WorldWideScience

Sample records for vertical velocity variation

  1. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  2. Periodic Variations in the Vertical Velocities of Galactic Masers

    Directory of Open Access Journals (Sweden)

    Bobylev V. V.

    2016-03-01

    Full Text Available We compiled published data on Galactic masers with VLBI-measured trigonometric parallaxes and determined the residual tangential, ∆Vcirc, and radial, ∆VR, velocities for 120 masers. We used these data to redetermine the parameters of the Galactic spiral density wave using the method of spectral analysis. The most interesting result of this study is the detection of wavelike oscillations of vertical spatial velocities (W versus distance R from the Galactic rotation axis. Spectral analysis allowed us to determine the perturbation wavelength and the amplitude of this wave, which we found to be equal to λW = 3.4 ± 0.7 kpc and fW = 4.9 ± 1.2 km s−1, respectively.

  3. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  4. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  5. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  6. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  7. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  8. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, G.; Lambrecht, A.; Reynaud, S. [CNRS, ENS, UPMC, Laboratoire Kastler-Brossel, Paris (France); Debu, P. [CEA-Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, Gif-sur-Yvette (France); Nesvizhevsky, V.V. [Institut Max von Laue-Paul Langevin, Grenoble (France); Voronin, A.Yu. [P.N. Lebedev Physical Institute, Moscow (Russian Federation)

    2014-01-15

    GBAR is a project aiming at measuring the freefall acceleration of gravity for antimatter, namely antihydrogen atoms (H). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution.We propose to use a new method for shaping the distribution of the vertical velocities of H, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing H with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk.We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration g of H could be pushed below 10{sup -3} under realistic experimental conditions. (orig.)

  9. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    CERN Document Server

    Dufour, G.; Lambrecht, A.; Nesvizhevsky, V.V.; Reynaud, S.; Voronin, A.Yu.

    2014-01-30

    GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.

  10. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    Science.gov (United States)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields

  11. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    larger than the downward w percentages. At the leeward side, the downward w percentages were larger than the upward at D4. Importantly, this suggests that rainfall with R >10 mm hr-1 at the leeward side was more associated by negative w-components of winds. Therefore, we confirmed the possibility of w (up/down draft) estimation by DSD observation using disdrometers and quantitative contribution of w in orographic precipitation, roughly. In addition, the rainrates (R) of precipitation, radar reflectivities (Z) and vertical velocities (w) characteristics are related to the size and fall velocity spectra distributions by disdrometer. The vertical velocities contributed to the orographic precipitation development and dissipation and they clearly showed different values between windward side and leeward side with R variation. Acknowledgement This work was funded by the Korea Meteorological Industry Promotion Agency under Grants KMIPA 2015-5060 and KMIPA 2015-1050.

  12. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  13. Horizontal and vertical velocities derived from the IDS contribution to ITRF2014, and comparisons with geophysical models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaría-Gómez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-10-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame, the International DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite) Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS combination centre estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time-series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm yr-1. For five of the sites (Arequipa, Dionysos/Gavdos, Manila and Santiago) with horizontal velocity differences with respect to these models larger than 10 mm yr-1, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm yr-1 at 23 percent of the sites. At Thule, the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time-series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  14. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  15. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  16. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    Science.gov (United States)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  17. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2009-03-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  18. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  19. Moveout analysis of wide-azimuth data in the presence of lateral velocity variation

    KAUST Repository

    Takanashi, Mamoru

    2012-05-01

    Moveout analysis of wide-azimuth reflection data seldom takes into account lateral velocity variations on the scale of spreadlength. However, velocity lenses (such as channels and reefs) in the overburden can cause significant, laterally varying errors in the moveout parameters and distortions in data interpretation. Here, we present an analytic expression for the normal-moveout (NMO) ellipse in stratified media with lateral velocity variation. The contribution of lateral heterogeneity (LH) is controlled by the second derivatives of the interval vertical traveltime with respect to the horizontal coordinates, along with the depth and thickness of the LH layer. This equation provides a quick estimate of the influence of velocity lenses and can be used to substantially mitigate the lens-induced distortions in the effective and interval NMO ellipses. To account for velocity lenses in nonhyperbolic moveout inversion of wide-azimuth data, we propose a prestack correction algorithm that involves computation of the lens-induced traveltime distortion for each recorded trace. The overburden is assumed to be composed of horizontal layers (one of which contains the lens), but the target interval can be laterally heterogeneous with dipping or curved interfaces. Synthetic tests for horizontally layered models confirm that our algorithm accurately removes lens-related azimuthally varying traveltime shifts and errors in the moveout parameters. The developed methods should increase the robustness of seismic processing of wide-azimuth surveys, especially those acquired for fracture-characterization purposes. © 2012 Society of Exploration Geophysicists.

  20. Moveout analysis of wide-azimuth data in the presence of lateral velocity variation

    KAUST Repository

    Takanashi, Mamoru; Tsvankin, Ilya

    2012-01-01

    Moveout analysis of wide-azimuth reflection data seldom takes into account lateral velocity variations on the scale of spreadlength. However, velocity lenses (such as channels and reefs) in the overburden can cause significant, laterally varying errors in the moveout parameters and distortions in data interpretation. Here, we present an analytic expression for the normal-moveout (NMO) ellipse in stratified media with lateral velocity variation. The contribution of lateral heterogeneity (LH) is controlled by the second derivatives of the interval vertical traveltime with respect to the horizontal coordinates, along with the depth and thickness of the LH layer. This equation provides a quick estimate of the influence of velocity lenses and can be used to substantially mitigate the lens-induced distortions in the effective and interval NMO ellipses. To account for velocity lenses in nonhyperbolic moveout inversion of wide-azimuth data, we propose a prestack correction algorithm that involves computation of the lens-induced traveltime distortion for each recorded trace. The overburden is assumed to be composed of horizontal layers (one of which contains the lens), but the target interval can be laterally heterogeneous with dipping or curved interfaces. Synthetic tests for horizontally layered models confirm that our algorithm accurately removes lens-related azimuthally varying traveltime shifts and errors in the moveout parameters. The developed methods should increase the robustness of seismic processing of wide-azimuth surveys, especially those acquired for fracture-characterization purposes. © 2012 Society of Exploration Geophysicists.

  1. Flat reflector versus curved reflector in the stability of an inversion operator for seismic and geological models with vertical variation of velocity; O refletor plano versus o curvo na estabilizacao de um operador de inversao de modelos sismico-geologicos com variacao vertical de velocidade

    Energy Technology Data Exchange (ETDEWEB)

    Figueiro, Wilson Mouzer [Bahia Univ., Salvador, BA (Brazil). Programa de Pesquisa e Pos-Graduacao em Geofisica

    1995-12-31

    It is known that, in seismic reflection tomography, the slowness parameters of the model are worse determined the reflector parameters. In a matter of fact, the slowness field has a great influence in the ambiguity and instability found in the seismic inverse problems. Here it is verified numerically that models with a curved reflector instead of a flat reflector improves significantly the situation of uniqueness and stability of the operator that is used in the method of Gauss-Newton. Models that have vertical variation of velocity are considered. At first with a flat reflector and linear variation with depth of the square of the slowness function without damping. For each reflector depth, the matrix A{sup T}A shows very small eigenvalues and extremely high condition numbers. In many cases the use of a damping does not work well and it is necessary to find another way to stabilize the operator A{sup T}A. Replacing the flat reflector by a curved and varying the depth as in the previous case and keeping fixed the other parameters, we get minimum eigenvalues and condition numbers much more large and small, respectively. It was observed that the condition number of A{sup T}A in the curved reflector case is less than in the flat reflector damped case. It is possible, then, to say that the curved reflector produces a very better situation of stability, in comparison with the flat case, when we have a vertical variation of the seismic velocity. (author). 4 refs., 3 figs

  2. Revisiting the radiative vertical velocity paradigm in the TTL

    Science.gov (United States)

    Bolot, Maximilien; Moyer, Elisabeth

    2015-04-01

    We demonstrate that uplift rates in the TTL (tropical tropopause layer) may be commonly overestimated. The mass balance of any tracer in the TTL depends on the vertical speed of large-scale uplift and the rate of convective detrainment from overshoots. Generally, uplift velocity is retrieved from the conservation of energy, assuming that the only significant factor is radiative heating.1,2 The detrainment rate is then computed from the convergence of the uplift flux, with the assumption that detrainment dominates over entrainment in the TTL. We show that this commonly calculated 'radiative vertical velocity' and the associated rate of detrainment are necessarily flawed for either of two mutually exclusive reasons. If radiative heating is the sole diabatic term in the energy budget, then significant convective entrainment must occur at TTL levels. If detrainment dominates over entrainment, then the heat budget must include the cooling rate from the export of sensible heat deficit in overshooting convection. We illustrate the calculations using tropical values of radiative heating rates and large-scale divergence fluxes from ERA-Interim reanalysis. For undilute convection, the export of heat deficit in detrained overshoots would substantially offset radiative heating, lowering the resulting assumed vertical velocity at 16 km by a factor of three. The computed detrainment rate at this altitude also increases significantly, by a factor of five. Because these changes would alter interpretation of tracer profiles, it is important to include all terms in the heat budget in tracer studies. Conversely, tracer transport properties can be used to help constrain the impact of convection on the TTL heat budget.3 [1] Folkins, I. et al., J. Geophys. Res., 111, D23304, (2006). [2] Read, W. G. et al., Atmos. Chem. Phys., 8, 6051-6067, (2008). [3] Kuang, Z. and Bretherton, C. S., J. Atmos. Sci., 61, 2919-2927, (2004)

  3. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    Science.gov (United States)

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and

  4. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  5. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    Science.gov (United States)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and

  6. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  7. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    Science.gov (United States)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  8. Variational multi-valued velocity field estimation for transparent sequences

    DEFF Research Database (Denmark)

    Ramírez-Manzanares, Alonso; Rivera, Mariano; Kornprobst, Pierre

    2011-01-01

    Motion estimation in sequences with transparencies is an important problem in robotics and medical imaging applications. In this work we propose a variational approach for estimating multi-valued velocity fields in transparent sequences. Starting from existing local motion estimators, we derive...... a variational model for integrating in space and time such a local information in order to obtain a robust estimation of the multi-valued velocity field. With this approach, we can indeed estimate multi-valued velocity fields which are not necessarily piecewise constant on a layer –each layer can evolve...

  9. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  10. Estimates of vertical velocities and eddy coefficients in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Vertical velocities and eddy coefficients in the intermediate depths of the Bay of Bengal are calculated from mean hydrographic data for 300 miles-squares. The linear current density (sigma- O) versus log-depth plots show steady balance between...

  11. Characteristics of vertical velocity in marine stratocumulus: comparison of large eddy simulations with observations

    International Nuclear Information System (INIS)

    Guo Huan; Liu Yangang; Daum, Peter H; Senum, Gunnar I; Tao, W-K

    2008-01-01

    We simulated a marine stratus deck sampled during the Marine Stratus/Stratocumulus Experiment (MASE) with a three-dimensional large eddy simulation (LES) model at different model resolutions. Various characteristics of the vertical velocity from the model simulations were evaluated against those derived from the corresponding aircraft in situ observations, focusing on standard deviation, skewness, kurtosis, probability density function (PDF), power spectrum, and structure function. Our results show that although the LES model captures reasonably well the lower-order moments (e.g., horizontal averages and standard deviations), it fails to simulate many aspects of the higher-order moments, such as kurtosis, especially near cloud base and cloud top. Further investigations of the PDFs, power spectra, and structure functions reveal that compared to the observations, the model generally underestimates relatively strong variations on small scales. The results also suggest that increasing the model resolutions improves the agreements between the model results and the observations in virtually all of the properties that we examined. Furthermore, the results indicate that a vertical grid size <10 m is necessary for accurately simulating even the standard-deviation profile, posing new challenges to computer resources.

  12. Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy

    Science.gov (United States)

    Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.

    2016-02-01

    With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.

  13. VELOCITY VARIATIONS IN THE PHOENIX–HERMUS STAR STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, R. G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Grillmair, C. J., E-mail: carlberg@astro.utoronto.ca, E-mail: carl@ipac.caltech.edu [Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2016-10-20

    Measurements of velocity and density perturbations along stellar streams in the Milky Way provide a time-integrated measure of dark matter substructure at larger galactic radius than the complementary instantaneous inner-halo strong lensing detection of dark matter sub-halos in distant galaxies. An interesting case to consider is the proposed Phoenix–Hermus star stream, which is long, thin, and on a nearly circular orbit, making it a particular good target to study for velocity variations along its length. In the presence of dark matter sub-halos, the stream velocities are significantly perturbed in a manner that is readily understood with the impulse approximation. A set of simulations shows that only sub-halos above a few 10{sup 7} M {sub ⊙} lead to reasonably long-lived observationally detectable velocity variations of amplitude of order 1 km s{sup −1}, with an average of about one visible hit per (two-armed) stream over a 3 Gyr interval. An implication is that globular clusters themselves will not have a visible impact on the stream. Radial velocities have the benefit of being completely insensitive to distance errors. Distance errors scatter individual star velocities perpendicular and tangential to the mean orbit, but their mean values remain unbiased. Calculations like these help build the quantitative case to acquire large, fairly deep, precision velocity samples of stream stars.

  14. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Directory of Open Access Journals (Sweden)

    Bâki Iz H.

    2017-02-01

    Full Text Available This study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of −1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.

  15. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  16. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  17. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  18. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  19. Temporal variation of floc size and settling velocity in the Dollard estuary

    Science.gov (United States)

    Van der Lee, Willem T. B.

    2000-09-01

    Temporal changes in floc size and settling velocity were measured in the Dollard estuary with an under water video camera. The results show that the flocs in the Dollard are very heterogeneous and that larger flocs have much lower effective densities than smaller flocs. Due to this density decrease, floc settling velocities show only a minor increase with increasing floc size. Floc sizes and settling velocities correlate with the suspended sediment concentration (SSC) on a tidal time scale, but not on a seasonal time scale. On a seasonal time scale floc sizes depend on the binding properties of the sediment, while floc settling velocities show hardly any variation, as an increase in floc size is mainly counterbalanced by a decrease in floc density. Tidal variations in settling velocity occur but cannot be modeled solely as a function of SSC, as the relation between floc size/settling velocity and SSC constantly changes in time and space. Settling velocity variations throughout the tide can however be expressed as a function of tidal phase.

  20. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2013-01-01

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance

  1. Temperature and center-limb variations of transition region velocities

    International Nuclear Information System (INIS)

    Athay, R.G.; Dere, K.P.

    1989-01-01

    HRTS data from the Spacelab 2 mission are used to derive the center-limb and temperature variations of the mean velocity and the velocity variance in the solar chromosphere and transition zone. The mean velocity is found to vary much more rapidly from center to limb and with temperature than does the velocity variance. Also, the mean velocity shows a characteristic signature at some magnetic neutral lines in accordance with the findings of Klimchuk (1987) from Solar Maximum Mission (SMM) data. The velocity variance does not show a characteristic signature at the neutral lines but shows an inverse correlation with intensity. The latter is interpreted as reduced velocity variance in strong field regions. The results are discussed in terms of downflow along lines of force in magnetic arcades. 23 refs

  2. Copernicus observations of Iota Herculis velocity variations

    Science.gov (United States)

    Rogerson, J. B., Jr.

    1984-01-01

    Observations of Iota Her at 109.61-109.67 nm obtained with the U1 channel of the Copernicus spectrophotometer at resolution 5 pm during 3.6 days in May, 1979, are reported. Radial-velocity variations are detected and analyzed as the sum of two sinusoids with frequencies 0.660 and 0.618 cycles/day and amplitudes 9.18 and 8.11 km/s, respectively. Weak evidence supporting the 13.9-h periodicity seen in line-profile variations by Smith (1978) is found.

  3. Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation.

    Science.gov (United States)

    Stodden, David F; Fleisig, Glenn S; McLean, Scott P; Andrews, James R

    2005-02-01

    To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.

  4. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  5. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  6. Minimizers with discontinuous velocities for the electromagnetic variational method

    International Nuclear Information System (INIS)

    De Luca, Jayme

    2010-01-01

    The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.

  7. Magnetometer-inferred, Equatorial, Daytime Vertical ExB Drift Velocities Observed in the African Longitude Sector

    Science.gov (United States)

    Anderson, D. N.; Yizengaw, E.

    2011-12-01

    A recent paper has investigated the sharp longitude gradients in the dayside ExB drift velocities associated with the 4-cell, non-migrating structures thought to be connected with the eastward propagating, diurnal, non-migrating (DE3) tides. Observations of vertical ExB drift velocities obtained from the Ion Velocity Meter (IVM) on the Communication/Navigation Outage Forecast System (C/NOFS) satellite were obtained in the Western Pacific, Eastern Pacific, Peruvian and Atlantic sectors for a few days during the months of October, March and December, 2009. Respective ExB drift velocity gradients at the cell boundaries for these 4 longitude sectors were a.) -1.3m/sec/degree, b.) 3m/sec/degree, c.) -4m/sec/degree and d.) 1m/sec/degree and were observed on a day-to-day basis. In this talk, we estimate the longitude gradients in the dayside, vertical ExB drift velocities from magnetometer H-component observations in the African sector. We briefly describe the technique for obtaining realistic ExB drift velocities associated with the difference in the H-component values between a magnetometer on the magnetic equator and one off the magnetic equator at 6 to 9 degrees dip latitude (delta H). We present magnetometer-inferred, dayside ExB drift velocities obtained from the AMBER (African Meridian B-field Education and Research) magnetometer chain in the East Africa (Ethiopian) longitude sector and the West African (Nigerian) longitude sector. We compare the longitude gradients in ExB drift velocities in the African sector with the C/NOFS- observed longitude gradients mentioned above. We also discuss the advantages of using ground-based magnetometer observations to infer ExB drift velocities compared with the C/NOFS satellite observations.

  8. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  9. Velocity of large bubble in liquid-solid mixture in a vertical tube

    International Nuclear Information System (INIS)

    Hamaguchi, H.; Sakaguchi, T.

    1995-01-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V o in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V * (=V/V o ), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V * decreases linearly against the volumetric solid fraction ε of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V * and ε is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid

  10. Velocity of large bubble in liquid-solid mixture in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, H.; Sakaguchi, T. [Kobe Univ., Kobe (Japan)

    1995-09-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V{sub o} in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V{sup *}(=V/V{sub o}), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V{sup *} decreases linearly against the volumetric solid fraction {epsilon} of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V{sup *} and {epsilon} is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid.

  11. Characteristics of low-mass-velocity vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji

    1995-01-01

    In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)

  12. Depth-dependence of time-lapse seismic velocity change detected by a joint interferometric analysis of vertical array data

    Science.gov (United States)

    Sawazaki, K.; Saito, T.; Ueno, T.; Shiomi, K.

    2015-12-01

    In this study, utilizing depth-sensitivity of interferometric waveforms recorded by co-located Hi-net and KiK-net sensors, we separate the responsible depth of seismic velocity change associated with the M6.3 earthquake occurred on November 22, 2014, in central Japan. The Hi-net station N.MKGH is located about 20 km northeast from the epicenter, where the seismometer is installed at the 150 m depth. At the same site, the KiK-net has two strong motion seismometers installed at the depths of 0 and 150 m. To estimate average velocity change around the N.MKGH station, we apply the stretching technique to auto-correlation function (ACF) of ambient noise recorded by the Hi-net sensor. To evaluate sensitivity of the Hi-net ACF to velocity change above and below the 150 m depth, we perform a numerical wave propagation simulation using 2-D FDM. To obtain velocity change above the 150 m depth, we measure response waveform from the depths of 150 m to 0 m by computing deconvolution function (DCF) of earthquake records obtained by the two KiK-net vertical array sensors. The background annual velocity variation is subtracted from the detected velocity change. From the KiK-net DCF records, the velocity reduction ratio above the 150 m depth is estimated to be 4.2 % and 3.1 % in the periods of 1-7 days and 7 days - 4 months after the mainshock, respectively. From the Hi-net ACF records, the velocity reduction ratio is estimated to be 2.2 % and 1.8 % in the same time periods, respectively. This difference in the estimated velocity reduction ratio is attributed to depth-dependence of the velocity change. By using the depth sensitivity obtained from the numerical simulation, we estimate the velocity reduction ratio below the 150 m depth to be lower than 1.0 % for both time periods. Thus the significant velocity reduction and recovery are observed above the 150 m depth only, which may be caused by strong ground motion of the mainshock and following healing in the shallow ground.

  13. Generalised Einstein mass-variation formulae: II Superluminal relative frame velocities

    Directory of Open Access Journals (Sweden)

    James M. Hill

    Full Text Available In part I of this paper we have deduced generalised Einstein mass variation formulae assuming relative frame velocities vc. We again use the notion of the residual mass m0(v which for v>c is defined by the equation m(v=m0(v[(v/c2-1]-1/2 for the actual mass m(v. The residual mass is essentially the actual mass with the Einstein factor removed, and we emphasise that we make no restrictions on m0(v. Using this formal device we deduce corresponding new mass variation formulae applicable to superluminal relative frame velocities, assuming only the extended Lorentz transformations and their consequences, and two invariants that are known to apply in special relativity. The present authors have previously speculated a dual framework such that both the rest mass m0∗ and the residual mass at infinite velocity m∞∗ (by which we mean p∞∗/c, assuming finite momentum at infinity are equally important parameters in the specification of mass as a function of its velocity, and the two arbitrary constants can be so determined. The new formulae involving two arbitrary constants may also be exploited so that the mass remains finite at the speed of light, and two distinct mass profiles are determined as functions of their velocity with the rest mass assumed to be alternatively prescribed at the origin of either frame. The two profiles so obtained (M(U,m(u and (M∗(U,m∗(u although distinct have a common ratio M(U/M∗(U=m(u/m∗(u that is a function of v>c, indicating that observable mass depends upon the frame in which the rest mass is prescribed. Keywords: Special relativity, Einstein mass variation, New formulae

  14. Variation of vertical atmospheric stability by means of radon measurements and of sodar monitoring

    International Nuclear Information System (INIS)

    Guedalia, D.; Druilhet, A.; Fontan, J.; N'tsila, A.

    1980-01-01

    Continuous measurements of radon at ground level are used to infer variations in equivalent mixing height and atmospheric vertical stability. Simultaneous determinations of the height of the inversion layer, when present, permit, with the use of sodar techniques, the estimation of radon flux from the ground and of the vertical diffusion coefficient. The two sets of data often indicate similar variations in mixing height

  15. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  16. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  17. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  18. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  19. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  20. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump

    OpenAIRE

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-01-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue...

  1. Comparison of vertical E × B drift velocities and ground-based magnetometer observations of DELTA H in the low latitude under geomagnetically disturbed conditions

    Science.gov (United States)

    Prabhu, M.; Unnikrishnan, K.

    2018-04-01

    In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10-20 m/s and 20-30 m/s and 20% have peak ΔH in the magnitude range 50-60 nT and 80-90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00-13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis - linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula was developed which indicates the relationship between daytime vertical E × B drift velocity and ΔH, for the disturbed periods. The E × B drift velocity was then evaluated using the formulae thus found for the three regression analysis and validated for the 'disturbed periods' of 3 selected events. The E × B drift velocities estimated by the three regression analysis have a fairly good agreement with JULIA radar observed values under different seasons and solar activity

  2. The velocity distribution caused by an airplane at the points of a vertical plane containing the span

    Science.gov (United States)

    Munk, Max M

    1925-01-01

    A formula for the computation of the vertical velocity component on all sides of an airplane is deduced and discussed. The formation is of value for the interpretation of such free flight tests where two airplanes fly alongside each other to facilitate observation.

  3. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  4. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    Science.gov (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  5. Intracyclic Velocity Variation of the Center of Mass and Hip in Breaststroke Swimming With Maximal Intensity.

    Science.gov (United States)

    Gourgoulis, Vassilios; Koulexidis, Stylianos; Gketzenis, Panagiotis; Tzouras, Grigoris

    2018-03-01

    Gourgoulis, V, Koulexidis, S, Gketzenis, P, and Tzouras, G. Intra-cyclic velocity variation of the center of mass and hip in breaststroke swimming with maximal intensity. J Strength Cond Res 32(3): 830-840, 2018-The aim of the study was to compare the center of mass (CM) and hip (HIP) intracyclic velocity variation in breaststroke swimming using 3-dimensional kinematic analysis. Nine male breaststrokes, of moderate performance level, swam 25-m breaststroke with maximal intensity, and their movements were recorded, both under and above the water surface, using 8 digital cameras. Their CM and HIP velocities and their intracyclic variations were estimated after manual digitization of 28 selected points on the body in a complete arm and leg breaststroke cycle. Paired sample t-tests or Wilcoxon tests, when the assumption of normality was broken, were used for statistical analyses. In both, CM and HIP velocity-time curves, the results revealed a similar pattern of 2 clear peaks associated with the leg and arm propulsive phases and 2 minimal velocities that corresponded to the arm and leg recovery phase and the lag time between the leg and arm propulsive phases, respectively. However, despite this similar general pattern, the HIP minimum resultant velocity was significantly lower, whereas its maximal value was significantly greater, than the corresponding CM values. Consequently, the HIP intracyclic swimming velocity fluctuation significantly overestimates the actual variation of the swimmer's velocity in breaststroke swimming.

  6. Phase reconstruction from velocity-encoded MRI measurements – A survey of sparsity-promoting variational approaches

    KAUST Repository

    Benning, Martin

    2014-01-01

    In recent years there has been significant developments in the reconstruction of magnetic resonance velocity images from sub-sampled k-space data. While showing a strong improvement in reconstruction quality compared to classical approaches, the vast number of different methods, and the challenges in setting them up, often leaves the user with the difficult task of choosing the correct approach, or more importantly, not selecting a poor approach. In this paper, we survey variational approaches for the reconstruction of phase-encoded magnetic resonance velocity images from sub-sampled k-space data. We are particularly interested in regularisers that correctly treat both smooth and geometric features of the image. These features are common to velocity imaging, where the flow field will be smooth but interfaces between the fluid and surrounding material will be sharp, but are challenging to represent sparsely. As an example we demonstrate the variational approaches on velocity imaging of water flowing through a packed bed of solid particles. We evaluate Wavelet regularisation against Total Variation and the relatively recent second order Total Generalised Variation regularisation. We combine these regularisation schemes with a contrast enhancement approach called Bregman iteration. We verify for a variety of sampling patterns that Morozov\\'s discrepancy principle provides a good criterion for stopping the iterations. Therefore, given only the noise level, we present a robust guideline for setting up a variational reconstruction scheme for MR velocity imaging. © 2013 Elsevier Inc. All rights reserved.

  7. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in

  8. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    Science.gov (United States)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  9. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  10. THE EFFECT OF VARIATION CONCRETE CUBE OF AXIAL LOAD ON ULTRASONIC PULSE VELOCITY TRANSMITTER

    Directory of Open Access Journals (Sweden)

    Faqih Ma’arif

    2015-05-01

    The test result showed that the increase of ultrasonic pulse velocity effect on cube II due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0, if compared to the one without axial load, the results were 4,17% and 11,60 respectively. The decrease of pulse velocity on cube III due to axial load variation was at 0,25P0 and 0,7P0; if compared to the one without axial load the result were 0,47% and 20,87% respectively. And the increase of ultrasonic pulse velocity effect on cube IV due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0; if compared to the one without axial load the result were 0,52% and 21,63% respectively. The maximum limit of effective load step at structure experiencing compressive load ranged from 0,35P0 up to 0,4P0. At high stress level, the crack that occurred was spread evenly to the concrete cubic components and was giving an exponential equation y = y= 5,11e0,0467x. The result of analysis of cubes II, III and IV showed that on paired sample t-test 0,00<0,025, the significant value (2-tailed (0,00<(0,025; meaning there was a difference of pulse velocity due to axial load variation on concrete cube.

