp-MRI-suspicious lesion not targeted by systematic TRUS-bx. RESULTS: PCa was found in 39 out of 83 patients (47%) and mp-MRI identified at least one lesion with some degree of suspicion...

  17. Advancing Water Science through Data Visualization

    Science.gov (United States)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  18. Collinearity Impairs Local Element Visual Search

    Science.gov (United States)

    Jingling, Li; Tseng, Chia-Huei

    2013-01-01

    In visual searches, stimuli following the law of good continuity attract attention to the global structure and receive attentional priority. Also, targets that have unique features are of high feature contrast and capture attention in visual search. We report on a salient global structure combined with a high orientation contrast to the…

  19. Downwards Vertical Attention Bias in Conversion Disorder vs Controls: A Pilot Study.

    Science.gov (United States)

    Gazit, Sivan; Elkana, Odelia; Dawidowicz, Liraz; Yeshayahu, Liel; Biran, Iftah

    Conversion disorder (CD) is a largely enigmatic disorder, one that requires a thorough ruling-out process. Prior research suggests that metaphors and conceptualization are rooted in physical experience, and that we interpret our affective world through metaphors. Spatial metaphors (interaction of affect and vertical space) are a prominent example of the grounding of metaphors. This is a relatively unpaved direction of research of CD. The present pilot study sought to explore this view by investigating the "healthy is up, sick is down" spatial metaphors (e.g., "fell ill" and "top shape") in patients with CD, examining the correlation between the processing of bodily-related words, CD, and vertical space. We hypothesized that patients with CD, who experience their bodies as ill, will demonstrate a downwards bias when processing bodily-related words; corresponding to the "healthy is up, sick is down" spatial metaphor. A total of 8 female patients (ages M-38.13 SD-10.44) and 42 female controls (ages M-36.4 SD-14.57) performed a visual attention task. Participants were asked to identify a spatial probe at the top or the bottom of a screen, following either a bodily related (e.g., arm) or non-bodily related (e.g., clock) prime word. As predicted, when processing bodily-related words, patients with CD demonstrated a downwards attention bias. Moreover, the higher the patient's level of somatization, the faster the patient detected lower (vs upper) spatial targets. This study suggests that the changed health paradigm of patients with CD is grounded in sensorimotor perception. Further research could propose new diagnostic and treatment options for CD. Copyright © 2017 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  20. Development of behavioral parameters and ERPs in a novel-target visual detection paradigm in children, adolescents and young adults.

    Science.gov (United States)

    Rojas-Benjumea, María Ángeles; Sauqué-Poggio, Ana María; Barriga-Paulino, Catarina I; Rodríguez-Martínez, Elena I; Gómez, Carlos M

    2015-07-04

    The present study analyzes the development of ERPs related to the process of selecting targets based on their novelty. One hundred and sixty-seven subjects from 6 to 26 years old were recorded with 30 electrodes during a visual target novelty paradigm. Behavioral results showed good performance in children that improved with age: a decrease in RTs and errors and an increase in the d' sensitivity parameter with age were obtained. In addition, the C response bias parameter evolved from a conservative to a neutral bias with age. Fronto-polar Selection Positivity (FSP) was statistically significant in all the age groups when standards and targets were compared. There was a statistically significant difference in the posterior Selection Negativity (SN) between the target and standard conditions in all age groups. The P3a component obtained was statistically significant in the emergent adult (18-21 years) and young adult (22-26 years) groups. The modulation of the P3b component by novel targets was statistically significant in all the age groups, but it decreased in amplitude with age. Peak latencies of the FSP and P3b components decreased with age. The results reveal differences in the ERP indexes for the cognitive evaluation of the stimuli presented, depending on the age of the subjects. The ability of the target condition to induce the modulation of the studied components would depend on the posterior-anterior gradient of cortex maturation and on the gradient of maturation of the low to higher order association areas.

  1. An after-market, five-port vertical beam line extension for the PETtrace

    DEFF Research Database (Denmark)

    Barnhart, T. E.; Engle, J. W.; Severin, Gregory

    2012-01-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target...... positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates. © 2012 American Institute of Physics...

  2. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    Science.gov (United States)

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  3. Dividing time: concurrent timing of auditory and visual events by young and elderly adults.

    Science.gov (United States)

    McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H

    2010-07-01

    This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.

  4. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  5. Visual Field Asymmetry in Attentional Capture

    Science.gov (United States)

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  6. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    OpenAIRE

    Amar R Marathe; Anthony J Ries; Vernon J Lawhern; Vernon J Lawhern; Brent J Lance; Jonathan eTouryan; Kaleb eMcDowell; Hubert eCecotti

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  7. The effect of target and non-target similarity on neural classification performance: a boost from confidence

    OpenAIRE

    Marathe, Amar R.; Ries, Anthony J.; Lawhern, Vernon J.; Lance, Brent J.; Touryan, Jonathan; McDowell, Kaleb; Cecotti, Hubert

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  8. Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome.

    Science.gov (United States)

    Hove, Michael J; Iversen, John R; Zhang, Allen; Repp, Bruno H

    2013-07-01

    Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target-distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.

  9. Local parameters of air–water two-phase flow at a vertical T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Monrós-Andreu, G., E-mail: gmonros@uji.es; Martínez-Cuenca, R., E-mail: rcuenca@uji.es; Torró, S., E-mail: torro@uji.es; Chiva, S., E-mail: schiva@uji.es

    2017-02-15

    Significant experimental work and modeling about vertical T-junction as a phase separator has been done for churn and annular flows, but a survey on the literature reveals a lack of experimental data regarding bubbly flow nor any phenomenological explanation to their behavior. The objective of this work is to extend the understanding of these junctions by obtaining complete datasets, i.e. of both gas and liquid, of the phase splitting process in bubbly flow conditions by means of conductivity needle probes, Laser Doppler anemometry and visual inspection. Measurements and observations of the phase split, as well as the vortex structure in a vertical T-junction with equal pipe diameters (52 mm inner diameter), are reported. Results suggest a relationship between the vortex structure and the efficiency of the junction as phase separator.

  10. Local parameters of air–water two-phase flow at a vertical T-junction

    International Nuclear Information System (INIS)

    Monrós-Andreu, G.; Martínez-Cuenca, R.; Torró, S.; Chiva, S.

    2017-01-01

    Significant experimental work and modeling about vertical T-junction as a phase separator has been done for churn and annular flows, but a survey on the literature reveals a lack of experimental data regarding bubbly flow nor any phenomenological explanation to their behavior. The objective of this work is to extend the understanding of these junctions by obtaining complete datasets, i.e. of both gas and liquid, of the phase splitting process in bubbly flow conditions by means of conductivity needle probes, Laser Doppler anemometry and visual inspection. Measurements and observations of the phase split, as well as the vortex structure in a vertical T-junction with equal pipe diameters (52 mm inner diameter), are reported. Results suggest a relationship between the vortex structure and the efficiency of the junction as phase separator.

  11. Modulation of neuronal responses during covert search for visual feature conjunctions.

    Science.gov (United States)

    Buracas, Giedrius T; Albright, Thomas D

    2009-09-29

    While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.

  12. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  13. Properties of V1 neurons tuned to conjunctions of visual features: application of the V1 saliency hypothesis to visual search behavior.

    Directory of Open Access Journals (Sweden)

    Li Zhaoping

    Full Text Available From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1 from human reaction times (RTs in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C, orientation (O, motion direction (M, or redundantly in combinations of these features (e.g., CO, MO, or CM among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets. Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.

  14. Properties of V1 neurons tuned to conjunctions of visual features: application of the V1 saliency hypothesis to visual search behavior.

    Science.gov (United States)

    Zhaoping, Li; Zhe, Li

    2012-01-01

    From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.

  15. Self-Taught Visually-Guided Pointing for a Humanoid Robot

    National Research Council Canada - National Science Library

    Marjanovic, Matthew; Scassellati, Brian; Williamson, Matthew

    2006-01-01

    .... This task requires systems for learning saccade to visual targets, generating smooth arm trajectories, locating the arm in the visual field, and learning the map between gaze direction and correct...

  16. Visual attention shifting in autism spectrum disorders.

    Science.gov (United States)

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be

  17. A multi-attribute vertical handoff scheme for heterogeneous wireless networks

    Directory of Open Access Journals (Sweden)

    JI Xiaolong

    2014-04-01

    Full Text Available In order to meet the user demand for different services as well as to mitigate the Ping-pong effect caused by vertical handoff for wireless network,a multi-attribute vertical handoff scheme for heterogeneous wireless network is proposed.In the algorithm,a fuzzy logic method is used to make pre-decision.The optimal handoff target network is selected by a cost function of network which uses an Analytic Hierarchy Process to calculate the weights of SNR,delay,cost and user preference in different business scenarios.Simulation is performed in the environment which is overlapped by WiMAX and UMTS networks.Results show that the proposed approach can effectively reduce the number of handoff and power consumption in a condition to satisfy the user needs.

  18. Enhanced Access to Early Visual Processing of Perceptual Simultaneity in Autism Spectrum Disorders

    NARCIS (Netherlands)

    Falter, Christine M.; Braeutigam, Sven; Nathan, Roger; Carrington, Sarah; Bailey, Anthony J.

    We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset

  19. How a hobby can shape cognition: visual word recognition in competitive Scrabble players.

    Science.gov (United States)

    Hargreaves, Ian S; Pexman, Penny M; Zdrazilova, Lenka; Sargious, Peter

    2012-01-01

    Competitive Scrabble is an activity that involves extraordinary word recognition experience. We investigated whether that experience is associated with exceptional behavior in the laboratory in a classic visual word recognition paradigm: the lexical decision task (LDT). We used a version of the LDT that involved horizontal and vertical presentation and a concreteness manipulation. In Experiment 1, we presented this task to a group of undergraduates, as these participants are the typical sample in word recognition studies. In Experiment 2, we compared the performance of a group of competitive Scrabble players with a group of age-matched nonexpert control participants. The results of a series of cognitive assessments showed that the Scrabble players and control participants differed only in Scrabble-specific skills (e.g., anagramming). Scrabble expertise was associated with two specific effects (as compared to controls): vertical fluency (relatively less difficulty judging lexicality for words presented in the vertical orientation) and semantic deemphasis (smaller concreteness effects for word responses). These results suggest that visual word recognition is shaped by experience, and that with experience there are efficiencies to be had even in the adult word recognition system.

