WorldWideScience

Sample records for vertical velocity reveals

  1. Variability of Vertical Velocity Statistics in the Cloud-Free Convective Boundary Layer as Revealed by Doppler Lidar

    Science.gov (United States)

    Berg, L. K.; Newsom, R. K.; Turner, D. D.

    2016-12-01

    The majority of our understanding of the behavior of vertical velocity in the convective boundary layer is based on a small number of short-term observations made using either in situ or with remote sensing techniques over a limited number of sites. Analysis of long-term statistics have been lacking due to the scarcity of appropriate measurements. The US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is addressing this shortcoming through the deployment of a suite of scanning Doppler Lidars at a number of locations, associated with reconfiguration of the ARM Southern Great Plains site and the recent Holistic Interaction of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) field campaign. In this study, we utilize data collected by a Doppler Lidar system that has operated continuously from 2011 to the present at a location in north-central Oklahoma to examine the long-term behavior of the vertical velocity variance, skewness, and kurtosis. The application of standard normalization techniques, such as the mixed-layer depth and Deardorff convective velocity scale, do a good job in collapsing the data onto a single curve during periods in which the boundary layer is well developed, albeit with considerable amounts of scatter. During non-steady conditions, such as those found in the morning, scaling using the Deardorff convective velocity scale is found to work poorly. This behavior is likely due to the eddy turnover time and the growth rate of the boundary-layer depth. Systematic differences in the turbulence statistics are found by season, for non-stationary conditions, or periods with relatively small and large values of the surface friction velocity measured at the surface, amount of static instability, and wind shear across the boundary-layer top.

  2. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  3. On the measurement of vertical velocity by MST radar

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview is presented of the measurement of atmospheric vertical motion utilizing the MST radar technique. Vertical motion in the atmosphere is briefly discussed as a function of scale. Vertical velocity measurement by MST radars is then considered from within the context of the expected magnitudes to be observed. Examples are drawn from published vertical velocity observations.

  4. Parachute landing fall characteristics at three realistic vertical descent velocities.

    Science.gov (United States)

    Whitting, John W; Steele, Julie R; Jaffrey, Mark A; Munro, Bridget J

    2007-12-01

    Although parachute landing injuries are thought to be due in part to a lack of exposure of trainees to realistic descent velocities during parachute landing fall (PLF) training, no research has systematically investigated whether PLF technique is affected by different vertical descent conditions, with standardized and realistic conditions of horizontal drift. This study was designed to determine the effects of variations in vertical descent velocity on PLF technique. Kinematic, ground reaction force, and electromyographic data were collected and analyzed for 20 paratroopers while they performed parachute landings, using a custom-designed monorail apparatus, with a constant horizontal drift velocity (2.3 m x s(-1)) and at three realistic vertical descent velocities: slow (2.1 m x s(-1)), medium (3.3 m x s(-1)), and fast (4.6 m x s(-1)). Most biomechanical variables characterizing PLF technique were significantly affected by descent velocity. For example, at the fast velocity, the subjects impacted the ground with 123 degrees of plantar flexion and generated ground reaction forces averaging 13.7 times body weight, compared to 106 degrees and 6.1 body weight, respectively, at the slow velocity. Furthermore, the subjects activated their antigravity extensor muscles earlier during the fast velocity condition to eccentrically control the impact absorption. As vertical descent rates increased, the paratroopers displayed a significantly different strategy when performing the PLF. It is therefore recommended that PLF training programs include ground training activities with realistic vertical descent velocities to better prepare trainees to withstand the impact forces associated with initial aerial descents onto the Drop Zone and, ultimately, minimize the potential for injury.

  5. Some numerical calculations of the vertical velocity field in hurricanes

    OpenAIRE

    Krishnamurti, T. N.

    2011-01-01

    The commonly observed crescent-shaped geometry of the tangential wind field in hurricanes is imposed on the primitive equations of atmospheric motion, and solutions for the vertical velocity field are obtained. It is shown that the numerically computed vertical motion field exhibits a spiral form, very similar to what is observed in radar pictures in individual hurricanes. Aircraft flight data from the National Hurricane Research Project are utilized to carry out the numerical calculations i...

  6. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps

  7. Wind Velocity Vertical Extrapolation by Extended Power Law

    Directory of Open Access Journals (Sweden)

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  8. Orthogonal Vertical Velocity Dispersion Distributions Produced by Bars

    Science.gov (United States)

    Du, Min; Shen, Juntai; Debattista, Victor P.; de Lorenzo-Cáceres, Adriana

    2017-02-01

    In barred galaxies, the contours of stellar velocity dispersions (σ) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct σ peaks on the minor axis of the inner bar, which we termed “σ-humps,” while two local σ minima are present close to the ends of inner bars, I.e., “σ-hollows.” Analysis of numerical simulations shows that {σ }z-humps or hollows should play an important role in generating the observed σ-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of {σ }z in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower {σ }z along the bar and enhance it perpendicular to the bar, thus generating {σ }z-humps+hollows. Such a result suggests that {σ }z-humps+hollows can be generated by the purely dynamical response of stars in the presence of a sufficiently massive, vertically thin bar, even without an outer bar. Using self-consistent N-body simulations, we verify the existence of vertically thin bars in the nuclear-barred and S2B models that generate prominent σ-humps+hollows. Thus, the ubiquitous presence of σ-humps+hollows in S2Bs implies that inner bars are vertically thin. The addition of a bulge makes the {σ }z-humps more ambiguous and thus tends to somewhat hide the {σ }z-humps+hollows. We show that {σ }z may be used as a kinematic diagnostic of stellar components that have different thicknesses, providing a direct perspective on the morphology and thickness of nearly face-on bars and bulges with integral field unit spectroscopy.

  9. Terminal velocity of a shuttlecock in vertical fall

    Science.gov (United States)

    Peastrel, Mark; Lynch, Rosemary; Armenti, Angelo

    1980-07-01

    We have performed a straightforward vertical fall experiment for a case where the effects of air resistance are important and directly measurable. Using a commonly available badminton shuttlecock, a tape measure, and a millisecond timer, the times required for the shuttlecock to fall given distances (up to almost ten meters) were accurately measured. The experiment was performed in an open stairwell. The experimental data was compared to the predictions of several models. The best fit was obtained with the model which assumes a resistive force quadratic in the instantaneous speed of the falling object. This model was fitted to the experimental data enabling us to predict the terminal velocity of the shuttlecock (6.80 m/sec). The results indicate that, starting from rest, the vertically falling shuttlecock achieves 99% of its terminal velocity in 1.84 sec, after falling 9.2 m. The relative ease in collecting the data, as well as the excellent agreement with theory, make this an ideal experiment for use in physics courses at a variety of levels.

  10. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were

  11. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  12. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  13. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  14. Vertical Velocities in Cumulus Convection: Implications for Climate and Prospects for Realistic Simulation at Cloud Scale

    Science.gov (United States)

    Donner, Leo

    2014-05-01

    Cumulus mass fluxes are essential controls on the interactions between cumulus convection and large-scale flows. Cumulus parameterizations have generally been built around them, and these parameterizations are basic components of climate models. Several important questions in climate science depend also on cumulus vertical velocities. Interactions between aerosols and convection comprise a prominent example, and scale-aware cumulus parameterizations that require explicit information about cumulus areas are another. Basic progress on these problems requires realistic characterization of cumulus vertical velocities from observations and models. Recent deployments of dual-Doppler radars are providing unprecedented observations, which can be compared against cloud-resolving models (CRMs). The CRMs can subsequently be analyzed to develop and evaluate parameterizations of vertical velocities in climate models. Vertical velocities from several cloud models will be compared against observations in this presentation. CRM vertical velocities will be found to depend strongly on model resolution and treatment of sub-grid turbulence and microphysics. Although many current state-of-science CRMs do not simulate vertical velocities well, recent experiments with these models suggest that with appropriate treatments of sub-grid turbulence and microphysics robustly realistic modeling of cumulus vertical velocities is possible.

  15. Diagnosis of hydrometeor profiles from area-mean vertical-velocity data

    Science.gov (United States)

    Braun, Scott A.; Houze, Robert A., Jr.

    1995-01-01

    A simple one-dimensional microphysical retrieval model is developed for estimating vertical profiles of liquid and frozen hydrometeor mixing ratios from observed vertical profiles of area-mean vertical velocity in regions of convective and/or stratiform precipitation. The mean vertical-velocity profiles can be obtained from Doppler radar (single and dual) or other means. The one-dimensional results are shown to be in good agreement with two-dimensional microphysical fields from a previous study. Sensitivity tests are performed.