  11. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale

    KAUST Repository

    Dypvik, Eivind; Rø stad, Anders; Kaartvedt, Stein

    2012-01-01

    The seasonal variations in glacier lanternfish (Benthosema glaciale) vertical distribution and diel vertical migration (DVM) were studied by use of a bottom-mounted upward-facing 38 kHz echo sounder deployed at 392 m depth and cabled to shore in Masfjorden (~6052?N, ~524?E), Norway. Acoustic data from July 2007-October 2008 were analyzed, and scattering layers below ~220 m during daytime were attributed to glacier lanternfish based on net sampling in this, and previous studies, as well as from analysis of the acoustic data. At these depths, three different diel behavioral strategies were apparent: normal diel vertical migration (NDVM), inverse DVM (IDVM), and no DVM (NoDVM). NoDVM was present all year, while IDVM was present in autumn and winter, and NDVM was present during spring and summer. The seasonal differences in DVM behavior seem to correlate with previously established seasonal distribution of prey. We hypothesize that in regions with seasonally migrating zooplankton, such as where calanoid copepods overwinter at depth, similar plasticity in DVM behavior might occur in other populations of lanternfishes. 2012 The Author(s).

  12. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale

    KAUST Repository

    Dypvik, Eivind

    2012-06-05

    The seasonal variations in glacier lanternfish (Benthosema glaciale) vertical distribution and diel vertical migration (DVM) were studied by use of a bottom-mounted upward-facing 38 kHz echo sounder deployed at 392 m depth and cabled to shore in Masfjorden (~6052?N, ~524?E), Norway. Acoustic data from July 2007-October 2008 were analyzed, and scattering layers below ~220 m during daytime were attributed to glacier lanternfish based on net sampling in this, and previous studies, as well as from analysis of the acoustic data. At these depths, three different diel behavioral strategies were apparent: normal diel vertical migration (NDVM), inverse DVM (IDVM), and no DVM (NoDVM). NoDVM was present all year, while IDVM was present in autumn and winter, and NDVM was present during spring and summer. The seasonal differences in DVM behavior seem to correlate with previously established seasonal distribution of prey. We hypothesize that in regions with seasonally migrating zooplankton, such as where calanoid copepods overwinter at depth, similar plasticity in DVM behavior might occur in other populations of lanternfishes. 2012 The Author(s).

  13. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  14. Simulation of air velocity in a vertical perforated air distributor

    Science.gov (United States)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  15. Time Variations of the Radial Velocity of H2O Masers in the Semi-Regular Variable R Crt

    Science.gov (United States)

    Sudou, Hiroshi; Shiga, Motoki; Omodaka, Toshihiro; Nakai, Chihiro; Ueda, Kazuki; Takaba, Hiroshi

    2017-12-01

    H2O maser emission {at 22 GHz} in the circumstellar envelope is one of the good tracers of detailed physics and inematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an H2O maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the H2O maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a 0.1 km s^{-1} scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of H2O masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation.However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

  16. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    Science.gov (United States)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  17. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  18. On vertical velocity fluctuations and internal tides in an upwelling region off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    .28 at 40 m (between two stations separated by a distance of 27 km), we obtain u a T/ax = 0.26 x 10m5 “C sP ‘. If the minimum value of AT over 1 h is taken as 0.3”C, aTlatz8.3 x lOA “C s-l, which is an order of Vertical velocity and internal tides 869 60...

  19. Laminar free convection in a vertical tube with constant wall temperature considering the variation of fluid properties

    International Nuclear Information System (INIS)

    Senna, J.G.

    1981-01-01

    A model to analyze Laminar Free convection with variable properties in the entrance of a vertical open tube with constant wall temperature and for one Prandtl number (0.7), is studied. The velocity and temperature profiles are determined by finite difference methods for different rates of wall to ambient temperatures and different values of the velocity in the entrance of the tube. The results will be compared with those obtained in the same problem with constant properties. (Author) [pt

  20. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  1. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  2. Simultaneous inversion for hypocenters and lateral velocity variation: An iterative solution with a layered model

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, B.W.; Zandt, G.; Smith, R.B.

    1981-08-10

    An iterative inversion technique has been developed that uses the direct P and S wave arrival times from local earthquakes to compute simultaneously a three-dimensional velocity structure and relocated hypocenters. Crustal structure is modeled by subdiving flat layers into rectangular blocks. An interpolation function is used to smoothly vary velocities between blocks, allowing ray trace calculations of travel times in a three-dimensional medium. Tests using synthetic data from known models show that solutions are reasonably independent of block size and spatial distribution but are sensitive to the choice of layer thicknesses. Application of the technique to observed earthquake data from north-central Utah shown the following: (1) lateral velcoity variations in the crust as large as 7% occur over 30-km distance, (2) earthquake epicenters computed with the three-dimensional velocity structure were shifted an average of 3.0 km from location determined assuming homogeneous flat layered models, and (3) the laterally varying velocity structure correlates with anomalous variations in the local gravity and aeromagnetic fields, suggesting that the new velocity information can be valuable in acquiring a better understanding of crustal structure.

  3. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China

    International Nuclear Information System (INIS)

    Zhang, H.H.; Yuan, H.X.; Hu, Y.G.; Wu, Z.F.; Zhu, L.A.; Zhu, L.; Li, F.B.; LI, D.Q.

    2006-01-01

    Total of 260 soil profiles were reported to investigate the arsenic spatial distribution and vertical variation in Guangdong province. The arsenic concentration followed an approximately lognormal distribution. The arsenic geometric mean concentration of 10.4 mg/kg is higher than that of China. An upper baseline concentration of 23.4 mg/kg was estimated for surface soils. The influence of soil properties on arsenic concentration was not important. Arsenic spatial distributions presented similar patterns that high arsenic concentration mainly located in limestone, and sandshale areas, indicating that soil arsenic distribution was dependent on bedrock properties than anthropogenic inputs. Moreover, from A- to C-horizon arsenic geometric mean concentrations had an increasing tendency of 10.4, 10.7 to 11.3 mg/kg. This vertical variation may be related to the lower soil organic matter and soil degradation and erosion. Consequently, the soil arsenic export into surface and groundwaters would reach 1040 t year -1 in the study area. - Soil arsenic movement export is a potential threat to the water quality of the study area

  4. Clogging of granular material in vertical pipes discharged at constant velocity

    Directory of Open Access Journals (Sweden)

    López-Rodríguez Diego

    2017-01-01

    Full Text Available We report an experimental study on the flow of spherical particles through a vertical pipe discharged at constant velocity by means of a conveyor belt placed at the bottom. For a pipe diameter 3.67 times the diameter of the particles, we observe the development of hanging arches that stop the flow as they are able to support the weight of the particles above them. We find that the distribution of times that it takes until a stable clog develops, decays exponentially. This is compatible with a clogging probability that remains constant during the discharge. We also observe that the probability of clogging along the pipe decreases with the height, i.e. most of the clogs are developed near the bottom. This spatial dependence may be attributed to different pressure values within the pipe which might also be related to a spontaneous development of an helical structure of the grains inside the pipe.

  5. The radial velocity variations in IC 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.

    1981-01-01

    The observations presented are part of a search for spectral and radial velocity variations among central stars of planetary nebulae and include the following new data: 1) Weak, previously undetected C III emissions are visible at 4056, 4186, 4516, 5270 and 5826 A. The famous unidentified emissions at 4485 and 4503 A were also found. 2) The He I absorptions at 4471 and 5875 A are blue-shifted relative to the nebular emissions. The same happens with Hsub(delta) and Hsub(γ), although in this case the shift can be at least partly attributed to blends with the strong He II absorptions, which are estimated to contribute about one half of the equivalent width at Hsub(delta) and Hsub(γ). 3) O III 5592 and C IV 5801, 5811 are also found in absorption. (Auth.)

  6. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  7. An analytical model for displacement velocity of liquid film on a hot vertical surface

    International Nuclear Information System (INIS)

    Yoshioka, Keisuke; Hasegawa, Shu

    1975-01-01

    The downward progress of the advancing front of a liquid film streaming down a heated vertical surface, as it would occur in emergency core cooling, is much slower than in the case of ordinary streaming down along a heated surface already wetted with the liquid. A two-dimensional heat conduction model is developed for evaluating this velocity of the liquid front, which takes account of the heat removal by ordinary flow boiling mechanism. In the analysis, the maximum heat flux and the calefaction temperature are taken up as parameters in addition to the initial dry heated wall temperature, the flow rate and the velocity of downward progress of the liquid front. The temperature profile is calculated for various combinations of these parameters. Two criteria are proposed for choosing the most suitable combination of the parameters. One is to reject solutions that represent an oscillating wall temperature distribution, and the second criterion requires that the length of the zone of violent boiling immediately following the liquid front should not be longer than about 1 mm, this value being determined from comparisons made between experiment and calculation. Application of the above two criteria resulted in reasonable values obtained for the calefaction temperature and the maximum heat flux, and the velocity of the liquid front derived therefrom showed good agreement with experiment. (auth.)

  8. Effect of velocity variation on secondary-ion-emission probability: Quantum stationary approach

    International Nuclear Information System (INIS)

    Goldberg, E.C.; Ferron, J.; Passeggi, M.C.G.

    1989-01-01

    The ion-velocity dependence of the ionization probability for an atom ejected from a surface is examined by using a quantum approach in which the coupled motion between electrons and the outgoing nucleus is followed along the whole trajectory by solving the stationary Schroedinger equation. We choose a very-small-cluster-model system in which the motion of the atom is restricted to one dimension, and with energy potential curves corresponding to the involved channels varying appreciably with the atom position. We found an exponential dependence on the inverse of the asymptotic ion velocity for high emission energies, and a smoother behavior with slight oscillations at low energies. These results are compared with those obtained within a dynamical-trajectory approximation using either a constant velocity equal to the asymptotic ionic value, or expressions for the velocity derived from the eikonal approximation and from the classical limit of the current vector. Both approaches give similar results provided the velocity is allowed to adjust self-consistently to potential energies and transition-amplitude variations. Strong oscillations are observed in the low-emission-energy range either if the transitions are neglected, or a constant velocity along the whole path is assumed for the ejected particle

  9. a Baseline for Upper Crustal Velocity Variations Along the East Pacific Rise

    Science.gov (United States)

    Kappus, Mary Elizabeth

    Seismic measurements of the oceanic crust and theoretical models of its generation at mid-ocean ridges suggest several systematic variations in upper crustal velocity structure, but without constraints on the inherent variation in newly-formed crust these suggestions remain tentative. The Wide Aperture Profiles (WAPs) which form the database for this study have sufficient horizontal extent and resolution in the upper crust to establish a zero-age baseline. After assessing the adequacy of amplitude preservation in several tau - p transform methods we make a precise estimate of the velocity at the top of the crust from analysis of amplitudes in the tau - p domain. Along a 52-km segment we find less than 5% variation from 2.45 km/s. Velocity models of the uppermost crust are constructed using waveform inversion for both reflection and refraction arrivals. This method exploits the high quality of both primary and secondary phases and provides an objective process for iteratively improving trial models and for measuring misfit. The resulting models show remarkable homogeneity: on-axis variation is 5% or less within layers 2A and 2B, increasing to 10% at the sharp 2A/2B boundary. The extrusive volcanic layer is only 130 m thick along-axis and corresponds to the triangular -shaped neovolcanic zone. From this we infer that the sheeted dikes feeding the extrusive layer 2A come up to very shallow depths on axis. Along axis, a fourth-order deviation from axial linearity identified geochemically is observed as a small increase in thickness of the extrusive layer. Off -axis, the velocity increases only slightly to 2.49 km/s, while the thickness of the extrusives increases to 217 km and the variability in both parameters increases with distance from the ridge axis. In a separate section we present the first published analysis of seismic records of thunder. We calculate multi -taper spectra to determine the peak energy in the lightning bolt and apply time-dependent polarization

  10. Variation of velocity profile according to blood viscosity in a microfluidic channel

    Science.gov (United States)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  11. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  12. Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Science.gov (United States)

    Lanza, A. F.; Molaro, P.; Monaco, L.; Haywood, R. D.

    2016-03-01

    Context. Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. Aims: We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programmes. Methods: We used the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlated this velocity with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. Results: We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at ~95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 ± 1.44 m/s, which is in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Conclusions: Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.

  13. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  14. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yoshioka, M; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  15. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible......, this is supposedly a good approximation. High resolution large-eddy simulation (LES) data show that it is indeed the case. Through analysis of WindCube lidar measurements accompanied by sonic measurements we show that this is, on the other hand, rarely the case in the real atmosphere. This might indicate that large...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  16. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  17. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter; Jü ngel, Ansgar; Aoki, Kazuo

    2010-01-01

    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  18. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data

    NARCIS (Netherlands)

    Ferreira, C.J.S.; Zuijlen, van A.H.; Bijl, H.; Bussel, van G.J.W.; Kuik, van G.A.M.

    2010-01-01

    The implementation of wind energy conversion systems in the built environment has renewed the interest and the research on Vertical Axis Wind Turbines (VAWTs). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack and perceived velocity with azimuth angle.

  19. Activity-induced radial velocity variation of M dwarf stars

    DEFF Research Database (Denmark)

    Andersen, Jan Marie; Korhonen, Heidi Helena

    2012-01-01

    that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine...... the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic...... planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?...

  20. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    Science.gov (United States)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  1. Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing

    Science.gov (United States)

    Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.

    2018-05-01

    In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.

  2. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    Science.gov (United States)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  3. Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24

    Science.gov (United States)

    Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.

    2002-12-01

    We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.

  4. The importance of variations in the deposition velocity assumed for the assessment of airborne radionuclide releases

    International Nuclear Information System (INIS)

    Miller, C.W.; Hoffman, F.O.; Shaeffer, D.L.

    1978-01-01

    In environmental radiological assessments, the depletion of airborne plumes by dry deposition processes and the subsequent contamination of ground and vegetation have been estimated through the use of a parameter termed the 'deposition velocity'. The sensitivity of environmental assessment models to changes in values of deposition velocity is here examined so that the effect of potential variations of deposition velocity on calculations of radiation dose can be determined. The results show that until more data are available great care must be exercised when applying theoretical ideas and scientific judgement in the selection of a value of the deposition velocity to be used in calculating the dose to man as a result of deposition. (U.K.)

  5. Generalised Einstein mass-variation formulae: I Subluminal relative frame velocities

    Directory of Open Access Journals (Sweden)

    James M. Hill

    Full Text Available Much of the formalism in special relativity is intimately bound up with Einstein’s formula for the variation of mass m with its velocity v, namely m(v=m0∗[1-(v/c2]-1/2, where m is the mass, v the velocity, c denotes the speed of light and m0∗ denotes the rest mass, noting that in these papers, we employ an asterisk to designate the rest mass. Einstein’s formula together with the Lorentz transformations and their consequences are fundamental to the development of special relativity. Here we introduce the notion of the residual mass m0(v which for vvariation formulae, assuming only the Lorentz transformations and two invariants known to apply in special relativity. One is force invariance in the direction of relative motion applying to two non-accelerating frames, while the other is not so well known, but applies in special relativity. Together the two assumed invariances imply that the energy–mass transfer rates are frame invariant but not necessarily constant as in special relativity. The new formulae involving two arbitrary constants may be exploited so that the mass remains finite at the speed of light, and an illustrative example is provided for which this is the case, and from which a new comparison formula is derived that is singular at the speed of light. This new expression may be contrasted with the Einstein expression, and roughly speaking, the new formula predicts more mass than that given by the Einstein formula, since the singularity at the speed of light is steeper. Keywords: Special relativity, Einstein mass variation, New formulae

  6. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  7. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  8. Respiratory variation in peak aortic velocity accurately predicts fluid responsiveness in children undergoing neurosurgery under general anesthesia.

    Science.gov (United States)

    Morparia, Kavita G; Reddy, Srijaya K; Olivieri, Laura J; Spaeder, Michael C; Schuette, Jennifer J

    2018-04-01

    The determination of fluid responsiveness in the critically ill child is of vital importance, more so as fluid overload becomes increasingly associated with worse outcomes. Dynamic markers of volume responsiveness have shown some promise in the pediatric population, but more research is needed before they can be adopted for widespread use. Our aim was to investigate effectiveness of respiratory variation in peak aortic velocity and pulse pressure variation to predict fluid responsiveness, and determine their optimal cutoff values. We performed a prospective, observational study at a single tertiary care pediatric center. Twenty-one children with normal cardiorespiratory status undergoing general anesthesia for neurosurgery were enrolled. Respiratory variation in peak aortic velocity (ΔVpeak ao) was measured both before and after volume expansion using a bedside ultrasound device. Pulse pressure variation (PPV) value was obtained from the bedside monitor. All patients received a 10 ml/kg fluid bolus as volume expansion, and were qualified as responders if stroke volume increased >15% as a result. Utility of ΔVpeak ao and PPV and to predict responsiveness to volume expansion was investigated. A baseline ΔVpeak ao value of greater than or equal to 12.3% best predicted a positive response to volume expansion, with a sensitivity of 77%, specificity of 89% and area under receiver operating characteristic curve of 0.90. PPV failed to demonstrate utility in this patient population. Respiratory variation in peak aortic velocity is a promising marker for optimization of perioperative fluid therapy in the pediatric population and can be accurately measured using bedside ultrasonography. More research is needed to evaluate the lack of effectiveness of pulse pressure variation for this purpose.

  9. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  10. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  11. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  12. Variations in rest vertical dimension: effects of standing posture in edentulous patients.

    Science.gov (United States)

    Makzoume, Joseph E

    2007-01-01

    The orientation of a patient's head changes, depending on whether he or she is sitting or standing in a relaxed upright position. An edentulous patient's vertical dimension at rest may show variations that can result in an inaccurate determination of his or her occlusal vertical dimension. This study recorded the rest vertical dimension (RVD) established among 60 totally edentulous subjects who were standing in the position of greatest comfort (self-balance position) and compared it with the patients' RVD when they were seated in a relaxed upright position, with the Frankfort Plane parallel to the horizontal. The RVD was measured (in mm) between two dots located on the midline of the face. Two measurements were made: one when the patient was seated upright and relaxed (with the Frankfort Plane parallel to the horizontal) with no head support, and the other when the patient was standing relaxed on both feet in a self-balance position. Five alternated measurements were made for each subject in each position. A mean RVD was calculated for each subject in each body posture and the mean values from both positions were compared. Statistical analysis was performed using Student's t-test (alpha = 0.05). No significant differences were noted between the RVD of the seated and standing positions (P = 0.67).

  13. Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations

    Science.gov (United States)

    Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf

    2018-05-01

    One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm

  14. Seasonal and Daily Variations of Subsurface Velocity Revealed by the Air-gun Source in Binchuan, Yunnan, China

    Science.gov (United States)

    Luan, Y.; Yang, H.; Wang, B.

    2017-12-01

    We derive temporal variations of subsurface structure using a large-volume air-gun source excited in Binchuan, Yunnan, southwest China, the first transmitting seismic station that can generate high-quality repeating waveforms. The data were collected between January 2013 and December 2015 that were recorded by 40 stations within 150 km, including permanent and newly deployed air-gun array stations. Firstly, we conduct cluster analysis using the waveforms at the nearest station and find the clustering result is not only governed by the water level of the reservoir, but also has seasonal variations. Furthermore, we use the records of the nearest station to approximate the source time functions and then retrieve empirical Green's functions (EGF) by deconvolution. Then we obtain travel time difference by comparing the EGF. The travel time difference exhibits clear seasonal variation, and the pattern correlates the best with surface air temperature. The increasing temperature coincides with increasing delay time i.e. decreasing seismic velocity. We interpret the observed seasonal variation of subsurface velocity is partly caused by thermo-elastic strain. However, our calculated thermo-elastic strain is only half in amplitude of the observed strain, indicating other factors such as precipitation and ground water level may play a role in the subsurface changes. Moreover, we derive the daily variation of subsurface velocity in December 2015 when air-gun shots were made in every hour. The delay time clearly correlates with the barometric pressure change and the tidal strain. Here we demonstrate that both long-term (seasonal) and short-term (daily) structural variations can be derived using the newly constructed active source, which is a powerful tool to advance our understanding of rheological properties of the crust as well as well processes associated with earthquakes and other natural hazards.

  15. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  16. Simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Hasegawa, Y, E-mail: hsuzuki@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-02-01

    We propose simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines. The present formulation is derived by introducing a series expansion for the torque coefficient at the constant tip-speed ratio. By focusing on the first- and second-order differential coefficients of the torque coefficient, we simplify the original differential equation. The governing equation based only on the first-order differential coefficient is found to be linear, whereas the second-order differential coefficient introduces nonlinearity. We compare the numerical solutions of the three governing equations for rotational speed in response to sinusoidal and normal-random variations of inflow velocity. The linear equation gives accurate solutions of amplitude and phase lag. Nonlinearity occurs in the mean value of rotational speed variation. We also simulate the rotational speed in response to a step input of inflow velocity using the conditions of two previous studies, and note that the form of this rotational speed response is a system of first-order time lag. We formulate the gain and time constant for this rotational speed response. The magnitude of the gain is approximately three when the wind turbine is operated at optimal tip-speed ratio. We discuss the physical meaning of the derived time constant. (paper)

  17. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  18. Diurnal variation of tropospheric temperature at a tropical station

    Directory of Open Access Journals (Sweden)

    K. Revathy

    2001-08-01

    Full Text Available The vertical velocity in the troposphere-lower stratosphere region measured using MST radar has been utilized to evaluate the temperature profile in the region. The diurnal variation of the tropospheric temperature on one day in August 1998 at the tropical station Gadanki (13.5° N, 79.2° E has been studied using the MST radar technique. The diurnal variation of the temperature revealed a prominent diurnal variation with the peak in the afternoon hours increasingly delayed in altitude. The tropopause temperature and altitude exhibited a clear diurnal cycle.Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere - composition and chemistry; instruments and technique

  19. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    Science.gov (United States)

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  20. Source of Global Scale Variations in the Midday Vertical Content of Ionospheric Metal Ions

    Science.gov (United States)

    Joiner, J.; Grebowsky, J. M.; Pesnell, W. D.; Aikin, A. C.; Goldberg, Richard A.

    1999-01-01

    An analysis of long baseline NIMBUS 7 SBUV (Solar Backscatter UV Spectrometer) observations of the latitudinal variation of the noontime vertical Mg' content above approx. 70 km have revealed seasonal, solar activity and magnetic activity dependencies in the Mg+ content. The distributions were categorized in terms of magnetic coordinates partially because transport processes lifting metallic ions from the main meteor ionization layer below 100 km up into the F- region and down again are controlled by electrodynamical processes. Alternatively, the Nimbus Mg+ distributions may simply be a result of ion/neutral chemistry changes resulting from atmospheric changes and not dynamics. In such a case magnetic control would not dominate the distributions. Using in situ satellite measurements of metal ions from the Atmosphere Explorer satellites in the region above the main meteor layer and published sounding rocket measurements of the main metallic ion layers, the effects of the dynamics on the vertical content are delineated. The consequences of atmospheric changes on the vertical content are explored by separating the Nimbus measurements in a geodetic frame of reference.

  1. Investigation and visualization of liquid–liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    International Nuclear Information System (INIS)

    Shad, S; Gates, I D; Maini, B B

    2009-01-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas–liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio

  2. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    Science.gov (United States)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  3. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  4. Vertical velocity variances and Reynold stresses at Brookhaven

    DEFF Research Database (Denmark)

    Busch, Niels E.; Brown, R.M.; Frizzola, J.A.

    1970-01-01

    Results of wind tunnel tests of the Brookhaven annular bivane are presented. The energy transfer functions describing the instrument response and the numerical filter employed in the data reduction process have been used to obtain corrected values of the normalized variance of the vertical wind v...

  5. Coma Berenices: The First Evidence for Incomplete Vertical Phase-mixing in Local Velocity Space with RAVE—Confirmed with Gaia DR2

    Science.gov (United States)

    Monari, G.; Famaey, B.; Minchev, I.; Antoja, T.; Bienaymé, O.; Gibson, B. K.; Grebel, E. K.; Kordopatis, G.; McMillan, P.; Navarro, J.; Parker, Q. A.; Quillen, A. C.; Reid, W.; Seabroke, G.; Siebert, A.; Steinmetz, M.; Wyse, R. F. G.; Zwitter, T.

    2018-05-01

    Before the publication of the Gaia DR2 we confirmed with RAVE and TGAS an observation recently made with the GALAH survey by Quillen ey al. concerning the Coma Berenices moving group in the Solar neighbourhood, namely that it is only present at negative Galactic latitudes. This allowed us to show that it is coherent in vertical velocity, providing a first evidence for incomplete vertical phase-mixing. We estimated for the first time from dynamical arguments that the moving group must have formed at most ~ 1.5 Gyr ago, and related this to a pericentric passage of the Sagittarius dwarf satellite galaxy. The present note is a rewritten version of the original arXiv post on this result now also including a confirmation of our finding with Gaia DR2.

  6. Eccentricity samples: Implications on the potential and the velocity distribution

    Directory of Open Access Journals (Sweden)

    Cubarsi R.

    2017-01-01

    Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  7. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    Science.gov (United States)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  8. Variational approach to excitation of atomic hydrogen atoms by impacts of protons at intermediate velocities

    International Nuclear Information System (INIS)

    Lasri, B.; Bouamoud, M.; Gayet, R.

    2006-01-01

    A variational approach to the excitation of atoms by ion impacts at intermediate velocities is re-examined. Contributions from intermediate states of the target continuum, that were ignored in previous applications of this approach, are taken into account. With this improved variational approach, excitation cross sections of hydrogen atoms by intermediate energy protons are calculated and compared to recent experimental data and to previous theoretical cross sections. The influence of the intermediate target continuum is found to be very weak. In addition, the present approach is shown to apply as long as the capture process is negligible

  9. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    Science.gov (United States)

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  10. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  11. Stochastic Analysis of Natural Convection in Vertical Channels with Random Wall Temperature

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2017-01-01

    Full Text Available This study attempts to derive the statistics of temperature and velocity fields of laminar natural convection in a heated vertical channel with random wall temperature. The wall temperature is expressed as a random function with respect to time, or a random process. First, analytical solutions of the transient temperature and flow velocity fields for an arbitrary temporal variation in the channel wall temperature are obtained by the integral transform and convolution theorem. Second, the autocorrelations of the temperature and velocity are formed from the solutions, assuming a stationarity in time. The mean square values of temperature and velocity are computed under the condition that the fluctuation in the channel wall temperature can be considered as white noise or a stationary Markov process. Numerical results demonstrate that a decrease in the Prandtl number or an increase in the correlation time of the random process increases the level of mean square velocity but does not change its spatial distribution tendency, which is a bell-shaped profile with a peak at a certain horizontal distance from the channel wall. The peak position is not substantially affected by the Prandtl number or the correlation time.

  12. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  13. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Science.gov (United States)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  14. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, J.L.; Guenard, V. [LSEET, CNRS/Univ. de Toulon, La Garde (France); Benech, B.; Campistron, B. [CRA/LA, CNRS/Obs. Midi-Pyrenees, Campistrous (France); Drobinski, P. [IPSL/SA, CNRS/Univ. de Paris VI, Paris (France)

    2004-07-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhone-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhone-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (mesoscale alpine program) in autumn 1999, and ESCOMPTE (Experience sur Site pour COntraindre les Modeles de Pollution atmospheriques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhone valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of ''flow around'' and ''flow over'' mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with

  15. Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2013-10-01

    Full Text Available Previous studies showed that conventional coherent backscatter radar measurements of the Doppler velocity of the so-called 150 km echoes can provide an alternative way of estimating ionospheric vertical plasma drifts during daytime hours (Kudeki and Fawcett, 1993; Chau and Woodman, 2004. Using observations made by a small, low-power 30 MHz coherent backscatter radar located in the equatorial site of São Luís (2.59° S, 44.21° W; −2.35° dip lat, we were able to detect and monitor the occurrence of 150 km echoes in the Brazilian sector. Using these measurements we estimated the local time variation of daytime vertical ionospheric drifts in the eastern American sector. Here, we present a few interesting cases of 150 km-echoes observations made by the São Luís radar and estimates of the diurnal variation of vertical drifts. These cases exemplify the variability of the vertical drifts in the Brazilian sector. Using same-day 150 km-echoes measurements made at the Jicamarca Radio Observatory in Peru, we also demonstrate the variability of the equatorial vertical drifts across the American sector. In addition to first estimates of the absolute vertical plasma drifts in the eastern American (Brazilian sector, we also present observations of abnormal drifts detected by the São Luís radar associated with the 2009 major sudden stratospheric warming event.