  20. Sustained posterior contralateral activity indicates re-entrant target processing in visual change detection: An EEG study

    Directory of Open Access Journals (Sweden)

    Daniel eSchneider

    2014-05-01

    Full Text Available The present study investigated the neural mechanisms that contribute to the detection of visual feature changes between stimulus displays by means of event-related lateralizations of the electroencephalogram (EEG. Participants were instructed to respond to a luminance change in either of two lateralized stimuli that could randomly occur alone or together with an irrelevant orientation change of the same or contralateral stimulus. Task performance based on response times and accuracy was decreased compared to the remaining stimulus conditions when relevant and irrelevant feature changes were presented contralateral to each other (lateral distractor condition. The sensory response to the feature changes was reflected in a posterior contralateral positivity at around 100ms after change presentation and a posterior contralateral negativity in the N1 time window (N1pc. N2pc reflected a subsequent attentional bias in favor of the relevant luminance change. The continuation of the sustained posterior contralateral negativity (SPCN following N2pc covaried with response times within feature change conditions and revealed a posterior topography comparable to the earlier components associated with sensory and attentional mechanisms. Therefore, this component might reflect the re-processing of information based on sustained short-term memory representations in the visual system until a stable target percept is created that can serve as the perceptual basis for response selection and the initiation of goal-directed behavior.

  1. vertical bar Vub vertical bar from exclusive semileptonic B→π decays

    International Nuclear Information System (INIS)

    Flynn, Jonathan M.; Nieves, Juan

    2007-01-01

    We use Omnes representations of the form factors f + and f 0 for exclusive semileptonic B→π decays, paying special attention to the treatment of the B* pole and its effect on f + . We apply them to combine experimental partial branching fraction information with theoretical calculations of both form factors to extract vertical bar V ub vertical bar. The precision we achieve is competitive with the inclusive determination and we do not find a significant discrepancy between our result, vertical bar V ub vertical bar=(3.90+/-0.32+/-0.18)x10 -3 , and the inclusive world average value (4.45+/-0.20+/-0.26)x10 -3 [Heavy Flavor Averaging Group (HFAG), hep-ex/0603003

  2. Visual strategies underpinning the development of visual-motor expertise when hitting a ball.

    Science.gov (United States)

    Sarpeshkar, Vishnu; Abernethy, Bruce; Mann, David L

    2017-10-01

    It is well known that skilled batters in fast-ball sports do not align their gaze with the ball throughout ball-flight, but instead adopt a unique sequence of eye and head movements that contribute toward their skill. However, much of what we know about visual-motor behavior in hitting is based on studies that have employed case study designs, and/or used simplified tasks that fall short of replicating the spatiotemporal demands experienced in the natural environment. The aim of this study was to provide a comprehensive examination of the eye and head movement strategies that underpin the development of visual-motor expertise when intercepting a fast-moving target. Eye and head movements were examined in situ for 4 groups of cricket batters, who were crossed for playing level (elite or club) and age (U19 or adult), when hitting balls that followed either straight or curving ('swinging') trajectories. The results provide support for some widely cited markers of expertise in batting, while questioning the legitimacy of others. Swinging trajectories alter the visual-motor behavior of all batters, though in large part because of the uncertainty generated by the possibility of a variation in trajectory rather than any actual change in trajectory per se. Moreover, curving trajectories influence visual-motor behavior in a nonlinear fashion, with targets that curve away from the observer influencing behavior more than those that curve inward. The findings provide a more comprehensive understanding of the development of visual-motor expertise in interception. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    Science.gov (United States)

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Visual reconstruction of Hampi Temple - Construed Graphically, Pictorially and Digitally

    Directory of Open Access Journals (Sweden)

    Meera Natampally

    2014-05-01

    Full Text Available The existing temple complex in Hampi, Karnataka, India was extensively studied, analyzed and documented. The complex was measured-drawn and digitized by plotting its edges and vertices using AutoCAD to generate 2d drawings. The graphic 2d elements developed were extended into 3 dimensional objects using Google sketch-up. The tool has been used to facilitate the visual re-construction to achieve the architecture of the temple in its original form. 3D virtual modelling / visual reconstruction helps us to visualize the structure in its original form giving a holistic picture of the Vijayanagara Empire in all its former glory. The project is interpreted graphically using Auto-CAD drawings, pictorially, digitally using Sketch-Up model and Kinect.

  5. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    Science.gov (United States)

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-02

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.

  6. Visualization periodic flows in a continuously stratified fluid.

    Science.gov (United States)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  7. Short-term perceptual learning in visual conjunction search.

    Science.gov (United States)

    Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong

    2014-08-01

    Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.

  8. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    Science.gov (United States)

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med

  9. Custom Formula-Based Visualizations for Savvy Designers"

    DEFF Research Database (Denmark)

    Kuhail, Mohammad Amin

    and expressive. For instance, chart tools are easy to use, but support only predefined visualizations, while visualization tools support custom visualizations, but require program-like specifications. This thesis presents Uvis, a visualization system that targets savvy designers. With Uvis, designers drag......Despite their usefulness in many domains (e.g. healthcare, finance, etc.), custom visualizations remain tedious and hard to implement. It would be advantageous if savvy designers (designers with end-user development skills and much domain knowledge) could refine visualizations to their needs....... For instance, it would save time and money if a clinician familiar with spreadsheet formulas could refine a visualization (e.g. the lifelines) rather than hiring a programmer. Existing approaches to visualization are one of the two: accessible to savvy designers but limited in customizability, or inaccessible...

  10. Experimental study of the features of the running part liquid metal target on lead-bismuth alloy

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Meluzov, A.G.; Novozhilova, O.O.; Efanov, A.D.

    2007-01-01

    The results of experimental investigations of the through part of a full-scale liquid metal target of an accelerator-control system, where the working cavity of the target communicates directly with the particle accelerator cavity, are presented. Two design variants were investigated - with vertical and horizontal orientation of the target axis in space and spinning of the flow in front of the nozzle adapter located in front of the entrance of the eutectic into the working cavity of the target. The profiles obtained for the free coolant surface with liquid metal flowing through vertically and horizontally positioned targets are presented. It is confirmed that when the pressure of the free surface of the liquid metal corresponds to the pressure in the accelerator cavity it is possible that liquid metal will not flow into the cavity simulating the connecting piece for inflow of accelerated particles with the piece oriented vertically or horizontally [ru

  11. Implicit short- and long-term memory direct our gaze in visual search

    NARCIS (Netherlands)

    Kruijne, Wouter; Meeter, Martijn

    2016-01-01

    Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that

  12. Direction of Auditory Pitch-Change Influences Visual Search for Slope From Graphs.

    Science.gov (United States)

    Parrott, Stacey; Guzman-Martinez, Emmanuel; Orte, Laura; Grabowecky, Marcia; Huntington, Mark D; Suzuki, Satoru

    2015-01-01

    Linear trend (slope) is important information conveyed by graphs. We investigated how sounds influenced slope detection in a visual search paradigm. Four bar graphs or scatter plots were presented on each trial. Participants looked for a positive-slope or a negative-slope target (in blocked trials), and responded to targets in a go or no-go fashion. For example, in a positive-slope-target block, the target graph displayed a positive slope while other graphs displayed negative slopes (a go trial), or all graphs displayed negative slopes (a no-go trial). When an ascending or descending sound was presented concurrently, ascending sounds slowed detection of negative-slope targets whereas descending sounds slowed detection of positive-slope targets. The sounds had no effect when they immediately preceded the visual search displays, suggesting that the results were due to crossmodal interaction rather than priming. The sounds also had no effect when targets were words describing slopes, such as "positive," "negative," "increasing," or "decreasing," suggesting that the results were unlikely due to semantic-level interactions. Manipulations of spatiotemporal similarity between sounds and graphs had little effect. These results suggest that ascending and descending sounds influence visual search for slope based on a general association between the direction of auditory pitch-change and visual linear trend.

  13. On the configuration of an active target for a fixed-target B experiment at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The optimal configuration of target and silicon microvertex detector for fixed-target B experiments has yet to be determined. For fixed-target charm experiments the usual setup consists of a series of inert target foils - typically a few millimeters thick and separated by a few centimeters - immediately followed by a silicon microvertex detector. Because of the larger boost at the SSC, the efficacy of using active target foils - tightly packed silicon microstrip detectors - has been considered by at least one group: the SFT collaboration. It is hoped that with an active target the tracks of charged B's themselves can be measured, improving charged B reconstruction efficiencies. The author examines two issues concerning silicon active targets for fixed-target experiments at the SSC: (1) the effect on the acceptance of the requirement that the B decay vertices occur outside of the target foils, and (2) the ability of an active target to directly track charged B's

  14. Eye movements in interception with delayed visual feedback.

    Science.gov (United States)

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-04-19

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  15. The influence of action video game playing on eye movement behaviour during visual search in abstract, in-game and natural scenes.

    Science.gov (United States)

    Azizi, Elham; Abel, Larry A; Stainer, Matthew J

    2017-02-01

    Action game playing has been associated with several improvements in visual attention tasks. However, it is not clear how such changes might influence the way we overtly select information from our visual world (i.e. eye movements). We examined whether action-video-game training changed eye movement behaviour in a series of visual search tasks including conjunctive search (relatively abstracted from natural behaviour), game-related search, and more naturalistic scene search. Forty nongamers were trained in either an action first-person shooter game or a card game (control) for 10 hours. As a further control, we recorded eye movements of 20 experienced action gamers on the same tasks. The results did not show any change in duration of fixations or saccade amplitude either from before to after the training or between all nongamers (pretraining) and experienced action gamers. However, we observed a change in search strategy, reflected by a reduction in the vertical distribution of fixations for the game-related search task in the action-game-trained group. This might suggest learning the likely distribution of targets. In other words, game training only skilled participants to search game images for targets important to the game, with no indication of transfer to the more natural scene search. Taken together, these results suggest no modification in overt allocation of attention. Either the skills that can be trained with action gaming are not powerful enough to influence information selection through eye movements, or action-game-learned skills are not used when deciding where to move the eyes.

  16. Working memory can enhance unconscious visual perception.

    Science.gov (United States)

    Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying

    2012-06-01

    We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.

  17. Effects of lighting and task parameters on visual acuity and performance

    Energy Technology Data Exchange (ETDEWEB)

    Halonen, L.

    1993-12-31

    Lighting and task parameters and their effects on visual acuity and visual performance are dealt with. The parameters studied are target contrast, target size and subject`s age; and also adaptation luminance, luminance ratio between task and its surrounding and temporal change in luminances are studied. Experiments were carried out to examine the effects of luminance and light spectrum on visual acuity. Young normally sighted, older and low vision people participated in the measurements. In the young and older subject groups the visual acuity remained unchanged at contrasts 0.93 and 0.63 at the luminance range of 15-630 cd/m{sub 2}. The results show that at contrasts 0.03-0.93 young and older subjects` visual acuity remained unchanged in the luminance range of 105-630 cd/m{sub 2}. In the low vision group, the changes in luminances between 25-860 cd/m{sub 2} did not have significant effects on visual acuity measured at high contrast 0.93, at low contrast, slight individual changes were found. The colour temperature of the light sources was altered between 2900-9500 K in the experiment. In the groups of the older, young and low vision subjects the light spectrum did not have significant effects on visual acuity, except for two retinitis pigmentosa subjects. On the basis of the visual acuity experiments, a three dimensional visual acuity model (VA-HUT) has been developed. The model predicts visual acuity as a function of luminance, target contrast and observer age. On the basis of visual acuity experiments visual acuity reserve values have been calculated for different text sizes

  18. Antihysteresis of perceived longitudinal body axis during continuous quasi-static whole-body rotation in the earth-vertical roll plane.