  16. Diagnosing ocean vertical velocities off New Caledonia from a SPRAY glider

    Science.gov (United States)

    Fuda, Jean-Luc; Marin, Frédéric; Durand, Fabien; Terre, Thierry

    2013-04-01

    A SPRAY glider has been operated in the Coral Sea (South-Western tropical Pacific ocean) since 2011, with the primary goal of monitoring the boundary currents and jets. In this presentation, we will describe how oceanic vertical velocities can be estimated from SPRAY glider measurements, with application to the observation of internal waves off New Caledonia in May-June 2012. Pressure measurements by the glider allow estimating the vertical velocities of the glider (relative to ocean bottom) at each time. These vertical velocities are the sum of the vertical velocities of the glider relative to the water body (governed by the laws of motion of the glider) and of the oceanic vertical velocities (due to ocean internal dynamics). If we solve the laws of motion of the glider (via an adequate flight model), we can thus retrieve oceanic vertical velocities. On account of their small magnitude, the retrieval of ocean vertical velocities would be tricky - if not impossible - through other conventional instruments such as ADCPs. Following a couple of similar previous studies on the SLOCUM and SEAGLIDER gliders, we describe a simplified flight model for the SPRAY glider. This model has three parameters that only depend on the characteristics of the glider: the compressibility and thermal expansion coefficients (that are constant) and the drag coefficient (that is allowed to change dive after dive, because of potential fouling of the hull). We estimate these parameters under the assumption that the absolute vertical water velocity average to zero over a long enough spatio-temporal window (typically: a profile or a group of profiles). Unlike previous studies, our flight model takes into account the vehicle roll to assess its impact on the flight model and oceanic vertical velocity retrieval. We apply this approach to a 40-day/250 dives/800km mission performed in May-June 2012 along 167°E south of New Caledonia. Dramatic water vertical velocities variations (up to 3-4 cm

  17. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  18. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    for African-Asian-Australian Monsoon Analysis and Prediction, in October-November 2006. Using an array of four subsurface moored acoustic Doppler current profilers, we estimated vertical velocity by applying the continuity equation. Results indicated...

  19. Estimates of vertical velocities and eddy coefficients in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Vertical velocities and eddy coefficients in the intermediate depths of the Bay of Bengal are calculated from mean hydrographic data for 300 miles-squares. The linear current density (sigma- O) versus log-depth plots show steady balance between...

  20. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  1. The Vertical Variation of HI Velocity Dispersion in Disk Galaxies

    NARCIS (Netherlands)

    Peters, Stephan Pieter Cornelis; Freeman, Ken; van der Kruit, Pieter C.

    2010-01-01

    One of the key assumptions in dynamical applications of the HI velocity dispersion in disk galaxies (e.g. to the flattening of the dark halo) has always been the isothermal nature of the HI distribution. There is no physical reason for this assumption: it is made because until now it has not been

  2. Cloud base vertical velocity statistics: a comparison between an atmospheric mesoscale model and remote sensing observations

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2011-09-01

    Full Text Available The statistics of cloud base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that AROME significantly underestimates the variability of vertical velocity at cloud base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4–8 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km explains 70–80 % of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 10 km in the presented case. Adding a TKE-term on the resolved grid-point vertical velocity can compensate for the underestimation, but only for altitudes below approximately the boundary layer top height. The results illustrate the need for a careful consideration of the scales the model is able to accurately resolve, as well as for a special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.

  3. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    Science.gov (United States)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  4. The elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems

    Science.gov (United States)

    Bu, Q. T.; Hu, G. W.; Ye, Y. G.; Liu, C. L.; Li, C. F.; Best, A. I.; Wang, J. S.

    2017-06-01

    Knowledge of the elastic wave velocities of hydrate-bearing sediments is important for geophysical exploration and resource evaluation. Methane gas migration processes play an important role in geological hydrate accumulation systems, whether on the seafloor or in terrestrial permafrost regions, and their impact on elastic wave velocities in sediments needs further study. Hence, a high-pressure laboratory apparatus was developed to simulate natural continuous vertical migration of methane gas through sediments. Hydrate saturation (S h) and ultrasonic P- and S-wave velocities (V p and V s) were measured synchronously by time domain reflectometry (TDR) and by ultrasonic transmission methods respectively during gas hydrate formation in sediments. The results were compared to previously published laboratory data obtained in a static closed system. This indicated that the velocities of hydrate-bearing sediments in vertical gas migration systems are slightly lower than those in closed systems during hydrate formation. While velocities increase at a constant rate with hydrate saturation in the closed system, P-wave velocities show a fast-slow-fast variation with increasing hydrate saturation in the vertical gas migration system. The observed velocities are well described by an effective-medium velocity model, from which changing hydrate morphology was inferred to cause the fast-slow-fast velocity response in the gas migration system. Hydrate forms firstly at the grain contacts as cement, then grows within the pore space (floating), then finally grows into contact with the pore walls again. We conclude that hydrate morphology is the key factor that influences the elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems.

  5. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Rodríguez-Lorenzo Lois

    2016-12-01

    Full Text Available Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ; a countermovement jump without (CMJ and with the arm swing (CMJA and a reactive jump (RJ. Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001. Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking.

  6. Using smartphones' pressure sensors to measure vertical velocities in elevators, stairways and drones

    CERN Document Server

    Monteiro, Martin

    2016-01-01

    By means of smartphones' pressure sensors we measure vertical velocities of elevators, pedestrians climbing stairways and flying unmanned aerial vehicles (or \\textit{drones}). The barometric pressure obtained with the smartphone is related, thanks to the hydrostatic approximation, to the altitude of the device. From the altitude values, the vertical velocity is accordingly derived. The approximation considered is valid in the first hundreds meters of the inner layers of the atmosphere. Simultaneously to the pressure, the acceleration values, reported by the buit-in accelerometers, are also recorded. Integrating numerically the acceleration, vertical velocity and altitude are also obtained. We show that data obtained with the pressure sensor is considerable less noisy than that obtained with the accelerometer in the experiments proposed here. Accumulatioin of errors are also evident in the numerical integration of the acceleration values. The comparison with reference values taken from the architectural plans ...

  7. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  8. Velocity measurements in the wake of laboratory-scale vertical axis turbines and rotating circular cylinders

    Science.gov (United States)

    Araya, Daniel; Dabiri, John

    2014-11-01

    We present experimental data to compare the wake characteristics of a laboratory-scale vertical-axis turbine with that of a rotating circular cylinder. The cylinder is constructed to have the same diameter and height as the turbine in order to provide a comparison that is independent of the tunnel boundary conditions. Both the turbine and cylinder are motor-driven to tip-speed ratios based on previous experiments. An analysis of the effect of the motor-driven flow is also presented. These measurements are relevant for exploring the complex structure of the vertical axis turbine wake relative to the canonical wake of a circular cylinder. 2D particle image velocimetry is used to measure the velocity field in a two-dimensional plane normal to the axis of rotation. This velocity field is then used to compare time-averaged streamwise velocity, phase-averaged vorticity, and the velocity power spectrum in the wake of the two configurations. The results give insight into the extent to which solid cylinders could be used as a simplified model of the flow around vertical axis turbines in computational simulations, especially for turbine array optimization.

  9. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  10. Vertical velocity distribution in open-channel flow with rigid vegetation.

    Science.gov (United States)

    Zhu, Changjun; Hao, Wenlong; Chang, Xiangping

    2014-01-01

    In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the approaching flow in a rectangular channel. Vertical distributions of time-averaged velocity at various streamwise distances were evaluated using an acoustic Doppler velocimeter (ADV). The results indicate that, in submerged conditions, it is difficult to described velocity distribution along the entire depth using unified function. The characteristic of vertical distribution of longitudinal velocity is the presence of inflection. Under the inflection, the line is convex and groove above inflection. The interaction of high and low momentum fluids causes the flow to fold and creates strong vortices within each mixing layer. Understanding the flow phenomena in the area surrounding the tall vegetation, especially in the downstream region, is very important when modeling or studying the riparian environment. ADV measures of rigid vegetation distribution of the flow velocity field can give people a new understanding.

  11. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (˜T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (˜ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  12. Estimation of vertical migration velocity of (137)Cs in the Mount IDA/Kazdagi, Turkey.