  16. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  17. Approximation of wave action flux velocity in strongly sheared mean flows

    Science.gov (United States)

    Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei

    2017-08-01

    Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.

  18. Satellite Altimetry and Current-Meter Velocities in the Malvinas Current at 41°S: Comparisons and Modes of Variations

    Science.gov (United States)

    Ferrari, Ramiro; Artana, Camila; Saraceno, Martin; Piola, Alberto R.; Provost, Christine

    2017-12-01

    Three year long current-meter arrays were deployed in the Malvinas Current at 41°S below a satellite altimeter track at about 10 years intervals. Surface geostrophic velocities (SGV) derived from satellite altimetric data are compared with the in situ velocities at the upper current meter (˜300 m). Multisatellite gridded SGV compare better with in situ observations than along-track SGV. In spite of the proximity of the moorings to the complex Brazil-Malvinas Confluence (BMC) region, satellite SGV are significantly correlated with the 20 day low-passed in situ velocities (0.85 for along-isobaths velocities, 0.8 for cross-isobaths velocities). The recent in situ measurement period (2014-2015) stands out in the altimetry record with a long-lasting (4 months) high level of eddy kinetic energy at the mooring site and a southernmost location of the Subantarctic Front (SAF). The first two modes of variations of sea level anomaly (SLA) over the BMC remarkably match the first two modes of the low-passed in situ velocities. The first mode is associated with a latitudinal migration of the SAF, and the second with a longitudinal displacement of the Brazil Current overshoot. The two modes dominate the 24 year long record of SLA in the BMC, with energy peaks at the annual and semiannual periods for the first mode and at 3-5 months for the second mode. The SLA over the Southwest Atlantic was regressed onto the two confluence modes of SLA variations and showed remarkable standing wave train like structures in the Argentine Basin.

  19. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    Science.gov (United States)

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  20. Study on particle deposition in vertical square ventilation duct flows by different models

    International Nuclear Information System (INIS)

    Zhang Jinping; Li Angui

    2008-01-01

    A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results

  1. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  2. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth's mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial....../Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase......-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations....

  3. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    Science.gov (United States)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  4. Variation of the solar wind velocity following solar flares

    International Nuclear Information System (INIS)

    Huang, Y.; Lee, Y.

    1975-01-01

    By use of the superposed epoch method, changes in the solar wind velocity following solar flares have been investigated by using the solar wind velocity data obtained by Pioneer 6 and 7 and Vela 3, 4, and 5 satellites. A significant increase of the solar wind velocity has been found on the second day following importance 3 solar flares and on the third day following importance 2 solar flares. No significant increase of the solar wind velocity has been found for limb flares. (auth)

  5. Estimating discharge using multi-level velocity data from acoustic doppler instruments

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness thus imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations...... increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth......, the Doppler sensor records 10 minute average stream velocities in the central 10 m section of the stream. During summer periods with low flow, stream velocity has only been recorded at two depths since the water table drops below the uppermost sensor. A pressure transducer is also placed at the pole where...

  6. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  7. Approaching space-time through velocity in doubly special relativity

    International Nuclear Information System (INIS)

    Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.

    2004-01-01

    We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived

  8. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Seismic Velocity Structure of the Pacific Upper Mantle in the NoMelt Region from Finite-Frequency Traveltime Tomography

    Science.gov (United States)

    Hung, S. H.; Lin, P. Y.; Gaherty, J. B.; Russell, J. B.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.

    2017-12-01

    Surface wave dispersion and magnetotelluric survey from the NoMelt Experiment conducted on 70 Ma central Pacific seafloor revealed an electrically resistive, high shear wave velocity lid of 80 km thick underlain by a non-highly conductive, low-velocity layer [Sarafian et al., 2015; Lin et al., 2016]. The vertical structure of the upper mantle consistent with these observational constraints suggests a plausible convection scenario, where the seismically fast, dehydrated lithosphere preserving very strong fossil spreading fabric moves at a constant plate speed over the hydrated, melt-free athenospheric mantle with the presence of either pressure-driven return flow or thermally-driven small scale circulation. To explore 3-D variations in compressional shear wave velocities related to the lithospheric and asthenospheric mantle dynamics, we employ a multichannel cross correlation method to measure relative traveltime residuals based on the vertical P and traverse S waveforms filtered at 10-33 s from telseismic earthquakes at epicentral distance between 30 and 98 degrees. The obtained P and S residuals show on average peak-to-peak variations of ±0.5 s and ±1 s, respectively, across the NoMelt OBS array. Particularly, the P residuals for most of the events display an asymmetrical pattern with respect to an axis oriented nearly N-S to NE-SW through the array. Preliminary ray-based P tomography results reveal similar asymmetric variations in the uppermost 100 km mantle. To verify the resulting structural features, we will further perform both the P and S traveltime tomography and resolution tests based on a multiscale finite-frequency approach which properly takes into account both the 3D off-path sensitivities of the measured residuals and data-adaptive resolution of the model.

  9. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  10. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  11. Twilight vertical migrations of zooplankton in a Chilean fjord

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Castro, Leonardo; Cáceres, Mario; Pizarro, Oscar

    2014-12-01

    Time series of acoustic backscatter and vertical velocity profiles were obtained at three sites along a Chilean fjord with the purpose of determining dominant structures of vertical migrations of the sound scattering layer. Ancillary data obtained with stratified net samples indicated that the sound scattering layer may have been dominated by euphausiids and decapods. Therefore, distributions of acoustic backscatter anomalies and vertical velocities were attributed to vertical migrations of predominantly these organisms. Migration patterns were dominated by twilight excursions in which organisms swam toward the water surface at sunset, spent 100 m). This migration strategy can also be termed 'semidiel migration' as two double excursions were linked to light levels. The reasons for this twilight migration remain uncertain. But it is possible that the up and down motion around sunset was related to predation avoidance, hunger-satiation state, ontogeny, seaward transport evasion, or reaction to the environmental shock from the pycnocline, or a combination of all or some of them. In contrast, the sunrise double excursion was probably linked to feeding requirements by organisms that need to spend the day at great depth with no food available. This study demonstrated the existence of semidiel patterns throughout the fjord and through prolonged periods. In addition, identification of this pattern by acoustic backscatter was complemented by direct vertical velocity measurements. It is proposed that twilight vertical migration is a common strategy in Chilean fjords.

  12. Air-water flow in a vertical pipe with sudden changes of superficial water velocity

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Eckhard Krepper; Thomas Frank

    2005-01-01

    Full text of publication follows: For further model development and the validation of CFD codes for two-phase flow applications experiments were carried out with a sudden change of the superficial velocity of water. The tests were performed in a vertical pipe of 51.2 mm diameter. The gas was injected through 19 capillaries of 0.8 mm inner diameter equally distributed over the cross section of the pipe. Measurements were taken by two wire-mesh sensors (24 x 24 points, 2500 Hz) mounted in a short distance (16 mm) behind each other. This sensor assembly was placed 3030 mm downstream of the gas injection. The change of the superficial water velocity was produced by a butterfly valve, the flap of which was perforated. In this way, a rapid closure of the valve caused a jump-like reduction of the liquid flow rate. The valve was located upstream of the gas injection. In a second series of tests a jump-like increase of the water flow rate was studied. Time sequences of the gas fraction profile were calculated from the wire-mesh sensor data over sampling periods of 0.2 s per profile. To increase the statistical reliability of the data, the transient was repeated several times and the data superposed (ensemble averaging). Gas velocity distributions were determined by correlation of the signals with the measurements of the second sensor. The tests enable the observation of the restructuring process of bubbly flow between two steady state conditions. The process is subdivided into three main stages: (1) the undisturbed flow before the velocity jump, (2) the passage of the bubbly flow formed under initial conditions, but travelling with the new velocity and (3) the bubbly flow generated under the new boundary conditions. Transient behaviour between these stages is reflected by the measured data. Special attention was paid to stage 2, where the radial gas fraction profiles change shape due to the excitation of the force balance acting on the bubbles. The experimental results for

  13. On temporal variation of Ceasium isotopes activities in airborne and fallout

    International Nuclear Information System (INIS)

    Hien, P.D.; Binh, N.T.; Y, T.; Bac, V.T.; Ngo, N.T.; Luyen, T.V.

    1992-01-01

    Monthly variations of Cs-137 and Cs-134 activities in airborne and fallout collected in Dalat from 1986 to 1991 are presented. The variations exhibit distinct maxima in December-January, when dry fallout was predominant. The observed peaks are explained by the intrusion of cold air masses with higher radioactivity from temperate latitudes during the development of large-scale anticyclones frequently observed in the most active winter monsoon period. Very high dry fallout velocity (about 10 cm/s) determined from the airborne and fallout activities clearly demonstrates one of the most relevant characteristics of cold air masses: behind the cold front vertical air motion is descending.(Authors) (1 Fig. 2 Tables)

  14. Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)

    Science.gov (United States)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.

    2013-12-01

    For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

  15. Seasonal variations of equatorial spread-F

    Directory of Open Access Journals (Sweden)

    B. V. Krishna Murthy

    Full Text Available The occurrence of spread-F at Trivandrum (8.5°N, 77°E, dip 0.5°N has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h'F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.

  16. Seasonal variations of equatorial spread-F

    Directory of Open Access Journals (Sweden)

    K. S. V. Subbarao

    1994-01-01

    Full Text Available The occurrence of spread-F at Trivandrum (8.5°N, 77°E, dip 0.5°N has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h'F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.

  17. Detailed seismic velocity structure of the ultra-slow spread crust at the Mid-Cayman Spreading Center from travel-time tomography and synthetic seismograms

    Science.gov (United States)

    Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.

    2017-12-01

    The Mid-Cayman Spreading Center (MCSC), an ultraslow-spreading center in the Caribbean Sea, has formed highly variable oceanic crust. Seafloor dredges have recovered extrusive basalts in the axial deeps as well as gabbro on bathymetric highs and exhumed mantle peridotite along the only 110 km MCSC. Wide-angle refraction data were collected with active-source ocean bottom seismometers in April, 2015, along lines parallel and across the MCSC. Travel-time tomography produces relatively smooth 2-D tomographic models of compressional wave velocity. These velocity models reveal large along- and across-axis variations in seismic velocity, indicating possible changes in crustal thickness, composition, faulting, and magmatism. It is difficult, however, to differentiate between competing interpretations of seismic velocity using these tomographic models alone. For example, in some areas the seismic velocities may be explained by either thin igneous crust or exhumed, serpentinized mantle. Distinguishing between these two interpretations is important as we explore the relationships between magmatism, faulting, and hydrothermal venting at ultraslow-spreading centers. We therefore improved our constraints on the shallow seismic velocity structure of the MCSC by modeling the amplitude of seismic refractions in the wide-angle data set. Synthetic seismograms were calculated with a finite-difference method for a range of models with different vertical velocity gradients. Small-scale features in the velocity models, such as steep velocity gradients and Moho boundaries, were explored systematically to best fit the real data. With this approach, we have improved our understanding of the compressional velocity structure of the MCSC along with the geological interpretations that are consistent with three seismic refraction profiles. Line P01 shows a variation in the thinness of lower seismic velocities along the axis, indicating two segment centers, while across-axis lines P02 and P03

  18. Optimization of process parameter variations on leakage current in in silicon-oninsulator vertical double gate mosfet device

    Directory of Open Access Journals (Sweden)

    K.E. Kaharudin

    2015-12-01

    Full Text Available This paper presents a study of optimizing input process parameters on leakage current (IOFF in silicon-on-insulator (SOI Vertical Double-Gate,Metal Oxide Field-Effect-Transistor (MOSFET by using L36 Taguchi method. The performance of SOI Vertical DG-MOSFET device is evaluated in terms of its lowest leakage current (IOFF value. An orthogonal array, main effects, signal-to-noise ratio (SNR and analysis of variance (ANOVA are utilized in order to analyze the effect of input process parameter variation on leakage current (IOFF. Based on the results, the minimum leakage current ((IOFF of SOI Vertical DG-MOSFET is observed to be 0.009 nA/µm or 9 ρA/µm while keeping the drive current (ION value at 434 µA/µm. Both the drive current (ION and leakage current (IOFF values yield a higher ION/IOFF ratio (48.22 x 106 for low power consumption application. Meanwhile, polysilicon doping tilt angle and polysilicon doping energy are recognized as the most dominant factors with each of the contributing factor effects percentage of 59% and 25%.

  19. Investigation of vertical slug flow with advanced two-phase flow instrumentation

    International Nuclear Information System (INIS)

    Mi, Y.; Ishii, M.; Tsoukalas, L.H.

    2001-01-01

    Extensive experiments of vertical slug flow were carried out with an electromagnetic flowmeter and an impedance void-meter in an air-water two-phase experimental loop. The basic principles of these instruments in vertical slug flow measurements are discussed. Time series of the liquid velocity and the impedance were separated into two parts corresponding to the Taylor bubble and the liquid slug. Characteristics of slug flow, such as the void fractions, probabilities and lengths of the Taylor bubble and liquid slug, slug unit velocity, area-averaged liquid velocity, and liquid film velocity of the Taylor bubble tail, etc., were obtained. For the first time, the area-averaged liquid velocity of slug flow was revealed by the electromagnetic flowmeter. It is realized that the void fraction of the liquid slug is determined by the turbulent intensity due to the relative liquid motion between the Taylor bubble tail region and its wake region. A correlation of the void fraction of the liquid slug is developed based on experimental results obtained from a test section with 50.8 mm i.d. The results of this study suggest a promising improvement in understanding of vertical slug flow

  1. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    Science.gov (United States)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  2. Ice Velocity Variations of the Polar Record Glacier (East Antarctica Using a Rotation-Invariant Feature-Tracking Approach

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available In this study, the ice velocity changes from 2004 to 2015 of the Polar Record Glacier (PRG in East Antarctica were investigated based on a feature-tracking method using Landsat-7 enhanced thematic mapper plus (ETM+ and Landsat-8 operational land imager (OLI images. The flow field of the PRG curves make it difficult to generate ice velocities in some areas using the traditional normalized cross-correlation (NCC-based feature-tracking method. Therefore, a rotation-invariant parameter from scale-invariant feature transform (SIFT is introduced to build a novel rotation-invariant feature-tracking approach. The validation was performed based on multi-source images and the making earth system data records for use in research environments (MEaSUREs interferometric synthetic aperture radar (InSAR-based Antarctica ice velocity map data set. The results indicate that the proposed method is able to measure the ice velocity in more areas and performs as well as the traditional NCC-based feature-tracking method. The sequential ice velocities obtained present the variations in the PRG during this period. Although the maximum ice velocity of the frontal margin of the PRG and the frontal iceberg reached about 900 m/a and 1000 m/a, respectively, the trend from 2004 to 2015 showed no significant change. Under the interaction of the Polar Times Glacier and the Polarforschung Glacier, both the direction and the displacement of the PRG were influenced. This impact also led to higher velocities in the western areas of the PRG than in the eastern areas. In addition, elevation changes and frontal iceberg calving also impacted the ice velocity of the PRG.

  3. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 1. Low Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1966-07-15

    By the application of the ({gamma}, n) reaction to boiling heavy water, void volume fractions have been measured in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. The experiments covered pressures from 10 to 50 bars, mass velocities from 50 to 1450 kg/m-sec, heat fluxes from 30 to 90 W/cm{sup 2}, sub coolings from 30 to 0 C, and steam qualities from 0 to 15 %. The results indicate noticeable effects of pressure, heat flux and even mass velocity upon the variations of void with subcooling and steam quality. A novel explanation of the mechanism of their effects has been found and proved by qualitative analysis.

  4. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    Science.gov (United States)

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  5. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2018-03-01

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, PJump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  6. A baseline for upper crustal velocity variations along the East Pacific Rise at 13 deg N

    Science.gov (United States)

    Kappus, Mary E.; Harding, Alistair J.; Orcutt, John A.

    1995-04-01

    A wide aperture profile of the East Pacific Rise at 13 deg N provides data necessary to make a high-resolution seismic velocity profile of the uppermost crust along a 52-km segment of ridge crest. Automated and objective processing steps, including r-p analysis and waveform inversion, allow the construction of models in a consistent way so that comparisons are meaningful. A continuous profile is synthesized from 70 independent one-dimensional models spaced at 750-km intervals along the ridge. The resulting seismic velocity structure of the top 500 m of crust is remarkable in its lack of variability. The main features are a thin low-velocity layer 2A at the top with a steep gradient to layer 2B. The seafloor velocity is nearly constant at 2.45 km/s +/- 3% along the entire ridge. The velocity at the top of layer 2B is 5.0 km/s +/- 10%. The depth to the 4 km/s isovelocity contour within layer 2A is 130 +/- 20 m from 13 deg to 13 deg 20 min N, north of which it increases to 180 m. The increase in thickness is coincident with a deviation from axial linearity (DEVAL) noted by both a slight change in axis depth and orientation and in geochemistry. The waveform inversion, providing more details plus velocity gradient information, shows a layer 2A with about 80 m of constant-velocity material underlain by 150 m of high velocity gradient material, putting the base of layer 2A at approximately 230 m depth south of 13 deg 20 min N and about 50 m thicker north of the DEVAL. The overall lack of variability, combined with other recent measurements of layer 2A thickness along and near the axis, indicates that the thickness of volcanic extrusives is controlled not by levels of volcanic productivity, but the dynamics of emplacement. The homogeneity along axis also provides a baseline of inherent variability in crustal structure of about 10% against which other observed variations in similar regimes can be compared.

  7. Contribution of the source velocity to the scattering of electromagnetic fields caused by airborne magnetic dipoles

    International Nuclear Information System (INIS)

    Sampaio, Edson Emanoel Starteri

    2014-01-01

    The velocity of controlled airborne sources of electromagnetic geophysical surveys plays an additional role in the scattering of the fields by the earth. Therefore, it is necessary to investigate its contribution in the space and time variation of secondary electromagnetic fields. The model of a vertical magnetic dipole moving at a constant speed along a horizontal line in the air and above a homogeneous conductive half-space constitutes a first approach to stress the kinematic aspect and determine the difference between the fields due to an airborne and a static source. The magnetic moment of the source is equal to 10 4  A m 2 , its height is 120 m, and the horizontal and vertical separations between it and the receiver are, respectively, equal to 100 and 50 m: these values of the model are typical of towed-bird airborne TDEM surveys. We employed four values for the common velocities of source and receiver (0, 60, 80, and 100 m s −1 ), four values of the conductivity of the half-space (0.5, 0.1, 0.05, and 0.01 S m −1 ), and two causal source currents (box with periods of 80 and 10 ms and periodic with frequency values of 12.5 and 100 Hz). The results demonstrate that the relative velocity between source and medium yields a measurable variation compared to the static condition. Therefore, it must be taken into consideration by compensating the discrepancy in measured data employing the respective theoretical result. The results also show that it is necessary to adjust the concepts of time and frequency domain for electromagnetic measurements with traveling sources. (paper)

  8. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    Science.gov (United States)

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-02

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.

  9. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  10. Vertical land motion controls regional sea level rise patterns on the United States east coast since 1900

    Science.gov (United States)

    Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.

    2017-12-01

    Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.

  11. Determination of the filtration velocities and mean velocity in ground waters using radiotracers

    International Nuclear Information System (INIS)

    Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida

    1994-01-01

    An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)

  12. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  13. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  14. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  15. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  16. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  17. Flow transport and mixing induced by horizontal jets impinging on a vertical wall of the multi-compartment PANDA facility

    International Nuclear Information System (INIS)

    Paladino, Domenico; Zboray, Robert; Andreani, Michele; Dreier, Joerg

    2010-01-01

    In the frame of the OECD/NEA SETH project an experimental campaign has been carried out in the PANDA facility to investigate gas transport and mixing induced by a plume or a jet in the large-scale multi-compartment PANDA facility. The paper summarizes the results of the horizontal jet test series consisting of eight tests. Horizontal jets impinging on a vertical wall of one of the cylindrical PANDA containment vessels have been generated by changing various parameters, such as: type of injected fluid (steam or a mixture of steam and helium), fluid injection velocity, elevation (with respect to the containment vessel) of the injection exit, initial fluid composition in the vessels, and location of the vent line. The initial jet Froude number has been varied between 17 and 36 and in one of the test condensation occurred. The paper shows the effect of these parameters variation on the test evolution with respect to jet impingement location in the vertical curved wall and variation of impingement location as a function of buoyancy variation. Fluid mixing and stratification, characteristics of gas transport between the compartment and the effect of condensation on the overall phenomena evolution are analyzed in the paper.

  18. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  19. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid

    Directory of Open Access Journals (Sweden)

    X. Ren

    2011-10-01

    Full Text Available A relaxed eddy accumulation (REA system combined with a nitrous acid (HONO analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1 a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2 a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3 a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009 at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.

  20. Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field

    Directory of Open Access Journals (Sweden)

    M.C. Raju

    2015-03-01

    Full Text Available A theoretical analysis is performed to study induced magnetic field effects on free convection flow past a vertical plate. The x¯-axis is taken vertically upwards along the plate, y¯-axis normal to the plate into the fluid region. It is assumed that the plate is electrically non-conducting and the applied magnetic field is of uniform strength (H0 and perpendicular to the plate. The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic field is taken into account. The coupled nonlinear partial differential equations are solved by Perturbation technique and the effects of various physical parameters on velocity, temperature, and induced magnetic fields are studied through graphs and tables. Variations in Skin friction and rate of heat transfer are also studied. It is observed that an increase in magnetic parameter decreases the velocity for both water and air. It is also seen that there is a fall in induced magnetic field as magnetic Prandtl number, and magnetic field parameter increase.

  1. Temporal and vertical variations radon and its progeny related to atmospheric electrical conductivity

    International Nuclear Information System (INIS)

    Pruthvi Rani, K.S.; Chandrashekara, M.S.; Paramesh, L.

    2015-01-01

    Atmospheric radon, its progeny, electrical conductivity and meteorological parameters such as wind, temperature, humidity, pressure and rainfall were continuously monitored during 2012 to 2014 at one location in Mysuru city. The annual mean atmospheric radon concentration at the study location was found to be 16.4 Bqm -3 . The diurnal cycle of radon and its progeny show a peak in the early morning hours followed by a drastic decrease after sunrise and rising to a second peak in the afternoon. It was found that the stability of the atmosphere and ambient temperature played a major role in the diurnal variations. Higher concentrations of radon and its progeny were observed in winter and lower values in summer. This may due to the variations in origin of air mass and meteorological parameters. Wind direction analyses reveal that in sectors with air which has spent a longer period over the granitic region and low wind speeds will lead to higher concentrations of radon. Atmospheric electrical conductivity near the ground is mainly due to the ionization from radon and its progeny. The diurnal variations of conductivity and ionization rate due to radon and its individual progeny were of similar trend. In addition its significant dependence on meteorological parameters is confirmed. The vertical variations of atmospheric electrical conductivity were studied at different heights up to 250 m from the ground level. Higher values were observed close to the ground surface, there was a rapid reduction up to about 10 m and beyond that the conductivity gradually decreases. The diurnal conductivity cycle is studied at 10 m and 100 m showed the expected similar trend at both the heights but early morning maxima were considerably different, this confirms the accumulation of radon gas close to the ground surface during night time leading to increase of conductivity values. (author)

  2. Regional variations in upper mantle compressional velocities beneath southern California 1. Post-shock temperatures: Their experimental determination, calculation, and implications, 2.. Ph.D. Thesis

    Science.gov (United States)

    Raikes, S. A.

    1978-01-01

    The compressional velocity within the upper mantle beneath Southern California is investigated through observations of the dependence of teleseismic P-delays at all stations of the array on the distance and azimuth to the event. The variation of residuals with azimuth was found to be as large as 1.3 sec at a single station; the delays were stable as a function of time, and no evidence was found for temporal velocity variations related to seismic activity in the area. These delays were used in the construction of models for the upper mantle P-velocity structure to depths of 150 km, both by ray tracing and inversion techniques. The models exhibit considerable lateral heterogeneity including a region of low velocity beneath the Imperial Valley, and regions of increased velocity beneath the Sierra Nevada and much of the Transverse Ranges. The development is described of a technique for the experimental determination of post-shock temperatures, and its application to several metals and silicates shocked to pressures in the range 5 to 30 GPa. The technique utilizes an infra-red radiation detector to determine the brightness temperature of the free surface of the sample after the shock wave has passed through it.

  3. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  4. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  5. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  6. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    Science.gov (United States)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  7. Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea

    Science.gov (United States)

    Olli, Kalle; Wexels Riser, Christian; Wassmann, Paul; Ratkova, Tatjana; Arashkevich, Elena; Pasternak, Anna

    2002-12-01

    The spatial and seasonal variations in the vertical flux of particulate biogenic matter were investigated in the Barents Sea in winter and spring 1998 and summer 1999. Arrays of simple cylindrical sediment traps were moored for 24 h between 30 and 200 m along a transect from the ice-free Atlantic water to Arctic water with up to 80% ice cover. Large gradients in the quantity and composition of the sinking particles were observed in the south-north direction, and in relation to water column structure and stability, which depend on the processes of ice retreat. The magnitude of the vertical flux of particulate organic carbon (POC) out of the upper mixed layer ranged from background winter values (30-70 mg C m -2 day -1) to 150-300 mg C m -2 day -1 in summer and 500-1500 mg C m -2 day -1 in spring. Vertical flux of chlorophyll a (CHL) was negligible in winter, generally balticum and single-celled P. pouchetii). The magnitude of the vertical flux to the bottom in spring was comparable in the Arctic and Atlantic waters (ca. 200 mg C m -2 day -1), but the composition and C/N ratio of the particles were different. The regulation of biogenic particle sedimentation took place in the upper layers and over very short vertical distances, and varied with season and water mass. The vertical flux was mainly shaped by the water column stratification (strong salinity stratification in the Arctic water; no stratification in the Atlantic water) and also by the activity of plankton organisms. Zooplankton faecal pellets were an important constituent of the vertical flux (up to 250 mg C m -2 day -1), but their significance varied widely between stations. The daily sedimentation loss rates of POC in spring exceeded the loss rates in summer on the average of 1.7 times. The complexity of the planktonic community during summer suggested the prevalence of a retention food chain with a higher capacity of resource recycling compared to spring.

  8. Modeling tides and vertical tidal mixing: A reality check

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    Recently, there has been a great interest in the tidal contribution to vertical mixing in the ocean. In models, vertical mixing is estimated using parameterization of the sub-grid scale processes. Estimates of the vertical mixing varied widely depending on which vertical mixing parameterization was used. This study investigated the performance of ten different vertical mixing parameterizations in a terrain-following ocean model when simulating internal tides. The vertical mixing parameterization was found to have minor effects on the velocity fields at the tidal frequencies, but large effects on the estimates of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations were eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were the new generic coefficients for the generic length scale schemes and Mellor-Yamada's 2.5 level closure scheme.

  9. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    Science.gov (United States)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  10. Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2013-05-01

    Full Text Available The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotor’s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotational cycle. Along the height of the rotor, distinct spatial turbulent flow patterns vary with the upstream air velocity. Subsequent experiments involving a disk generator gives an in-depth understanding of the dynamic response of the proposed rotor under different operation conditions. The optimal tip-speed ratio of the spiral rotor is 0.4–0.5, as is shown in both simulation and experiment. Under normal and relative-motion flow conditions, and within the range of upstream air velocity from 1 to 12 m/s, the output voltage of the generator was monitored and statistically analyzed. It was found that normal air velocity fluctuations lead to a non-synchronous correspondence between upstream air velocity and output voltage. In contrast, the spiral rotor’s performance when operating from the back of a moving truck was significantly different to its performance under the natural conditions.

  11. Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico

    Science.gov (United States)

    Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase

  12. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  13. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    Science.gov (United States)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  14. The hydraulic diffusivity and conductivity determination of structured purple soil and purple latosol by vertical infiltration

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Souza, A.D.B. de; Fante Junior, L.; Oliveira Junior, J.M. de; Oliveira, J.C.M. de.