    Science.gov (United States)

    Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A

    2011-03-01

    Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.

  19. On the relationship between visual magnitudes and gas and dust production rates in target comets to space missions

    Science.gov (United States)

    de Almeida, A. A.; Sanzovo, G. C.; Singh, P. D.; Misra, A.; Miguel Torres, R.; Boice, D. C.; Huebner, W. F.

    In this paper, we report the results of a cometary research, developed during the last 10 years by us, involving a criterious analysis of gas and dust production rates in comets directly associated to recent space missions. For the determination of the water release rates we use the framework of the semi-empirical model of observed visual magnitudes [Newburn Jr., R.L. A semi-empirical photometric theory of cometary gas and dust production. Application to P/Halley's production rates, ESA-SP 174, 3, 1981; de Almeida, A.A., Singh, P.D., Huebner, W.F. Water release rates, active areas, and minimum nuclear radius derived from visual magnitudes of comets - an application to Comet 46P/Wirtanen, Planet. Space Sci. 45, 681-692, 1997; Sanzovo, G.C., de Almeida, A.A., Misra, A. et al. Mass-loss rates, dust particle sizes, nuclear active areas and minimum nuclear radii of target comets for missions STARDUST and CONTOUR, MNRAS 326, 852-868, 2001.], which once obtained, were directly converted into gas production rates. In turn, the dust release rates were obtained using the photometric model for dust particles [Newburn Jr., R.L., Spinrad, H. Spectrophotometry of seventeen comets. II - the continuum, AJ 90, 2591-2608, 1985; de Freitas Pacheco, J.A., Landaberry, S.J.C., Singh, P.D. Spectrophotometric observations of the Comet Halley during the 1985-86 apparition, MNRAS 235, 457-464, 1988; Sanzovo, G.C., Singh, P.D., Huebner, W.F. Dust colors, dust release rates, and dust-to-gas ratios in the comae of six comets, A&AS 120, 301-311, 1996.]. We applied these models to seven target comets, chosen for space missions of "fly-by"/impact and rendezvous/landing.

  20. The OSp(32 vertical stroke 1) versus OSp(8 vertical stroke 2) supersymmetric M-brane action from self-dual (2,2) strings

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1996-09-01

    Taking the (2,2) strings as a starting point, we discuss the equivalent self-dual field theories and analyze their symmetry structure in 2+2 dimensions from the viewpoint of string/membrane unification. Requiring the 'Lorentz' invariance and supersymmetry in the (2,2) string target space leads to an extension of the (2,2) string theory to a theory of 2+2 dimensional supermembranes (M-branes) propagating in a higher dimensional target space. The origin of the hidden target space dimensions of the M-brane is related to the maximally extended supersymmetry implied by the 'Lorentz' covariance and dimensional reasons. The Kaehler-Chern-Simons-type action describing the self-dual gravity in 2+2 dimensions is proposed. Its maximal supersymmetrization (of the Green-Schwarz-type) naturally leads to the 2+10 (or higher) dimensions for the M-brane target space. The proposed OSp(32 vertical stroke 1) supersymmetric action gives the pre-geometrical description of M-branes, which may be useful for a fundamental formulation of F and M theory. (orig.)

  1. The cortical eye proprioceptive signal modulates neural activity in higher-order visual cortex as predicted by the variation in visual sensitivity

    DEFF Research Database (Denmark)

    Balslev, Daniela; Siebner, Hartwig R; Paulson, Olaf B

    2012-01-01

    target when the right eye was rotated leftwards as compared with when it was rotated rightwards. This effect was larger after S1(EYE)-rTMS than after rTMS of a control area in the motor cortex. The neural response to retinally identical stimuli in this area could be predicted from the changes in visual......Whereas the links between eye movements and the shifts in visual attention are well established, less is known about how eye position affects the prioritization of visual space. It was recently observed that visual sensitivity varies with the direction of gaze and the level of excitability...... in the eye proprioceptive representation in human left somatosensory cortex (S1(EYE)), so that after 1Hz repetitive transcranial magnetic stimulation (rTMS) over S1(EYE), targets presented nearer the center of the orbit are detected more accurately. Here we used whole-brain functional magnetic resonance...

  2. Visualizing Energy on Target: Molecular Dynamics Simulations

    Science.gov (United States)

    2017-12-01

    to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or...all atoms to the interior of the cell. After equilibration, N2 was driven into the target at multiple impact velocities, vimp. Momentum of N2 toward

  3. Association of Affect with Vertical Position in L1 but not in L2 in Unbalanced Bilinguals

    Directory of Open Access Journals (Sweden)

    Degao eLi

    2015-05-01

    Full Text Available After judging the valence of the positive (e.g., happy and the negative words (e.g., sad, the participants’ response to the letter (q or p was faster and slower, respectively, when the letter appeared at the upper end than at the lower end of the screen in Meier & Robinson’ (2004 second experiment. To compare this metaphorical association of affect with vertical position in Chinese-English bilinguals’ first language (L1 and second language (L2 (language, we conducted four experiments in an affective priming task. The targets were one set of positive or negative words (valence, which were shown vertically above or below the centre of the screen (position. The primes, presented at the centre of the screen, were affective words that were semantically related to the targets, affective words that were not semantically related to the targets, affective icon-pictures, and neutral strings in experiment 1, 2, 3, and 4, respectively. In judging the targets’ valence, the participants showed different patterns of interactions between language, valence, and position in reaction times across the experiments. We concluded that metaphorical association between affect and vertical position works in L1 but not in L2 for unbalanced bilinguals.

  4. Visual Foraging With Fingers and Eye Gaze

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-03-01

    Full Text Available A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a The fact that a sizeable number of observers (in particular during gaze foraging had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  5. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Directory of Open Access Journals (Sweden)

    Fedak Waldemar

    2017-01-01

    Full Text Available Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  6. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Science.gov (United States)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  7. Interaction between gaze and visual and proprioceptive position judgements.

    Science.gov (United States)

    Fiehler, Katja; Rösler, Frank; Henriques, Denise Y P

    2010-06-01

    There is considerable evidence that targets for action are represented in a dynamic gaze-centered frame of reference, such that each gaze shift requires an internal updating of the target. Here, we investigated the effect of eye movements on the spatial representation of targets used for position judgements. Participants had their hand passively placed to a location, and then judged whether this location was left or right of a remembered visual or remembered proprioceptive target, while gaze direction was varied. Estimates of position of the remembered targets relative to the unseen position of the hand were assessed with an adaptive psychophysical procedure. These positional judgements significantly varied relative to gaze for both remembered visual and remembered proprioceptive targets. Our results suggest that relative target positions may also be represented in eye-centered coordinates. This implies similar spatial reference frames for action control and space perception when positions are coded relative to the hand.

  8. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  9. Attractive faces temporally modulate visual attention

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2014-01-01

    Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention. PMID:24994994

  10. Attractive faces temporally modulate visual attention

    Directory of Open Access Journals (Sweden)

    Koyo eNakamura

    2014-06-01

    Full Text Available Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation (RSVP. Fourteen male faces and two female faces were successively presented for 160 ms respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2 was impaired when a first target (T1 was attractive compared to neutral or unattractive faces, at 320 ms SOA; identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention.

  11. The role of object categories in hybrid visual and memory search

    Science.gov (United States)

    Cunningham, Corbin A.; Wolfe, Jeremy M.

    2014-01-01

    In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054

  12. Integration of Visual and Vestibular Information Used to Discriminate Rotational Self-Motion

    Directory of Open Access Journals (Sweden)

    Florian Soyka

    2011-10-01

    Full Text Available Do humans integrate visual and vestibular information in a statistically optimal fashion when discriminating rotational self-motion stimuli? Recent studies are inconclusive as to whether such integration occurs when discriminating heading direction. In the present study eight participants were consecutively rotated twice (2s sinusoidal acceleration on a chair about an earth-vertical axis in vestibular-only, visual-only and visual-vestibular trials. The visual stimulus was a video of a moving stripe pattern, synchronized with the inertial motion. Peak acceleration of the reference stimulus was varied and participants reported which rotation was perceived as faster. Just-noticeable differences (JND were estimated by fitting psychometric functions. The visual-vestibular JND measurements are too high compared to the predictions based on the unimodal JND estimates and there is no JND reduction between visual-vestibular and visual-alone estimates. These findings may be explained by visual capture. Alternatively, the visual precision may not be equal between visual-vestibular and visual-alone conditions, since it has been shown that visual motion sensitivity is reduced during inertial self-motion. Therefore, measuring visual-alone JNDs with an underlying uncorrelated inertial motion might yield higher visual-alone JNDs compared to the stationary measurement. Theoretical calculations show that higher visual-alone JNDs would result in predictions consistent with the JND measurements for the visual-vestibular condition.

  13. Event Display for the Fixed Target Experiment BM@N

    Directory of Open Access Journals (Sweden)

    Gertsenberger Konstantin

    2016-01-01

    Full Text Available One of the main problems to be solved in modern high energy physics experiments on particle collisions with a fixed target is the visual representation of the events during the experiment run. The article briefly describes the structure of the BM@N facility at the Nuclotron being under construction at the Joint Institute for Nuclear Research with the aim to study properties of the baryonic matter in collisions of ions with fixed target at energies up to 4 GeV/nucleon (for Au79+. Aspects concerning the visualization of data and detector details at the modern experiments and possibilities of practical applications are discussed. We present event display system intended to visualize the detector geometries and events of particle collisions with the fixed target, its options and features as well as integration with BMNRoot software. The examples of graphical representation of simulated and reconstructed points and particle tracks with BM@N geometry are given for central collisions of Au79+ ions with gold target and deuterons with carbon target.

  14. Visually observing comets

    CERN Document Server

    Seargent, David A J

    2017-01-01

    In these days of computers and CCD cameras, visual comet observers can still contribute scientifically useful data with the help of this handy reference for use in the field. Comets are one of the principal areas for productive pro-amateur collaboration in astronomy, but finding comets requires a different approach than the observing of more predictable targets. Principally directed toward amateur astronomers who prefer visual observing or who are interested in discovering a new comet or visually monitoring the behavior of known comets, it includes all the advice needed to thrive as a comet observer. After presenting a brief overview of the nature of comets and how we came to the modern understanding of comets, this book details the various types of observations that can usefully be carried out at the eyepiece of a telescope. Subjects range from how to search for new comets to visually estimating the brightness of comets and the length and orientation of tails, in addition to what to look for in comet heads a...