    Science.gov (United States)

    Karadeniz, Özlem; Çakır, Rukiye; Karakurt, Hidayet

    2015-08-01

    This paper presents the results obtained from a radioecological study carried out in the forest sites of Mount IDA (Kazdagi)/Edremit, Turkey. For 118 soil profiles, the depth distribution of (137)Cs activity was established by fitting the experimental points to an exponential, a gaussian or a log-normal function. The relaxation lengths were in the range of 1.09-16.7 cm with a mean of 5.73 cm, showing a slow transport and a strong retention capacity of (137)Cs even after the 26-y period of Chernobyl accident. From the data for the vertical distribution of (137)Cs in soil profiles, the mean annual migration velocity of (137)Cs was in the range of 0.11-0.62 cm year(-1) with a mean of 0.30 cm year(-1). Statistically significant correlations between the thickness of the humus layer and the mean annual velocity of (137)Cs were found for both coniferous and mixed forest sites. The mean annual velocity of (137)Cs in the forests sites with Pinus nigra var pallasiana was significantly higher than sites with Pinus brutia. External dose-rates from the (137)Cs in forest soils were estimated using a conversion factor used in many studies and comprised with the external dose-rates determined according to the vertical distribution of (137)Cs within the soil depth profiles. It is clearly seen that both levels and spatial distribution patterns of the external dose-rates from (137)Cs were influenced considerably with the vertical migration rate and the vertical distribution of (137)Cs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Influence of running velocity on vertical, leg and joint stiffness : modelling and recommendations for future research.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John

    2008-01-01

    Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.

  14. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  15. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  16. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  17. The large low velocity province and the vertical flow beneath the Pacific

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Tsuchiya, T.

    2010-12-01

    Since tomographic studies found the large low velocity province (LLVP) (degree-2 pattern) in the lowermost mantle in 1980's, it has been controversial whether it is due to thermal effects, chemical heterogeneity, or both. Geodynamical studies have suggested that both effects can explain the LLVP but that the large thermo-chemical pile model is preferred (e.g., Bull et al. 2009). Our seismological group has developed waveform inversion techniques and applied them to data from recently deployed broad-band seismic arrays such as US-Array. We found that there are notable S-velocity decreases beneath the D" discontinuity as the CMB is approached within the high average velocity regions such as the lowermost mantle beneath Central America, the Arctic, and Siberia (Kawai et al. 2007a,b, 2009). We also found "S-shaped" velocity models in the lowermost mantle in regions with low average S-velocity such as beneath the western Pacific and the Pacific (Konishi et al. 2009; Kawai & Geller 2010a). We performed analyses based on ab-initio mineral physics (Kawai & Tsuchiya 2009), which showed that these velocity profiles can be explained by a simple thermal boundary layer (TBL) model with a CMB temperature of about 3800 K. The TBL model can also explain most of the important seismological properties in the lowermost mantle such as the LLVP, so that the large thermo-chemical pile model appears to be inappropriate. On the other hand, the S-velocity model beneath Hawaii requires the existence of localized chemical heterogeneity (Kawai & Geller 2010b), which could be due to an accumulated Fe-rich dense pile (Kawai & Tsuchiya in prep.). To better constrain the nature of the LLVP, we inverted the horizontal components of observed radial and transverse waveforms of S and ScS phases to determine the radial profile of TI shear wave velocity at the northeastern edge of the LLVP in the lowermost mantle beneath the Pacific (Kawai & Geller 2010c). We find that the radial (SV) component is 3

  18. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  19. Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals

    Science.gov (United States)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2014-04-01

    The scanning Atmospheric Radiation Measurement (ARM) cloud radars (SACRs) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a suggested scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range-Height Indicator - CW-RHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Southern Great Plains and Cape Cod sites are post-processed (detection mask, gaseous attenuation correction, insect filtering and velocity de-aliasing). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimensions. Next the Cartesian-gridded Doppler velocity fields are decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith-pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D cloud dynamical representations up to 25-30 degrees off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics and anisotropy and lead to more realistic 3-D radiative transfer calculations.

  20. Clogging of granular material in vertical pipes discharged at constant velocity

    Directory of Open Access Journals (Sweden)

    López-Rodríguez Diego

    2017-01-01

    Full Text Available We report an experimental study on the flow of spherical particles through a vertical pipe discharged at constant velocity by means of a conveyor belt placed at the bottom. For a pipe diameter 3.67 times the diameter of the particles, we observe the development of hanging arches that stop the flow as they are able to support the weight of the particles above them. We find that the distribution of times that it takes until a stable clog develops, decays exponentially. This is compatible with a clogging probability that remains constant during the discharge. We also observe that the probability of clogging along the pipe decreases with the height, i.e. most of the clogs are developed near the bottom. This spatial dependence may be attributed to different pressure values within the pipe which might also be related to a spontaneous development of an helical structure of the grains inside the pipe.

  1. Effects of volume averaging on the line spectra of vertical velocity from multiple-Doppler radar observations

    Science.gov (United States)

    Gal-Chen, T.; Wyngaard, J. C.

    1982-01-01

    Calculations of the ratio of the true one-dimensional spectrum of vertical velocity and that measured with multiple-Doppler radar beams are presented. It was assumed that the effects of pulse volume averaging and objective analysis routines is replacement of a point measurement with a volume integral. A u and v estimate was assumed to be feasible when orthogonal radars are not available. Also, the target fluid was configured as having an infinite vertical dimension, zero vertical velocity at the top and bottom, and having homogeneous and isotropic turbulence with a Kolmogorov energy spectrum. The ratio obtained indicated that equal resolutions among radars yields a monotonically decreasing, wavenumber-dependent response function. A gain of 0.95 was demonstrated in an experimental situation with 40 levels. Possible errors introduced when using unequal resolution radars were discussed. Finally, it was found that, for some flows, the extent of attenuation depends on the number of vertical levels resolvable by the radars.

  2. A Method for Retrieving Vertical Air Velocities in Convective Clouds over the Tibetan Plateau from TIPEX-III Cloud Radar Doppler Spectra

    Directory of Open Access Journals (Sweden)

    Jiafeng Zheng

    2017-09-01

    Full Text Available In the summertime, convective cells occur frequently over the Tibetan Plateau (TP because of the large dynamic and thermal effects of the landmass. Measurements of vertical air velocity in convective cloud are useful for advancing our understanding of the dynamic and microphysical mechanisms of clouds and can be used to improve the parameterization of current numerical models. This paper presents a technique for retrieving high-resolution vertical air velocities in convective clouds over the TP through the use of Doppler spectra from vertically pointing Ka-band cloud radar. The method was based on the development of a “small-particle-traced” idea and its associated data processing, and it used three modes of radar. Spectral broadening corrections, uncertainty estimations, and results merging were used to ensure accurate results. Qualitative analysis of two typical convective cases showed that the retrievals were reliable and agreed with the expected results inferred from other radar measurements. A quantitative retrieval of vertical air motion from a ground-based optical disdrometer was used to compare with the radar-derived result. This comparison illustrated that, while the data trends from the two methods of retrieval were in agreement while identifying the updrafts and downdrafts, the cloud radar had a much higher resolution and was able to reveal the small-scale variations in vertical air motion.

  3. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  4. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    Science.gov (United States)

    Debnath, Mithu; Valerio Iungo, G.; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  5. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  6. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Science.gov (United States)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  7. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2014-07-01

    Full Text Available A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU. An Extended Kalman Filter (EKF estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  8. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    Science.gov (United States)

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-07-24

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  9. Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes.

    Science.gov (United States)

    Manshour, Pouya; Ghasemi, Fatemeh; Matsumoto, T; Gómez, J; Sahimi, Muhammad; Peinke, J; Pacheco, A F; Tabar, M Reza Rahimi

    2010-09-01

    High-quality measurements of seismic activities around the world provide a wealth of data and information that are relevant to understanding of when earthquakes may occur. If viewed as complex stochastic time series, such data may be analyzed by methods that provide deeper insights into their nature, hence leading to better understanding of the data and their possible implications for earthquakes. In this paper, we provide further evidence for our recent proposal [P. Mansour, Phys. Rev. Lett. 102, 014101 (2009)10.1103/PhysRevLett.102.014101] for the existence of a transition in the shape of the probability density function (PDF) of the successive detrended increments of the stochastic fluctuations of Earth's vertical velocity V_{z} , collected by broadband stations before moderate and large earthquakes. To demonstrate the transition, we carried out extensive analysis of the data for V_{z} for 12 earthquakes in several regions around the world, including the recent catasrophic one in Haiti. The analysis supports the hypothesis that before and near the time of an earthquake, the shape of the PDF undergoes significant and discernable changes, which can be characterized quantitatively. The typical time over which the PDF undergoes the transition is about 5-10 h prior to a moderate or large earthquake.

  10. The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2014-03-01

    Full Text Available While the formation of equatorial electrojet (EEJ and its temporal variation is believed to be fairly well understood, the longitudinal variability at all local times is still unknown. This paper presents a case and statistical study of the longitudinal variability of dayside EEJ for all local times using ground-based observations. We found EEJ is stronger in the west American sector and decreases from west to east longitudinal sectors. We also confirm the presence of significant longitudinal difference in the dusk sector pre-reversal drift, using the ion velocity meter (IVM instrument onboard the C/NOFS satellite, with stronger pre-reversal drift in the west American sector compared to the African sector. Previous satellite observations have shown that the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This study's results raises the question if the vertical drift, which is believed to be the main cause for the enhancement of Rayleigh–Taylor (RT instability growth rate, is stronger in the American sector and weaker in the African sector – why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?