    1990-01-01

    The hydraulic diffusivity and conductivity functions of LR (purple latosol) and TE (structured purple soil) (levels A and B) soil samples from the Londrina-PR region were calculated by means of the moisture profile and data from the time evolution of the wet front, taken through measurements of the water infiltration in a soil column and a variational of the vertical flow. The wet front data were taken in a acrylic column coupled in bits base with a porous plate that permitted the water flow against the gravitational field with a suitable velocity of 0.12 cm/min. The moisture profile data were obtained by the gamma ray attenuation method, with a 60 Co source and a Na I (TL) scintillation detector. With a vertical and horizontal measurement table the moisture profile data θ (z,t) were taken in many points of the soil column. (author)

  15. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  16. Magnetic and Velocity Field Variations in the Active Regions NOAA ...

    Indian Academy of Sciences (India)

    Abstract. We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003. We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and ...

  17. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  18. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  19. Slug Flow Analysis in Vertical Large Diameter Pipes

    Science.gov (United States)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show

  20. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  1. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change

    DEFF Research Database (Denmark)

    Bevis, Michael; Wahr, John; Khan, Shfaqat Abbas

    2012-01-01

    for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR......), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010...

  2. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  3. Upper mantle velocity structure beneath Italy from direct and secondary P-wave teleseismic tomography

    Directory of Open Access Journals (Sweden)

    P. De Gori

    1997-06-01

    Full Text Available High-quality teleseismic data digitally recorded by the National Seismic Network during 1988-1995 have been analysed to tomographically reconstruct the aspherical velocity structure of the upper mantle beneath the Italian region. To improve the quality and the reliability of the tomographic images, both direct (P, PKPdf and secondary (pP,sP,PcP,PP,PKPbc,PKPab travel-time data were used in the inversion. Over 7000 relative residuals were computed with respect to the IASP91 Earth velocity model and inverted using a modified version of the ACH technique. Incorporation of data of secondary phases resulted in a significant improvement of the sampling of the target volume and of the spatial resolution of the heterogeneous zones. The tomographic images show that most of the lateral variations in the velocity field are confined in the first ~250 km of depth. Strong low velocity anomalies are found beneath the Po plain, Tuscany and Eastern Sicily in the depth range between 35 and 85 km. High velocity anomalies dominate the upper mantle beneath the Central-Western Alps, Northern-Central Apennines and Southern Tyrrhenian sea at lithospheric depths between 85 and 150 km. At greater depth, positive anomalies are still observed below the northernmost part of the Apenninic chain and Southern Tyrrhenian sea. Deeper anomalies present in the 3D velocity model computed by inverting only the first arrivals dataset, generally appear less pronounced in the new tomographic reconstructions. We interpret this as the result of the ray sampling improvement on the reduction of the vertical smearing effects.

  4. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  5. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1999-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  6. Estimation of power in low velocity vertical axis wind turbine

    Science.gov (United States)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  7. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  8. Influence of fluid-property variation on turbulent convective heat transfer in vertical annular CHANNEL FLOWS

    International Nuclear Information System (INIS)

    Joong Hun Bae; Jung Yul Yoo; Haecheon Choi

    2005-01-01

    Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)

  9. A radial velocity survey of extremely hydrogen-deficient stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Kiel Univ.; Drilling, J.S.; Heber, U.

    1987-01-01

    A radial velocity survey of hot extremely hydrogen-deficient stars has been carried out in order to search for possible binaries. The survey found three stars to have large velocity variations. Of these, two are known hydrogen-deficient binaries and one, HDE 320156 (= LSS 4300), is a suspected binary. HDE 320156 (= LSS 4300) is therefore confirmed to be a single-lined spectroscopic hydrogen-deficient binary. The hydrogen-deficient binary stars all show weak C-lines. The remaining stars in the sample are C-strong extreme-helium (EHe) stars and did not show large-amplitude velocity variations. Small-amplitude radial velocity variations known to be present amongst the EHe stars are largely undetected. Evidence for variability is, however, present in the known variable V2076 Oph (HD 160641) and in LS IV - 1 0 2 with amplitudes between 10 and 20 km s -1 . (author)

  10. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil.

    Science.gov (United States)

    Lira, G A S T; Moura, A N; Vilar, M C P; Cordeiro-Araújo, M K; Bittencourt-Oliveira, M C

    2014-08-01

    The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way) was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA) was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh) Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.

  11. Anomalous changes of vertical geomagnetic field in Kamchatka

    Directory of Open Access Journals (Sweden)

    Moroz Yuriy

    2016-01-01

    Full Text Available Secular variations of the vertical geomagnetic field at Paratunka (Kamchatka, Kakioka (Honshu, Mamambetsu (Hokkaido and Patrony (Irkutsk are considered from 1968 to 2014. Comparative analysis of secular variations showed that from 1968 to 2001, similar variations with the intensity of first hundreds on nT are obvious at four observatories. For the following period from 2001 to 2014, the secular variation at Paratunka observatory differs from other observatories. This disagreement of the secular geomagnetic variation at Paratunka observatory is timed to the increase of seismicity at the depth of 400-700 km in South Kamchatka region. It is suggested that in the result of increase of the seismicity in the region of transition from the upper to lower mantle, physical and chemical processes became more active. That caused formation of a large geo-electrical inhomogeneity which affected the behavior of the vertical component of geomagnetic field.

  12. Vertical deformation at western part of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  13. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP.

    Science.gov (United States)

    Nan, Yang; Wang, Yuxuan

    2018-03-26

    During the springtime, mineral dust from the Taklimakan Desert (TD) is lifted up to high altitudes and transported long distances by the westerlies. The vertical distributions of Taklimakan dust are important for both long-range transport and climate effects. In this study, we use CALIOP Level 3 dust extinction to describe interannual variation of dust extinction in TD aggregated at each 1km interval (1-2km, 2-3km, 3-4km, 4-5km and 5-6km) above mean sea level during springtime from 2007 to 2016. 87% of dust extinction over TD is concentrated at 1-4km taking a major composition of dust aerosol optical depth (AOD) and only 8.1% dust AOD is at 4-6km. Interannual variation of seasonal and monthly dust extinction at 1-4km is almost as same as dust AOD (R>0.99) but different from that at 4-6km (R are around 0.42). Our analysis provides observational evidence from CALIOP that vertical dust extinction over TD has distinctively different variability below and above 4km altitude and this threshold divides dust transport in TD into two systems. Taklimakan dust aerosols are more related to dust transport at high altitudes (4-10km) than low altitudes (0-4km) over downwind regions. High dust extinction below 4km over TD is necessary but not sufficient conditions to ensure dust transport easterly, while high dust extinction levels at 4-6km over TD are both necessary and sufficient conditions; such contrast leads to the de-coupled interannual variability seen by CALIOP. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Intra- and inter-tidal variability of the vertical current structure in the Marsdiep basin

    NARCIS (Netherlands)

    de Vries, J. J.; Ridderinkhof, H.; Maas, L. R. M.; van Aken, H. M.

    2015-01-01

    The vertical structure of the along-stream current in the main channel of the periodically-stratified estuarine Marsdiep basin is investigated by combining velocity measurements collected during three different seasons with a one-dimensional water column model. The observed vertical shears in the

  15. Experimental Investigation on the Influence of a Double-Walled Confined Width on the Velocity Field of a Submerged Waterjet

    Directory of Open Access Journals (Sweden)

    Xiaolong Ding

    2017-12-01

    Full Text Available The current research on confined submerged waterjets mainly focuses on the flow field of the impinging jet and wall jet. The double-sided wall vertically confined waterjet, which is widely used in many fields such as mining, cleaning and surface strengthening, has rarely been studied so far. In order to explore the influence of a double-sided wall confined width on the velocity field of submerged waterjet, an experiment was conducted with the application of 2D particle image velocimetry (PIV technology. The distribution of mean velocity and turbulent velocity in both horizontal and vertical planes was used to characterize the flow field under various confined widths. The results show that the vertical confinement has an obvious effect on the decay rate of the mean centerline velocity. When the confined width changes from 15 to 5, the velocity is reduced by 20%. In addition, with the decrease of the confined width, the jet has a tendency to spread horizontally. The vertically confined region induces a space hysteresis effect which changes the location of the transition region moving downstream. There are local negative pressure zones separating the fluid and the wall. This study of a double-walled confined jet provides some valuable information with respect to its mechanism and industrial application.

  16. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  17. The role of vertical shear on the horizontal oceanic dispersion

    OpenAIRE

    A. S. Lanotte; R. Corrado; G. Lacorata; L. Palatella; C. Pizzigalli; I. Schipa; R. Santoleri

    2015-01-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispers...

  18. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  19. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    Science.gov (United States)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  20. CFD simulations of a bubbly flow in a vertical pipe

    International Nuclear Information System (INIS)

    Krepper, E.

    1999-01-01

    Even at the very simple conditions of two phase flow in a vertical pipe, strong 3D effects are observed. The distribution of the gas phase over the cross section varies significantly between the different flow patterns, which are known for the vertical two-phase flow. The air water flow in a vertical tube having a diameter of 50 mm and a length of about 3 m was investigated in steady state tests for different liquid and gas superficial velocities. Several two phase flow measuring techniques were used. Applying a wire mesh sensor, developed in FZR, the void fraction could be determined over the whole cross section of the pipe. The working principle is based on the measurement of the local instantaneous conductivity of the two-phase mixture. At the investigated flow velocities, the rate of the image acquisition is sufficient to record the same bubble several times. This enables to determine bubble diameter distributions. Applying two similar wire mesh sensors with a distance of 50 mm one above the other, the influence of the wire mesh to the flow could be investigated. No essential disturbances of the two-phase flow by the mesh could be found for the investigated flow regimes. Performing an auto correlation between the signals of both sensors, also profiles of the gas velocity were determined. (orig.)

  1. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil

    Directory of Open Access Journals (Sweden)

    GAST LIRA

    Full Text Available The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.

  2. The role of updraft velocity in temporal variability of cloud hydrometeor number

    Science.gov (United States)

    Sullivan, Sylvia; Nenes, Athanasios; Lee, Dong Min; Oreopoulos, Lazaros

    2016-04-01

    Significant effort has been dedicated to incorporating direct aerosol-cloud links, through parameterization of liquid droplet activation and ice crystal nucleation, within climate models. This significant accomplishment has generated the need for understanding which parameters affecting hydrometer formation drives its variability in coupled climate simulations, as it provides the basis for optimal parameter estimation as well as robust comparison with data, and other models. Sensitivity analysis alone does not address this issue, given that the importance of each parameter for hydrometer formation depends on its variance and sensitivity. To address the above issue, we develop and use a series of attribution metrics defined with adjoint sensitivities to attribute the temporal variability in droplet and crystal number to important aerosol and dynamical parameters. This attribution analysis is done both for the NASA Global Modeling and Assimilation Office Goddard Earth Observing System Model, Version 5 and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1. Within the GEOS simulation, up to 48% of temporal variability in output ice crystal number and 61% in droplet number can be attributed to input updraft velocity fluctuations, while for the CAM simulation, they explain as much as 89% of the ice crystal number variability. This above results suggest that vertical velocity in both model frameworks is seen to be a very important (or dominant) driver of hydrometer variability. Yet, observations of vertical velocity are seldomly available (or used) to evaluate the vertical velocities in simulations; this strikingly contrasts the amount and quality of data available for aerosol-related parameters. Consequentially, there is a strong need for retrievals or measurements of vertical velocity for addressing this important knowledge gap that requires a significant investment and effort by the atmospheric community. The attribution metrics as a

  3. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    International Nuclear Information System (INIS)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-01-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s -1 are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection. (author)

  4. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-04-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s/sup -1/ are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection.

  5. Downward velocity distribution of free surface vortex in a cylindrical vessel

    International Nuclear Information System (INIS)

    Ohguri, Youhei; Monji, Hideaki; Kamide, Hideki

    2008-01-01

    The aim of this study is to reveal the basic flow characteristics, especially downward velocity, of the free surface vortex. The flow field at the vertical cross section in a cylindrical vessel was measured by using PIV. The measurement results showed the inclined vortex center due to the un-axisymmetric structure of the vessel. Therefore, the maximum downward velocity on the cross section was discussed with the depth. The relation between the maximum downward velocity and the depth showed the tendency where the downward velocity increased with the depth non-linearly. By using dye, the downward velocity was also measured but its results showed a little difference from that by PIV. (author)

  6. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    Abraham, J.P.; Mowry, G.S.; Erickson, R.A.

    2009-01-01

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  7. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    Science.gov (United States)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  8. Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region

    Directory of Open Access Journals (Sweden)

    Paul van Gastel

    2004-12-01

    Full Text Available We use several hydrographic and velocity sections crossing the Gulf Stream to examine how the gradient Richardson number, Ri, is modified due to both vertical smoothing of the hydrographic and/or velocity fields and the assumption of parallel or geostrophic flow. Vertical smoothing of the original (25 m interval velocity field leads to a substantial increase in the Ri mean value, of the same order as the smoothing factor, while its standard deviation remains approximately constant. This contrasts with very minor changes in the distribution of the Ri values due to vertical smoothing of the density field over similar lengths. Mean geostrophic Ri values remain always above the actual unsmoothed Ri values, commonly one to two orders of magnitude larger, but the standard deviation is typically a factor of five larger in geostrophic than in actual Ri values. At high vertical wavenumbers (length scales below 3 m the geostrophic shear only leads to near critical conditions in already rather mixed regions. At these scales, hence, the major contributor to shear mixing is likely to come from the interaction of the background flow with internal waves. At low vertical wavenumbers (scales above 25 m the ageostrophic motions provide the main source for shear, with cross-stream movements having a minor but non-negligible contribution. These large-scale motions may be associated with local accelerations taking place during frontogenetic phases of meanders.

  9. A comparison of two landing styles in a two-foot vertical jump.

    Science.gov (United States)

    Gutiérrez-Davila, Marcos; Campos, José; Navarro, Enrique

    2009-01-01

    In team sports, such as basketball and volleyball, the players use different takeoff styles to make the vertical jump. The two-foot vertical jump styles have been classified according to the landing style and identified as hop style, when both feet touch the ground at the same time, and step-close style, when there is a slight delay between the first and second foot making contact with the ground. The aim of this research is to identify the differences between the two styles. Twenty-three subjects participated in the study, of whom 14 were volleyball players and 9 were basketball players. The jumps were video recorded and synchronized with two force platforms at 250 Hz. Two temporal periods of the takeoff were defined according to the reduction or increase in the radial distance between the center of gravity (CG) and the foot support (T - RDCG and T + RDCG, respectively). The findings produced no specific advantages when both styles were compared with respect to takeoff velocity and, consequently, to jump height, but takeoff time was significantly shorter (p vertical velocity of CG at the beginning of the takeoff is significantly lower. Moreover, the mean vertical force developed during T - RDCG was reduced by -627.7 +/- 251.1 N, thus lessening impact on landing. Horizontal velocity at the end of the takeoff is less when the step-close style is used (p jumps where it is necessary to move horizontally during the flight against an opponent.

  10. Free fall characteristics of particle clusters in a vertical pipe

    International Nuclear Information System (INIS)

    Nakashima, K; Johno, Y; Shigematsu, T

    2009-01-01

    When powder forms a weak interaction particle cluster in a gas-solid flow, the rate of fall of the cluster exceeds the terminal velocity of the individual particles (Slack, 1963; Marzocchella et al., 1991). However, the relationship between the unsteady characteristics of the free-fall of the particle cluster and the geometric condition of the experiment is not clear. We performed a simple experiment in which powder of a certain mass falls in a vertical pipe. When the powder falls in the vertical pipe, the distribution length of the powder expands, and the particle volume fraction is dense in the lower part, and is thin in the upper part. The fall velocity of the lower edge of the powder cluster and the flow rate of air generated by the powder fall were measured. We obtained the following results. The relative velocity of free-fall of the particle cluster has no relation to the individual particle diameters. The characteristic of a particle cluster exists unless the cluster has very high void fraction.

  11. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    International Nuclear Information System (INIS)

    Smith, M.A.; Patten, B.M.; Goldberg, L.

    1989-01-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs

  12. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  13. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  14. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  15. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    OpenAIRE

    Tan Jiqiu; Zhong Dingqing; Wang Qiong

    2014-01-01

    In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction fie...

  16. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke.

    Science.gov (United States)

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K

    2017-12-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from

  17. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke

    Directory of Open Access Journals (Sweden)

    Sunku Kwon, Robin Pfister, Ronald L. Hager, Iain Hunter, Matthew K. Seeley

    2017-12-01

    Full Text Available Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1 ball TAV and (2 forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face, horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact. Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model and forehand accuracy (between-subjects model; α = 0.05. We observed an average (1 racquet head impact angle, (2 racquet head trajectory before impact, relative to horizontal, (3 racquet head horizontal velocity before impact, (4 racquet head vertical velocity before impact, and (5 hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01. None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging

  18. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  19. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  20. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  1. Seismic Imaging and Velocity Analysis Using a Pseudo Inverse to the Extended Born Approximation

    KAUST Repository

    Alali, Abdullah A.

    2018-05-01

    Prestack depth migration requires an accurate kinematic velocity model to image the subsurface correctly. Wave equation migration velocity analysis techniques aim to update the background velocity model by minimizing image residuals to achieve the correct model. The most commonly used technique is differential semblance optimization (DSO), which depends on applying an image extension and penalizing the energy in the non-physical extension. However, studies show that the conventional DSO gradient is contaminated with artifact noise and unwanted oscillations which might lead to local minima. To deal with this issue and improve the stability of DSO, recent studies proposed to use an inversion formula rather than migration to obtain the image. Migration is defined as the adjoint of Born modeling. Since the inversion is complicated and expensive, a pseudo inverse is used instead. A pseudo inverse formula has been developed recently for the horizontal space shift extended Born. This formula preserves the true amplitude and reduces the artifact noise even when an incorrect velocity is used. Although the theory for such an inverse is well developed, it has only been derived and tested on laterally homogeneous models. This is because the formula contains a derivative of the image with respect to a vertical extension evaluated at zero offset. Implementing the vertical extension is computationally expensive, which means this derivative needs to be computed without applying the additional extension. For laterally invariant models, the inverse is simplified and this derivative is eliminated. I implement the full asymptotic inverse to the extended Born to account for laterally heterogeneity. I compute the derivative of the image with respect to a vertical extension without performing any additional shift. This is accomplished by applying the derivative to the imaging condition and utilizing the chain rule. The fact that this derivative is evaluated at zero offset vertical

  2. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan

    Science.gov (United States)

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.

    2017-12-01

    We revealed structural development of the Pleistocene Sanukayama rhyolite lava of Kozushima Island, Japan. The good exposure, with about 130 m thick, provides valuable opportunity to understand the vertical structural variation. This exposure corresponds to the upper half of the lava. The paleomagnetic results show that the lava emplaced in subaerial condition at least in the exposed part. The vertical lithofacies are divided into the pumiceous (25-40 m thick), obsidian (40-60 m), spherulitic (30-50 m) layers from top to base. The pumiceous layer is characterized by massive foliated pumice. The foliation dips are gradually changed from gentle (10-30°) in lower part to steep (around 90°) in upper part. This shows the balloon-like morphology. The massive pumiceous layer would be generated from late stage diapiric inflation of the lava (Fink and Manley, 1987). The obsidian layer is composed of massive and welded-brecciated parts. The ductile-deformed light-colored veins, with a few mm thick, are frequently developed. In the microscopic observation, the veins are composed of broken crystals and obsidian clasts indicating fracturing of the lava followed by ductile deformation such as the RFH process (Tuffen et al., 2003). In this layer, extensive vesiculation and microlite development must have been prevented by higher load pressure and faster cooling, respectively. Consequently, they resulted in formation of the obsidian. The spherulitic layer is characterized by development of the ductile-deformed flow banding. The microscopic observation shows that the bands are formed by the spherulite trail. Furthermore, the microlites are aligned within the spherulites. In the heat-retained inner part of the lava, microlites would be developed around the healed fractures. The microlites acted as nucleation site of spherulite. In transition layer between obsidian and spherulitic layers (obsidian layer. This would be caused by high flow-induced shear arising from their rheological

  3. Considering sampling strategy and cross-section complexity for estimating the uncertainty of discharge measurements using the velocity-area method

    Science.gov (United States)

    Despax, Aurélien; Perret, Christian; Garçon, Rémy; Hauet, Alexandre; Belleville, Arnaud; Le Coz, Jérôme; Favre, Anne-Catherine

    2016-02-01

    Streamflow time series provide baseline data for many hydrological investigations. Errors in the data mainly occur through uncertainty in gauging (measurement uncertainty) and uncertainty in the determination of the stage-discharge relationship based on gaugings (rating curve uncertainty). As the velocity-area method is the measurement technique typically used for gaugings, it is fundamental to estimate its level of uncertainty. Different methods are available in the literature (ISO 748, Q + , IVE), all with their own limitations and drawbacks. Among the terms forming the combined relative uncertainty in measured discharge, the uncertainty component relating to the limited number of verticals often includes a large part of the relative uncertainty. It should therefore be estimated carefully. In ISO 748 standard, proposed values of this uncertainty component only depend on the number of verticals without considering their distribution with respect to the depth and velocity cross-sectional profiles. The Q + method is sensitive to a user-defined parameter while it is questionable whether the IVE method is applicable to stream-gaugings performed with a limited number of verticals. To address the limitations of existing methods, this paper presents a new methodology, called FLow Analog UnceRtainty Estimation (FLAURE), to estimate the uncertainty component relating to the limited number of verticals. High-resolution reference gaugings (with 31 and more verticals) are used to assess the uncertainty component through a statistical analysis. Instead of subsampling purely randomly the verticals of these reference stream-gaugings, a subsampling method is developed in a way that mimicks the behavior of a hydrometric technician. A sampling quality index (SQI) is suggested and appears to be a more explanatory variable than the number of verticals. This index takes into account the spacing between verticals and the variation of unit flow between two verticals. To compute the

  4. Responses of Rostral Fastigial Nucleus Neurons of Conscious Cats to Rotations in Vertical Planes

    Science.gov (United States)

    Miller, D. M.; Cotter, L.A.; Gandhi, N. J.; Schor, R. H.; Huff, N. O.; Raj, S. G.; Shulman, J. A.; Yates, B. J.

    2008-01-01

    The rostral fastigial nucleus (RFN) of the cerebellum is thought to play an important role in postural control, and recent studies in conscious nonhuman primates suggest that this region also participates in the sensory processing required to compute body motion in space. The goal of the present study was to examine the dynamic and spatial responses to sinusoidal rotations in vertical planes of RFN neurons in conscious cats, and determine if they are similar to responses reported for monkeys. Approximately half of the RFN neurons examined were classified as graviceptive, since their firing was synchronized with stimulus position and the gain of their responses was relatively unaffected by the frequency of the tilts. The large majority (80%) of graviceptive RFN neurons were activated by pitch rotations. Most of the remaining RFN units exhibited responses to vertical oscillations that encoded stimulus velocity, and approximately 50% of these velocity units had a response vector orientation aligned near the plane of a single vertical semicircular canal. Unlike in primates, few feline RFN neurons had responses to vertical rotations that suggested integration of graviceptive (otolith) and velocity (vertical semicircular canal) signals. These data indicate that the physiological role of the RFN may differ between primates and lower mammals. The RFN in rats and cats in known to be involved in adjusting blood pressure and breathing during postural alterations in the transverse (pitch) plane. The relatively simple responses of many RFN neurons in cats are appropriate for triggering such compensatory autonomic responses. PMID:18571332

  5. Effect of canopy architectural variation on transpiration and thermoregulation

    Science.gov (United States)

    Linn, R.; Banerjee, T.

    2017-12-01

    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the

  6. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  7. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt

    2008-08-15

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.

  8. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    International Nuclear Information System (INIS)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R.; Campos, J.B.L.M.

    2008-01-01

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator

  9. Fabrication and characterization of wide band AE sensors for quantitative detection of displacement and velocity

    International Nuclear Information System (INIS)

    Kim, Byung G.; Kim, Young Hwan

    1992-01-01

    Acoustic emission sensors to show a flat response for displacement and velocity of a specimen surface in a wide frequency were fabricated. The sensors were conical sensors employing conical type piezoelectric elements and a PVDF sensor employing PVDF piezoelctric polymer. The transient outputs of the sensors due to step-like forces and their sensitivity spectrum were measured. The results were compared with the theoretical displacement and velocity signals calculated using Green's function and a simulated ramp force. The sensor outputs and the theoretical signals were consistent with each other. The sensors showed flat sensitivity spectra in the wide frequency range. The present work showed that conical PZT sensors are suited for the direct measurement of vertical displacement, and PVDF sensors for that of the vertical velocity of a plate surface.

  10. Hydrodynamics of vertical jumping in Archer fish

    Science.gov (United States)

    Techet, Alexandra H.; Mendelson, Leah

    2017-11-01

    Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.

  11. The Relationship Between Latent Heating, Vertical Velocity, and Precipitation Processes: the Impact of Aerosols on Precipitation in Organized Deep Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-01-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  12. Variations of caesium isotope concentrations in air and fallout at Dalat, South Vietnam, 1986-1991

    International Nuclear Information System (INIS)

    Pham Zuy Hien; Nguyen Thanh Binh; Truong Y.; Vuong Thu Bac; Nguyen Trong Ngo.

    1993-01-01

    Monthly records of Cs-137 and Cs-134 concentrations in air and fallout at Dalat for the period 1986-1991 are presented and discussed. The concentration variations exhibit distinct maxima during December-January, when dry fallout dominated. These peaks are explained by the intrusion of more radioactive cold air masses from temperate northern latitudes during the development of large-scale anticyclones frequently observed in the most active winter monsoon period. High dry fallout velocities (about 10 cm/s) determined from this data clearly demonstrate one of the most relevant characteristics of cold air masses: behind the cold front, vertical air motion is descending

  13. Development of three-dimensional phasic-velocity distribution measurement in a large-diameter pipe

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2s. (author)

  14. A metronome for controlling the mean velocity during the bench press exercise.

    Science.gov (United States)

    Moras, Gerard; Rodríguez-Jiménez, Sergio; Busquets, Albert; Tous-Fajardo, Julio; Pozzo, Marco; Mujika, Iñigo

    2009-05-01

    Lifting velocity may have a great impact on strength training-induced adaptations. The purpose of this study was to validate a method including a metronome and a measurement tape as inexpensive tools for the estimation of mean lifting velocity during the bench press exercise. Fifteen subjects participated in this study. After determining their one repetition maximum (1RM) load, we estimated the maximum metronome rhythm (R) that each subject could maintain in the concentric phase for loads of 40 and 60% of 1RM. To estimate R, the 3 repetitions with highest concentric power, as measured by means of a linear encoder, were selected, and their average duration was calculated and converted to lifting rhythm in beats per minute (bpm) for each subject. The range of motion was measured using a regular tape and kept constant during all exercises. Subjects were instructed to begin with the barbell at arm lengths and lower it in correspondence with the metronome beep. They subsequently performed 5 repetitions at 3 different rhythms relative to R (50, 70, and 90% R) for each training load (40 and 60% of 1RM). A linear encoder was attached to the bar and used as a criterion to measure the vertical displacement over time. For each rhythm, the mean velocity was calculated with the metronome (time) and the reference distance and compared with that recorded by the linear encoder. The SEM for velocity between both testing methods ranged from 0.02 to 0.05 m.s (coefficient of variation, 4.0-6.4%; Pearson's correlation, 0.8-0.95). The present results showed that the use of a metronome and a measurement tape may be a valid method to estimate the mean velocity of execution during the bench press exercise. This simple method could help coaches and athletes achieve their strength training goals, which are partly determined by lifting velocity.

  15. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate

    International Nuclear Information System (INIS)

    Lin Chang; Ho, T.-C.; Chang, S.-C.; Hsieh, S.-C.; Chang, K.-A.

    2005-01-01

    Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet

  16. Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.

    Science.gov (United States)

    Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H

    2015-01-01

    The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.

  17. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  18. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  19. A new method for measurement of granular velocities

    International Nuclear Information System (INIS)

    Nyborg Andersen, B.