  15. Training Visual Control in Wheelchair Basketball Shooting

    Science.gov (United States)

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  16. Magnifying visual target information and the role of eye movements in motor sequence learning.

    Science.gov (United States)

    Massing, Matthias; Blandin, Yannick; Panzer, Stefan

    2016-01-01

    An experiment investigated the influence of eye movements on learning a simple motor sequence task when the visual display was magnified. The task was to reproduce a 1300 ms spatial-temporal pattern of elbow flexions and extensions. The spatial-temporal pattern was displayed in front of the participants. Participants were randomly assigned to four groups differing on eye movements (free to use their eyes/instructed to fixate) and the visual display (small/magnified). All participants had to perform a pre-test, an acquisition phase, a delayed retention test, and a transfer test. The results indicated that participants in each practice condition increased their performance during acquisition. The participants who were permitted to use their eyes in the magnified visual display outperformed those who were instructed to fixate on the magnified visual display. When a small visual display was used, the instruction to fixate induced no performance decrements compared to participants who were permitted to use their eyes during acquisition. The findings demonstrated that a spatial-temporal pattern can be learned without eye movements, but being permitting to use eye movements facilitates the response production when the visual angle is increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The roles of non-retinotopic motions in visual search

    Directory of Open Access Journals (Sweden)

    Ryohei eNakayama

    2016-06-01

    Full Text Available In visual search, a moving target among stationary distracters is detected more rapidly and more efficiently than a static target among moving distracters. Here we examined how this search asymmetry depends on motion signals from three distinct coordinate system – retinal, relative, and spatiotopic (head/body-centered. Our search display consisted of a target element, distracters elements, and a fixation point tracked by observers. Each element was composed of a spatial carrier grating windowed by a Gaussian envelope, and the motions of carriers, windows, and fixation were manipulated independently and used in various combinations to decouple the respective effects of motion coordinates systems on visual search asymmetry. We found that retinal motion hardly contributes to reaction times and search slopes but that relative and spatiotopic motions contribute to them substantially. Results highlight the important roles of non-retinotopic motions for guiding observer attention in visual search.

  18. Where’s Wally: The influence of visual salience on referring expression generation

    Directory of Open Access Journals (Sweden)

    Alasdair Daniel Francis Clarke

    2013-06-01

    Full Text Available Referring expression generation (REG presents the converse problem to visualsearch: Given a scene and a specified target, how does one generate adescription which would allow somebody else to quickly and accurately locatethe target? Previous work in psycholinguistics and natural language processingthat has addressed this question identifies only a limited role for vision inthis task. That previous work, which relies largely on simple scenes, tends totreat vision as a pre-process for extracting feature categories that arerelevant to disambiguation. However, the visual search literature suggeststhat some descriptions are better than others at enabling listeners to searchefficiently within complex stimuli. This paper presents the results of a studytesting whether speakers are sensitive to visual features that allow them tocompose such `good' descriptions. Our results show that visual properties(salience, clutter, area, and distance influence REG for targets embedded inimages from the *Where's Wally?* books, which are an order of magnitudemore complex than traditional stimuli. Referring expressions for large salienttargets are shorter than those for smaller and less salient targets, and targets within highly cluttered scenes are described using more words.We also find that speakers are more likely to mention non-target landmarks thatare large, salient, and in close proximity to the target. These findingsidentfy a key role for visual salience in language production decisions and highlight the importance of scene complexity for REG.

  19. Chess players' eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task.

    Science.gov (United States)

    Sheridan, Heather; Reingold, Eyal M

    2017-03-01

    To explore the perceptual component of chess expertise, we monitored the eye movements of expert and novice chess players during a chess-related visual search task that tested anecdotal reports that a key differentiator of chess skill is the ability to visualize the complex moves of the knight piece. Specifically, chess players viewed an array of four minimized chessboards, and they rapidly searched for the target board that allowed a knight piece to reach a target square in three moves. On each trial, there was only one target board (i.e., the "Yes" board), and for the remaining "lure" boards, the knight's path was blocked on either the first move (the "Easy No" board) or the second move (i.e., "the Difficult No" board). As evidence that chess experts can rapidly differentiate complex chess-related visual patterns, the experts (but not the novices) showed longer first-fixation durations on the "Yes" board relative to the "Difficult No" board. Moreover, as hypothesized, the task strongly differentiated chess skill: Reaction times were more than four times faster for the experts relative to novices, and reaction times were correlated with within-group measures of expertise (i.e., official chess ratings, number of hours of practice). These results indicate that a key component of chess expertise is the ability to rapidly recognize complex visual patterns.

  20. Multivariate Functional Data Visualization and Outlier Detection

    KAUST Repository

    Dai, Wenlin

    2017-03-19

    This article proposes a new graphical tool, the magnitude-shape (MS) plot, for visualizing both the magnitude and shape outlyingness of multivariate functional data. The proposed tool builds on the recent notion of functional directional outlyingness, which measures the centrality of functional data by simultaneously considering the level and the direction of their deviation from the central region. The MS-plot intuitively presents not only levels but also directions of magnitude outlyingness on the horizontal axis or plane, and demonstrates shape outlyingness on the vertical axis. A dividing curve or surface is provided to separate non-outlying data from the outliers. Both the simulated data and the practical examples confirm that the MS-plot is superior to existing tools for visualizing centrality and detecting outliers for functional data.

  1. Multivariate Functional Data Visualization and Outlier Detection

    KAUST Repository

    Dai, Wenlin; Genton, Marc G.

    2017-01-01

    This article proposes a new graphical tool, the magnitude-shape (MS) plot, for visualizing both the magnitude and shape outlyingness of multivariate functional data. The proposed tool builds on the recent notion of functional directional outlyingness, which measures the centrality of functional data by simultaneously considering the level and the direction of their deviation from the central region. The MS-plot intuitively presents not only levels but also directions of magnitude outlyingness on the horizontal axis or plane, and demonstrates shape outlyingness on the vertical axis. A dividing curve or surface is provided to separate non-outlying data from the outliers. Both the simulated data and the practical examples confirm that the MS-plot is superior to existing tools for visualizing centrality and detecting outliers for functional data.

  2. Searches for light sterile neutrinos with multitrack displaced vertices

    Science.gov (United States)

    Cottin, Giovanna; Helo, Juan Carlos; Hirsch, Martin

    2018-03-01

    We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy (considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with √{s }=13 TeV and 300 fb-1 is able to probe sterile neutrino masses between 10 GeV right-handed gauge boson mass of 2 TeV work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.

  3. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual hull reconstruction, resulting in a first 3D approximation of the target, followed by a region-of-interest estimation, tasked with identifying features of interest, which in turn are used to locally refine the voxel grid and extract a higher-resolution surface representation for those regions. This approach is illustrated for the reconstruction of avatars for use in tele-immersion environments, where head and hand regions are of higher interest. To allow reproducability and direct comparison a publicly available data set for human visual hull reconstruction is used. This paper shows that region-of-interest reconstruction of the target is faster and visually comparable to higher resolution focused visual hull reconstructions. This approach reduces the amount of data generated through the reconstruction, allowing faster post processing, as rendering or networking of the surface voxels. Reconstruction speeds support smooth interactions between the avatar and the virtual environment, while the improved resolution of its facial region and hands creates a higher-degree of immersion and potentially impacts the perception of body language, facial expressions and eye-to-eye contact. Copyright © 2010 by the Association for Computing Machinery, Inc.

  4. Augmented asymmetrical visual field dependence in asymptomatic diabetics: evidence of subclinical asymmetrical bilateral vestibular dysfunction.

    Science.gov (United States)

    Razzak, Rima Abdul; Bagust, Jeffery; Docherty, Sharon; Hussein, Wiam; Al-Otaibi, Abdullah

    2015-01-01

    Diabetes negatively affects the vestibular system in many ways, with vestibular dysfunction (VD), a co-morbidity with a high prevalence in diabetics. The ability to perceive subjective visual vertical (SVV), as a sign of vestibular dysfunction, and visual field dependence was measured using a computerized rod and frame test (CRAF). Alignment errors recorded from 47 asymptomatic Type II diabetics (no vertigo or falls, without peripheral neuropathy or retinopathy) were compared to 29 healthy age matched (46-69years) controls. Visual field dependence was significantly larger and more asymmetrical in the diabetics than controls. In the absence of any visual references, or when a vertical reference frame was provided, SVV perception was accurate in both groups, with no significant difference between the controls and diabetics. During tilted frame presentations, the proportion of subjects with either SVV deviations, or an asymmetry index, larger than an upper limit derived from the control data was significantly greater in diabetics than controls. These results suggest that the decreased ability to resolve visuo-vestibular conflict in asymptomatic diabetic patients (free of retinopathy and peripheral neuropathy) compared to controls may be related to diabetic complications affecting vestibular structures and thus causing a decompensation of subclinical vestibular asymmetries. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The magnetic source imaging of pattern reversal stimuli of various visual fields

    International Nuclear Information System (INIS)

    Zhang Shuqian; Ye Yufang; Sun Jilin; Wu Jie; Jia Xiuchuan; Li Sumin; Wu Jing; Zhao Huadong; Liu Lianxiang; Wu Yujin

    2006-01-01

    Objective: To have acknowledgement of characteristics of normal volunteers visual evoked fields about full field, vertical half field and quadrant field and their dipole location by magnetoencephalography. Methods: The visual evoked fields of full field, vertical half field and quadrant field were detected with 13 subjects. The latency, dipole strength and dipoles' location on x, y and z axis were analyzed. The exact locations of the dipoles were detected by overlapping on MR images. Results: The isocontour map of M100 of full field stimulation demonstrated two separate sources. The two M100 dipoles had same peak latency and different strength. And for vertical half field and quadrant field stimulation, evoked magnetic fields of M100 distributed contralateral to the stimulated side. The M100 dipoles on the z-axis to the lower quadrant field stimulation were located significantly higher than those to the upper quadrant field stimulation. The Z value median of left upper quadrant was 49.6 (35.1-72.8) mm. The Z value median of left lower quadrant was 53.5 (44.8-76.3) mm. The different of two left quadrant medians, 3.9 mm, was significant (P<0.05). The Z value median of right upper quadrant was 40.0 (34.8-44.6) mm. The Z value median of right lower quadrant was 53.8 (40.6-61.3) mm. The different of two right quadrant medians, 13.8 mm, was also significant (P<0.05). Although each of the visual evoked fields waveforms and dipole locations demonstrated large intra- and inter-individual variations, the dipole of M100 was mainly located at area Brodmann 17, which includes superior lingual gyrus, posterior cuneus-lingual gyrus and inferior cuneus gyms. Conclusion: The M100 of visual evoked fields of pattern reversal stimulation is mainly generated by the neurons of striate cortex of contralateral to the stimulated side, which is at the lateral bottom of the calcarine fissure. (authors)

  6. Effects of Auditory and Visual Priming on the Identification of Spoken Words.

    Science.gov (United States)

    Shigeno, Sumi

    2017-04-01

    This study examined the effects of preceding contextual stimuli, either auditory or visual, on the identification of spoken target words. Fifty-one participants (29% males, 71% females; mean age = 24.5 years, SD = 8.5) were divided into three groups: no context, auditory context, and visual context. All target stimuli were spoken words masked with white noise. The relationships between the context and target stimuli were as follows: identical word, similar word, and unrelated word. Participants presented with context experienced a sequence of six context stimuli in the form of either spoken words or photographs. Auditory and visual context conditions produced similar results, but the auditory context aided word identification more than the visual context in the similar word relationship. We discuss these results in the light of top-down processing, motor theory, and the phonological system of language.