  11. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    An experimental study of wave propagation and velocity distributions in a vertically driven time-dependent granular gas

    Science.gov (United States)

    Perez, John Anthony

    Averaged over appropriate space and time scales the dynamics of highly fluidized granular systems are often reminiscent of molecular fluid flows. As a result, theoretical efforts to describe these systems have borrowed heavily from continuum mechanics, particularly hydrodynamics. This has led to various proposed granular hydrodynamic theories which have been used to simulate granular materials in various states of confinement and excitation. These studies suggest that a continuum model for granular gasses can accurately reproduce the mean density, velocity and temperature profiles for an experimental granular gas. This thesis contributes to this body of work by presenting an experimental study of the hydrodynamic fields and velocity distributions within a vertically driven quasi-2D granular gas. We have taken pictures as fast as possible of a time-dependent granular gas using a high-speed CCD camera. We have extracted the positions and velocities of 57-564 particles per frame over 400 GB of raw images collected at 3700 fps. We used this data to compute the density, velocity and temperature fields as functions of time and space to a very high resolution. This approach led to the discovery of novel substructures within the hydrodynamic fields which would have been overlooked had we chosen to average over a drive cycle as earlier studies have done. In particular, the high spatial resolution available from our measurements reveals a serrated substructure in the shock waves which has not been reported before. This substructure is the result of collisional momentum transport . One of the current issues in formulating a granular continuum model is how to incorporate local and non-local dependencies between stress and strain correctly. In this thesis we demonstrate that the collisional transfer of momentum produces a non-local effect in the stress tensor which plays a major role in determining the mean flow. Current models have incorporated only the collisional or

  12. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-01-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2≈0.95-0.98) with those calculated from sonic anemometer measurements.

  13. High-resolution Vertical Profiling of Ocean Velocity and Water Properties Under Hurricane Frances in September 2004

    Science.gov (United States)

    Sanford, T. B.; D'Asarp, E. A.; Girton, J. B.; Price, J. F.; Webb, D. C.

    2006-12-01

    In ONR's CBLAST Hurricane research program observations were made of the upper ocean's response to Hurricane Frances. Three EM-APEX floats (velocity sensing versions of Webb Research APEX floats) and two Lagrangian floats were deployed north of Hispaniola from a C-130 aircraft ahead of Hurricane Frances in September 2004. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. The Lagrangian floats measured temperature and salinity while following the three- dimensional boundary layer turbulence in the upper 40 m. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX and two Lagrangian floats went in about 50 km to the right of the track (where the surface winds are strongest) and the third float was about 100 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m, then continued profiling between 35 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean turbulence, momentum, and salt and heat changes in response to the hurricane. The buildup of surface gravity waves in advance of the storm was also observed in the velocity profiles, with significant wave heights of up to 11 m. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s stimulated vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.5 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of

  14. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations

    Science.gov (United States)

    Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.

    2017-06-01

    The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.type="synopsis">type="main">Plain Language SummaryEquatorial plasma bubbles are plasma density irregularities in the ionosphere. The radio waves passing through these irregular density structures undergo severe degradation/scintillation that could cause severe disruption of satellite-based communication and augmentation systems such as GPS navigation. These bubbles develop at geomagnetic equator, grow vertically, and elongate along the field lines to latitudes away from the equator. The knowledge on bubble rise velocities and their maximum attainable

  15. On vertical velocity fluctuations and internal tides in an upwelling region off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    of flow and wind and temperature oscillations at a mooring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection... of tem- perature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10-l to lo-* cm s-i, with a mean value of - 2.77 x lo-* cm s-i indicating a net upward movement of water. The com- puted...

  16. Measurements of the fluctuating liquid velocity of a bidisperse suspension of bubbles rising in a vertical channel

    Science.gov (United States)

    Serrano, Juan Carlos; Mendez, Santos; Zenit, Roberto

    2009-11-01

    Experiments were performed in a vertical channel to study the behaviour of a bidisperse suspension of bubbles. Bubbles were produced using capillaries of two distinct inner diameters. The capillaries are small enough to generate bubbles in the range of 1 to 6 mm in diameter. Using water and water-glycerin mixtures, the vertical component of the fluctuating liquid velocity was obtained using a flying hot wire anemometer technique. The system is characterized by the dimensionless Reynolds and Weber numbers in the range of 22bubble concentration. We also found that the variance, normalized with the mean bubble velocity squared, Tf% =Uf^^'2/Ub^2, increased as the Reynolds number decreased. Bidisperse flows, in general, show larger values of fluctuation.

  17. Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping

    Science.gov (United States)

    Nikolaidou, Maria Elissavet; Marzilger, Robert; Bohm, Sebastian; Mersmann, Falk

    2017-01-01

    Humans achieve greater jump height during a counter-movement jump (CMJ) than in a squat jump (SJ). However, the crucial difference is the mean mechanical power output during the propulsion phase, which could be determined by intrinsic neuro-muscular mechanisms for power production. We measured M. vastus lateralis (VL) fascicle length changes and activation patterns and assessed the force–length, force–velocity and power–velocity potentials during the jumps. Compared with the SJ, the VL fascicles operated on a more favourable portion of the force–length curve (7% greater force potential, i.e. fraction of VL maximum force according to the force–length relationship) and more disadvantageous portion of the force–velocity curve (11% lower force potential, i.e. fraction of VL maximum force according to the force–velocity relationship) in the CMJ, indicating a reciprocal effect of force–length and force–velocity potentials for force generation. The higher muscle activation (15%) could therefore explain the moderately greater jump height (5%) in the CMJ. The mean fascicle-shortening velocity in the CMJ was closer to the plateau of the power–velocity curve, which resulted in a greater (15%) power–velocity potential (i.e. fraction of VL maximum power according to the power–velocity relationship). Our findings provide evidence for a cumulative effect of three different mechanisms—i.e. greater force–length potential, greater power–velocity potential and greater muscle activity—for an advantaged power production in the CMJ contributing to the marked difference in mean mechanical power (56%) compared with SJ. PMID:28573027

  18. Addition of Vertical Velocity to a One-Dimensional Aerosol and Trace Gas Model

    National Research Council Canada - National Science Library

    Hoppel, William A; Caffrey, Peter; Frick, Glendon M

    2005-01-01

    ... (Coupled Ocean Atmosphere Meteorological Prediction System). The aerosol model is run along an air-mass trajectory generated from the output of COAMPS that includes vertical profiles of meteorological data required by the aerosol model...

  19. Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles.

    Science.gov (United States)

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2017-03-21

    The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10-4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10-7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.

  1. Differences in vertical jumping and mae-geri kicking velocity between international and national level karateka

    Directory of Open Access Journals (Sweden)

    Carlos Balsalobre-Fernández

    2013-04-01

    Full Text Available Aim: Lower limb explosive strength and mae-geri kicking velocity are fundamental in karate competition; although it is unclear whether these variables could differentiate the high-level athletes. The objective of this research is to analyze the differences in the mae-geri kicking velocity and the counter-movement jump (CMJ between a group of international top level karateka and another group of national-level karateka.Methods: Thirteen international-level karateka and eleven national-level karateka participated in the study. After a standard warm-up, CMJ height (in cm and mae-geri kicking velocity (in m/s was measured using an IR-platform and a high-speed camera, respectively.Results: Proceeding with MANCOVA to analyze the differences between groups controlling the effect of age, the results show that the international-level karateka demonstrated significantly higher levels of CMJ than national-level competitors (+22.1%, F = 9.47, p = 0.006, η2 = 0.311. There were no significant differences between groups in the mae-geri kicking velocity (+5,7%, F=0.80; p=0.38; η2=0.03.Conclusion: Our data shows, first, the importance of CMJ assessment as a tool to detect talent in karate and, second, that to achieve international-level in karate it may be important to increase CMJ levels to values ​​similar to those offered here.