    1984-01-01

    A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed

  20. Investigation of Steam Flow Behavior During Horizontal Injection into Vertical Annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Ku, Ja H.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    Qualification of uncertainty margins for accidents, which are classified as the design basis accidents, requires thermal hydraulic codes and related code models with an enhanced level of sophistication. In a cold leg break accident, the flow in downcomer is multidimensional and the velocity distribution of the steam flow in downcomer serves as a good example. For observation of the flow behavior near the break, experiments are performed to measure the velocity of the steam flow in a vessel scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this case, the steam has a quality approaching unity and thus is dealt with as a single-phase gas. The velocity of the steam flow is measured by micro-Pitot tubes arranged horizontally and vertically around the outer shell of the 1/20 scaled-down test vessel OMEGA (Optimized Multidimensional Experiment Geometric Apparatus). A commercial computational fluid dynamics code yields analytic results of multidimensional flow motion in the complex annular passage with flow obstacles. CFX is run with well-defined boundary conditions to obtain velocity profiles of the steam flow in the annular downcomer. Results of CFX shed light on the experimental setup as to fixing the location and angle of the micro-Pitot tubes, and correcting the sensitivity of the micro- Pitot tubes, for instance. This study aims to improve the multidimensional capability of the MARS code, which is based on RELAP5 and COBRA-IV, in predicting the multiphase flow behavior in the reactor downcomer. MARS is currently based on one- and two-dimensional flow analyses, which tends to distort total flow due to misrepresentation of the local phenomena. It is thus necessary to scrutinize the steam flow path and mechanistically model the momentum variation. These experimental and analytical results can locally be applied to developing the models of specific forms and essential phenomena treated in MARS. (authors)

  1. Geological implications of recently derived vertical velocities of benchmarks of the south-central United States of America

    Science.gov (United States)

    Dokka, R. K.

    2005-05-01

    It has been long-recognized that the south-central United States of America bordering the Gulf of Mexico (GOM) is actively subsiding, resulting in a slow, yet unrelenting inundation of the coast from south Texas to southwestern Alabama. Today's motions are but the latest chapter in the subsidence history of the GOM, a region that has accommodated the deposition of over 20 km of deltaic and continental margin sediments since mid Mesozoic time. Understanding the recent history of displacements and the processes responsible for subsidence are especially critical for near-term planning for coastal protection and restoration activities. Documentation of the true magnitude and geography of vertical motions of the surface through time has been hampered because previous measurement schemes did not employ reference datums of sufficient spatial and temporal precision. This situation has been somewhat improved recently through the recent analysis of National Geodetic Survey (NGS) 1st order leveling data from >2710 benchmarks in the region by Shinkle and Dokka (NOAA Technical Report 50 [2004]). That paper used original observations (not adjusted) and computed displacements and velocities related to NAVD88 for benchmarks visited during various leveling surveys from 1920 through 1995. Several important characteristics were observed and are summarized below. First, the data show that subsidence is not limited to areas of recent sediment accumulation such as the wetland areas of the modern delta (MRD) of the Mississippi River or its upstream alluvial valley (MAV), as supposed by most current syntheses. The entire coastal zone, as well as inland areas several hundred km from the shore, has subsided over the period of measurement. Regionally, vertical velocities range from less than -52 mm/yr in Louisiana to over +15 mm/yr in peripheral areas of eastern Mississippi-Alabama. The mean rate is ~-11 mm/yr in most coastal parishes of Louisiana. In the Mississippi River deltaic plain

  2. The photometric and radial velocity variations of the central star of the planetary nebula 1C 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.; Kriner, A.

    1983-01-01

    This paper brings spectrographic (1979-82) and photometric (January 1983) observations of the central star of the planetary nebula IC 418. We include an improved description of the stellar spectrum. We have found a variable photospheric velocity field, which would imply a fluctuating mass outflow, probably mixed with orbital motion in a close binary system with a period of about 0.2 days. We have also found light variations, on a time scale of one or two hours, with an amplitude of 0.1 mag, which do not appear to be periodic. Our observations are not yet sufficient to rule out definetely the existence of non-radial pulsations; further observations are suggested. (author)

  3. Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations.

    Science.gov (United States)

    Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T

    1999-05-01

    Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the

  4. Solutions of the Wheeler-Feynman equations with discontinuous velocities.

    Science.gov (United States)

    de Souza, Daniel Câmara; De Luca, Jayme

    2015-01-01

    We generalize Wheeler-Feynman electrodynamics with a variational boundary value problem for continuous boundary segments that might include velocity discontinuity points. Critical-point orbits must satisfy the Euler-Lagrange equations of the action functional at most points, which are neutral differential delay equations (the Wheeler-Feynman equations of motion). At velocity discontinuity points, critical-point orbits must satisfy the Weierstrass-Erdmann continuity conditions for the partial momenta and the partial energies. We study a special setup having the shortest time-separation between the (infinite-dimensional) boundary segments, for which case the critical-point orbit can be found using a two-point boundary problem for an ordinary differential equation. For this simplest setup, we prove that orbits can have discontinuous velocities. We construct a numerical method to solve the Wheeler-Feynman equations together with the Weierstrass-Erdmann conditions and calculate some numerical orbits with discontinuous velocities. We also prove that the variational boundary value problem has a unique solution depending continuously on boundary data, if the continuous boundary segments have velocity discontinuities along a reduced local space.

  5. Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet

    Science.gov (United States)

    Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.

    2012-10-01

    Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.

  6. Study on velocity field in a wire wrapped fuel pin bundle of sodium cooled reactor. Detailed velocity distribution in a subchannel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Kobayashi, Jun; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up core in a feasibility study on commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is of importance to obtain the flow velocity distribution in a wire wrapped pin bundle. A 2.5 times enlarged 7-pin bundle water model was applied to investigate the detailed velocity distribution in an inner subchannel surrounded by 3 pins with wrapping wire. The test section consisted of a hexagonal acrylic duct tube and fluorinated resin pins which had nearly the same refractive index with that of water and a high light transmission rate. The velocity distribution in an inner subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through the front and lateral sides of the duct tube. In the vertical velocity distribution in a narrow space between the pins, the wrapping wire decreased the velocity downstream of the wire and asymmetric flow distribution was formed between the pin and wire. In the horizontal velocity distribution, swirl flow around the wrapping wire was obviously observed. The measured velocity data are useful for code validation of pin bundle thermalhydraulics. (author)

  7. Vertical transport of desert particulates by dust devils and clear thermals

    International Nuclear Information System (INIS)

    Sinclair, P.C.

    1974-01-01

    While the vertical and horizontal transport of natural surface material by dust devils is not in itself a critical environmental problem, the transport and downwind fallout of toxic or hazardous materials from dust devil activity may be a contributing factor in the development of future ecological-biological problems. Direct quantitative measurements of the dust particle size distribution near and within the visible dust devil vortex and analyses of the upper level clear thermal plume have been made to provide estimates of the vertical and horizontal transport of long half-life radioactive substances such as plutonium. Preliminary measurements and calculations of dust concentrations within dust devils indicate that over 7 x 10 3 tons of desert dust and sand may be transported downwind from an area 285 km 2 during an average dust devil season (May to August). Near the ground these dust concentrations contain particles in the size range from approximately 1 μm to 250 μm diameter. Since the vertical velocity distribution greatly exceeds the particle(s) fall velocities, the detrainment of particles within the vortex is controlled primarily by the spatial distribution of the radial (v/sub r/) and tangential (v/sub theta/) velocity fields. Above the visible dust devil vortex, a clear thermal plume may extend upward to 15,000 to 18,000 ft MSL. A new airborne sampling and air data system has been developed to provide direct measurements of the dust concentration and air motion near and within the upper thermal plume. The air sampler has been designed to operate isokinetically over a considerable portion of the low-speed flight regime of a light aircraft. A strapped down, gyro-reference platform and a boom-vane system is used to determine the vertical air motions as well as the temperature and turbulence structure within the thermal plume. (U.S.)

  8. Pre- and post-processing filters for improvement of blood velocity estimation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2000-01-01

    with different signal-to-noise ratios (SNR). The exact extent of the vessel and the true velocities are thereby known. Velocity estimates were obtained by employing Kasai's autocorrelator on the data. The post-processing filter was used on the computed 2D velocity map. An improvement of the RMS error...... velocity in the vessels. Post-processing is beneficial to obtain an image that minimizes the variation, and present the important information to the clinicians. Applying the theory of fluid mechanics introduces restrictions on the variations possible in a flow field. Neighboring estimates in time and space...... should be highly correlated, since transitions should occur smoothly. This idea is the basis of the algorithm developed in this study. From Bayesian image processing theory an a posteriori probability distribution for the velocity field is computed based on constraints on smoothness. An estimate...

  9. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  10. Thermal SiO as a probe of high velocity motions in regions of star formation

    International Nuclear Information System (INIS)

    Downes, D.; Genzel, R.; Hjalmarson, A.; Nyman, L.A.; Roennaeng, B.

    1982-01-01

    New observations of the v = 0, J = = 2→1 line of SiO at 86.8 GHz show a close association of the thermal SiO emission and infrared and maser sources in regions of star formation. In addition to SiO emission with low velocity dispersion (Δν -1 ), we report the first detection of high velocity (''plateau'') emission toward W49 and W51. The low velocity SiO component may come from the core of the molecular cloud which contains the infrared and maser sources. The ''plateau'' may indicate mass clusters. In Orion KL, the positional centroid of the high velocity SiO emission (Vertical BarΔνVertical Bar> or =20 km s -1 ) is near that of the component we identify as the ''18 km s -1 flow''. However, the centriods of the blue- and redshifted wings are displaced from each other by a few arcseconds, to the NW and NE of the position of the 18 km s -1 component. The mass-loss rates of the high velocity flow and the 18 km s -1 flow are similar

  11. Vertical small scale variations of sorption and mineralization of three herbicides in subsurface limestone and sandy aquifer

    Science.gov (United States)

    Janniche, G. S.; Mouvet, C.; Albrechtsen, H.-J.

    2011-04-01

    Vertical variation in sorption and mineralization potential of mecoprop (MCPP), isoproturon and acetochlor were investigated at low concentrations (μg-range) at the cm-scale in unsaturated sub-surface limestone samples and saturated sandy aquifer samples from an agricultural catchment in Brévilles, France. From two intact core drills, four heterogenic limestone sections were collected from 4.50 to 26.40 m below surface (mbs) and divided into 12 sub-samples of 8-25 cm length, and one sandy aquifer section from 19.20 to 19.53 m depth divided into 7 sub-samples of 4-5 cm length. In the sandy aquifer section acetochlor and isoproturon sorption increased substantially with depth; in average 78% (acetochlor) and 61% (isoproturon) per 5 cm. Also the number of acetochlor and isoproturon degraders (most-probable-number) was higher in the bottom half of the aquifer section (93-> 16 000/g) than in the upper half (4-71/g). One 50 cm long limestone section with a distinct shift in color showed a clear shift in mineralization, number of degraders and sorption: In the two brown, uppermost samples, up to 31% mecoprop and up to 9% isoproturon was mineralized during 231 days, the numbers of mecoprop and isoproturon degraders were 1300 to > 16 000/g, and the sorption of both isoproturon and acetochlor was more than three times higher, compared to the two deeper, grayish samples just below where mineralization (≤ 4%) and numbers of degraders (1-520/g) were low for all three herbicides. In both unsaturated limestone and sandy aquifer, variations and even distinct shifts in both mineralization, number of specific degraders and sorption were seen within just 4-15 cm of vertical distance. A simple conceptual model of herbicides leaching to groundwater through a 10 m unsaturated limestone was established, and calculations showed that a 30 cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total

  12. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    Science.gov (United States)

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  13. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.

    Science.gov (United States)

    Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.

  14. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  15. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  16. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  17. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  18. Genetic analysis of peripheral nerve conduction velocity in twins

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Boomsma, D.I.; Vernon, P.A.

    1995-01-01

    We studied variation in peripheral nerve conduction velocity (PNCV) and intelligence in a group of 16-year-old Dutch twins. It has been suggested that both brain nerve conduction velocity and PNCV are positively correlated with intelligence (Reed, 1984) and that heritable differences in NCV may

  19. Similarity solutions for unsteady free-convection flow from a continuous moving vertical surface

    Science.gov (United States)

    Abd-El-Malek, Mina B.; Kassem, Magda M.; Mekky, Mohammad L.

    2004-03-01

    The transformation group theoretic approach is applied to present an analysis of the problem of unsteady free convection flow over a continuous moving vertical sheet in an ambient fluid. The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq fluid by a constant heated bounding plate. The application of two-parameter groups reduces the number of independent variables by two, and consequently the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved analytically for the temperature and numerically for the velocity using the shooting method. Effect of Prandtl number on the thermal boundary-layer and velocity boundary-layer are studied and plotted in curves.

  20. MHD flow of a uniformly stretched vertical permeable membrane in ...

    African Journals Online (AJOL)

    We present a magneto - hydrodynamic flow of a uniformly stretched vertical permeable surface undergoing Arrhenius heat reaction. The analytical solutions are obtained for concentration, temperature and velocity fields using an asymptotic approximation, similar to that of Ayeni et al 2004. It is shown that the temperature ...

  1. Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes

    OpenAIRE

    Justin R. Brown; Bader J. Alsarraf; Mike Waller; Patricia Eisenman; Charlie A. Hicks-Little

    2014-01-01

    The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV) have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is i...

  2. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...... focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance...

  3. SOAP 2.0: A Tool to Estimate the Photometric and Radial Velocity Variations Induced by Stellar Spots and Plages

    Science.gov (United States)

    Dumusque, X.; Boisse, I.; Santos, N. C.

    2014-12-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation. . The work in this paper is based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  4. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages

    International Nuclear Information System (INIS)

    Dumusque, X.; Boisse, I.; Santos, N. C.

    2014-01-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i ≤8 km s –1 . A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD 189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation.

  5. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, X. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Boisse, I. [Laboratoire d' Astrophysique de Marseille (UMR 6110), Technopole de Château-Gombert, 38 rue Frédéric Joliot-Curie, F-13388 Marseille Cedex 13 (France); Santos, N. C., E-mail: xdumusque@cfa.harvard.edu [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-12-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i ≤8 km s{sup –1}. A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD 189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation.

  6. On the One-Dimensional Modeling of Vertical Upward Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Peña-Monferrer

    2018-01-01

    Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.

  7. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  8. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    Science.gov (United States)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  9. Characteristics of vertical seismic motions and qp-values in sedimentary layers

    International Nuclear Information System (INIS)

    Tohdo, Masanobu; Hatori, Toshiaki; Chiba, Osamu; Takahashi, Katsuya; Takemura, Masayuki; Tanaka, Hideo.

    1995-01-01

    Using seismic records observed in 4 borehole arrays, characteristics of vertical seismic motions in sedimentary layers are investigated. The results are as follows. 1) P-waves having intensive effect to vertical component are propagating within sedimentary layers even after the S-wave onset time (S-wave part). 2) Frequency dependent Q-values for P-waves (Qp) in Tertiary sediment layers obtained from the optimal analyses to spectral ratios have the tendency to be identical with Q-values for S-waves (Qs) with the same wavelength. 3) Observed vertical motions in upper ground can be simulated by the multiple reflection theory of P-waves based on the optimized velocities and Q-values. (author)

  10. CFD simulations of a bubbly flow in a vertical pipe

    International Nuclear Information System (INIS)

    Krepper, E.

    2000-01-01

    Even at the very simple conditions of two phase flow in a vertical pipe, strong 3D effects are observed. The distribution of the gas phase over the cross section varies significantly between the different flow patterns, which are known for the vertical two-phase flow. The air water flow in a vertical tube having a diameter of 50 mm and a length of about 3 m was investigated in steady state tests for different liquid and gas superficial velocities. Several two phase flow measuring techniques were used. Applying a wire mesh sensor, developed in FZR, the void fraction could be determined over the whole cross section of the pipe. The working principle is based on the measurement of the local instantaneous conductivity of the two-phase mixture. At the investigated flow velocities, the rate of the image acquisition is sufficient to record the same bubble several times. This enables to determine bubble diameter distributions. Applying two similar wire mesh sensors with a distance of 50 mm one above the other, the influence of the wire mesh to the flow could be investigated. No essential disturbances of the two-phase flow by the mesh could be found for the investigated flow regimes. Performing an auto correlation between the signals of both sensors, also profiles of the gas velocity were determined. In the CFD code CFX-4.2 several two-phase flow models were available. Using the code, volume fraction profiles were calculated and compared to the measured results for bubble flow regimes, to investigate the capability of these models (see also Krepper and Prasser [4] (1999)). (orig.)

  11. Heat transfer enhancement through control of added perturbation velocity in flow field

    International Nuclear Information System (INIS)

    Wang, Jiansheng; Wu, Cui; Li, Kangning

    2013-01-01

    Highlights: ► Three strategies which restrain the flow drag in heat transfer are proposed. ► Added perturbation induces quasi-streamwise vortices around controlled zone. ► The flow and heat transfer features depend on induced quasi-streamwise vortices. ► Vertical strategy has the best synthesis performance of three control strategies. ► Synthesis performance with control strategy is superior to that without strategy. - Abstract: The characteristics of heat transfer and flow, through an added perturbation velocity, in a rectangle channel, are investigated by Large Eddy Simulation (LES). The downstream, vertical, and upstream control strategy, which can suppress the lift of low speed streaks in the process of improving the performance of heat transfer, are adopted in numerical investigation. Taking both heat transfer and flow properties into consideration, the synthesis performance of heat transfer and flow of three control strategies are evaluated. The numerical results show that the flow structure in boundary layer has been varied obviously for the effect of perturbation velocity and induced quasi-streamwise vortices emerging around the controlled zone. The results indicate that the vertical control strategy has the best synthesis performance of the three control strategies, which also has the least skin frication coefficient. The upstream and downstream strategies can improve the heat transfer performance, but the skin frication coefficient is higher than that with vertical control strategy

  12. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  13. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  14. Tsunami Speed Variations in Density-stratified Compressible Global Oceans

    Science.gov (United States)

    Watada, S.

    2013-12-01

    Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.

  15. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  16. Radial velocity variations of photometrically quiet, chromospherically inactive Kepler stars: A link between RV jitter and photometric flicker

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16803 (United States); Aigrain, Suzanne [Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Basri, Gibor [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Walkowicz, Lucianne M. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2014-02-01

    We compare stellar photometric variability, as measured from Kepler light curves by Basri et al., with measurements of radial velocity (RV) rms variations of all California Planet Search overlap stars. We newly derive rotation periods from the Kepler light curves for all of the stars in our study sample. The RV variations reported herein range from less than 4 to 135 m s{sup –1}, yet the stars all have amplitudes of photometric variability less than 3 mmag, reflecting the preference of the RV program for chromospherically 'quiet' stars. Despite the small size of our sample, we find with high statistical significance that the RV rms manifests strongly in the Fourier power spectrum of the light curve: stars that are noisier in RV have a greater number of frequency components in the light curve. We also find that spot models of the observed light curves systematically underpredict the observed RV variations by factors of ∼2-1000, likely because the low-level photometric variations in our sample are driven by processes not included in simple spot models. The stars best fit by these models tend to have simpler light curves, dominated by a single relatively high-amplitude component of variability. Finally, we demonstrate that the RV rms behavior of our sample can be explained in the context of the photometric variability evolutionary diagram introduced by Bastien et al. We use this diagram to derive the surface gravities of the stars in our sample, revealing many of them to have moved off the main sequence. More generally, we find that the stars with the largest RV rms are those that have evolved onto the 'flicker floor' sequence in that diagram, characterized by relatively low amplitude but highly complex photometric variations which grow as the stars evolve to become subgiants.

  17. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  18. Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

    Science.gov (United States)

    Smith, Charlee C., Jr.; Lovell, Powell M., Jr.

    1954-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.

  19. Significant Variation of Post-critical SsPmp Amplitude as a Result of Variation in Near-surface Velocity: Observations from the Yellowknife Array

    Science.gov (United States)

    Ferragut, G.; Liu, T.; Klemperer, S. L.

    2017-12-01

    In recent years Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho, which uses the post-critical reflection P waves at the Moho generated by teleseismic S waves at the free surface near the receivers (SsPmp). However, observed SsPmp sometimes have significantly lower amplitude than predicted, raising doubts among the seismic community on the theoretical basis of the method. With over two decades of continuous digital broadband records and major subduction zones in the range of 30-50 degrees, the Yellowknife Array in northern Canada provides a rich opportunity for observation of post-critical SsPmp. We analyze S wave coda of events with epicenter distances of 30-50°, and pay special attention to earthquakes in a narrow azimuth range that ­­­encompasses the Kamchatka Peninsula. Among 21 events with strong direct S energy on the radial components, we observe significant variation of SsPmp energy. After associating the SsPmp energy with the virtual source location of each event, we observe a general trend of decreasing SsPmp energy from NE to SW. As the trend coincides with the transition from exposed basement of the Slave Craton to Paleozoic platform covered by Phanerozoic sediment, we interpret the decreasing SsPmp energy as a result of lower S velocity at the virtual sources, which reduces S-to-P reflection coefficients. We plan to include more events from the Aleutian Islands, the virtual sources of which are primarily located in the Paleozoic platform. This will allow us to further investigate the relationship between SsPmp amplitude and near-surface velocity.

  20. Differences in vertical jumping and mae-geri kicking velocity between international and national level karateka

    Directory of Open Access Journals (Sweden)

    Carlos Balsalobre-Fernández

    2013-04-01

    Full Text Available Aim: Lower limb explosive strength and mae-geri kicking velocity are fundamental in karate competition; although it is unclear whether these variables could differentiate the high-level athletes. The objective of this research is to analyze the differences in the mae-geri kicking velocity and the counter-movement jump (CMJ between a group of international top level karateka and another group of national-level karateka.Methods: Thirteen international-level karateka and eleven national-level karateka participated in the study. After a standard warm-up, CMJ height (in cm and mae-geri kicking velocity (in m/s was measured using an IR-platform and a high-speed camera, respectively.Results: Proceeding with MANCOVA to analyze the differences between groups controlling the effect of age, the results show that the international-level karateka demonstrated significantly higher levels of CMJ than national-level competitors (+22.1%, F = 9.47, p = 0.006, η2 = 0.311. There were no significant differences between groups in the mae-geri kicking velocity (+5,7%, F=0.80; p=0.38; η2=0.03.Conclusion: Our data shows, first, the importance of CMJ assessment as a tool to detect talent in karate and, second, that to achieve international-level in karate it may be important to increase CMJ levels to values ​​similar to those offered here.

  1. Atmospheric diurnal variations observed with GPS radio occultation soundings

    Directory of Open Access Journals (Sweden)

    F. Xie

    2010-07-01

    Full Text Available The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007–2009 COSMIC RO measurements in the troposphere and stratosphere between 30° S and 30° N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At ~32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months.

  2. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    Science.gov (United States)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  3. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  4. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  5. Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Christensen, Thomas Højlund

    1992-01-01

    The groundwater quality of a shallow unconfined sandy aquifer has been characterized for pH, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, sodium and potassium in terms of vertical and horizontal variations (350 groundwater samples). The test area is located within a farmland lot....... The geology of the area described on the basis of 31 sediment cores appears relatively homogeneous. Large vertical and horizontal variations were observed. The vertical variations are strongly affected by the deviating composition of the agricultural infiltration water. The horizontal variations show very...

  6. The horizontal and vertical cervico-ocular reflexes of the rabbit.

    Science.gov (United States)

    Barmack, N H; Nastos, M A; Pettorossi, V E

    1981-11-16

    Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.

  7. Using GPS Imaging to Unravel Vertical Land Motions in the Interior Pacific Northwest

    Science.gov (United States)

    Overacker, J.; Hammond, W. C.; Kraner, M.; Blewitt, G.

    2017-12-01

    GPS Imaging uses robust trends in time series of GPS positions to create a velocity field that can reveal rates and patterns of vertical motions that would be otherwise difficult to detect. We have constructed an image of vertical land velocities within the interior Pacific Northwest region of the United States using GPS Imaging. The image shows a 50-250 km wide swath of approximately 2 mm/yr of subsidence seemingly unrelated to topographic features of the region. The extent of the signal roughly corresponds to the Juan de Fuca plate subduction latitudes and longitude of the Cascade arc. This suggests that the signal could be associated with ongoing crustal deformation possibly related to plate-scale geodynamic forces arising from interseismic coupling, long term plate boundary tractions, volcanic loading, and/or mantle flow. However, hydrological loading from accumulating precipitation in the Cascades and in the region's groundwater basins, and possible effects from Glacial Isostatic Adjustment (GIA) near its hinge line cannot be discounted as potential contributors to the observed subsidence signal. Here we attempt to unravel the contributions of hydrological loading and GIA to the vertical GPS signal observed within the interior Pacific Northwest. In order to determine the non-tectonic contributions to the observed vertical GPS Image, we will examine how the subsidence rate changes over time using early and late period comparisons. GPS, GRACE, and climatic data will be used in conjunction to disentangle the hydrological effect from the GPS Image. GIA models of the Western Cordillera will be compared with the patterns in the GPS Image to assess whether the signal can be explained with current models of GIA. Our presentation will document the signals, uncertainties, and hypotheses for the possible mechanisms behind this subsidence and attempt to quantify their relation and contribution to the observed deformation signal. Figure 1: Pacific Northwest GPS Imaging

  8. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Walia, R [Victoria Univ., BC (Canada) School of Earth and Ocean Sciences; Hyndman, R [Geological Survey of Canada, Sidney, BC (Canada) Pacific Geoscience Centre

    1999-07-01

    A gas hydrate research well was drilled in the Canadian Arctic to study gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., the Geological Survey of Canada and other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, comprehensive downhole geophysical logging and measurement. Laboratory studies concerned studies on recovered cuttings and core including sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the Mallik 2L-38 field program, a vertical seismic profiling survey was conducted at zero and other offset source positions with three component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, which will be used to estimate the effect of gas hydrate on formation velocities and to determine gas hydrate concentration as a function of the Mallik gas accumulation. From the initial VSP analysis, certain conclusions follow: 1) zero offset vertical vibration component Z and horizontal X component data give reliable velocity determination within the gas hydrate formation zone. P wave velocities from offset VSP data show an excellent consistency with that from offset data and with the sonic log. And 2) the VSP data permit reliable identification of gas hydrate bearing zones. Abstract only included.

  9. Influences of Carbody Vertical Flexibility on Ride Comfort of Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2017-06-01

    Full Text Available The article investigates the influence of the carbody vertical flexibility on the ride comfort of the railway vehicles. The ride comfort is evaluated via the comfort index calculated in three reference points of the carbody. The results of the numerical simulations bring attention to the importance of the carbody symmetrical vertical bending upon the dynamic response of the vehicle, mainly at high velocities. Another conclusion is that the ride comfort can be significantly affected as a function of the symmetrical bending frequency of the carbody. Similarly, there are improvement possibilities for the ride comfort when the best selection of the stiffness in the longitudinal traction system between the carbody and bogie and the vertical suspension damping is made.

  10. Velocity and concentration fields in turbulent buoyant mixing in tilted tubes

    Science.gov (United States)

    Znaien, J.; Moisy, F.; Hulin, J. P.; Salin, D.; Hinch, E. J.

    2008-11-01

    2D PIV and LIF measurements have been performed on buoyancy driven flows of two miscible fluids of the same viscosity in a tube tilted at different angles θ from vertical and at different density contrasts (characterized by the Atwood number At). As θ increases and At decreases, the flow regime evolves, behind the front, from a turbulent shear flow towards a laminar counter flow with 3 layers of different concentrations. Time variations of the structure function show that both intermittent and developed turbulence occur in intermediate conditions. In the turbulent regime (Reλ˜60) the magnitudes of the longitudinal u'^2 and transverse v'^2 velocity fluctuations and of the component u'v' of the Reynolds stress tensor are shown to be largest on the tube axis while viscous stresses is only important close to the walls. The analyzis of the momentum transfer in the flow with buoyancy forces estimated from the concentration gradients demonstrates that 3D effects are required to achieve the momentum balance. These results are discussed in the framework of classical turbulence models.