  7. Aerial Object Following Using Visual Fuzzy Servoing

    OpenAIRE

    Olivares Méndez, Miguel Ángel; Mondragon Bernal, Ivan Fernando; Campoy Cervera, Pascual; Mejias Alvarez, Luis; Martínez Luna, Carol Viviana

    2011-01-01

    This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintai...

  8. Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Older, A. A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron

  9. A global vertical reference frame based on four regional vertical datums

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 493-502 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotentinal * local vertical datums * global vertical reference frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.447, year: 2004

  10. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    Directory of Open Access Journals (Sweden)

    Zachary C. Thumser

    2018-04-01

    Full Text Available Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task. Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task. Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback. This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback. Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets to the more naturalistic and intuitive target forces implied by images of objects (implicit targets. With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82. Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces

  11. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    Science.gov (United States)

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized

  12. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  13. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    Science.gov (United States)

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  14. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    Science.gov (United States)

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.

  15. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    Science.gov (United States)

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2018-05-01

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  17. Giving good directions: order of mention reflects visual salience

    Directory of Open Access Journals (Sweden)

    Alasdair Daniel Francis Clarke

    2015-12-01

    Full Text Available In complex stimuli, there are many different possible ways to refer to a specified target. Previousstudies have shown that when people are faced with such a task, the content of their referringexpression reflects visual properties such as size, salience and clutter. Here, we extend thesefindings and present evidence that (i the influence of visual perception on sentence constructiongoes beyond content selection and in part determines the order in which different objects arementioned and (ii order of mention influences comprehension. Study 1 (a corpus study ofreference productions shows that when a speaker uses a relational description to mention asalient object, that object is treated as being in the common ground and is more likely to bementioned first. Study 2 (a visual search study asks participants to listen to referring expressionsand find the specified target; in keeping with the above result, we find that search for easy-to-findtargets is faster when the target is mentioned first, while search for harder-to-find targets isfacilitated by mentioning the target later, after a landmark in a relational description. Our findingsshow that seemingly low-level and disparate mental modules like perception and sentenceplanning interact at a high level and in task-dependent ways.

  18. Is one enough? The case for non-additive influences of visual features on crossmodal Stroop interference

    Directory of Open Access Journals (Sweden)

    Lawrence Gregory Appelbaum

    2013-10-01

    Full Text Available When different perceptual signals arising from the same physical entity are integrated, they form a more reliable sensory estimate. When such repetitive sensory signals are pitted against other competing stimuli, such as in a Stroop Task, this redundancy may lead to stronger processing that biases behavior towards reporting the redundant stimuli. This bias would therefore be expected to evoke greater incongruency effects than if these stimuli did not contain redundant sensory features. In the present paper we report that this is not the case for a set of three crossmodal, auditory-visual Stroop tasks. In these tasks participants attended to, and reported, either the visual or the auditory stimulus (in separate blocks while ignoring the other, unattended modality. The visual component of these stimuli could be purely semantic (words, purely perceptual (colors, or the combination of both. Based on previous work showing enhanced crossmodal integration and visual search gains for redundantly coded stimuli, we had expected that relative to the single features, redundant visual features would have induced both greater visual distracter incongruency effects for attended auditory targets, and been less influenced by auditory distracters for attended visual targets. Overall, reaction time were faster for visual targets and were dominated by behavioral facilitation for the cross-modal interactions (relative to interference, but showed surprisingly little influence of visual feature redundancy. Post hoc analyses revealed modest and trending evidence for possible increases in behavioral interference for redundant visual distracters on auditory targets, however, these effects were substantially smaller than anticipated and were not accompanied by redundancy effect for behavioral facilitation or for attended visual targets.

  19. Functional Specialization in the Lower and Upper Visual Fields in Humans: Its Ecological Origins and Neurophysiological Implications

    Science.gov (United States)

    1990-01-01

    loss), color agnosia , visual object agnosia , Baldwin 1958), reminiscent of the transient LVF atten- prosopagnosia (impaired facial recognition), and...et al. 1989). Finally, it has been reported that pattern- scanning mechanisms may underlie object agnosia sensitive epilepsy - presumably associated...improved. He held so that the bill is oriented well below the horizon with an also had a visual agnosia and, as briefly mentioned, vertical eye-center

  20. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    DEFF Research Database (Denmark)

    Ujang, U.; Anton, F.; Ariffin, A.

    2015-01-01

    is predominantly vehicular engines, the situation will become worse when pollutants are trapped between buildings and disperse inside the street canyon and move vertically to create a recirculation vortex. Studying and visualizing the recirculation zone in 3D visualization is conceivable by using 3D city models......,engineers and policy makers to design the street geometry (building height and width, green areas, pedestrian walks, roads width, etc.)....

  1. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  2. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.; Singaravelu, Venkatesh; Devi, Assa Aravindh Sasikala; Roqan, Iman S.

    2015-01-01

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study

  3. The role of object categories in hybrid visual and memory search.

    Science.gov (United States)

    Cunningham, Corbin A; Wolfe, Jeremy M

    2014-08-01

    In hybrid search, observers search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that response times (RTs) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g., this apple in this pose). Typical real-world tasks involve more broadly defined sets of stimuli (e.g., any "apple" or, perhaps, "fruit"). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, observers searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Running the figure to the ground: figure-ground segmentation during visual search.

    Science.gov (United States)

    Ralph, Brandon C W; Seli, Paul; Cheng, Vivian O Y; Solman, Grayden J F; Smilek, Daniel

    2014-04-01

    We examined how figure-ground segmentation occurs across multiple regions of a visual array during a visual search task. Stimuli consisted of arrays of black-and-white figure-ground images in which roughly half of each image depicted a meaningful object, whereas the other half constituted a less meaningful shape. The colours of the meaningful regions of the targets and distractors were either the same (congruent) or different (incongruent). We found that incongruent targets took longer to locate than congruent targets (Experiments 1, 2, and 3) and that this segmentation-congruency effect decreased when the number of search items was reduced (Experiment 2). Furthermore, an analysis of eye movements revealed that participants spent more time scrutinising the target before confirming its identity on incongruent trials than on congruent trials (Experiment 3). These findings suggest that the distractor context influences target segmentation and detection during visual search. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Multisensory processing in the redundant-target effect

    DEFF Research Database (Denmark)

    Gondan, Matthias; Niederhaus, Birgit; Rösler, Frank

    2005-01-01

    Participants respond more quickly to two simultaneously presented target stimuli of two different modalities (redundant targets) than would be predicted from their reaction times to the unimodal targets. To examine the neural correlates of this redundant-target effect, event-related potentials...... (ERPs) were recorded to auditory, visual, and bimodal standard and target stimuli presented at two locations (left and right of central fixation). Bimodal stimuli were combinations of two standards, two targets, or a standard and a target, presented either from the same or from different locations...

  6. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.

    Science.gov (United States)

    Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi

    2018-04-18

    Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.

  7. The modulation of simple reaction time by the spatial probability of a visual stimulus

    Directory of Open Access Journals (Sweden)

    Carreiro L.R.R.

    2003-01-01

    Full Text Available Simple reaction time (SRT in response to visual stimuli can be influenced by many stimulus features. The speed and accuracy with which observers respond to a visual stimulus may be improved by prior knowledge about the stimulus location, which can be obtained by manipulating the spatial probability of the stimulus. However, when higher spatial probability is achieved by holding constant the stimulus location throughout successive trials, the resulting improvement in performance can also be due to local sensory facilitation caused by the recurrent spatial location of a visual target (position priming. The main objective of the present investigation was to quantitatively evaluate the modulation of SRT by the spatial probability structure of a visual stimulus. In two experiments the volunteers had to respond as quickly as possible to the visual target presented on a computer screen by pressing an optic key with the index finger of the dominant hand. Experiment 1 (N = 14 investigated how SRT changed as a function of both the different levels of spatial probability and the subject's explicit knowledge about the precise probability structure of visual stimulation. We found a gradual decrease in SRT with increasing spatial probability of a visual target regardless of the observer's previous knowledge concerning the spatial probability of the stimulus. Error rates, below 2%, were independent of the spatial probability structure of the visual stimulus, suggesting the absence of a speed-accuracy trade-off. Experiment 2 (N = 12 examined whether changes in SRT in response to a spatially recurrent visual target might be accounted for simply by sensory and temporally local facilitation. The findings indicated that the decrease in SRT brought about by a spatially recurrent target was associated with its spatial predictability, and could not be accounted for solely in terms of sensory priming.

  8. Target Users' Diagrammatic Reasoning of Domain-specific Terminology

    DEFF Research Database (Denmark)

    Pram Nielsen, Louise

    2016-01-01

    In this paper, we investigate target users' diagrammatic reasoning in a controlled experiment, where participants were asked to search for information in a dual visualization comprising of a concept-oriented graphical (diagram) entry and a corresponding textual (article) entry. During the experim......In this paper, we investigate target users' diagrammatic reasoning in a controlled experiment, where participants were asked to search for information in a dual visualization comprising of a concept-oriented graphical (diagram) entry and a corresponding textual (article) entry. During...

  9. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    Science.gov (United States)

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  10. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds

    Directory of Open Access Journals (Sweden)

    Ignacio eSerrano-Pedraza

    2014-12-01

    Full Text Available Visual perception in schizophrenia is attracting a broad interest given the deep knowledge that we have about the visual system in healthy population. In visual science it is known that the visibility of a grating located in the visual periphery is impaired by the presence of a surrounding grating of the same spatial frequency and orientation. Previous studies have suggested abnormal visual surround suppression in patients with schizophrenia. Given that schizophrenia patients have cortical alterations including hypofunction of NMDA receptors and reduced concentration of GABA neurotransmitter, which affect lateral inhibitory connections, then they should perform better than controls in visual suppression tasks. We tested this hypothesis by measuring contrast detection thresholds using a new stimulus configuration. We tested two groups: 21 schizophrenia patients and 24 healthy subjects. Thresholds were obtained using Bayesian staircases in a 4AFC detection task where the target was a grating within a 3 deg Butterworth window that appeared in one of four possible positions at 5 deg eccentricity. We compared three conditions, a target with no surround (NS, b target on top of a surrounding grating of 20 deg diameter and 25% contrast with same spatial frequency and orthogonal orientation (OS, and c target on top of a surrounding grating with parallel (same orientation (PS. Our results show significantly lower thresholds for controls than for patients in NS and OS conditions. We also found significant lower suppression ratios PS/NS in patients. Our results support the hypothesis that inhibitory lateral connections in early visual cortex are impaired in schizophrenia patients.