  2. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  3. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  4. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  5. Evolution of Area-Averaged Vertical Velocity in the Convective Region of a Midlatitude Squall Line

    Science.gov (United States)

    1992-12-01

    Ms. Svetla Veleva, Mr. Rusty Billingsly, and Capt. Kevin Mattison for their help in unfolding the raw Doppler-velocity fields; Mr. Robert Barritt for...and evolution of this important class of mesoscale convective system (MCS) (e.g., Zipser 1969, 1977; Houze 1977; LeMonc and Zipser 1980; Ogura and Liou...1980; Zipser and LeMone 1980; Gamache and ltouze 1982, 1985; Houze and Rappaport 1984; Heymsfield and Schotz 1985; Smull and Houze 1985, 1987a,b

  6. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  7. Crust-mantle coupling mechanism in Cameroon, West Africa, revealed by 3D S-wave velocity and azimuthal anisotropy

    Science.gov (United States)

    Ojo, Adebayo Oluwaseun; Ni, Sidao; Chen, Haopeng; Xie, Jun

    2018-01-01

    To understand the depth variation of deformation beneath Cameroon, West Africa, we developed a new 3D model of S-wave isotropic velocity and azimuthal anisotropy from joint analysis of ambient seismic noise and earthquake surface wave dispersion. We found that the Cameroon Volcanic Line (CVL) is well delineated by slow phase velocities in contrast with the neighboring Congo Craton, in agreement with previous studies. Apart from the Congo Craton and the Oubanguides Belt, the uppermost mantle revealed a relatively slow velocity indicating a thinned or thermally altered lithosphere. The direction of fast axis in the upper crust is mostly NE-SW, but trending approximately N-S around Mt. Oku and the southern CVL. The observed crustal azimuthal anisotropy is attributed to alignment of cracks and crustal deformation related to magmatic activities. A widespread zone of weak-to-zero azimuthal anisotropy in the mid-lower crust shows evidence for vertical mantle flow or isotropic mid-lower crust. In the uppermost mantle, the fast axis direction changed from NE-SW to NW-SE around Mt. Oku and northern Cameroon. This suggests a layered mechanism of deformation and revealed that the mantle lithosphere has been deformed. NE-SW fast azimuths are observed beneath the Congo Craton and are consistent with the absolute motion of the African plate, suggesting a mantle origin for the observed azimuthal anisotropy. Our tomographically derived fast directions are consistent with the local SKS splitting results in some locations and depths, enabling us to constrain the origin of the observed splitting. The different feature of azimuthal anisotropy in the upper crust and the uppermost mantle implies decoupling between deformation of crust and mantle in Cameroon.

  8. On the effects of vertical air velocity on winter precipitation types

    Directory of Open Access Journals (Sweden)

    J. M. Thériault

    2007-01-01

    Full Text Available The various precipitation types formed within winter storms (such as snow, wet snow and freezing rain often lead to very hazardous weather conditions. These types of precipitation often occur during the passage of a warm front as a warm air mass ascends over a cold air mass. To address this issue further, we used a one-dimensional kinematic cloud model to simulate this gentle ascent (≤10 cm/s of warm air. The initial temperature profile has an above 0°C inversion, a lower subfreezing layer, and precipitation falls from above the temperature inversion. The cloud model is coupled to a double-moment microphysics scheme that simulates the production of various types of winter precipitation. The results are compared with those from a previous study carried out in still air. Based on the temporal evolution of surface precipitation, snow reaches the surface significantly faster than in still air whereas other precipitation types including freezing rain and ice pellets have a shorter duration. Overall, even weak background vertical ascent has an important impact on the precipitation reaching the surface, the time of the elimination of the melting layer, and also the evolution of the lower subfreezing layer.

  9. Analysis of Vertical Velocities and Elevated Instability in the Comma-Head of Continental Winter Cyclones

    Science.gov (United States)

    Rosenow, Andrew

    The vertical motion and physical structure of elevated convection and generating cells within the comma heads of three continental winter cyclones are investigated using the Wyoming W-band Cloud Radar mounted on the NSF/NCAR C-130, supplemented by analyses from the Rapid Update Cycle model and WSR-88D data. The cyclones followed three distinct archetypical tracks and were typical of those producing winter weather in the Midwestern United States. In two of the cyclones, dry air in the middle and upper troposphere behind the Pacific cold front intruded over moist Gulf of Mexico air at lower altitudes within the comma head, separating the comma head into two zones. Elevated convection in the southern zone extended from the cold frontal surface to the tropopause. The stronger convective updrafts ranged from 2 to 7 m s-1 and downdrafts from -2 to -6 m s-1. The horizontal scale of the convective cells was ˜5 km. The poleward zone of the comma head was characterized by deep stratiform clouds topped by cloud top generating cells that reached the tropopause. Updrafts and downdrafts within the generating cells ranged from 1-2 m s-1, with the horizontal scale of the cells ˜1-2 km. Precipitation on the poleward side of the comma head conformed to a seeder-feeder process, the generating cells seeding the stratiform cloud, which was forced by synoptic scale ascent. In one case, shallow clouds behind the cyclone's cold front were also topped by cloud top generating cells, with vertical motions ranging from 1 2 m s-1. The development and distribution of potential instability in the elevated convective region of one of these cyclones is examined using a Weather Research and Forecasting (WRF) model simulation. The strong 8-9 December 2009 cyclone is simulated with a large outer domain and convection-allowing nest to simulate the convective region of the cyclone. The distribution of Most Unstable Convective Available Potential Energy (MUCAPE) is presented, with MUCAPE values up to

  10. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  11. EnKF assimilation of simulated spaceborne Doppler observations of vertical velocity: impact on the simulation of a supercell thunderstorm and implications for model-based retrievals

    Directory of Open Access Journals (Sweden)

    W. E. Lewis

    2006-01-01

    Full Text Available Recently, a number of investigations have been made that point to the robust effectiveness of the Ensemble Kalman Filter (EnKF in convective-scale data assimilation. These studies have focused on the assimilation of ground-based Doppler radar observations (i.e. radial velocity and reflectivity. The present study differs from these investigations in two important ways. First, in anticipation of future satellite technology, the impact of assimilating spaceborne Doppler-retrieved vertical velocity is examined; second, the potential for the EnKF to provide an alternative to instrument-based microphysical retrievals is investigated. It is shown that the RMS errors of the analyzed fields produced by assimilation of vertical velocity alone are in general better than those obtained in previous studies: in most cases assimilation of vertical velocity alone leads to analyses with small errors (e.g. <1 ms-1 for velocity components after only 3 or 4 assimilation cycles. The microphysical fields are notable exceptions, exhibiting lower errors when observations of reflectivity are assimilated together with observations of vertical velocity, likely a result of the closer relationship between reflectivity and the microphysical fields themselves. It is also shown that the spatial distribution of the error estimates improves (i.e. approaches the true errors as more assimilation cycles are carried out, which could be a significant advantage of EnKF model-based retrievals.

  12. Glacier velocity Changes at Novaya Zemlya revealed by ALOS1 and ALOS2

    Science.gov (United States)

    Konuma, Y.; Furuya, M.

    2016-12-01

    Matsuo and Heki (2013) revealed substantial ice-mass loss at Novaya Zemlya by Gravity Recovery And Climate Experiment (GRACE). In addition, the elevation thinning (Moholdt et al., 2012) and glacier retreat (Carr et al., 2014) has been reported. Melkonian et al. (2016) showed velocities map at coastal area of Novaya Zemlya by using Worldview, Landsat, ASTER and TerraSAR-X images. However, the entire distributions of ice speed and the temporal evolution remain unclear. In this study, we measured the glacier velocities using L-band SAR sensor onboard ALOS1 and ALOS2. We analyzed the data using pixel-offset tracking technique. We could observe the entire glaciated region in 2007-2008 winter and 2008-2009 winter. In particular, we could examine the velocities at middle of the glaciated region from 2006 to 2015 due to the availability of high-temporal resolution SAR data. As a result, we found the most glaciers in Novaya Zemlya have been accelerating since 1990s (Strozzi et al., 2008). Specially, Shokalskogo glacier has dramatically accelerated from the maximum of 300 ma-1 in 1998 to maximum of 600 ma-1 in 2015. Additionally, it turns out that there are marked differences in the glacier's velocities between the Barents Sea side and the Kara Sea side. The averaged maximum speed of the glaciers in Barents Sea side were approximately two times faster than that in Kara Sea side. We speculate the causes as the difference of topography under the calving front and sea-ice concentration. While each side has many calving glaciers, the fjord distribution in the Barents Sea side is much broader than in the Kara Sea side. Moreover, sea-ice concentration in the Barents Sea is lower than the Kara Sea, which might affect the glaciers' speed distribution.

  13. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  14. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    Science.gov (United States)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  15. Estimations of Vertical Velocities Using the Omega Equation in Different Flow Regimes in Preparation for the High Resolution Observations of the SWOT Altimetry Mission

    Science.gov (United States)

    Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.

    2016-02-01

    Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.

  16. Escape Velocity

    Directory of Open Access Journals (Sweden)

    Nikola Vlacic

    2010-01-01

    Full Text Available In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.

  17. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    OpenAIRE

    Angelo Maria Sabatini; Vincenzo Genovese

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally,...

  18. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    Science.gov (United States)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  19. Acute Effect of Biomechanical Muscle Stimulation on the Counter-Movement Vertical Jump Power and Velocity in Division I Football Players.