  11. Estimation of shear velocity contrast for dipping or anisotropic medium from transmitted Ps amplitude variation with ray-parameter

    Science.gov (United States)

    Kumar, Prakash

    2015-12-01

    Amplitude versus offset analysis of P to P reflection is often used in exploration seismology for hydrocarbon exploration. In the present work, the feasibility to estimate crustal velocity structure from transmitted P to S wave amplitude variation with ray-parameter has been investigated separately for dipping layer and anisotropy medium. First, for horizontal and isotropic medium, the approximation of P-to-s conversion is used that is expressed as a linear form in terms of slowness. Next, the intercept of the linear regression has been used to estimate the shear wave velocity contrast (δβ) across an interface. The formulation holds good for isotropic and horizontal layer medium. Application of such formula to anisotropic medium or dipping layer data may lead to erroneous estimation of δβ. In order to overcome this problem, a method has been proposed to compensate the SV-amplitude using shifted version of SH-amplitude, and subsequently transforming SV amplitudes equivalent to that from isotropic or horizontal layer medium as the case may be. Once this transformation has been done, δβ can be estimated using isotropic horizontal layer formula. The shifts required in SH for the compensation are π/2 and π/4 for dipping layer and anisotropic medium, respectively. The effectiveness of the approach has been reported using various synthetic data sets. The methodology is also tested on real data from HI-CLIMB network in Himalaya, where the presence of dipping Moho has already been reported. The result reveals that the average shear wave velocity contrast across the Moho is larger towards the Indian side compared to the higher Himalayan and Tibetan regions.

  12. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  13. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    Science.gov (United States)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  14. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    Science.gov (United States)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  15. Experimental study of the spatial distribution of the velocity field of sedimenting particles: mean velocity, pseudo-turbulent fluctuations, intrinsic convection

    International Nuclear Information System (INIS)

    Bernard-Michel, G.

    2001-01-01

    This work follows previous experiments from Nicolai et al. (95), Peysson and Guazzelli (98) and Segre et al. (97), which consisted in measures of the velocity of particles sedimenting in a liquid at low particular Reynolds numbers. Our goal, introduced in the first part with a bibliographic study, is to determinate the particles velocity fluctuations properties. The fluctuations are indeed of the same order as the mean velocity. We are proceeding with PIV Eulerian measures. The method is described in the second part. Its originality comes from measures obtained in a thin laser light sheet, from one side to the other of the cells, with a square section: the measures are therefore spatially localised. Four sets of cells and three sets of particles were used, giving access to ratios 'cell width over particle radius' ranging from about 50 up to 800. In the third part, we present the results concerning the velocity fluctuations structure and their spatial distribution. The intrinsic convection between to parallel vertical walls is also studied. The velocity fluctuations are organised in eddy structures. Their size (measured with correlation length) is independent of the volume fraction, contradicting the results of Segre et al. (97). The results concerning the velocity fluctuations spatial profiles - from one side to the other of the cell - confirm those published by Peysson and Guazzelli (98) in the case of stronger dilution. The evolution of the spatial mean velocity fluctuations confirms the results obtained by Segre et al. (97). The intrinsic convection is also observed in the case of strong dilutions. (author)

  16. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    Science.gov (United States)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  17. Analysis of two-phase flow instability in vertical boiling channels I: development of a linear model for the inlet velocity perturbation

    International Nuclear Information System (INIS)

    Hwang, D.H.; Yoo, Y.J.; Kim, K.K.

    1998-08-01

    A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs

  18. Peak power, force, and velocity during jump squats in professional rugby players

    OpenAIRE

    Turner, Anthony P; Unholz, Cedric N; Potts, Neill; Coleman, Simon

    2012-01-01

    Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, ...

  19. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    Science.gov (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  1. Variations of streambed vertical hydraulic conductivity before and after a flood season

    Science.gov (United States)

    Wu, Guangdong; Shu, Longcang; Lu, Chengpeng; Chen, Xunhong; Zhang, Xiao; Appiah-Adjei, Emmanuel K.; Zhu, Jingsi

    2015-11-01

    The change of vertical hydraulic conductivity ( K v) before and after a flood season is crucial in understanding the long-term temporal variation of streambed permeability. Therefore, in this study, a detailed K v field investigation was conducted at an in-channel site within the Dawen River, China, before and after a flood season. In-situ falling-head permeameter tests were performed for the determination of K v. The tests were conducted using a 10 × 10 grid, at five different depths. In total, 871 valid K v values from layers 1-5 were obtained. The Kruskal-Wallis test on these K v values before and after the flood season shows they belonged to different populations. The sediments before the flood season primarily consisted of sand and gravel, whereas after the flood season, patchy distribution of silt/clay occurred in the sandy streambed and silt/clay content increased with the increasing depth; under the losing condition during flooding, downward movement of water brought fine particles into the coarse sediments, partially silting the pores. Accordingly, the K v values after the flood season had a smaller mean and median, and a higher level of heterogeneity, compared to those before the flood season. Additionally, the distribution pattern in K v across the stream differed before and after flood season; after the flood season, there was an increasing trend in K v from the south bank to the north bank. Overall, the contrasts of K v before and after the flood season were predominantly subject to the infiltration of fine particles.

  2. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  3. The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations

    Energy Technology Data Exchange (ETDEWEB)

    Malavolta, Luca; Borsato, Luca; Granata, Valentina; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita’di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Lopez, Eric [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH93HJ (United Kingdom); Vanderburg, Andrew; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Figueira, Pedro [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal); Mortier, Annelies; Cameron, Andrew Collier [Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Affer, Laura [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo (Italy); Bonomo, Aldo S. [INAF—Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Bouchy, Francois [Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Buchhave, Lars A. [Centre for Star and Planet Formation, Natural History Museum of Denmark and Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Cosentino, Rosario, E-mail: luca.malavolta@unipd.it [INAF—Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja (Spain); and others

    2017-05-01

    We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R {sub ⊕}, and an upper limit on the mass of 20 M {sub ⊕}. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M {sub ⊕} for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M {sub ⊕} for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M {sub ⊕} on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm{sup −3} (0.78 ± 0.16 ρ {sub ⊕}) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

  4. Flocking and invariance of velocity angles.

    Science.gov (United States)

    Liu, Le; Huang, Lihong; Wu, Jianhong

    2016-04-01

    Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.

  5. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  6. Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool

    International Nuclear Information System (INIS)

    Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.

    1995-01-01

    The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity

  7. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  8. Drift velocity monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented.

  9. Economies of vertical integration in the Swiss electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Fetz, Aurelio; Filippini, Massimo [Department of Management, Technology and Economics, ETH Zurich (Switzerland); Department of Economics, University of Lugano (Switzerland)

    2010-11-15

    Over the last two decades, several European nations have introduced reforms to their electricity sector. Generally, these reforms require a legal and functional unbundling of vertically integrated companies. These unbundling processes may reduce the possibilities that exist to fruitfully exploit the advantages of vertical integration. The goal of this paper is to empirically analyze the presence of economies of scale and vertical integration in the Swiss electricity sector. Economies of vertical integration between electricity production and distribution result from reduced transaction costs, better coordination of highly specific and interdependent investments and less financial risk. Different econometric specifications for panel data, including a random effects and a random-coefficients model, have been used to estimate a quadratic multi-stage cost function for a sample of electricity companies. The empirical results reflect the presence of considerable economies of vertical integration and economies of scale for most of the companies considered in the analysis. Moreover, the results suggest a variation in economies of vertical integration across companies due to unobserved heterogeneity. (author)

  10. Role of updraft velocity in temporal variability of global cloud hydrometeor number

    Science.gov (United States)

    Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; Nenes, Athanasios

    2016-05-01

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.

  11. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  12. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  13. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  14. Unipedal balance in healthy adults: effect of visual environments yielding decreased lateral velocity feedback.

    Science.gov (United States)

    Deyer, T W; Ashton-Miller, J A

    1999-09-01

    To test the (null) hypotheses that the reliability of unipedal balance is unaffected by the attenuation of visual velocity feedback and that, relative to baseline performance, deterioration of balance success rates from attenuated visual velocity feedback will not differ between groups of young men and older women, and the presence (or absence) of a vertical foreground object will not affect balance success rates. Single blind, single case study. University research laboratory. Two volunteer samples: 26 healthy young men (mean age, 20.0yrs; SD, 1.6); 23 healthy older women (mean age, 64.9 yrs; SD, 7.8). Normalized success rates in unipedal balance task. Subjects were asked to transfer to and maintain unipedal stance for 5 seconds in a task near the limit of their balance capabilities. Subjects completed 64 trials: 54 trials of three experimental visual scenes in blocked randomized sequences of 18 trials and 10 trials in a normal visual environment. The experimental scenes included two that provided strong velocity/weak position feedback, one of which had a vertical foreground object (SVWP+) and one without (SVWP-), and one scene providing weak velocity/strong position (WVSP) feedback. Subjects' success rates in the experimental environments were normalized by the success rate in the normal environment in order to allow comparisons between subjects using a mixed model repeated measures analysis of variance. The normalized success rate was significantly greater in SVWP+ than in WVSP (p = .0001) and SVWP- (p = .013). Visual feedback significantly affected the normalized unipedal balance success rates (p = .001); neither the group effect nor the group X visual environment interaction was significant (p = .9362 and p = .5634, respectively). Normalized success rates did not differ significantly between the young men and older women in any visual environment. Near the limit of the young men's or older women's balance capability, the reliability of transfer to unipedal

  15. Vertical integration as a source of market power

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, J.H.

    1981-11-01

    This paper has put forward a theory of vertial integration where the ability of a group of firms to engage in noncompetitive pricing is increased by altering conjectural variations. An analysis of conditions faced by major oil companies at refining indicated little likelihood of market power, short of a complex, secret price fixing agreement. Vertical integration to branded retail outlets appears to have created the ability to price noncompetitively without overt collusion. More interesting for vertical policy are the results on non price rivalry where excess profits appear to have been turned into social costs.

  16. Vertical and lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon; Okuno, Yae L.; Bowers, John E.; Jayaraman, Vijay

    2001-09-01

    A technique for achieving large-scale monolithic integration of lattice-mismatched materials in the vertical direction and the lateral integration of dissimilar lattice-matched structures has been developed. The technique uses a single nonplanar direct-wafer-bond step to transform vertically integrated epitaxial structures into lateral epitaxial variation across the surface of a wafer. Nonplanar wafer bonding is demonstrated by integrating four different unstrained multi-quantum-well active regions lattice matched to InP on a GaAs wafer surface. Microscopy is used to verify the quality of the bonded interface, and photoluminescence is used to verify that the bonding process does not degrade the optical quality of the laterally integrated wells. The authors propose this technique as a means to achieve greater levels of wafer-scale integration in optical, electrical, and micromechanical devices.

  17. Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method

    Science.gov (United States)

    Lv, Xin; Zou, Qingping; Reeve, Dominic

    2011-10-01

    This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.

  18. Mid-term variation of vertical distribution of acid volatile sulphide and simultaneously extracted metals in sediment cores from Lake Albufera (Valencia, Spain).

    Science.gov (United States)

    Hernández-Crespo, Carmen; Martín, Miguel

    2013-11-01

    Lake Albufera is one of the most eutrophic bodies of water in Spain due to point and diffuse pollution over past decades, and its sediments are likely to be anoxic because of high organic matter flux. Hence, sulphides can play an important role in limiting the mobility of heavy metals. This study aimed to study the vertical variation of acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) in sediment cores collected from Lake Albufera; other sediment characteristics, such as organic matter, biochemical oxygen, demand or total metals, were also studied. Three sites were selected, and four sampling campaigns were performed to study spatial and temporal variation as well as to obtain information regarding historical variation in the composition of sediments. AVS and SEM were analysed by the purge-and-trap method. The vertical distribution of AVS and SEM varied depending on the sampling site-concentrations of AVS and SEM were higher at sites close to mouths of inflowing channels. A decreasing trend of AVS has been found at these sites over time: In the two first samplings, AVS increased with depth reaching maximum concentrations of 40 and 21 μmol g(-1), but from then on AVS were lower and decreased with depth. SEM decreased with depth from 3 μmol g(-1) in surface layers to approximately 1 μmol g(-1) at deeper segments at these sites. However, the central site was more uniform with respect to depth as well as with time; it presented lower values of SEM and AVS (mean 0.9 and 2.0 μmol g(-1) respectively), and the maximum value of AVS (7 μmol g(-1)) was found at the top layer (0-3 cm). According to the (SEM-AVS)/fOC approach, every site, and throughout the cores, can be classified as containing nontoxic metals because the values were <130 μmol g(-1).

  19. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  20. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  1. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada); Walia, R [Victoria Univ., BC (Canada); Hyndman, R D; Sakai, A

    1999-01-01

    A gas hydrate research well was drilled in the Canadian Arctic to determine gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., and the Geological Survey of Canada with the participation of other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, and comprehensive downhole geophysical logging and measurement. Laboratory studies on recovered cores and cuttings included sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the field program, a vertical seismic profiling survey was conducted at zero and offset source positions with 3 component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, and results from this work were combined with down hole logs and regional surface seismic data. The data will be used also to determine the effect of gas hydrates on formation velocities and to measure gas hydrate concentrations as a function of depth in the formation penetrated by the well. Certain conclusions followed from the initial VSP analysis. 1) Zero offset vertical vibration Z component and horizontal X component data give reliable velocity estimation within the gas hydrate formation zone, and P wave velocities from offset data indicate excellent consistency with that from zero offset data and with the sonic log. 2) The VSP data permitted reliable identification of gas hydrate bearing zones. 4 refs.

  2. Characterization of Vertical Impact Device Acceleration Pulses Using Parametric Assessment: Phase IV Dual Impact Pulses

    Science.gov (United States)

    2017-01-04

    support contractor , Infoscitex, conducted a series of tests to identify the performance capabilities of the Vertical Impact Device (VID) and the Warrior...Impact Response: Test Series 1 Data Summary for Carriage Test Cell VID Carriage Programmer Drop Ht . (in) Mean Velocity Change (m/s) Mean...Table 6. VID Impact Response: Test Series 1 Data Summary for Seat Pan Test Cell VID Carriage Programmer Drop Ht . (in) Mean Velocity

  3. Effects of wind velocity and slope on flame properties

    Science.gov (United States)

    David R. Weise; Gregory S. Biging

    1996-01-01

    Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...

  4. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  5. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    Science.gov (United States)

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  6. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  7. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  8. The effect of vocal fold vertical stiffness gradient on sound production

    Science.gov (United States)

    Geng, Biao; Xue, Qian; Zheng, Xudong

    2015-11-01

    It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.

  9. Vertical Patellar Dislocation: Reduction by the Push Up and Rotate Method, A Case Report and Literature Review.

    Science.gov (United States)

    Ahmad Khan, Hayat; Bashir Shah, Adil; Kamal, Younis

    2016-11-01

    Patellar dislocation is an emergency. Vertical patellar dislocation is rare, often seen in adolescents and mostly due to sports injuries or high-velocity trauma. Few cases have been reported in the literature. Closed or open reduction under general anesthesia is often needed. We report a case of vertical locked patellar dislocation in a 26-year-old male, which was reduced by a simple closed method under spinal anaesthesia. A literature review regarding the various methods of treatment is also discussed. A 26-year-old male experienced a trivial accident while descending stairs, sustaining patellar dislocation. The closed method of reduction was attempted, using a simple technique. Reduction was confirmed and postoperative rehabilitation was started. Follow-up was uneventful. Vertical patellar dislocations are encountered rarely in the emergency department. Adolescents are not the only victims, and high-velocity trauma is not the essential cause. Unnecessary manipulation should be avoided. The closed reduction method is simple, but the surgeon should be prepared for open reduction.

  10. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  11. Recovery of Stokes waves from velocity measurements on an axis of symmetry

    International Nuclear Information System (INIS)

    Matioc, Bogdan-Vasile

    2015-01-01

    We provide a new method to recover the profile of Stokes waves, and more generally of waves with smooth vorticity, from measurements of the horizontal velocity component on a vertical axis of symmetry of the wave surface. Although we consider periodic waves only, the extension to solitary waves is straightforward. (paper)

  12. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    Energy Technology Data Exchange (ETDEWEB)

    Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-04-15

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  13. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    International Nuclear Information System (INIS)

    Keylock, Christopher J; Nishimura, Kouichi

    2016-01-01

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  14. The Reliability of Individualized Load-Velocity Profiles.

    Science.gov (United States)

    Banyard, Harry G; Nosaka, K; Vernon, Alex D; Haff, G Gregory

    2017-11-15

    This study examined the reliability of peak velocity (PV), mean propulsive velocity (MPV), and mean velocity (MV) in the development of load-velocity profiles (LVP) in the full depth free-weight back squat performed with maximal concentric effort. Eighteen resistance-trained men performed a baseline one-repetition maximum (1RM) back squat trial and three subsequent 1RM trials used for reliability analyses, with 48-hours interval between trials. 1RM trials comprised lifts from six relative loads including 20, 40, 60, 80, 90, and 100% 1RM. Individualized LVPs for PV, MPV, or MV were derived from loads that were highly reliable based on the following criteria: intra-class correlation coefficient (ICC) >0.70, coefficient of variation (CV) ≤10%, and Cohen's d effect size (ES) 0.05) between trials, movement velocities, or between linear regression versus second order polynomial fits. PV 20-100% , MPV 20-90% , and MV 20-90% are reliable and can be utilized to develop LVPs using linear regression. Conceptually, LVPs can be used to monitor changes in movement velocity and employed as a method for adjusting sessional training loads according to daily readiness.

  15. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  16. MIGHT WE EVENTUALLY UNDERSTAND THE ORIGIN OF THE DARK MATTER VELOCITY ANISOTROPY?

    International Nuclear Information System (INIS)

    Hansen, Steen H.

    2009-01-01

    The density profile of simulated dark matter structures is fairly well-established, and several explanations for its characteristics have been put forward. In contrast, the radial variation of the velocity anisotropy has still not been explained. We suggest a very simple origin, based on the shapes of the velocity distribution functions, which are shown to differ between the radial and tangential directions. This allows us to derive a radial variation of the anisotropy profile which is in good agreement with both simulations and observations. One of the consequences of this suggestion is that the velocity anisotropy is entirely determined once the density profile is known. We demonstrate how this explains the origin of the γ-β relation, which is the connection between the slope of the density profile and the velocity anisotropy. These findings provide us with a powerful tool, which allows us to close the Jeans equations.

  17. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  18. Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star

    Science.gov (United States)

    Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.

    2017-12-01

    In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  19. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters

    Science.gov (United States)

    Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete

    2018-04-01

    In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.

  20. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  1. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  2. Natural convection heat transfer in an oscillating vertical cylinder.

    Science.gov (United States)

    Khan, Ilyas; Ali Shah, Nehad; Tassaddiq, Asifa; Mustapha, Norzieha; Kechil, Seripah Awang

    2018-01-01

    This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.

  3. Forced and free convection hydromagnetic flow past a vertical flat plate

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2004-01-01

    The effects of magnetic field and temperature heat source on the free and forced convection flow past an infinite vertical plate is studied analytically. Solutions of the reduced equation appropriate in the forced convection and free convection regime are obtained using perturbation technique. The expression for the velocity field, skin friction and Nusselt number have been obtained

  4. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  5. Keynesian multiplier versus velocity of money

    Science.gov (United States)

    Wang, Yougui; Xu, Yan; Liu, Li

    2010-08-01

    In this paper we present the relation between Keynesian multiplier and the velocity of money circulation in a money exchange model. For this purpose we modify the original exchange model by constructing the interrelation between income and expenditure. The random exchange yields an agent's income, which along with the amount of money he processed determines his expenditure. In this interactive process, both the circulation of money and Keynesian multiplier effect can be formulated. The equilibrium values of Keynesian multiplier are demonstrated to be closely related to the velocity of money. Thus the impacts of macroeconomic policies on aggregate income can be understood by concentrating solely on the variations of money circulation.

  6. Variational and quasi-variational inequalities in mechanics

    CERN Document Server

    Kravchuk, Alexander S

    2007-01-01

    The essential aim of the present book is to consider a wide set of problems arising in the mathematical modelling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities, and the transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems. Important new results concern contact problems with friction. The Coulomb friction law and some others are considered, in which relative sliding velocities appear. The corresponding quasi-variational inequality is constructed, as well as the appropriate iterative method for its solution. Outlines of the variational approach to non-stationary and dissipative systems and to the construction of the go...

  7. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    Science.gov (United States)

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  8. Evolution of deformation velocity in narrowing for Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Cetlin, P R [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica; Okuda, M Y [Goias Univ., Goiania (Brazil). Inst. de Matematica e Fisica

    1980-09-01

    Some studies on the deformation instability in strain shows that the differences in this instability may lead to localized narrowing or elongated narrowing, for Zircaloy-2. The variation of velocity deformation with the narrowing evolution is expected to be different for these two cases. The mentioned variation is discussed, a great difference in behavior having been observed for the case of localized narrowing.

  9. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1964-11-01

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 sub 2 ; Mass velocity 94 2 /s; Burnout steam quality 0.10 BO < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within ± 5 per cent by means of the correlation by Becker et al for flow in smooth channels

  10. Determination of angular rotation velocity of Dar'e wind turbine with straight blades

    International Nuclear Information System (INIS)

    Ershina, A.K.; Ershin, Sh.A.; Upnanov, T.K.

    1999-01-01

    In the report the method of angular velocity determination for wind turbine of given capacity with allowing for an average seasonal wind velocity and all geometrical and dynamical characteristics of the unit is presented. It is noted, that this wind turbine has following advantages: wind direction does not plays role due to vertical axis position of the turbine; electric generator and other equipment are arranged on the ground, that reduce construction's weight, expedite of servicing and repair; the wind turbine has high coefficient of wind energy use (ξ max =0.45)

  11. Wavelength variation of a standing wave along a vertical spring

    Science.gov (United States)

    Welsch, Dylan; Baker, Blane

    2018-03-01

    Hand-driven resonance can be observed readily in a number of mechanical systems including thin boards, rods, strings, and springs. In order to show such behavior in the vertical spring pictured in Fig. 1, a section of spring is grasped at a location about one meter from its free end and driven by small, circular motions of the hand. At driving frequencies of a few hertz, a dramatic standing wave is generated. One of the fascinating features of this particular standing wave is that its wavelength varies along the length of the spring.

  12. Heat transfer effects on flow past an exponentially accelerated vertical plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2008-01-01

    Full Text Available An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.

  13. The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data

    Science.gov (United States)

    Yu, Jincheng; Liu, Chao

    2018-03-01

    We present the age-velocity dispersion relation (AVR) in three dimensions in the solar neighbourhood using 3564 commonly observed sub-giant/red giant branch stars selected from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope, which gives the age and radial velocity, and Gaia, which measures the distance and proper motion. The stars are separated into metal-poor ([Fe/H] -0.2 dex) groups, so that the metal-rich stars are mostly α-poor, while the metal-poor group are mostly contributed by α-enhanced stars. Thus, the old and metal-poor stars likely belong to the chemically defined thick disc population, while the metal-rich sample is dominated by the thin disc. The AVR for the metal-poor sample shows an abrupt increase at ≳7 Gyr, which is contributed by the thick disc component. On the other hand, most of the thin disc stars with [Fe/H] > -0.2 dex display a power-law-like AVR with indices of about 0.3-0.4 and 0.5 for the in-plane and vertical dispersions, respectively. This is consistent with the scenario that the disc is gradually heated by the spiral arms and/or the giant molecular clouds. Moreover, the older thin disc stars (>7 Gyr) have a rounder velocity ellipsoid, i.e. σϕ/σz is close to 1.0, probably due to the more efficient heating in vertical direction. Particularly for the old metal-poor sample located with |z| > 270 pc, the vertical dispersion is even larger than its azimuthal counterpart. Finally, the vertex deviations and the tilt angles are plausibly around zero with large uncertainties.

  14. Vertical motions in an intense magnetic flux tube. Pt. 5

    International Nuclear Information System (INIS)

    Webb, A.R.; Roberts, B.

    1980-01-01

    It is of interest to examine the effect of radiative relaxation on the propagation of waves in an intense magnetic flux tube embedded in a stratified atmosphere. The radiative energy loss (assuming Newton's law of cooling) leads to a decrease in the vertical phase-velocity of the waves, and to a damping of the amplitude for those waves with frequencies greater than the adiabatic value (ωsub(upsilon)) of the tube cut-off frequency. The cut-off frequency is generalized to include the effects of radiative relaxation, and allows the waves to be classified as mainly progressive or mainly damped. The phase-shift between velocity oscillations at two different levels and the phase-difference between temperature and velocity perturbations are compared with the available observations. Radiative dissipation of waves propagating along an intense flux tube may be the cause of the high temperature (and excess brightness) observed in the network. (orig.)

  15. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    Science.gov (United States)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  16. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  17. Effects of chemical reaction on moving isothermal vertical plate with variable mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2003-01-01

    Full Text Available An exact solution to the problem of flow past an impulsively started infinite vertical isothermal plate with variable mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The dimensionless governing equations are solved by using the Laplace - transform technique. The velocity and skin-friction are studied for different parameters like chemical reaction parameter, Schmidt number and buoyancy ratio parameter. It is observed that the veloc­ity increases with decreasing chemical reaction parameter and increases with increasing buoyancy ratio parameter.

  18. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  19. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    International Nuclear Information System (INIS)

    Peña-Monferrer, C.; Passalacqua, A.; Chiva, S.; Muñoz-Cobo, J.L.

    2016-01-01

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM"® software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM"® and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  20. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  1. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  2. ISAL experiment documentation of vertical tail and OMS pods

    Science.gov (United States)

    1983-01-01

    Investigation of Space Transportation System (STS) Atmospheric Luminosities (ISAL) experiment documentation includes vertical tail and orbital maneuvering system (OMS) pods with surface glow against the blackness of space. This glowing scene was provided by a long duration exposure with a 35mm camera aimed toward the tail of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. OV-099 was maneuvered to a 120-nautical-mile altitude and flown with open payload bay (PLB) in the velocity vector for the conducting of a test titled, 'Evaluation of Oxygen Interaction with Materials (EOIM)'. Atomic oxygen within the low orbital environment is known to be extremely reactive when in contact with solid surfaces. In the darkened area between the camera and the glowing OMS pods and vertical stabilizer are two trays of test materials.

  3. Shear velocity structure of the laterally heterogeneous crust and uppermost mantle beneath the Indian region

    Science.gov (United States)

    Mohan, G.; Rai, S. S.; Panza, G. F.

    1997-08-01

    The shear velocity structure of the Indian lithosphere is mapped by inverting regionalized Rayleigh wave group velocities in time periods of 15-60 s. The regionalized maps are used to subdivide the Indian plate into several geologic units and determine the variation of velocity with depth in each unit. The Hedgehog Monte Carlo technique is used to obtain the shear wave velocity structure for each geologic unit, revealing distinct velocity variations in the lower crust and uppermost mantle. The Indian shield has a high-velocity (4.4-4.6 km/s) upper mantle which, however, is slower than other shields in the world. The central Indian platform comprised of Proterozoic basins and cratons is marked by a distinct low-velocity (4.0-4.2 km/s) upper mantle. Lower crustal velocities in the Indian lithosphere generally range between 3.8 and 4.0 km/s with the oceanic segments and the sedimentary basins marked by marginally higher and lower velocities, respectively. A remarkable contrast is observed in upper mantle velocities between the northern and eastern convergence fronts of the Indian plate. The South Bruma region along the eastern subduction front of the Indian oceanic lithosphere shows significant velocity enhancement in the lower crust and upper mantle. High velocities (≈4.8 km/s) are also observed in the upper mantle beneath the Ninetyeast ridge in the northeastern Indian Ocean.

  4. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  5. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  6. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  7. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  8. Phase reconstruction from velocity-encoded MRI measurements – A survey of sparsity-promoting variational approaches

    KAUST Repository

    Benning, Martin; Gladden, Lynn; Holland, Daniel; Schö nlieb, Carola-Bibiane; Valkonen, Tuomo

    2014-01-01

    for the reconstruction of phase-encoded magnetic resonance velocity images from sub-sampled k-space data. We are particularly interested in regularisers that correctly treat both smooth and geometric features of the image. These features are common to velocity imaging

  9. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  10. A low vertical β mode for the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu; Tavares, P.