  11. Effect of Visual Field Presentation on Action Planning (Estimating Reach) in Children

    Science.gov (United States)

    Gabbard, Carl; Cordova, Alberto

    2012-01-01

    In this article, the authors examined the effects of target information presented in different visual fields (lower, upper, central) on estimates of reach via use of motor imagery in children (5-11 years old) and young adults. Results indicated an advantage for estimating reach movements for targets placed in lower visual field (LoVF), with all…

  12. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    Science.gov (United States)

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  13. Comparison of congruence judgment and auditory localization tasks for assessing the spatial limits of visual capture.

    Science.gov (United States)

    Bosen, Adam K; Fleming, Justin T; Brown, Sarah E; Allen, Paul D; O'Neill, William E; Paige, Gary D

    2016-12-01

    Vision typically has better spatial accuracy and precision than audition and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small, visual capture is likely to occur, and when disparity is large, visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audiovisual disparities over which visual capture was likely to occur was narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner.

  14. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    Science.gov (United States)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of

  15. Vestibulo-Ocular Responses to Vertical Translation using a Hand-Operated Chair as a Field Measure of Otolith Function

    Science.gov (United States)

    Wood, S. J.; Campbell, D. J.; Reschke, M. F.; Prather, L.; Clement, G.

    2016-01-01

    The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.

  16. Target Glint Suppression Technology.

    Science.gov (United States)

    1980-09-01

    Rayleigh for either horizontal or vertical polarization). 2.1.2 Spatial Characterization. Before the effects of diversity on target detection can be...ncs) dRCS T If the lower intergration limit is taken as zero for the Rayleigh targct model of interest, then this quantity is unbounded. In...port wing, inner section Trailing edge of starboard .:ing, inner section Leading edge of horizontal stabilizer, inner section, port side TLeal, -g

  17. IMPROVING VERTICAL AND LATERAL RESOLUTION BY STRETCH-FREE, HORIZON-ORIENTED IMAGING

    Directory of Open Access Journals (Sweden)

    Pérez Gabriel

    2006-12-01

    Full Text Available The pre-stack Kirchhoff migration is implemented for delivering wavelet stretch-free imaged data, if the migration is (ideally limited to the wavelet corresponding to a target horizon. Avoiding wavelet stretch provides long-offset imaged data, far beyond what is reached in conventional migration and results in images from the target with improved vertical and lateral resolution and angular illumination. Increasing the range of imaged offsets also increases the sensitivity to event-crossing, velocity errors and anisotropy. These issues must be addressed to fully achieve the greatest potential of this technique. These ideas are further illustrated with a land survey seismic data application in Texas, U.S.

  18. The visual cognitive network, but not the visual sensory network, is affected in amnestic mild cognitive impairment: a study of brain oscillatory responses.

    Science.gov (United States)

    Yener, Görsev G; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Başar, Erol

    2014-10-17

    Mild Cognitive Impairment (MCI) is considered in many as prodromal stage of Alzheimer's disease (AD). Event-related oscillations (ERO) reflect cognitive responses of brain whereas sensory-evoked oscillations (SEO) inform about sensory responses. For this study, we compared visual SEO and ERO responses in MCI to explore brain dynamics (BACKGROUND). Forty-three patients with MCI (mean age=74.0 year) and 41 age- and education-matched healthy-elderly controls (HC) (mean age=71.1 year) participated in the study. The maximum peak-to-peak amplitudes for each subject's averaged delta response (0.5-3.0 Hz) were measured from two conditions (simple visual stimulation and classical visual oddball paradigm target stimulation) (METHOD). Overall, amplitudes of target ERO responses were higher than SEO amplitudes. The preferential location for maximum amplitude values was frontal lobe for ERO and occipital lobe for SEO. The ANOVA for delta responses showed significant results for the group Xparadigm. Post-hoc tests indicated that (1) the difference between groups were significant for target delta responses, but not for SEO, (2) ERO elicited higher responses for HC than MCI patients, and (3) females had higher target ERO than males and this difference was pronounced in the control group (RESULTS). Overall, cognitive responses display almost double the amplitudes of sensory responses over frontal regions. The topography of oscillatory responses differs depending on stimuli: visualsensory responses are highest over occipitals and -cognitive responses over frontal regions. A group effect is observed in MCI indicating that visual sensory and cognitive circuits behave differently indicating preserved visual sensory responses, but decreased cognitive responses (CONCLUSION). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Interactive volume visualization of general polyhedral grids

    KAUST Repository

    Muigg, Philipp

    2011-12-01

    This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non-convex and have an arbitrary number of faces, where the faces can be non-planar with an arbitrary number of vertices. The importance of such grids in state-of-the-art simulation packages is increasing rapidly. We propose a very compact, face-based data structure for representing such meshes for visualization, called two-sided face sequence lists (TSFSL), as well as an algorithm for direct GPU-based ray-casting using this representation. The TSFSL data structure is able to represent the entire mesh topology in a 1D TSFSL data array of face records, which facilitates the use of efficient 1D texture accesses for visualization. In order to scale to large data sizes, we employ a mesh decomposition into bricks that can be handled independently, where each brick is then composed of its own TSFSL array. This bricking enables memory savings and performance improvements for large meshes. We illustrate the feasibility of our approach with real-world application results, by visualizing highly complex polyhedral data from commercial state-of-the-art simulation packages. © 2011 IEEE.

  20. Adaptive Visual Face Tracking for an Autonomous Robot

    NARCIS (Netherlands)

    van Hoof, Herke; van der Zant, Tijn; Wiering, Marco

    2011-01-01

    Perception is an essential ability for autonomous robots in non-standardized conditions. However, the appearance of objects can change between different conditions. A system visually tracking a target based on its appearance could lose its target in those cases. A tracker learning the appearance of

  1. Combined visual illusion effects on the perceived index of difficulty and movement outcomes in discrete and continuous fitts' tapping.

    Science.gov (United States)

    Alphonsa, Sushma; Dai, Boyi; Benham-Deal, Tami; Zhu, Qin

    2016-01-01

    The speed-accuracy trade-off is a fundamental movement problem that has been extensively investigated. It has been established that the speed at which one can move to tap targets depends on how large the targets are and how far they are apart. These spatial properties of the targets can be quantified by the index of difficulty (ID). Two visual illusions are known to affect the perception of target size and movement amplitude: the Ebbinghaus illusion and Muller-Lyer illusion. We created visual images that combined these two visual illusions to manipulate the perceived ID, and then examined people's visual perception of the targets in illusory context as well as their performance in tapping those targets in both discrete and continuous manners. The findings revealed that the combined visual illusions affected the perceived ID similarly in both discrete and continuous judgment conditions. However, the movement outcomes were affected by the combined visual illusions according to the tapping mode. In discrete tapping, the combined visual illusions affected both movement accuracy and movement amplitude such that the effective ID resembled the perceived ID. In continuous tapping, none of the movement outcomes were affected by the combined visual illusions. Participants tapped the targets with higher speed and accuracy in all visual conditions. Based on these findings, we concluded that distinct visual-motor control mechanisms were responsible for execution of discrete and continuous Fitts' tapping. Although discrete tapping relies on allocentric information (object-centered) to plan for action, continuous tapping relies on egocentric information (self-centered) to control for action. The planning-control model for rapid aiming movements is supported.

  2. DANCEMAKING IN UNEXPECTED PLACES: MOLDOVAN MUSIC AND VERTICAL DANCE IN WYOMING

    Directory of Open Access Journals (Sweden)

    GARNETT RODNEY

    2016-06-01

    Full Text Available Since 1998, vertical dance at the University of Wyoming has been an active catalyst for interactions among choreographers and dancers, composers and musical performers, audiences, rock climbers, and others. Outdoor performances at an impressive geologic formation have consistently drawn large audiences, and allowed choreographer and performer Margaret Wilson to consider the ways that vertical dancers come to embody widely varying environments through heightened sensitivity, improvisation, and other processes of “tuning in” (Hunter 2015: 181 to the world around them. In 2013, as I stood on a high ledge on the massive Vedauwoo rock formation in Wyoming, I found that the sound of Moldovan nai naturally became a part of our outdoor environment as it echoed off of the rocks and projected out into the forest. Our pianist had begun to embody an effective sense of how to collaborate with dancers and their movement having accompanied their classes for many years. Nai easily became an integral part of her musical compositions. Musicians who are more closely focused on devices such as instruments, sheet music, and microphones have been less able to improvise and interact spontaneously with the sensory world of vertical dance. Listening closely to create their best sound makes them less sensitive to distant aural, visual, and sensory phenomena that would allow them to embody their environment along with other performers and their audiences. In seeking to better adapt to variable vertical dance settings, I found that Moldovan nai is especially well-suited for collaborating with other instruments and dancers in vertical dance environments. Moldovan melodies and rhythms have also become an important element of both outdoor and indoor vertical dance performances in Wyoming. The broader movement, of playing panflute is more like dancing than the smaller movements required for playing transverse flutes. In addition, the social essence of learning and

  3. Is perception of vertical impaired in individuals with chronic stroke with a history of 'pushing'?

    Science.gov (United States)

    Mansfield, Avril; Fraser, Lindsey; Rajachandrakumar, Roshanth; Danells, Cynthia J; Knorr, Svetlana; Campos, Jennifer

    2015-03-17

    Post-stroke 'pushing' behaviour appears to be caused by impaired perception of vertical in the roll plane. While pushing behaviour typically resolves with stroke recovery, it is not known if misperception of vertical persists. The purpose of this study was to determine if perception of vertical is impaired amongst stroke survivors with a history of pushing behaviour. Fourteen individuals with chronic stroke (7 with history of pushing) and 10 age-matched healthy controls participated. Participants sat upright on a chair surrounded by a curved projection screen in a laboratory mounted on a motion base. Subjective visual vertical (SVV) was assessed using a 30 trial, forced-choice protocol. For each trial participants viewed a line projected on the screen and indicated if the line was tilted to the right or the left. For the subjective postural vertical (SPV), participants wore a blindfold and the motion base was tilted to the left or right by 10-20°. Participants were asked to adjust the angular movements of the motion base until they felt upright. SPV was not different between groups. SVV was significantly more biased towards the contralesional side for participants with history of pushing (-3.6 ± 4.1°) than those without (-0.1 ± 1.4°). Two individuals with history of pushing had SVV or SPV outside the maximum for healthy controls. Impaired vertical perception may persist in some individuals with prior post-stroke pushing, despite resolution of pushing behaviours, which could have consequences for functional mobility and falls. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Camouflage target detection via hyperspectral imaging plus information divergence measurement

    Science.gov (United States)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2016-01-01

    Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.