    Science.gov (United States)

    Jacobson, Bert H; Monaghan, Taylor P; Sellers, John H; Conchola, Eric C; Pope, Zach K; Glass, Rob G

    2017-05-01

    Jacobson, BH, Monaghan, TP, Sellers, JH, Conchola, EC, Pope, ZK, and Glass, RG. Acute effect of biomechanical muscle stimulation on the counter-movement vertical jump power and velocity in division I football players. J Strength Cond Res 31(5): 1259-1264, 2017-Research regarding whole body vibration (WBV) largely supports such training augmentation in attempts to increase muscle strength and power. However, localized biomechanical vibration has not received the same attention. The purpose of this study was to assess peak and average power before and after acute vibration of selected lower-body sites in division I athletes. Twenty-one subjects were randomly assigned to 1 of 2 conditions using a cross-over design. Pretest consisted of a counter-movement vertical jump (VJ) followed by either localized vibration (30 Hz) to 4 selected lower-body areas or 4 minutes of moderately low-resistance stationary cycling (70 rpm). Vibration consisted of 1 minute bouts at each lower-leg site for a total of 4 minutes followed by an immediate post-test VJ. Repeated measures analysis of variance yielded no significant differences (p > 0.05) in either peak power or peak velocity. Similarly, no significant differences were found for average power and velocity between conditions. It should be noted that, while not significant, the vibration condition demonstrated an increase in peak power and velocity while the bike condition registered slight decreases. Comparing each of the post-VJ repetitions (1, 2, and 3) the vibration condition experienced significantly greater peak power and velocity from VJ 1 to VJ 3 compared with the bike condition which demonstrated no significant differences among the post-test VJs. These results yielded similar, although not statistically significant outcomes to previous studies using WBV. However, the novelty of selected site biomechanical vibration merits further investigation with respect to frequency, magnitude, and duration of vibration.

  20. Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test.

    Science.gov (United States)

    Driss, T; Vandewalle, H; Monod, H

    1998-12-01

    The aim of this study was to propose a test battery adjusted to volleyball players and to study the links between dynamic (vertical jump, force-velocity relationships and maximal anaerobic power in cranking and cycling) and static (maximal voluntary force and rate of force development in isometric conditions) performances. The relationships between braking force (F) and peak velocity (V) have been determined for cycling and cranking exercises in 18 male volleyball players of a district league. According to previous studies, these F-V relationships were assumed to be linear and were expressed as follows: V = V0(1-F/F0), where V0 should be an estimate of the maximal velocity at zero braking force whereas F0 is assumed to be a braking force corresponding to zero velocity. Maximal anaerobic power in cycling (Pmax leg) and cranking (Pmax arm) were calculated as equal to 0.25 V0F0. The same subjects performed a vertical jump test (VJ) and a strength test on an isometric leg press with the measurement of the unilateral isometric maximal voluntary force (MVF) and indices of rate of isometric force development (RFD): maximal rate of force development (MRFD) and the time from 25% to 50% of MVF (T25-50). Pmax leg (15.8 +/- 1.4 W.kg-1) and V0 arm (259.6 +/- 13.1 rpm) were high but similar to the results of elite athletes, previously collected with the same protocols and the same devices. VJ was significantly with F0 leg, Pmax leg and Pmax arm related to body mass. The performances of the dynamic tests were significantly correlated and especially the parameters (V0, F0, Pmax) of the force velocity tests in cycling were significantly correlated with the same parameters in cranking. The results of the isometric tests (MVF, MRFD) were not correlated with VJ, except T25-50 of the left leg. A vertical jump test and a force velocity test with the arms are proposed for a test battery in volleyball players.

  1. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  2. Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid

    Science.gov (United States)

    Kardri, M. A.; Bachok, N.; Arifin, N. M.; Ali, F. M.

    2017-09-01

    The steady axisymmetric stagnation point flow with second-order velocity slip due to a stretching vertical plate with the existence of copper-water nanofluid was investigated. Similarity transformation has been applied to reduce the governing partial differential equations to ordinary differential equations. Then the self-similar equations are solved numerically using solver bvp4c available in Matlab with Prandtl number, Pr = 6.2. It is found that the dual solutions exist for the certain range of mixed convection parameter. The effects of the governing parameters on the velocity and temperature profile, skin friction coefficient and the local Nusselt number are observed. The results show that the inclusion of nanoparticle copper, will increase the shear stress on the stretching sheet and decrease the heat transfer rate for the slip parameters.

  3. Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy

    Science.gov (United States)

    Nakajima, Yoichi; Imada, Saori; Hirose, Kei; Komabayashi, Tetsuya; Ozawa, Haruka; Tateno, Shigehiko; Tsutsui, Satoshi; Kuwayama, Yasuhiro; Baron, Alfred Q. R.

    2015-11-01

    The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe7C3. Here we report the longitudinal wave velocity of liquid Fe84C16 up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe3C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe84C16 is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4-5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core.

  4. Possible relationship between the equatorial electrojet (EEJ) and daytime vertical E × B drift velocities in F region from ROCSAT observations

    Science.gov (United States)

    Kumar, Sandeep; Veenadhari, B.; Tulasi Ram, S.; Su, S.-Y.; Kikuchi, T.

    2016-10-01

    The vertical E × B drift is very important parameter as its day to day variability has great influence on the variability in the low latitude F-region ion and electron density distributions. The measurements of vertical ion velocity from the first Republic of China Satellite (ROCSAT-1) provide a unique data base for the development of possible relationship between vertical E × B drifts and ground based magnetometer observation. An attempt has been made to derive quantitative relationship between F-region vertical E × B drifts measured by ROCSAT-1 (600 km) and ground measured equatorial electrojet for the solar maximum period 2001-2003 for Indian and Japanese sectors. The results consistently indicate existence of linear relationship between the measured vertical E × B drifts at topside F-region and EEJ for both the sectors, with a moderate to high correlation coefficients. The linear relationship between ROCSAT-1 measured E × B drifts and EEJ for Indian and Japanese sectors has been compared with a similar relationship with Jicamarca Unattended Long-term Ionosphere Atmosphere Radar (JULIA) measured E × B drifts (150 km echos) and EEJ strength from Peruvian sector during 2003. It has been found that ROCSAT-1 measured E × B drifts shows linear relationship with EEJ, however, exhibits a larger scatter unlike JULIA radar observed E × B drifts. This may be attributed to the large height difference as ROCSAT-1 measures E × B drifts at 600 km altitude and the EEJ is E-region (110 km) phenomenon.

  5. Determining Effects of Wagon Mass and Vehicle Velocity on Vertical Vibrations of a Rail Vehicle Moving with a Constant Acceleration on a Bridge Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    C. Mızrak

    2015-01-01

    Full Text Available Vibrations are vital for derailment safety and passenger comfort which may occur on rail vehicles due to the truck and nearby conditions. In particular, while traversing a bridge, dynamic interaction forces due to moving loads increase the vibrations even further. In this study, the vertical vibrations of a rail vehicle at the midpoint of a bridge, where the amount of deflection is expected to be maximum, were determined by means of a 1 : 5 scaled roller rig and Newmark-β numerical method. Simulations for different wagon masses and vehicle velocities were performed using both techniques. The results obtained from the numerical and experimental methods were compared and it was demonstrated that the former was accurate with an 8.9% error margin. Numerical simulations were performed by identifying different test combinations with Taguchi experiment design. After evaluating the obtained results by means of an ANOVA analysis, it was determined that the wagon mass had a decreasing effect on the vertical vibrations of the rail vehicle by 2.087%, while rail vehicle velocity had an increasing effect on the vibrations by 96.384%.

  6. Long-term acoustical observations of the mesopelagic fish Maurolicus muelleri reveal novel and varied vertical migration patterns

    KAUST Repository

    Staby, A

    2011-11-15

    We studied the temporal dynamics in the vertical distribution of Maurolicus muelleri scattering layers (SL) by examining continuous acoustic recordings over a 15 mo period in Masfjorden, Norway, complemented by intermittent sampling campaigns. The data revealed known patterns as normal diel vertical migration (DVM), midnight sinking between dusk and dawn, and periods without migrations, as well as novel behaviours consisting of early morning ascents, reverse diel vertical migrations, and interrupted ascents in the evening. During the first autumn of the study, adult fish modified their normal DVM behaviour by suspending their migration in the evening, yet ascending toward the surface in the later part of the night to reach upper layers during dawn. This behaviour was not observed during the second autumn of the study. By mid- to end of November (1st autumn), adult fish had suspended the nocturnal ascent entirely, and in the subsequent period until the end of January, a fraction of the population rather performed limited reverse migrations, slightly shifting their vertical distribution upwards during the first part of the day. From January to March 2008, fish interrupted their evening ascent at apparently random intervals and returned to deeper waters, instead of completing a full ascent to the surface. Our study underlines the value of long-term recordings, with the results suggesting that M. muelleri has the capability of changing its behaviour in response to ontogeny and internal state (satiation and hunger) as well as to external stimuli.