    1991-01-01

    An operation mode with low vertical betatron function in one of the long dispersion free straight sections of the LNLS UVX Electron Storage Ring is studied for applications with small gap insertions. The flexibility of this lattice is analyzed regarding two aspects: the range of variation of the vertical betatron tune and the ability to set the betatron functions to high/low values in the insertion straights

  11. Vertical injection of compact torus into the STOR-M tokamak

    International Nuclear Information System (INIS)

    Liu, D.; Singh, A.K.; Hirose, A.; Xiao, C.

    2005-01-01

    Vertical compact torus injection into the STOR-M tokamak has been conducted with the University of Saskatchewan Compact Torus Injector (USCTI). The injector stayed at the horizontal position and the CT was bent by 90 deg. using a curved conducting drift tube. The curved drift tube did not have significant effects on the CT velocity. Furthermore, the curved drift tube did not change the magnetic field topology. Preliminary vertical CT injection experiments have been carried out on the STOR-M tokamak. CT injection induced prompt increase in the electron density and in the soft x-ray radiation level. Further modifications of the 90 deg. are underway to improve the CT parameters and to further study the effects of CT injection on the tokamak plasma parameters. (author)

  12. Unsteady natural convection flow past an accelerated vertical plate in a thermally stratified fluid

    Directory of Open Access Journals (Sweden)

    Deka Rudra Kt.

    2009-01-01

    Full Text Available An exact solution to one-dimensional unsteady natural convection flow past an infinite vertical accelerated plate, immersed in a viscous thermally stratified fluid is investigated. Pressure work term and the vertical temperature advection are considered in the thermodynamic energy equation. The dimensionless governing equations are solved by Laplace Transform techniques for the Prandtl number unity. The velocity and temperature profiles as well as the skin-friction and the rate of heat transfer are presented graphically and discussed the effects of the Grashof number Gr, stratification parameter S at various times t.

  13. Unsteady free convection MHD flow between two heated vertical parallel conducting plates

    International Nuclear Information System (INIS)

    Sanyal, D.C.; Adhikari, A.

    2006-01-01

    Unsteady free convection flow of a viscous incompressible electrically conducting fluid between two heated conducting vertical parallel plates subjected to a uniform transverse magnetic field is considered. The approximate analytical solutions for velocity, induced field and temperature distribution are obtained for small and large values of magnetic Reynolds number. The problem is also extended to thermometric case. (author)

  14. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  15. Application of one-sided stress wave velocity measurement technique to evaluate freeze-thaw damage in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Park, Won Su

    1998-01-01

    It is well recognized that damage resulting from freeze-thaw cycles is a serious problems causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a 400 x 150 x 100 mm concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  16. The effect of vertical drift on the equatorial F-region stability

    Science.gov (United States)

    Hanson, W. B.; Cragin, B. L.; Dennis, A.

    1986-01-01

    Time-dependent ionospheric model calculations for day-time and night-time solutions are presented. The behavior of the growth rate and ion-electron recombination rate for the Rayleigh-Taylor instability on the F-region bottomside is examined as a function of the vertical eastward electric field-magnetic field strength drift velocity. It is observed that on the bottomside F-layer the growth rate exceeds the ion-electron recombination rate even without vertical drift; however, an eastward electric field-magnetic field strength drift can produce an increase in the growth rate by an order of magnitude. The calculated data are compared with previous research and good correlation is detected. The formation of bubbles from a seeding mechanism is investigated.

  17. Environmental heterogeneity and variations in the velocity of bluetongue virus spread in six European epidemics.

    Science.gov (United States)

    Nicolas, Gaëlle; Tisseuil, Clément; Conte, Annamaria; Allepuz, Alberto; Pioz, Maryline; Lancelot, Renaud; Gilbert, Marius

    2018-01-01

    Several epidemics caused by different bluetongue virus (BTV) serotypes occurred in European ruminants since the early 2000. Studies on the spatial distribution of these vector-borne infections and the main vector species highlighted contrasted eco-climatic regions characterized by different dominant vector species. However, little work was done regarding the factors associated with the velocity of these epidemics. In this study, we aimed to quantify and compare the velocity of BTV epidemic that have affected different European countries under contrasted eco-climatic conditions and to relate these estimates to spatial factors such as temperature and host density. We used the thin plate spline regression interpolation method in combination with trend surface analysis to quantify the local velocity of different epidemics that have affected France (BTV-8 2007-2008, BTV-1 2008-2009), Italy (BTV-1 2014), Andalusia in Spain (BTV-1 2007) and the Balkans (BTV-4 2014). We found significant differences in the local velocity of BTV spread according to the country and epidemics, ranging from 7.9km/week (BTV-1 2014 Italy) to 24.4km/week (BTV-1 2008 France). We quantify and discuss the effect of temperature and local host density on this velocity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  19. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  20. An LES study of vertical-axis wind turbine wakes aerodynamics

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  1. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    2002-09-01

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  2. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.

    Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  3. Kinetic parameters as determinants of vertical jump performance. DOI: 10.5007/1980-0037.2012v14n1p41

    Directory of Open Access Journals (Sweden)

    Saray Giovana dos Santos

    2012-01-01

    Full Text Available The aim of this study was to identify force and velocity parameters related to vertical jump performance in counter movement jump (CMJ and squat jump (SJ, and to compare these parameters between sprint runners and volleyball players. Twenty-four male athletes (12 regional/national-level sprint runners and 12 national-level volleyball players participated in this study. The athletes performed CMJ and SJ on a force platform. The following variables were analyzed: jump performance (jump height and power, peak velocity (PV, absolute and relative maximum force (Fmax, rate of force development (RFD, and time to reach maximum force (TFmax. In CMJ, jump height was correlated with PV (r=0.97 and normalized Fmax (r=0.47, whereas jump power was significantly correlated with all variables, except for Fmax (r=0.12. In SJ, PV and normalized Fmax were significantly correlated with jump height (r=0.95 and r=0.51, respectively and power (r=0.80 and r=0.87, respectively. In addition, TFmax was inversely correlated with power (r=-0.49. Runners presented higher performance variables (height and power, normalized Fmax and PV than volleyball players in both CMJ and SJ. In conclusion, velocity and maximum force were the main determinants of height and power in the two types of vertical jump. However, explosive force (RFD and TFmax was also important for power production in vertical jumps. Finally, runners presented a better vertical jump performance than volleyball players.

  4. A physical model study of the travel times and conversion point locations of P-SV converted waves in vertical transversely isotropic media

    Science.gov (United States)

    Tseng, C.

    2013-12-01

    In exploration seismology, subsurface medium commonly exhibits anisotropy, characterized by a vertical transversely isotropic (VTI) model. Due to the need of exploring small reservoirs in complex structures, the seismic exploration is extended to deal with anisotropic media. The P-S converted wave seismic exploration is a relatively inexpensive, broadly applicable, and effective way to obtain the S-wave information of the medium. In anisotropic traveltime analysis, the moveout curve of horizontal P-SV event can help to determine the ratio of the P- and SV-wave vertical velocities, the normal moveout (NMO) velocity of SV-waves, and the anisotropy parameters. The P-SV conversion point (CP) location is of great importance to P-SV data binning, NMO corrections and common conversion point (CCP) stacking, and the anisotropy has a more significant effect on the conversion point location than on the moveout. In this study, we attempt to inspect the theoretical non-hyperbolic moveout and CP equations for the P-SV waves reflected from a VTI layer by numerical calculations and physical modeling. We are also interested in visualizing the variations of the conversion point locations from a designed VTI medium. In traveltime analysis, the theoretical moveout curve is accurate up to offsets about one and a half times the reflector depth (x/z=1.5). However, the moveout curve computed by Fermat's principle fits well to the physical data. The CP locations of P-SV waves are similar to those calculated by Fermat's principle and theoretical CP equation, which are verified by the physical modeling.

  5. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    Science.gov (United States)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  6. Search for Exoplanets around Northern Circumpolar Stars. II. The Detection of Radial Velocity Variations in M Giant Stars HD 36384, HD 52030, and HD 208742

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong-Cheol; Jeong, Gwanghui; Han, Inwoo; Lee, Sang-Min; Kim, Kang-Min [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Myeong-Gu; Oh, Hyeong-Il [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Mkrtichian, David E. [National Astronomical Research Institute of Thailand, Chiang Mai 50200 (Thailand); Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg (TLS), Sternwarte 5, D-07778 Tautenburg (Germany); Gu, Shenghong; Bai, Jinming, E-mail: bclee@kasi.re.kr [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-07-20

    We present the detection of long-period RV variations in HD 36384, HD 52030, and HD 208742 by using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) for the precise radial velocity (RV) survey of about 200 northern circumpolar stars. Analyses of RV data, chromospheric activity indicators, and bisector variations spanning about five years suggest that the RV variations are compatible with planet or brown dwarf companions in Keplerian motion. However, HD 36384 shows photometric variations with a period very close to that of RV variations as well as amplitude variations in the weighted wavelet Z-transform (WWZ) analysis, which argues that the RV variations in HD 36384 are from the stellar pulsations. Assuming that the companion hypothesis is correct, HD 52030 hosts a companion with minimum mass 13.3 M {sub Jup} orbiting in 484 days at a distance of 1.2 au. HD 208742 hosts a companion of 14.0 M {sub Jup} at 1.5 au with a period of 602 days. All stars are located at the asymptotic giant branch (AGB) stage on the H–R diagram after undergoing the helium flash and leaving the giant clump.With stellar radii of 53.0 R {sub ⊙} and 57.2 R {sub ⊙} for HD 52030 and HD 208742, respectively, these stars may be the largest yet, in terms of stellar radius, found to host substellar companions. However, given possible RV amplitude variations and the fact that these are highly evolved stars, the planet hypothesis is not yet certain.

  7. Three-dimensional P velocity structure of the crust and upper mantle under Beijing region

    Energy Technology Data Exchange (ETDEWEB)

    Quan, A.; Liu, F.; Sun, Y.

    1980-04-01

    By use of the teleseismic P arrival times at 15 stations of the Beijing network for 120 events distributed over various azimuths, we studied the three-dimensional P velocity structure under the Beijing region. In calculating the theoretic travel time, we adopted the source parameters given in BISC, and used the J-B model as the standard model of earth. On inversion, we adopted singular value decomposition as a generalized inversion package, which can be used for solving very large over-determined systems of equations Gm = t without resorting to normal equations G/sup T/Gm = G/sup T/t. The results are that within the crust and upper mantle under the Beijing region there are clear lateral differences. In the results obtained by use of data from 1972 to 1975, it can be seen that there are three different zones of P-velocity. In the southeast Beijing region, P velocity is lower than that of the normal model by 10 to 14% within the crust, and by 8 to 9% within the upper mantle. The northwest Beijing region is a higher-velocity zone, within which the average P-velocity is faster than that of the normal model by about 9%. It disappears after entering into the upper mantle. The central part of this region is a normal zone. On the surface, the distribution of these P velocity variations corresponds approximately to the distribution of the over-burden. But in the deeper region, the distribution of velocity variation agrees with the distribution of seismicity. It is interesting to note that the hypocenters of several major earthquakes in this region, e.g., the Sanhe-Pinggu earthquake (1679, M = 8), the Shacheng earthquake (1730, M = 6-3/4) and the Tangshan earthquake (1976, M = 7.8), are all located very close to this boundary of these P-velocity variation zones.

  8. Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland

    KAUST Repository

    Rahpeyma, Sahar

    2016-08-11

    The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd

  9. Velocity field in the wake of a hydropower farm equipped with Achard turbines

    International Nuclear Information System (INIS)

    Georgescu, A-M; Cosoiu, C I; Alboiu, N; Hamzu, Al; Georgescu, S C

    2010-01-01

    The study consists of experimental and numerical investigations related to the water flow in the wake of a hydropower farm, equipped with three Achard turbines. The Achard turbine is a French concept of vertical axis cross-flow marine current turbine, with three vertical delta-blades, which operates irrespective of the water flow direction. A farm model built at 1:5 scale has been tested in a water channel. The Achard turbines run in stabilized current, so the flow can be assumed to be almost unchanged in horizontal planes along the vertical z-axis, thus allowing 2D numerical modelling, for different farm configurations: the computational domain is a cross-section of all turbines at a certain z-level. The two-dimensional numerical model of that farm has been used to depict the velocity field in the wake of the farm, with COMSOL Multiphysics and FLUENT software, to compute numerically the overall farm efficiency. The validation of the numerical models with experimental results is performed via the measurement of velocity distribution, by Acoustic Doppler Velocimetry, in the wake of the middle turbine within the farm. Three basic configurations were studied experimentally and numerically, namely: with all turbines aligned on a row across the upstream flow direction; with turbines in an isosceles triangular arrangement pointing downstream; with turbines in an isosceles triangular arrangement pointing upstream. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The farm configuration with all turbines aligned on a same row leads to lower values of the experimental velocities than the numerical ones, while the farm configurations where the turbines are in isosceles triangular arrangement, pointing downstream or upstream, present a better match between numerical and experimental data.

  10. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    Science.gov (United States)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  11. Variation in angular velocity and angular acceleration of a particle in rectilinear motion

    International Nuclear Information System (INIS)

    Mashood, K K; Singh, V A

    2012-01-01

    We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)

  12. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Monferrer, C., E-mail: cmonfer@upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain); Passalacqua, A., E-mail: albertop@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Chiva, S., E-mail: schiva@emc.uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, 12080 Castelló de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain)

    2016-05-15

    Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM{sup ®} software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM{sup ®} and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.

  13. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Science.gov (United States)

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  14. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  15. Influence of marine current on vertical migration of Pb in marine bay

    Science.gov (United States)

    Yu, Chen; Hong, Ai; Danfeng, Yang; Huijuan, Zhao; Dongfang, Yang

    2018-02-01

    This paper analyzed that vertical migration of Pb contents waters in Jiaozhou Bay, and revealed the influence of marine current on vertical migration process. Results showed that Pb contents in bottom waters of Jiaozhou Bay in April and July 1988 were 1.49-18.53 μg L-1 and 12.68/-27.64 μg L-1, respectively. The pollution level of Pb in bottom waters was moderate to heavy, and were showing temporal variations and spatial heterogeneity. The vertical migration process of Pb in April 1988 included a drifting process from the southwest to the north by means of the marine current was rapid in this region. The vertical migration process of Pb in July 1988 in the open waters included no drifting process since the flow rate of marine current was relative low in this region. The vertical migration process of Pb was jointly determined by vertical water’s effect, source input and water exchange, and the influence of marine current on the vertical migration of Pb in marine bay was significant.

  16. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    Science.gov (United States)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  17. Carrier velocity effect on carbon nanotube Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Amir, E-mail: fathi.amir@hotmail.com [Urmia University, Department of Electrical Engineering, Microelectronic Research Laboratory (Iran, Islamic Republic of); Ahmadi, M. T., E-mail: mt.ahmadi@urmia.ac.ir; Ismail, Razali, E-mail: Razali@fke.utm.my [University Technology Malaysia, Department of Electronic Engineering (Malaysia)

    2016-08-15

    One of the most important drawbacks which caused the silicon based technologies to their technical limitations is the instability of their products at nano-level. On the other side, carbon based materials such as carbon nanotube (CNT) as alternative materials have been involved in scientific efforts. Some of the important advantages of CNTs over silicon components are high mechanical strength, high sensing capability and large surface-to-volume ratio. In this article, the model of CNT Schottky transistor current which is under exterior applied voltage is employed. This model shows that its current has a weak dependence on thermal velocity corresponding to the small applied voltage. The conditions are quite different for high bias voltages which are independent of temperature. Our results indicate that the current is increased by Fermi velocity, but the I–V curves will not have considerable changes with the variations in number of carriers. It means that the current doesn’t increase sharply by voltage variations over different number of carriers.

  18. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  19. Acute kinematic and kinetic adaptations to wearable resistance during vertical jumping.

    Science.gov (United States)

    Macadam, Paul; Simperingham, Kim D; Cronin, John B; Couture, Grace; Evison, Chloe

    2017-06-01

    One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8 ± 3.8 years; body mass (BM): 70.2 ± 12.2 kg; height: 1.74 ± 0.78 m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P > .05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P sports where VJ's are important components as it may provide a novel movement specific training stimulus. Highlights WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force. Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3-6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance. Practitioners can safely load their athletes with upper or lower body WR of 3-6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too. As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  20. The power of pictures: Vertical picture angles in power pictures

    NARCIS (Netherlands)

    S.R. Giessner (Steffen); M.K. Ryan (Michelle); T.W. Schubert (Thomas); N. van Quaquebeke (Niels)

    2011-01-01

    textabstractAbstract: Conventional wisdom suggests that variations in vertical picture angle cause the subject to appear more powerful when depicted from below and less powerful when depicted from above. However, do the media actually use such associations to represent individual differences in

  1. Dense branched morphology in electrochemical deposition in a thin cell vertically oriented

    International Nuclear Information System (INIS)

    Gonzalez, G.; Soba, A.; Marshall, G.; Molina, F.V.; Rosso, M.

    2007-01-01

    Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments

  2. Dense branched morphology in electrochemical deposition in a thin cell vertically oriented

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Marshall, G. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Cornell Theory Center, and Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14850 (United States); Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Rosso, M. [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France)

    2007-11-20

    Convection due to electric and gravity forces increase complexity in thin layer electrochemistry (ECD). We describe conditions in a vertical cell with the cathode above the anode in which global convection is eliminated and a dense branched morphology with a smooth front is obtained. It is shown that these conditions allow a theoretical one dimensional modeling notably simplifying the complex analysis of the problem. We report experimental measurements under constant current conditions showing that the deposit, cathodic and proton fronts scale linearly with time, a signature of migration controlled regime. We discuss a theoretical ECD model under galvanostatic conditions with a three ion electrolyte and a growth model, consisting in the one dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and a growth law whose front velocity equals the anion mobility times the local electric field. The model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in good agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. (author)

  3. Attentional sensitivity and asymmetries of vertical saccade generation in monkey

    Science.gov (United States)

    Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.

  4. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements

    International Nuclear Information System (INIS)

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-01-01

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  5. Optimizing velocities and transports for complex coastal regions and archipelagos

    Science.gov (United States)

    Haley, Patrick J.; Agarwal, Arpit; Lermusiaux, Pierre F. J.

    2015-05-01

    We derive and apply a methodology for the initialization of velocity and transport fields in complex multiply-connected regions with multiscale dynamics. The result is initial fields that are consistent with observations, complex geometry and dynamics, and that can simulate the evolution of ocean processes without large spurious initial transients. A class of constrained weighted least squares optimizations is defined to best fit first-guess velocities while satisfying the complex bathymetry, coastline and divergence strong constraints. A weak constraint towards the minimum inter-island transports that are in accord with the first-guess velocities provides important velocity corrections in complex archipelagos. In the optimization weights, the minimum distance and vertical area between pairs of coasts are computed using a Fast Marching Method. Additional information on velocity and transports are included as strong or weak constraints. We apply our methodology around the Hawaiian islands of Kauai/Niihau, in the Taiwan/Kuroshio region and in the Philippines Archipelago. Comparisons with other common initialization strategies, among hindcasts from these initial conditions (ICs), and with independent in situ observations show that our optimization corrects transports, satisfies boundary conditions and redirects currents. Differences between the hindcasts from these different ICs are found to grow for at least 2-3 weeks. When compared to independent in situ observations, simulations from our optimized ICs are shown to have the smallest errors.

  6. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training.

    Science.gov (United States)

    Morin, Jean-Benoît; Samozino, Pierre

    2016-03-01

    Recent studies have brought new insights into the evaluation of power-force-velocity profiles in both ballistic push-offs (eg, jumps) and sprint movements. These are major physical components of performance in many sports, and the methods the authors developed and validated are based on data that are now rather simple to obtain in field conditions (eg, body mass, jump height, sprint times, or velocity). The promising aspect of these approaches is that they allow for more individualized and accurate evaluation, monitoring, and training practices, the success of which is highly dependent on the correct collection, generation, and interpretation of athletes' mechanical outputs. The authors therefore wanted to provide a practical vade mecum to sports practitioners interested in implementing these power-force-velocity-profiling approaches. After providing a summary of theoretical and practical definitions for the main variables, the authors first detail how vertical profiling can be used to manage ballistic push-off performance, with emphasis on the concept of optimal force-velocity profile and the associated force-velocity imbalance. Furthermore, they discuss these same concepts with regard to horizontal profiling in the management of sprinting performance. These sections are illustrated by typical examples from the authors' practice. Finally, they provide a practical and operational synthesis and outline future challenges that will help further develop these approaches.

  7. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  8. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, G

    1964-11-15

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 < {delta}t{sub sub} < 174 deg C; Surface heat flux 89 < q/A < 305 W/cm{sup 2}; Mass velocity 94 < m'/F < 900 kg/m{sup 2}/s; Burnout steam quality 0.10 < x{sub BO} < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within {+-} 5 per cent by means of the correlation by Becker et al for flow in smooth channels.

  9. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  10. TREE STEM RECONSTRUCTION USING VERTICAL FISHEYE IMAGES: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    A. Berveglieri

    2016-06-01

    Full Text Available A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.

  11. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  12. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating

  13. The Power of Pictures : Vertical Picture Angles in Power Pictures

    NARCIS (Netherlands)

    Giessner, Steffen R.; Ryan, Michelle K.; Schubert, Thomas W.; van Quaquebeke, Niels

    2011-01-01

    Conventional wisdom suggests that variations in vertical picture angle cause the subject to appear more powerful when depicted from below and less powerful when depicted from above. However, do the media actually use such associations to represent individual differences in power? We argue that the

  14. Experimental study of stratified jet by simultaneous measurements of velocity and density fields

    Science.gov (United States)

    Xu, Duo; Chen, Jun

    2012-07-01

    Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.

  15. Third-order theory for multi-directional irregular waves

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2012-01-01

    A new third-order solution for multi-directional irregular water waves in finite water depth is presented. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential. Expressions for the velocity potential at...

  16. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    Science.gov (United States)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density

  17. Bootstrap inversion for Pn wave velocity in North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Eva

    1997-06-01

    Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.

  18. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    International Nuclear Information System (INIS)

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  19. Measurement of the velocity of sound in crystals by pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Carlile, C.J.; Ward, R.C.; David, W.I.F.; Johnson, M.W.

    1986-03-01

    The diffraction method of observing elementary excitations in crystals has been applied to the study of one-phonon thermal diffuse scattering from pyrolytic graphite on a high resolution pulsed neutron diffractometer. The variation of the phase velocity of sound as a function of direction in the crystal and efficient method of determining sound velocities in crystals under extreme conditions. (author)

  20. Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.

  1. In-channel experiments on vertical swimming with bacteria-like robots

    OpenAIRE

    Tabak, Ahmet Fatih; Yeşilyurt, Serhat; Yesilyurt, Serhat

    2013-01-01

    Bio-inspired micro-robots are of great importance as to implement versatile microsystems for a variety of in vivo and in vitro applications in medicine and biology. Accurate models are necessary to understand the swimming and rigidbody dynamics of such systems. In this study, a series of experiments are conducted with a two-link cm-scale bioinspired robot moving vertically without a tether, in siliconefilled narrow cylindrical glass channels. Swimming velocities are obtained for a set of v...

  2. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    Science.gov (United States)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  3. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    Science.gov (United States)

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  4. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Angelle; White, Russel [Department of Astronomy, Georgia State University, One Park Place, Atlanta, GA 30303 (United States); Bailey, John [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Blake, Cullen [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Blake, Geoffrey [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cruz, Kelle [Department of Physics and Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Kraus, Adam [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2012-11-15

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s{sup -1} for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s{sup -1}. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of <40 M{sub J} sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s{sup -1} at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 {mu}m to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.

  5. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    International Nuclear Information System (INIS)

    Tanner, Angelle; White, Russel; Bailey, John; Blake, Cullen; Blake, Geoffrey; Cruz, Kelle; Burgasser, Adam J.; Kraus, Adam

    2012-01-01

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s –1 for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s –1 . While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of J sin i on the masses of any companions around those two M dwarfs with RV variations of –1 at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 μm to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.

  6. Research into the effects of seawater velocity variation on migration imaging in deep-water geology

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2016-07-01

    Full Text Available This paper aims at the problem that in deep water the migration quality is poor, and starts with the influence that velocity model accuracy has on migration, studying influence that variable seawater velocity makes on migration effect. At first, variable seawater velocity influenced by temperature, pressure and salinity is defined to replace the true seawater velocity. Then variable seawater velocity’s influence on interface migration location, layer sickness and migration energy focusing degree are analyzed in theory. And finally a deep water layered medium model containing variable seawater velocity, a syncline wedge shape model and a complex seafloor velocity model are constructed. By changing the seawater velocity of each model and comparing migration results of constant seawater-velocity model and variable seawater-velocity model, we can draw the conclusion: Under the condition of deep water, variable seawater-velocity’s impact on the quality of seismic migration is significant, which not only can change the location of geologic body migration result, but also can influence the resolution of geologic interface in the migration section and maybe can cause migration illusion.   Investigación de los efectos de la variación en la velocidad del agua marina sobre las imágenes de migración en la geología de aguas profundas Resumen Este artículo se enfoca en el problema de la baja calidad de la migración en aguas profundas. Se analiza la influencia que tiene el modelo de precisión de velocidad en la migración y se estudia el impacto que la variación de velocidad del agua marina tiene en el efecto de movimiento. En primera instancia, se define la variación de la velocidad del agua marina afectada por la temperatura, la presión y la salinidad para reemplazar la velocidad del agua marina actual. Luego se analiza la teoría de la influencia de la velocidad del agua marina sobre la interfaz de la ubicación de migración, el grosor de

  7. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  8. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  9. Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2017-12-01

    Full Text Available Velocity profiles originated by a pump as turbine (PAT were measured using an ultrasonic doppler velocimetry (UDV. PAT behavior is influenced by the velocity data. The effect of the rotational speed and the associated flow velocity variations were investigated. This research focuses, particularly, on the velocity profiles achieved for different rotational speeds and discharge values along the impeller since that is where the available hydraulic power is transformed into the mechanical power. Comparisons were made between experimental test results and computational fluid dynamics (CFD simulations. The used CFD model was calibrated and validated using the same conditions as the experimental facility. The numerical simulations showed good approximation with the velocity measurements for different cross-sections along the PAT system. The application of this CFD numerical model and experimental tests contributed to better understanding the system behavior and to reach the best efficiency operating conditions. Improvements in the knowledge about the hydrodynamic flow behavior associated with the velocity triangles contribute to improvements in the PAT concept and operation.

  10. Simulation study on vertically distributed multi-channel tangential interferometry for KSTAR

    International Nuclear Information System (INIS)

    Nam, Y U; Juhn, J W

    2012-01-01

    Interferometry is powerful and reliable diagnostics which measures line-integrated electron density. Since this technique only measures an averaged value over whole probing line, a multi-channel scheme is used for an analysis for spatial distribution and variation of electron density. Typical setups of the multi-channel measurement are schemes of radially distributed vertical lines, vertically distributed horizontal lines and horizontally distributed tangential lines. In Korea Superconducting Tokamak Advanced Research, a vertically distributed multi-channel tangential interferometry is planned instead of above typical schemes due to limitation of complex in-vessel geometry and narrow diagnostics port through cryostat. Total 5-channels will be vertically placed as symmetric with the mid-plain. One of the characteristic features of the vertically distributed channels is that each channel is viewing different poloidal angle, while the horizontally distributed channels are viewing different toroidal angle. This scheme also can be used on an investigation of the up-down asymmetry and the vertical oscillation of plasma. Simulation has been performed and the result will be discussed to verify the possibility and the estimated effectiveness of the scheme on this paper.

  11. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: a case study of the Siberian craton

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    2014-01-01

    by regional xenolith P-T arrays,lithosphere density heterogeneity as constrained by free-board and satellite gravity data, and the non-thermalpart of upper mantle seismic velocity heterogeneity based on joint analysis of thermal and seismic tomography data.Density structure of the cratonic lithosphere...... and strongly depleted lithospheric mantle of the Archean nuclei, particularly below the Anabar shield.Since we cannot identify the depth distribution of density anomalies, we complement the approach by seismicdata. An analysis of temperature-corrected seismic velocity structure indicates strong vertical...