  5. A measurement system for vertical seawater profiles close to the air-sea interface

    Science.gov (United States)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  6. Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.

    Science.gov (United States)

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2011-10-01

    The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The Vertical Farm: A Review of Developments and Implications for the Vertical City

    Directory of Open Access Journals (Sweden)

    Kheir Al-Kodmany

    2018-02-01

    Full Text Available This paper discusses the emerging need for vertical farms by examining issues related to food security, urban population growth, farmland shortages, “food miles”, and associated greenhouse gas (GHG emissions. Urban planners and agricultural leaders have argued that cities will need to produce food internally to respond to demand by increasing population and to avoid paralyzing congestion, harmful pollution, and unaffordable food prices. The paper examines urban agriculture as a solution to these problems by merging food production and consumption in one place, with the vertical farm being suitable for urban areas where available land is limited and expensive. Luckily, recent advances in greenhouse technologies such as hydroponics, aeroponics, and aquaponics have provided a promising future to the vertical farm concept. These high-tech systems represent a paradigm shift in farming and food production and offer suitable and efficient methods for city farming by minimizing maintenance and maximizing yield. Upon reviewing these technologies and examining project prototypes, we find that these efforts may plant the seeds for the realization of the vertical farm. The paper, however, closes by speculating about the consequences, advantages, and disadvantages of the vertical farm’s implementation. Economic feasibility, codes, regulations, and a lack of expertise remain major obstacles in the path to implementing the vertical farm.

  8. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    International Nuclear Information System (INIS)

    Vikstroem, Johan; Hjelstuen, Mari H.B.; Mjaaland, Ingvil; Dybvik, Kjell Ivar

    2011-01-01

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  9. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Johan; Hjelstuen, Mari H.B.; Mjaaland, Ingvil; Dybvik, Kjell Ivar (Dept. of Radiotherapy, Stavanger Univ. Hospital, Stavanger (Norway)), e-mail: vijo@sus.no

    2011-01-15

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  10. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  11. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  12. Impaired Visual Attention in Children with Dyslexia.

    Science.gov (United States)

    Heiervang, Einar; Hugdahl, Kenneth

    2003-01-01

    A cue-target visual attention task was administered to 25 children (ages 10-12) with dyslexia. Results showed a general pattern of slower responses in the children with dyslexia compared to controls. Subjects also had longer reaction times in the short and long cue-target interval conditions (covert and overt shift of attention). (Contains…

  13. Visualizing classical and quantum probability densities for momentum using variations on familiar one-dimensional potentials

    International Nuclear Information System (INIS)

    Robinett, R.W.

    2002-01-01

    After briefly reviewing the definitions of classical probability densities for position, P C L(x), and for momentum, P C L(p), we present several examples of classical mechanical potential systems, mostly variations on such familiar cases as the infinite well and the uniformly accelerated particle for which the classical distributions can be easily derived and visualized. We focus especially on a simple potential which interpolates between the symmetric linear potential, V(x)=F vertical bar x vertical bar, and the infinite well, which can illustrate, in a mathematically straightforward way, how the divergent δ-function classical probability density for momentum for the infinite well can be seen to arise. Such examples can help students understand the quantum mechanical momentum-space wavefunction (and its corresponding probability density) in much the same way that other semiclassical techniques, such as the WKB approximation, can be used to visualize position-space wavefunctions. (author)

  14. New learning following reactivation in the human brain: targeting emotional memories through rapid serial visual presentation.

    Science.gov (United States)

    Wirkner, Janine; Löw, Andreas; Hamm, Alfons O; Weymar, Mathias

    2015-03-01

    Once reactivated, previously consolidated memories destabilize and have to be reconsolidated to persist, a process that might be altered non-invasively by interfering learning immediately after reactivation. Here, we investigated the influence of interference on brain correlates of reactivated episodic memories for emotional and neutral scenes using event-related potentials (ERPs). To selectively target emotional memories we applied a new reactivation method: rapid serial visual presentation (RSVP). RSVP leads to enhanced implicit processing (pop out) of the most salient memories making them vulnerable to disruption. In line, interference after reactivation of previously encoded pictures disrupted recollection particularly for emotional events. Furthermore, memory impairments were reflected in a reduced centro-parietal ERP old/new difference during retrieval of emotional pictures. These results provide neural evidence that emotional episodic memories in humans can be selectively altered through behavioral interference after reactivation, a finding with further clinical implications for the treatment of anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Improvement in visual target detections and reaction time by auditory stimulation; Shikaku shigeki ga shikaku mokuhyo no kenshutsu to hanno jikan ni oyobosu kaizen koka

    Energy Technology Data Exchange (ETDEWEB)

    Mitobe, K.; Akiyama, T.; Yoshimura, N. [Akita University, Akita (Japan); Takahashi, M. [Hokkaido University, Sapporo (Japan)

    1998-03-01

    The purpose of this study was to investigate a traffic environment that can reduce traffic accidents of elder walker. We focused on the relationship between traffic accidents and elder person`s spatial attention. In this paper, an adolescent subject`s and an elder subject`s pointing movement to a visual target was measured in three conditions. Condition 1: Only target was presented. Condition 2: Auditory stimulation was added at a location the same distance from the center as that of the targets but in the opposite direction. Condition 3: Auditory stimulation was added at the same location as the target. The targets were placed in extra working space with the distance of 1.5 meter from a subject to the targets. In adolescent subjects, results showed that in Condition 3, latency was shorter and the error rate of pointing movements was lower than in the other conditions. In elder subjects, results showed that in all Conditions, ignore ratio to peripheral targets is higher than adolescent subjects. Nevertheless, in condition 3, ignore ratio was lower than in the other conditions. These results suggest that, it is possible to draw elder walker`s spatial attention and to control spatial attention by auditory stimulation. 13 refs., 6 figs., 1 tab.

  16. Decreased visual attention further from the perceived direction of gaze for equidistant retinal targets

    DEFF Research Database (Denmark)

    Balslev, Daniela; Gowen, Emma; Miall, R Chris

    2011-01-01

    The oculomotor and spatial attention systems are interconnected. Whereas a link between motor commands and spatial shifts in visual attention is demonstrated, it is still unknown whether the recently discovered proprioceptive signal in somatosensory cortex impacts on visual attention, too...

  17. Adapting the Theory of Visual Attention (TVA) to model auditory attention

    DEFF Research Database (Denmark)

    Roberts, Katherine L.; Andersen, Tobias; Kyllingsbæk, Søren

    Mathematical and computational models have provided useful insights into normal and impaired visual attention, but less progress has been made in modelling auditory attention. We are developing a Theory of Auditory Attention (TAA), based on an influential visual model, the Theory of Visual...... Attention (TVA). We report that TVA provides a good fit to auditory data when the stimuli are closely matched to those used in visual studies. In the basic visual TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of letters (e...... the auditory data, producing good estimates of the rate at which information is encoded (C), the minimum exposure duration required for processing to begin (t0), and the relative attentional weight to targets versus distractors (α). Future work will address the issue of target-distractor confusion, and extend...

  18. Vertical stability, high elongation, and the consequences of loss of vertical control on DIII-D

    International Nuclear Information System (INIS)

    Kellman, A.G.; Ferron, J.R.; Jensen, T.H.; Lao, L.L.; Luxon, J.L.; Skinner, D.G.; Strait, E.J.; Reis, E.; Taylor, T.S.; Turnbull, A.D.; Lazarus, E.A.; Lister, J.B.

    1990-09-01

    Recent modifications to the vertical control system for DIII-D has enabled operation of discharges with vertical elongation κ, up to 2.5. When vertical stability is lost, a disruption follows and a large vertical force on the vacuum vessel is observed. The loss of plasma energy begins when the edge safety factor q is 2 but the current decay does not begin until q ∼1.3. Current flow on the open field lines in the plasma scrapeoff layer has been measured and the magnitude and distribution of these currents can explain the observed force on the vessel. Equilibrium calculations and simulation of this vertical displacement episode are presented. 7 refs., 4 figs

  19. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. A multi-offset vertical profiling (VSP) experiment for anisotropy analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grech, G. K.; Lawton, D. [Calgary Univ., AB (Canada)

    2000-09-01

    Vertical seismic profiling (VSP) and surface seismic data are used to image and locate hydrocarbon targets in the subsurface, hence the importance of assessing which formations exhibit seismic velocity anisotropy and quantify their parameters for use during seismic imaging. The purpose of the experiments described in this paper was to determine whether the multiple dipping thin shale beds overlying the target area in the Rocky Mountain Foothills in southern Alberta exhibit seismic velocity anisotropy and if so, how this phenomenon affects the image of the underlying target. Traveltime inversion of the first arrival data from the multi-offset VSP in the study area has revealed that the Cretaceous shales exhibit velocity anisotropy of about 10 degrees. For a target depth of 3000 m and moderate dips of 30 to 50 degrees in the anisotropic overburden, it would be reasonable to expect a lateral shift in the imaged location of the target of up to 300 m in the up-direction of overlying bedding. 8 refs., 9 figs.