  7. Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding

    Directory of Open Access Journals (Sweden)

    L. F. Millán

    2016-09-01

    Full Text Available This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS, the HALogen Occultation Experiment (HALOE and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery than coarse nonuniform sampling such as that of solar occultation instruments.

  8. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  9. Vertical E × B drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data

    Directory of Open Access Journals (Sweden)

    I. Horvath

    2003-04-01

    Full Text Available With a well-selected data set, the various events of the vertical E × B drift velocity variations at magnetic-equator-latitudes, the resultant ionospheric features at low-and mid-latitudes, and the practical consequences of these E × B events on the equatorial radio signal propagation are demonstrated. On a global scale, the development of a equatorial anomaly is illustrated with a series of 1995 global TOPEX TEC (total electron content maps. Locally, in the Australian longitude region, some field-aligned TOPEX TEC cross sections are combined with the matching Guam (144.86° E; 13.59° N, geographic GPS (Global Positioning System TEC data, covering the northern crest of the equatorial anomaly. Together, the 1998 TOPEX and GPS TEC data are utilized to show the three main events of vertical E × B drift velocity variations: (1 the pre-reversal enhancement, (2 the reversal and (3 the downward maximum. Their effects on the dual-frequency GPS recordings are documented with the raw Guam GPS TEC data and with the filtered Guam GPS dTEC/min or 1-min GPS TEC data after Aarons et al. (1997. During these E × B drift velocity events, the Port Moresby (147.10° E; - 9.40° N, geographic virtual height or h'F ionosonde data (km, which cover the southern crest of the equatorial anomaly in the Australian longitude region, show the effects of plasma drift on the equatorial ionosphere. With the net (D horizontal (H magnetic field intensity parameter, introduced and called DH or Hequator-Hnon-equator (nT by Chandra and Rastogi (1974, the daily E × B drift velocity variations are illustrated at 121° E (geographic in the Australian longitude region. The results obtained with the various data show very clearly that the development of mid-latitude night-time TEC increases is triggered by the westward electric field as the appearance of such night-time TEC increases coincides with the E × B drift velocity reversal. An explanation is offered with the F

  10. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  11. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  12. High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations

    Science.gov (United States)

    Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.

    2011-05-01

    We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.

  13. A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity.

    Science.gov (United States)

    Habibey, Rouhollah; Latifi, Shahrzad; Mousavi, Hossein; Pesce, Mattia; Arab-Tehrany, Elmira; Blau, Axel

    2017-08-17

    Due to their small dimensions, electrophysiology on thin and intricate axonal branches in support of understanding their role in normal and diseased brain function poses experimental challenges. To reduce experimental complexity, we coupled microelectrode arrays (MEAs) to bi-level microchannel devices for the long-term in vitro tracking of axonal morphology and activity with high spatiotemporal resolution. Our model allowed the long-term multisite recording from pure axonal branches in a microscopy-compatible environment. Compartmentalizing the network structure into interconnected subpopulations simplified access to the locations of interest. Electrophysiological data over 95 days in vitro (DIV) showed an age-dependent increase of axonal conduction velocity, which was positively correlated with, but independent of evolving burst activity over time. Conduction velocity remained constant at chemically increased network activity levels. In contrast, low frequency (1 Hz, 180 repetitions) electrical stimulation of axons or network subpopulations evoked amplitude-dependent direct (5-35 ms peri-stimulus) and polysynaptic (35-1,000 ms peri-stimulus) activity with temporarily (250 mV) in microchannels when compared with those reported for unconfined cultures (>800 mV). The experimental paradigm may lead to new insights into stimulation-induced axonal plasticity.

  14. Ambient noise tomography reveals basalt and sub-basalt velocity structure beneath the Faroe Islands, North Atlantic

    Science.gov (United States)

    Sammarco, Carmelo; Cornwell, David G.; Rawlinson, Nicholas

    2017-11-01

    Ambient noise tomography is applied to seismic data recorded by a portable array of seismographs deployed throughout the Faroe Islands in an effort to illuminate basalt sequences of the North Atlantic Igneous Province, as well as underlying sedimentary layers and Precambrian basement. Rayleigh wave empirical Green's functions between all station pairs are extracted from the data via cross-correlation of long-term recordings, with phase weighted stacking implemented to boost signal-to-noise ratio. Dispersion analysis is applied to extract inter-station group travel-times in the period range 0.5-15 s, followed by inversion for period-dependent group velocity maps. Subsequent inversion for 3-D shear wave velocity reveals the presence of significant lateral heterogeneity (up to 25%) in the crust. Main features of the final model include: (i) a near-surface low velocity layer, interpreted to be the Malinstindur Formation, which comprises subaerial compound lava flows with a weathered upper surface; (ii) a sharp velocity increase at the base of the Malinstindur Formation, which may mark a transition to the underlying Beinisvørð Formation, a thick laterally extensive layer of subaerial basalt sheet lobes; (iii) a low velocity layer at 2.5-7.0 km depth beneath the Beinisvørð Formation, which is consistent with hyaloclastites of the Lopra Formation; (iv) an upper basement layer between depths of 5-9 km and characterized by S wave velocities of approximately 3.2 km/s, consistent with low-grade metamorphosed sedimentary rocks; (v) a high velocity basement, with S wave velocities in excess of 3.6 km/s. This likely reflects the presence of a crystalline mid-lower crust of Archaean continental origin. Compared to previous interpretations of the geological structure beneath the Faroe Islands, our new results point to a more structurally complex and laterally heterogeneous crust, and provide constraints which may help to understand how continental fragments are rifted from the

  15. Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures

    Directory of Open Access Journals (Sweden)

    C. J. Friedline

    2012-06-01

    Full Text Available Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2–20 m, deep chlorophyll maximum (DCM; 28–90 m, and deep (100–4600 m at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients. Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial

  16. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    Science.gov (United States)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p

  17. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaofeng [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhou, Xiaoguo, E-mail: xzhou@ustc.edu.cn, E-mail: yanbing@jlu.edu.cn; Liu, Shilin [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Sun, Zhongfa [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Liu, Fuyi; Sheng, Liusi [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yan, Bing, E-mail: xzhou@ustc.edu.cn, E-mail: yanbing@jlu.edu.cn [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

    2014-01-28

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  18. Seasonal Transport in Mars' Mesosphere revealed by Nitric Oxide Nightglow vertical profiles and global images from IUVS/MAVEN

    Science.gov (United States)

    Stiepen, Arnaud; Stewart, Ian; Jain, Sonal; Schneider, Nicholas; Deighan, Justin; Gonzàlez-Galindo, Francisco; Gérard, Jean-Claude; Stevens, Michael; Bougher, Stephen; Milby, Zachariah; Evans, Scott; Chaffin, Michael; McClintock, William; Clarke, John; Holsclaw, Greg; Montmessin, Franck; Lefèvre, Franck; Lo, Daniel; Jakosky, Bruce

    2017-04-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through Nitric Oxide (NO) δ and γ bands emissions. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation partly dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They preferentially descend in the nightside mesosphere in the winter hemisphere, where they can radiatively recombine to form NO(C2Π). The excited molecules promptly relax by emitting photons in the UV δ bands and in the γ bands through cascades via the A2Σ, v' = 0 state. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the winter descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015). Observations of these emissions have been accumulated on a large dataset of nightside disk images and vertical profiles obtained at the limb by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) instrument when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at its apoapsis and its periapsis phases along its orbit, respectively. We present discussion on the variability in the brightness, altitude and topside scale height of the emission with season, geographical position and local time and possible interpretation for local and global changes in the mesosphere dynamics. IUVS images and limb scans reveal unexpected complex structure of the emission. The brightest emission is observed close to the winter pole. The emission is also surprisingly more intense in some sectors located close to the equator : at 120˚ and 150˚ longitude. Observations also reveal spots and streaks, indicating irregularities in the wind circulation pattern and possible impact of waves and tides. The disk images and limb profiles are compared to

  19. Density of states and dynamical crossover in a dense fluid revealed by exponential mode analysis of the velocity autocorrelation function.