  12. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  13. Lorentz force effect on mixed convection micropolar flow in a vertical conduit

    Science.gov (United States)

    Abdel-wahed, Mohamed S.

    2017-05-01

    The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.

  14. Influence of overpressure on formation velocity evaluation of Neogene strata from the eastern Bengal Basin, Bangladesh

    Science.gov (United States)

    Zahid, Khandaker M.; Uddin, Ashraf

    2005-06-01

    Interpretation of sonic log data of anticlinal structures from eastern Bangladesh reveals significant variations of acoustic velocity of subsurface strata. The amount of variation in velocity is 32% from Miocene to Pliocene stratigraphic units in Titas and Bakhrabad structure, whereas 21% in Rashidpur structure. Velocity fluctuations are influenced by the presence of gas-bearing horizons, with velocities of gas-producing strata 3-7% lower than laterally equivalent strata at similar depth. Average velocities of Miocene Boka Bil and Bhuban formations are, respectively, 2630 and 3480 m/s at Titas structure; 2820 and 3750 m/s at Bakhrabad; and 3430 and 3843 m/s at the Rashidpur structure. From the overall velocity-depth distribution for a common depth range of 915-3000 m, the Titas, Bakhrabad and Rashidpur structures show a gradual increase in velocity with depth. In contrast, the Sitakund anticline in SE Bangladesh reveals a decrease in velocity with depth from 3000 to 4000 m, probably due to the presence of overpressured mudrocks of the Bhuban Formation. Tectonic compression, associated with the Indo-Burmese plate convergence likely contributed the most toward formation of subsurface overpressure in the Sitakund structure situated in the Chittagong-Tripura Fold Belt of the eastern Bengal basin, Bangladesh.

  15. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  16. Shear wave velocities in the upper mantle of the Western Alps: new constraints using array analysis of seismic surface waves

    Science.gov (United States)

    Lyu, Chao; Pedersen, Helle A.; Paul, Anne; Zhao, Liang; Solarino, Stefano

    2017-07-01

    It remains challenging to obtain absolute shear wave velocities of heterogeneities of small lateral extension in the uppermost mantle. This study presents a cross-section of Vs across the strongly heterogeneous 3-D structure of the western European Alps, based on array analysis of data from 92 broad-band seismic stations from the CIFALPS experiment and from permanent networks in France and Italy. Half of the stations were located along a dense sublinear array. Using a combination of these stations and off-profile stations, fundamental-mode Rayleigh wave dispersion curves were calculated using a combined frequency-time beamforming approach. We calculated dispersion curves for seven arrays of approximately 100 km aperture and 14 arrays of approximately 50 km aperture, the latter with the aim of obtaining a 2-D vertical cross-section of Vs beneath the western Alps. The dispersion curves were inverted for Vs(z), with crustal interfaces imposed from a previous receiver function study. The array approach proved feasible, as Vs(z) from independent arrays vary smoothly across the profile length. Results from the seven large arrays show that the shear velocity of the upper mantle beneath the European plate is overall low compared to AK135 with the lowest velocities in the internal part of the western Alps, and higher velocities east of the Alps beneath the Po plain. The 2-D Vs model is coherent with (i) a ∼100 km thick eastward-dipping European lithosphere west of the Alps, (ii) very high velocities beneath the Po plain, coherent with the presence of the Alpine (European) slab and (iii) a narrow low-velocity anomaly beneath the core of the western Alps (from the Briançonnais to the Dora Maira massif), and approximately colocated with a similar anomaly observed in a recent teleseismic P-wave tomography. This intriguing anomaly is also supported by traveltime variations of subvertically propagating body waves from two teleseismic events that are approximately located on

  17. Measurements of the ultrasonic attenuation and velocity variation in neutron irradiated quartz for an intermediate dose of 2.6x1019 n/cm2

    International Nuclear Information System (INIS)

    Keppens, V.; Laermans, C.

    1992-01-01

    Ultrasonic measurements in neutron-irradiated quartz are carried out for an intermediate dose of 2.6x10 19 n/cm 2 . The variation of the velocity of sound has been measured and previous attenuation measurements are extended to temperatures below 1.2 K. The TS-parameters anti P and γ 1 are calculated from numerical fittings to the tunneling model. The obtained values continue the tendency of previous measurements for lower neutron doses, where a linear increase of anti P with the dose was found. This behaviour, however, is not followed by a higher dose, situated near the ''threshold regime''. (orig.)

  18. Magnetic Field Fluctuations Due to Diel Vertical Migrations of Zooplankton

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2016-12-01

    Dean et al. (2016) have indicated that at high zooplankton concentrations, diel vertical migrations (DVM) cause velocity fluctuations and a respective increase of the dissipation rate of turbulent kinetic energy (TKE). In this work, we used a 3D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating organisms) via a discrete phase model to simulate the effect of turbulence generation by DVM. We tested a range of organism concentrations from 1000 to 10,000 organisms/m3. The simulation at an extreme concentration of zooplankton showed an increase in dissipation rate of TKE by two to three orders of magnitude during DVM over background turbulence, 10-8 W kg-1. At lower concentrations (Frank, J. Wood, 2016: Biomixing due to diel vertical migrations of zooplankton. Ocean Modelling 98, 51-64.

  19. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    Science.gov (United States)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  20. A water wave model with horizontal circulation and accurate dispersion

    NARCIS (Netherlands)

    Cotter, C.; Bokhove, Onno

    We describe a new water wave model which is variational, and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite element

  1. DEM study of granular discharge rate through a vertical pipe with a bend outlet in small absorber sphere system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjin, E-mail: tjli@tsinghua.edu.cn; Zhang, He; Liu, Malin; Huang, Zhiyong; Bo, Hanliang; Dong, Yujie

    2017-04-01

    Highlights: • The work concerns granular flow in a vertical pipe with a bend. • Discharge rate fluctuation in vertical pipe are mainly from velocity fluctuation. • Steady discharge rate decreases rapidly and saturates with μ{sub s} increasing. • Steady discharge rate W{sub s} still obey the 5/2 power law of pipe internal diameter. • A correlation developed for steady discharge rate for this new geometry. - Abstract: Absorber sphere pneumatic conveying is a special application of pneumatic conveying technique in the pebble bed High Temperature Gas-Cooled Reactor (HTGR or HTR). Granular discharge through a vertical pipe with a bend outlet is one of the control modes to determine solid mass flowrate which is an important parameter for the design of absorber sphere pneumatic conveying. Granular discharge rate through the vertical pipe with a bend outlet in the small absorber sphere system are investigated by discrete element method simulation. The effect of geometry parameters on discharge rate, the discharge rate fluctuation in the vertical pipe, and the effect of friction on steady discharge rate (W{sub s}) are analyzed and discussed. The phenomena of discharge rate fluctuation in the vertical pipe are observed, which are mainly resulted from the evolution of the average downward granular velocity. The steady discharge rate decreases rapidly with sliding friction coefficient increasing from 0.125 to 0.5, and gradually saturates with the friction coefficient further increasing from 0.5 to 1. It is interesting that the linear relation between W{sub s}{sup 2/5} and pipe internal diameter D with zero intercept are found for the vertical pipe discharge with a bend outlet, which is different from the orifice discharge through a hopper or silo with none-zero intercept. A correlation similar to Beverloo’s correlation is developed to predict the steady discharge rate through the vertical pipe with a bend outlet. These results are helpful for the design of sphere

  2. A Velocity-Aware Handover Trigger in Two-Tier Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Asmae Ait Mansour

    2018-01-01

    Full Text Available The unexpected change in user equipment (UE velocity is recognized as the primary explanation for poor handover quality. In order to resolve this issue, while limiting ping-pong (PP events we carefully and dynamically optimized handover parameters for each UE unit according to its velocity and the coverage area of the access point (AP. In order to recognize any variations in velocity, we applied Allan variance (AVAR to the received signal strength (RSS from the serving AP. To assess our approach, it was essential to configure a heterogeneous network context (LTE-WiFi and interconnect Media-Independent Handover (MIH and Proxy Mobile IPv6 (PMIPv6 for seamless handover. Reproduction demonstrated that our approach does not only result in a gain in relatively accurate velocity but in addition reduces the number of PP and handover failures (HOFs.

  3. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3.......6 Results input into satellite maps The nature of the offshore vertical wind shear is investigated using acquired data from the NORSEWInD network of mast and wind lidar stations. The importance of the knowledge of the vertical wind speed profile and wind shear is first illustrated for the evaluation...

  4. Alcator C vertical viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Kato, K.; Hutchinson, I.H.

    1986-03-01

    Electron cyclotron emission measured vertically through the center of a tokamak plasma yields detailed information about the electron velocity distribution. A diagnostic developed for this purpose on Alcator C tokamak uses specialized focusing optics to obtain a well collimated viewing chord, a compact viewing dump made of pyrex or Macor to reduce the effects of wall reflection and depolarization, and a rapid-scan polarizing Michelson interferometer - InSb detector system for the spectrum measurement; all constrained by the limited access and the compact size of Alcator C. Results of diffraction analysis are used to evaluate the theoretical performance of the optical system

  5. Human vertical eye movement responses to earth horizontal pitch

    Science.gov (United States)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  6. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  7. Tip displacement variance of manipulator to simultaneous horizontal and vertical stochastic base excitations

    International Nuclear Information System (INIS)

    Rahi, A.; Bahrami, M.; Rastegar, J.

    2002-01-01

    The tip displacement variance of an articulated robotic manipulator to simultaneous horizontal and vertical stochastic base excitation is studied. The dynamic equations for an n-links manipulator subjected to both horizontal and vertical stochastic excitations are derived by Lagrangian method and decoupled for small displacement of joints. The dynamic response covariance of the manipulator links is computed in the coordinate frame attached to the base and then the principal variance of tip displacement is determined. Finally, simulation for a two-link planner robotic manipulator under base excitation is developed. Then sensitivity of the principal variance of tip displacement and tip velocity to manipulator configuration, damping, excitation parameters and manipulator links length are investigated

  8. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: examples from Europe, Siberia, and North America

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    of the Precambrian lithosphere based on surface heat flow data, (ii) non-thermal part of upper mantle seismic velocity heterogeneity based on a joint analysis of thermal and seismic tomography data, and (iii) lithosphere density heterogeneity as constrained by free-board and satellite gravity data. The latter...... of the Gondwanaland does not presently exceed 250 km depth. An analysis of temperature-corrected seismic velocity structure indicates strong vertical and lateral heterogeneity of the cratonic lithospheric mantle, with a pronounced stratification in many Precambrian terranes; the latter is supported by xenolith data...

  9. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2007-12-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  10. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2007-01-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  11. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  12. Mass transfer effects on vertical oscillating plate with heat flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2007-01-01

    Full Text Available Theoretical solution of unsteady viscous incompressible flow past an infinite vertical oscillating plate with uniform heat flux and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The temperature from the plate to the fluid at an uniform rate and the mass is diffused uniformly. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle chemical reaction parameter, thermal Grashof number, mass Grashof number Schmidt number and time are studied. The so­lutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter.

  13. The Reynolds number dependence of the velocity field in the BNL Jet-in-Pool water experiments

    International Nuclear Information System (INIS)

    Szczepura, R.T.

    1981-02-01

    The water Jet-in-Pool experiment at Berkeley Nuclear Laboratories consists of an axisymmetric sudden expansion. A series of measurements was performed in this rig, using a single-channel Laser/Doppler Anemometer system, over a Reynolds number range of 1.4 x 10 4 - 6.1 x 10 4 to determine any dependence in the flow. The mean axial velocity data showed a slight variation, but the root-mean-square fluctuations of the axial velocity had a far more pronounced dependence. This was attributed to upstream conditions in the rig, specifically the nozzle used for injecting the central portion of the flow. The variations in the mean velocity data are sufficiently small for one set of data to act as a basis for calculations at any Reynolds number when a simple closure scheme such as a prescribed effective viscosity is used. However the variation in turbulence parameters will complicate the use of second-order closure schemes and this will be examined further. (author)

  14. Regional Phenomena of Vertical Deformation in Southern Part of Indonesia

    Science.gov (United States)

    Sarsito, D. A.; Susilo; Andreas, H.; Pradipta, D.; Gumilar, I.

    2018-02-01

    Distribution of present-day horizontal and vertical deformation across the Southern Part of Indonesia at Java, Bali and Nusa Tenggara now days can be determined from continuous and campaign types of GNSS GPS data monitoring. For vertical deformation in this case we use the continuous types since they are give better quality of data consistency compare to campaign type. Continuous Global Positioning System (CGPS) are maintaining by Geospatial Information Agency for more than a decade. The vertical displacements or velocity rates are estimated from time series analysis after multi-baseline GPS processing using GAMIT-GLOBK software with respect to the latest International Terrestrial Reference Frame. The result shows some interesting phenomena where the northern part of research area majority have negative value that may indicate land subsidence with or without tectonic subsidence combination. In the middle part, the uplift phenomena are clearly shown and in the southern part show combine pattern between uplift and subsidence. The impacts of those phenomena would be discuss also in this paper since many population and infrastructure are located in the areas that will need more protection planning to reduce the negative impact such as earthquake and flooding.

  15. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen

    2015-02-06

    © 2015 The Authors. Earth\\'s present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  16. A multi-offset vertical profiling (VSP) experiment for anisotropy analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grech, G. K.; Lawton, D. [Calgary Univ., AB (Canada)

    2000-09-01

    Vertical seismic profiling (VSP) and surface seismic data are used to image and locate hydrocarbon targets in the subsurface, hence the importance of assessing which formations exhibit seismic velocity anisotropy and quantify their parameters for use during seismic imaging. The purpose of the experiments described in this paper was to determine whether the multiple dipping thin shale beds overlying the target area in the Rocky Mountain Foothills in southern Alberta exhibit seismic velocity anisotropy and if so, how this phenomenon affects the image of the underlying target. Traveltime inversion of the first arrival data from the multi-offset VSP in the study area has revealed that the Cretaceous shales exhibit velocity anisotropy of about 10 degrees. For a target depth of 3000 m and moderate dips of 30 to 50 degrees in the anisotropic overburden, it would be reasonable to expect a lateral shift in the imaged location of the target of up to 300 m in the up-direction of overlying bedding. 8 refs., 9 figs.

  17. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen; Bennett, Richard A.; Hreinsdó ttir, Sigrú n

    2015-01-01

    © 2015 The Authors. Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  18. Some characteristics of developing bubbly flow in a vertical mini pipe

    International Nuclear Information System (INIS)

    Hibiki, T.; Hazuku, T.; Takamasa, T.; Ishii, M.

    2007-01-01

    Accurate prediction of the flow parameters is essential to successful development of the interfacial transfer terms in the two-phase flow formulation in a mini channel. From this point of view, axial measurements of flow parameters such as void fraction, interfacial area concentration, gas velocity, bubble Sauter mean diameter, and bubble number density were performed by the image processing method at five axial locations in vertical upward developing bubbly flows using a 1.02 mm-diameter pipe. The frictional pressure loss was also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 1.02 m/s to 4.89 m/s and from 0.980% to 24.6%, respectively. The constitutive equation for the drift velocity applicable to mini channel flow was developed by considering the effect of the frictional pressure loss on the drift velocity. The constitutive equation for the distribution parameter was also developed by considering the flow transition from laminar to turbulent flows. The drift-flux model with the modeled constitutive equations for the distribution parameter and drift velocity agreed with the measured void fractions within the averaged prediction accuracy of ±6.76%. The applicability of the existing interfacial area concentration model to mini channel flow was validated by the measured interfacial data

  19. Heat and mass transfer effects on moving vertical plate in the presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2004-01-01

    Full Text Available Thermal radiation effects on moving infinite vertical plate in the presence variable temperature and mass diffusion is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature and the concentration level near the plate are raised linearly with time. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity and skin-friction are studied for different parameters like thermal Grashof number, mass Grashof number, time and radiation parameter. It is observed that the velocity slightly decreases with increasing value of the radiation parameter.

  20. A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika

    Science.gov (United States)

    Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric

    2018-03-01

    The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.

  1. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    Science.gov (United States)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p

  2. The VLT-FLAMES Tarantula Survey. XVIII. Classifications and radial velocities of the B-type stars

    NARCIS (Netherlands)

    Evans, C.J.; Kennedy, M.B.; Dufton, P.L.; Howarth, I.D.; Walborn, N.R.; Markova, N.; Clark, J.S.; de Mink, S.E.; de Koter, A.; Dunstall, P.R.; Hénault-Brunet, V.; Maíz Apellániz, J.; McEvoy, C.M.; Sana, H.; Simón-Díaz, S.; Taylor, W.D.; Vink, J.S.

    2015-01-01

    We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are

  3. Even between-lap pacing despite high within-lap variation during mountain biking.

    Science.gov (United States)

    Martin, Louise; Lambeth-Mansell, Anneliese; Beretta-Azevedo, Liane; Holmes, Lucy A; Wright, Rachel; St Clair Gibson, Alan

    2012-09-01

    Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean±SD age=27.2±5.0 y, stature=176.8±8.1 cm, mass=76.3±11.7 kg, VO2max=55.1±6.0 mL·kg(-1)·min1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. There was no significant difference in lap times (P=.99) or lap velocity (P=.65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise.

  4. Effects of velocity and weight support on ground reaction forces and metabolic power during running.

    Science.gov (United States)

    Grabowski, Alena M; Kram, Rodger

    2008-08-01

    The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.

  5. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    Science.gov (United States)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  6. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...... at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...

  7. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T. I.; Blanke, Mogens

    2000-01-01

    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  8. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-01-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4 sub 2 ; Mass velocity 144 2 /s; Heated length 1040 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the ranges investigated the observed steam quality at burnout, x BO generally decreases with increasing heat flux; increases with increasing pressure and decreases with increasing mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible

  9. Natural convective flow of a magneto-micropolar fluid along a vertical plate

    Directory of Open Access Journals (Sweden)

    M. Ferdows

    2018-03-01

    Full Text Available This paper presents a numerical study of natural convective flow of an electrically conducting viscous micropolar fluid past a vertical plate. Internal heat generation (IHG versus without IHG in the medium are discussed in the context of corresponding similarity solutions. Results are presented in terms of velocity, angular velocity, temperature, skin friction in tabular forms, local wall-coupled stress, and Nusselt number. Computations have been accomplished by parametrizing the micropolar, micro-rotation, magnetic field, suction parameters, and the Prandtl number. Several critical issues are addressed at the end of the paper with reference to a previous study by El-Hakiem. The study is relevant to high-temperature electromagnetic materials fabrication systems. Keywords: Natural convection, Thermal boundary layer, Micropolar fluid, Similarity transformation, Internal heat generation

  10. Experimental study for thermal striping phenomena of parallel triple-jet. Effects of the difference between hot jets and cold jet in discharged temperature and velocity on convective mixing

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Tokuhiro, A.; Miyakoshi, Hiroyuki

    1996-10-01

    Elucidation on thermal hydraulic behavior of Thermal Striping is of importance for a reactor safety, which is arisen form exit temperature difference of fuel subassemblies. Since its temperature fluctuation may cause thermal cycle fatigue on upper internal structure (UIS). A series of experiments was performed using the Thermal Striping water test facility in order to investigate the mixing phenomena on three vertical jets with exit velocity and temperature differences. The parameters were the velocity and temperature of the jets at discharge nozzles. The local velocities were measured by Ultrasound Velocity Profile (UVP) monitor and Laser Doppler Anemometry (LDA), and temperature distributions were measured by thermocouples. This report mainly examined the experimental results of temperature measurements. There is a typical region where the gradient of the temperature variation in the triple-jet: that is the Convective Mixing region. This region is independent of the discharged temperature difference, and spreads with larger velocity difference among the jets. For isovelocity discharge conditions, non-dimensional temperature fields are almost independent of discharged temperature differences within Convective Mixing region. Consequently, the effect of temperature difference is negligible compared to that of velocity difference on the flow field. There are remarkable frequencies of 2-5Hz in temperature fluctuation due to a oscillation of the central jet (cold jet) for this condition. While, for non-isovelocity discharge condition, there are no remarkable frequencies. Hence, it is clear that there is the region where a large thermal fatigue is imposed by Thermal Striping against structures of Fast Reactor. It is suggested that the structures have to be placed outside of Convective Mixing region. Also, it is considered that typical frequencies in temperature fluctuation are controlled by giving a discharge velocity difference between cold and hot jets. (J.P.N.)

  11. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik

    2013-09-01

    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  12. Microgeographic variation in locomotor traits among lizards in a human-built environment

    Directory of Open Access Journals (Sweden)

    Colin Donihue

    2016-03-01

    Full Text Available Microgeographic variation in fitness-relevant traits may be more common than previously appreciated. The fitness of many vertebrates is directly related to their locomotor capacity, a whole-organism trait integrating behavior, morphology, and physiology. Because locomotion is inextricably related to context, I hypothesized that it might vary with habitat structure in a wide-ranging lizard, Podarcis erhardii, found in the Greek Cyclade Islands. I compared lizard populations living on human-built rock walls, a novel habitat with complex vertical structure, with nearby lizard populations that are naive to human-built infrastructure and live in flat, loose-substrate habitat. I tested for differences in morphology, behavior, and performance. Lizards from built sites were larger and had significantly (and relatively longer forelimbs and hindlimbs. The differences in hindlimb morphology were especially pronounced for distal components—the foot and longest toe. These morphologies facilitated a significant behavioral shift in jumping propensity across a rocky experimental substrate. I found no difference in maximum velocity between these populations; however, females originating from wall sites potentially accelerated faster over the rocky experimental substrate. The variation between these closely neighboring populations suggests that the lizards inhabiting walls have experienced a suite of trait changes enabling them to take advantage of the novel habitat structure created by humans.

  13. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    Science.gov (United States)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  14. Electrostatic Comb-Drive Actuator with High In-Plane Translational Velocity

    Directory of Open Access Journals (Sweden)

    Yomna M. Eltagoury

    2016-10-01

    Full Text Available This work reports the design and opto-mechanical characterization of high velocity comb-drive actuators producing in-plane motion and fabricated using the technology of deep reactive ion etching (DRIE of silicon-on-insulator (SOI substrate. The actuators drive vertical mirrors acting on optical beams propagating in-plane with respect to the substrate. The actuator-mirror device is a fabrication on an SOI wafer with 80 μm etching depth, surface roughness of about 15 nm peak to valley and etching verticality that is better than 0.1 degree. The travel range of the actuators is extracted using an optical method based on optical cavity response and accounting for the diffraction effect. One design achieves a travel range of approximately 9.1 µm at a resonance frequency of approximately 26.1 kHz, while the second design achieves about 2 µm at 93.5 kHz. The two specific designs reported achieve peak velocities of about 1.48 and 1.18 m/s, respectively, which is the highest product of the travel range and frequency for an in-plane microelectromechanical system (MEMS motion under atmospheric pressure, to the best of the authors’ knowledge. The first design possesses high spring linearity over its travel range with about 350 ppm change in the resonance frequency, while the second design achieves higher resonance frequency on the expense of linearity. The theoretical predications and the experimental results show good agreement.

  15. Settling velocity of quasi-neutrally-buoyant inertial particles

    Science.gov (United States)

    Martins Afonso, Marco; Gama, Sílvio M. A.

    2018-02-01

    We investigate the sedimentation properties of quasi-neutrally buoyant inertial particles carried by incompressible zero-mean fluid flows. We obtain generic formulae for the terminal velocity in generic space-and-time periodic (or steady) flows, along with further information for flows endowed with some degree of spatial symmetry such as odd parity in the vertical direction. These expressions consist in space-time integrals of auxiliary quantities that satisfy partial differential equations of the advection-diffusion-reaction type, which can be solved at least numerically, since our scheme implies a huge reduction of the problem dimensionality from the full phase space to the classical physical space. xml:lang="fr"

  16. Propagation properties of Rossby waves for latitudinal β-plane variations of f and zonal variations of the shallow water speed

    Directory of Open Access Journals (Sweden)

    C. T. Duba

    2012-05-01

    Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.

  17. Apseudo-fluid representation of vertical liquid–coarse solids flow

    Directory of Open Access Journals (Sweden)

    ZORANA ARSENIJEVIC

    2005-05-01

    Full Text Available The pseudo–fluid concept has been applied for the prediction of the pressure gradient and voidage in vertical liquid-coarse solids flow. Treating the flowing mixture as a single homogenous fluid, the correlation for the friction coefficient of the suspension–wall was developed, as was the correlation between the true voidage and the apparent (volumetric voidage in the transport tube. Experiments were performed using water and spherical glass particles 1.20, 1.94 and 2.98 mm in diameter in a transport tube of 24 mm in diameter. The loading ratio (Gp/Gf was varied between 0.05 and 1.05 and the fluid superficial velocity was between 0.4 Ut and 4.95 Ut where Ut represents the single particle terminal velocity. The voidage ranged from 0.648 to 0.951 for these ratios. Experimental data for the pressure gradient and voidage from the literature agree well with the proposed correlations.

  18. Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast

    Science.gov (United States)

    Julia, J.; Nascimento, R.

    2013-05-01

    Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.

  19. Deformation and velocity measurements at elevated temperature in a fractured 0.5 M block of tuff

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.A.

    1996-01-01

    This paper presents preliminary results of laboratory tests conducted on small block samples of Topopah Spring tuff, in support of the Yucca Mountain Site Characterization Project. The overall objective of these tests is to investigate the thermal-mechanical, thermal-hydrological, and thermal-chemical response of the rock to conditions similar to the near-field environment (NFE) of a potential nuclear waste repository. We present preliminary results of deformation and elastic wave velocity measurements on a 0.5-m-scale block of Topopah Spring tuff tested in uniaxial compression to 8.5 MPa and at temperatures to 85 degree C. The Young's modulus was found to be about 7 to 31 GPa for vertical measurements parallel to the stress direction across parts of the block containing no fractures or a few fractures, and 0.5 to 0.9 GPA for measurements across individual fractures, at ambient temperature and 8.5 MPa maximum stress. During stress cycles between 5 and 8.5 MPa, the deformation modulus values for the matrix with fractures were near 15-20 GPa at ambient temperature but dropped to about 10 GPa at 85 degree C. Compressional wave velocities were found to be about 3.6 to 4.7 km/s at ambient temperature and stress. After the stress was cycled, velocities dropped to values as low as 2.6 km/s in the south end of the block where vertical cracks developed. Heating the block to about 85 degree C raised velocities to as much as 5.6 km/s in the upper third of the block

  20. Characterization of the slug flow formation in vertical-to-horizontal channels with obstructions

    International Nuclear Information System (INIS)

    Onder, E.N.

    2004-01-01

    This thesis presents the results of the work carried out to study the formation of slugs under conditions of vertical-to-horizontal counter-current flow with obstructions. A flow instability is the mechanism proposed for the formation of slugs in a co-current flow. However, to the best of author's knowledge no work has been carried out for the formation of slugs in a vertical-to-horizontal counter-current flow with obstructions. Despite the existence of a few studies on counter-current vertical-to-horizontal slug flow with obstructions, it is in particular of great importance in the area of nuclear reactor safety analysis of a CANDU reactor. A test section manufactured of 63.5 mm inner diameter (ID) plexiglass was used for this work. The test section consists of 2022 mm long vertical and 3327 mm long horizontal legs connected by a 90 o PVC elbow. The horizontal leg contains flanges in which an orifice may be installed. These flanges are located at the distance of 1110 mm and 2217 mm from the elbow. The experiments were carried out to study the frequency of the formation of slugs, the slug propagation velocity and the averaged void fraction of slugs. We also carried out experiments for the characterisation of the propagation of waves. This allowed us to obtain the initial conditions required by the present model in order to predict the formation of slugs. In this model, the initial profile of waves was used to start calculations. Therefore, the aim of these experiments was to obtain the initial profile of these waves. The comparison of the experimental data collected at the onset of flooding with that collected at the onset of slugging shows that the results are very close to each other. This reflects the fact that flooding is simultaneously accompanied by the formation of slugs in the horizontal leg. We found that, for a given liquid flow rate, the gas flow rate, necessary to form the slugs as well as to provoke flooding, decreases as the severity of the