  1. Volume of visual field assessed with kinetic perimetry and its application to static perimetry

    Directory of Open Access Journals (Sweden)

    Christoforidis JB

    2011-04-01

    Full Text Available John B ChristoforidisCollege of Medicine, The Ohio State University, Columbus, OH, USABackground: The purpose of this study was to quantify the volume of the kinetic visual field with a single unit that accounts for visual field area and differential luminance sensitivity.Methods: Kinetic visual field perimetry was performed with a Goldmann perimeter using I4e, I3e, I2e, and I1e targets. The visual fields of 25 normal volunteers (17 women, eight men of mean age 33.9 ± 10.1 (range 17–64 years were obtained and digitized. Isopter areas were measured with a method devised to correct cartographic distortion due to polar projection inherent in perimetry and are expressed in steradians. The third dimension of each isopter represents sensitivity to target luminance and was calculated as log (target luminance-1. If luminance is expressed in cd/m2, the values for the third dimension are 0.5 for I4e, 1.0 for I3e, 1.5 for I2e, and 2.0 for I1e. The resulting unit is a steradian (log 103 (cd/m2-1 which is referred to as a Goldmann. In addition, the visual fields of four patients with representative visual defect patterns were examined and compared with normal subjects.Results: Mean isopter areas for normal subjects were 3.092 ± 0.242 steradians for I4e, 2.349 ± 0.280 steradians for I3e, 1.242 ± 0.263 steradians for I2e, and 0.251 ± 0.114 steradians for the I1e target. Isopter volumes were 1.546 ± 0.121 Goldmanns for the I4e target, 1.174 ± 0.140 Goldmanns for I3e, 0.621 ± 0.131 Goldmanns for I2e, and 0.126 ± 0.057 Goldmanns for I1e. The total mean visual field volume in our study for the I target was 3.467 ± 0.371 Goldmanns.Conclusion: The volume of the island of vision may be used to quantify a visual field with a single value which contains information about both visual field extension and differential luminance sensitivity. This technique may be used to assess the progression or stability of visual field defects over time. A similar method may

  2. Natural course of visual field loss in patients with Type 2 Usher syndrome.

    Science.gov (United States)

    Fishman, Gerald A; Bozbeyoglu, Simge; Massof, Robert W; Kimberling, William

    2007-06-01

    To evaluate the natural course of visual field loss in patients with Type 2 Usher syndrome and different patterns of visual field loss. Fifty-eight patients with Type 2 Usher syndrome who had at least three visual field measurements during a period of at least 3 years were studied. Kinetic visual fields measured on a standard calibrated Goldmann perimeter with II4e and V4e targets were analyzed. The visual field areas in both eyes were determined by planimetry with the use of a digitalizing tablet and computer software and expressed in square inches. The data for each visual field area measurement were transformed to a natural log unit. Using a mixed model regression analysis, values for the half-life of field loss (time during which half of the remaining field area is lost) were estimated. Three different patterns of visual field loss were identified, and the half-life time for each pattern of loss was calculated. Of the 58 patients, 11 were classified as having pattern type I, 12 with pattern type II, and 14 with pattern type III. Of 21 patients whose visual field loss was so advanced that they could not be classified, 15 showed only a small residual central field (Group A) and 6 showed a residual central field with a peripheral island (Group B). The average half-life times varied between 3.85 and 7.37 for the II4e test target and 4.59 to 6.42 for the V4e target. There was no statistically significant difference in the half-life times between the various patterns of field loss or for the test targets. The average half-life times for visual field loss in patients with Usher syndrome Type 2 were statistically similar among those patients with different patterns of visual field loss. These findings will be useful for counseling patients with Type 2 Usher syndrome as to their prognosis for anticipated visual field loss.

  3. I can see what you are saying: Auditory labels reduce visual search times.

    Science.gov (United States)

    Cho, Kit W

    2016-10-01

    The present study explored the self-directed-speech effect, the finding that relative to silent reading of a label (e.g., DOG), saying it aloud reduces visual search reaction times (RTs) for locating a target picture among distractors. Experiment 1 examined whether this effect is due to a confound in the differences in the number of cues in self-directed speech (two) vs. silent reading (one) and tested whether self-articulation is required for the effect. The results showed that self-articulation is not required and that merely hearing the auditory label reduces visual search RTs relative to silent reading. This finding also rules out the number of cues confound. Experiment 2 examined whether hearing an auditory label activates more prototypical features of the label's referent and whether the auditory-label benefit is moderated by the target's imagery concordance (the degree to which the target picture matches the mental picture that is activated by a written label for the target). When the target imagery concordance was high, RTs following the presentation of a high prototypicality picture or auditory cue were comparable and shorter than RTs following a visual label or low prototypicality picture cue. However, when the target imagery concordance was low, RTs following an auditory cue were shorter than the comparable RTs following the picture cues and visual-label cue. The results suggest that an auditory label activates both prototypical and atypical features of a concept and can facilitate visual search RTs even when compared to picture primes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation

    Science.gov (United States)

    Zacharias, G. L.; Young, L. R.

    1981-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  5. The Theory of Visual Attention without the race: a new model of visual selection

    DEFF Research Database (Denmark)

    Andersen, Tobias; Kyllingsbæk, Søren

    2012-01-01

    constrained by a limited processing capacity or rate, which is distributed among target and distractor objects with distractor objects receiving a smaller proportion of resources due to attentional filtering. Encoding into a limited visual short-term memory is implemented as a race model. Given its major...

  6. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  7. Visualization of hyperspectral imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Bijl, P.; Toet, A.

    2007-01-01

    We developed four new techniques to visualize hyper spectral image data for man-in-the-loop target detection. The methods respectively: (1) display the subsequent bands as a movie (“movie”), (2) map the data onto three channels and display these as a colour image (“colour”), (3) display the

  8. Orienting attention to objects in visual short-term memory

    NARCIS (Netherlands)

    Dell'Acqua, Roberto; Sessa, Paola; Toffanin, Paolo; Luria, Roy; Joliccoeur, Pierre

    We measured electroencephalographic activity during visual search of a target object among objects available to perception or among objects held in visual short-term memory (VSTM). For perceptual search, a single shape was shown first (pre-cue) followed by a search-array and the task was to decide

  9. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  10. Reading color barcodes using visual snakes.

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, Hanspeter (ORION International Technologies, Albuquerque, NM)

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method, the numeric bar codes reveal if the target is right-side-up or up-side-down.

  11. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input or final-goods trade is liberalised and when the fixed cost of vertical integration is reduced. At the same time, one observes firms that shift away from either vertical integration, offshoring, or exporting. Further, we provide guidance for testing the open...

  12. Visual outcome after endoscopic third ventriculostomy for hydrocephalus.

    Science.gov (United States)

    Jung, Ji-Ho; Chai, Yong-Hyun; Jung, Shin; Kim, In-Young; Jang, Woo-Youl; Moon, Kyung-Sub; Kim, Seul-Kee; Chong, Sangjoon; Kim, Seung-Ki; Jung, Tae-Young

    2018-02-01

    Hydrocephalus-related symptoms are mostly improved after successful endoscopic third ventriculostomy (ETV). However, visual symptoms can be different. This study was focused on visual symptoms. We analyzed the magnetic resonance images (MRI) of the orbit and visual outcomes. From August 2006 to November 2016, 50 patients with hydrocephalus underwent ETV. The male-to-female ratio was 33:17, and the median age was 61 years (range, 5-74 years). There were 18 pediatric and 32 adult patients. Abnormal orbital MRI findings included prominent subarachnoid space around the optic nerves and vertical tortuosity of the optic nerves. We retrospectively analyzed clinical symptoms, causes of hydrocephalus, ETV success score (ETVSS), ETV success rate, ETV complications, orbital MRI findings, and visual impairment score (VIS). The median duration of follow-up was 59 months (range, 3-113 months). The most common symptoms were headache, vomiting, and gait disturbance. Visual symptoms were found in 6 patients (12%). The most common causes of hydrocephalus were posterior fossa tumor in 13 patients, pineal tumor in 12, aqueductal stenosis in 8, thalamic malignant glioma in 7, and tectal glioma in 4. ETVSS was 70 in 3 patients, 80 in 34 patients, and 90 in 13 patients. ETV success rate was 80%. ETVSS 70 showed the trend in short-term survival compared to ETVSS 90 and 80. ETV complications included epidural hematoma requiring operation in one patient, transient hemiparesis in two patients, and infection in two patients. Preoperative abnormal orbital MRI findings were found in 18 patients and postoperative findings in 7 patients. Four of six patients with visual symptoms had abnormal MR findings. Three patients did not show VIS improvement, including two with severe visual symptoms. Patients with severe visual impairment were found to have bad outcomes. The visual symptoms related with increased intracranial pressure should be carefully monitored and controlled to improve outcomes.

  13. Memory for target height is scaled to observer height.

    Science.gov (United States)

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2012-04-01

    According to the embodied approach to visual perception, individuals scale the environment to their bodies. This approach highlights the central role of the body for immediate, situated action. The present experiments addressed whether body scaling--specifically, eye-height scaling--occurs in memory when action is not immediate. Participants viewed standard targets that were either the same height as, taller than, or shorter than themselves. Participants then viewed a comparison target and judged whether the comparison was taller or shorter than the standard target. Participants were most accurate when the standard target height matched their own heights, taking into account postural changes. Participants were biased to underestimate standard target height, in general, and to push standard target height away from their own heights. These results are consistent with the literature on eye-height scaling in visual perception and suggest that body scaling is not only a useful metric for perception and action, but is also preserved in memory.

  14. A Hierarchical Visualization Analysis Model of Power Big Data

    Science.gov (United States)

    Li, Yongjie; Wang, Zheng; Hao, Yang

    2018-01-01

    Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.

  15. Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes

    Directory of Open Access Journals (Sweden)

    Dariusz Wroblewski

    2014-01-01

    Full Text Available Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1 manual, with patient response registered with a mouse click, and (2 visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1 minimal systematic differences between measurements taken in visual grasp and manual modes, (2 the average standard deviation of the difference distributions of about 5 dB, and (3 a systematic shift (of 4–6 dB to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients’ acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  16. Testing of visual field with virtual reality goggles in manual and visual grasp modes.

    Science.gov (United States)

    Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas

    2014-01-01

    Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  17. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    ) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field......In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...

  18. Geometric Hypergraph Learning for Visual Tracking

    OpenAIRE

    Du, Dawei; Qi, Honggang; Wen, Longyin; Tian, Qi; Huang, Qingming; Lyu, Siwei

    2016-01-01

    Graph based representation is widely used in visual tracking field by finding correct correspondences between target parts in consecutive frames. However, most graph based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation and occlusion occur. In this paper, we propose a geometric hypergraph learning based tr...

  19. Conditioning Influences Audio-Visual Integration by Increasing Sound Saliency

    Directory of Open Access Journals (Sweden)

    Fabrizio Leo

    2011-10-01

    Full Text Available We investigated the effect of prior conditioning of an auditory stimulus on audiovisual integration in a series of four psychophysical experiments. The experiments factorially manipulated the conditioning procedure (picture vs monetary conditioning and multisensory paradigm (2AFC visual detection vs redundant target paradigm. In the conditioning sessions, subjects were presented with three pure tones (= conditioned stimulus, CS that were paired with neutral, positive, or negative unconditioned stimuli (US, monetary: +50 euro cents,.–50 cents, 0 cents; pictures: highly pleasant, unpleasant, and neutral IAPS. In a 2AFC visual selective attention paradigm, detection of near-threshold Gabors was improved by concurrent sounds that had previously been paired with a positive (monetary or negative (picture outcome relative to neutral sounds. In the redundant target paradigm, sounds previously paired with positive (monetary or negative (picture outcomes increased response speed to both auditory and audiovisual targets similarly. Importantly, prior conditioning did not increase the multisensory response facilitation (ie, (A + V/2 – AV or the race model violation. Collectively, our results suggest that prior conditioning primarily increases the saliency of the auditory stimulus per se rather than influencing audiovisual integration directly. In turn, conditioned sounds are rendered more potent for increasing response accuracy or speed in detection of visual targets.

  20. Dividing time: Concurrent timing of auditory and visual events by young and elderly adults

    OpenAIRE

    McAuley, J. Devin; Miller, Jonathan P.; Wang, Mo; Pang, Kevin C. H.

    2010-01-01

    This article examines age differences in individual’s ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults in contrast showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory ta...