    Science.gov (United States)

    Bellissima, S; Neumann, M; Guarini, E; Bafile, U; Barocchi, F

    2017-01-01

    Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015)PLEEE81539-375510.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and

  20. Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images

    Directory of Open Access Journals (Sweden)

    Yongling Sun

    2017-10-01

    Full Text Available The situation of stable and slightly advancing glaciers in the Karakoram is called the “Karakoram anomaly”. Glacier surface velocity is one of the key parameters of glacier dynamics and mass balance, however, the response of glacier motion to this regional anomaly is not fully understood. Here, we characterize the spatial-temporal variations in glacier velocity over the Central Karakoram from 1999–2003. The inter-annual glacier velocity fields were retrieved using a cross-correlation-based algorithm applied to four Landsat-7 Enhanced Thematic Mapper Plus (ETM+ panchromatic image pairs. We find that most of the glaciers on the southern slope flowed faster than those on the northern slope, which might be attributed to the differences in glacier sizes. Furthermore, ice motion observations over four years reveal that most of the glaciers were quasi-stable or experienced small fluctuations of flow velocity during our study period. We identify a new surging event for the South Skamri Glacier in the study period by investigating the glacier frontal changes and the longer-term time series of surface velocities between 1996 and 2006. From the transverse velocity profiles of seven typical glaciers, we infer that basal sliding is the predominant motion mechanism of the middle and upper glaciers, whereas internal deformation dominates closest to the glacier terminus.

  1. Postseismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. E. G.; Savage, M. K.; Townend, J.

    2018-01-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the September 2010 Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum inter-station distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 4 September 2010 earthquake until 10 January 2011. Using the moving-window cross-spectral method seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 % ± 0.04 % was determined near the Greendale Fault, providing a new constraint on postseismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to postseismic relaxation via crack-healing of the Greendale Fault and throughout the surrounding region.

  2. Semi-automatic measurement of visual verticality perception in humans reveals a new category of visual field dependency

    Directory of Open Access Journals (Sweden)

    C.R. Kaleff

    2011-08-01

    Full Text Available Previous assessment of verticality by means of rod and rod and frame tests indicated that human subjects can be more (field dependent or less (field independent influenced by a frame placed around a tilted rod. In the present study we propose a new approach to these tests. The judgment of visual verticality (rod test was evaluated in 50 young subjects (28 males, ranging in age from 20 to 27 years by randomly projecting a luminous rod tilted between -18 and +18° (negative values indicating left tilts onto a tangent screen. In the rod and frame test the rod was displayed within a luminous fixed frame tilted at +18 or -18°. Subjects were instructed to verbally indicate the rod’s inclination direction (forced choice. Visual dependency was estimated by means of a Visual Index calculated from rod and rod and frame test values. Based on this index, volunteers were classified as field dependent, intermediate and field independent. A fourth category was created within the field-independent subjects for whom the amount of correct guesses in the rod and frame test exceeded that of the rod test, thus indicating improved performance when a surrounding frame was present. In conclusion, the combined use of subjective visual vertical and the rod and frame test provides a specific and reliable form of evaluation of verticality in healthy subjects and might be of use to probe changes in brain function after central or peripheral lesions.

  3. Vertical zonation and functional diversity of fish assemblages revealed by ROV videos at oil platforms in The Gulf.

    Science.gov (United States)

    Torquato, F; Jensen, H M; Range, P; Bach, S S; Ben-Hamadou, R; Sigsgaard, E E; Thomsen, P F; Møller, P R; Riera, R

    2017-09-01

    An assessment of vertical distribution, diel migration, taxonomic and functional diversity of fishes was carried out at offshore platforms in The (Arabian-Iranian-Persian) Gulf. Video footage was recorded at the Al Shaheen oil field between 2007 and 2014 using a remotely operated vehicle (ROV). A total of 12 822 individual fishes, from 83 taxonomic groups were recorded around the platforms. All the species identified are considered native to The Gulf, although Cyclichthys orbicularis and Lutjanus indicus were recorded for the first time in Qatari waters. Several trends were uncovered in the vertical distribution of the fish community; most species were observed between 20 and 50 m depth and fish abundance decreased towards the bottom, with the highest abundances recorded in the upper layers, i.e. down to 40 m depth. Vertical variation in fish diversity, however, was generally not accompanied by differences in vertical movements. Carnivores and invertivores were the dominant trophic groups, being found at each depth range from surface to seabed. The functional indices showed no significant differences between water depths or diel cycles. The study demonstrates that oil platforms represent a hotspot of fish diversity and interesting sites for studying fish communities, abundance and behaviour. © 2017 The Fisheries Society of the British Isles.

  4. The latitudinal structure of the nightside outer magnetosphere of Saturn as revealed by velocity moments of thermal ions

    Directory of Open Access Journals (Sweden)

    Z. Nemeth

    2015-09-01

    Full Text Available In this study we investigate the latitudinal behavior of the azimuthal plasma velocities in the outer magnetosphere of Saturn using the numerical ion moments derived from the measurements of the Cassini Plasma Spectrometer. One of the new results presented is that although these moments display some scatter, a significant positive correlation is found to exist between the azimuthal velocity and the plasma density, such that on average, the higher the density the higher the rotation speed. We also found that both the azimuthal velocity and the density anticorrelate with the magnitude of the radial component of the magnetic field and drop rapidly with increasing distance from the magnetic equator. The azimuthal velocities show periodic behavior with a period near the planetary rotation period, which can also be explained by the strong dependence on magnetic latitude, taking into account the flapping of the magnetodisk. It is thus found that the dense plasma near the magnetic equator rotates around the planet at high speed, while the dilute plasma at higher latitudes in the northern and southern hemispheres rotates significantly slower. The latitudinal gradient observed in the azimuthal speed is suggested to be a direct consequence of the sub-corotation of the plasma in the outer magnetosphere, with highest speeds occurring on field lines at lowest latitudes mapping to the rapidly rotating inner regions of the plasma sheet, and the speed falling as one approaches the lobe, where the field lines are connected to strongly sub-corotating plasma.

  5. Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations

    Science.gov (United States)

    Sato, Kaoru; Kohma, Masashi; Tsutsumi, Masaki; Sato, Toru

    2017-01-01

    Continuous observations of polar mesosphere summer echoes at heights from 81-93 km were performed using the first Mesosphere-Stratosphere-Troposphere/Incoherent Scatter radar in the Antarctic over the three summer periods of 2013/2014, 2014/2015, and 2015/2016. Power spectra of horizontal and vertical wind fluctuations, and momentum flux spectra in a wide-frequency range from (8 min)-1 to (20 days) -1 were first estimated for the Antarctic summer mesosphere. The horizontal (vertical) wind power spectra obey a power law with an exponent of approximately -2 (-1) at frequencies higher than the inertial frequency of (13 h)-1 and have isolated peaks at about 1 day and a half day. In addition, an isolated peak of a quasi-2 day period is observed in the horizontal wind spectra but is absent from the vertical wind spectra, which is consistent with the characteristics of a normal-mode Rossby-gravity wave. Zonal (meridional) momentum flux spectra are mainly positive (negative), and large fluxes are observed in a relatively low-frequency range from (1 day)-1 to (1 h)-1. A case study was performed to investigate vertical profiles of momentum fluxes associated with gravity waves and time mean winds on and around 3 January 2015 when a minor stratospheric warming occurred in the Northern Hemisphere. A significant momentum flux convergence corresponding to an eastward acceleration of 200 m s-1 d-1 was observed before the warming and became stronger after the warming when mean zonal wind weakened. The strong wave forcing roughly accorded with the Coriolis force of mean meridional winds.

  6. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  7. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.

    2014-01-01

    in thin filaments in the sarcomere, cycling between a strongly bound state (force producing state) and a weakly bound state (relaxed state). Huxley and Simmons have previously proposed that the transition from the strong to the weak interaction can be modulated by an external load, i.e., the transition......A muscle contracts rapidly under low load, but slowly under high load. This load-dependent muscle shortening has been described with a hyperbolic load-velocity curve. Its molecular mechanisms remain to be elucidated, however. During muscle contraction, myosins in thick filaments interact with actin...... is slow under high load and fast under low load. We use a new, simple method we call "harmonic force spectroscopy" to extract a load-velocity relationship from a single human beta cardiac myosin II motor (S1). With a dual-beam optical trap, we hold an actin dumbbell over a single myosin molecule...

  8. A Low Velocity Zone along the Chaochou Fault in Southern Taiwan: Seismic Image Revealed by a Linear Seismic Array

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Pu

    2010-01-01

    Full Text Available The Chaochou fault is one of the major boundary faults in southern Taiwan where strong convergence has taken place between the Eurasian and Philippine Sea plates. The surface fault trace between the Pingtung plain and the Central Range follows a nearly N-S direction and stretches to 80 km in length. In order to examine the subsurface structures along the Chaochou fault, a linear seismic array with 14 short-period stations was deployed across the fault to record seismic data between August and December 2001. Detailed examination of seismic data generated by 10 local earthquakes and recorded by the linear array has shown that the incidence angles of the first P-waves recorded by several seismic stations at the fault zone were significantly larger than those located farther away from the fault zone. This difference might reflect the lateral variation of velocity structures across the Chaochou fault. Further examination of ray-paths of seismic wave propagation indicates that a low-velocity zone along the Chaochou fault is needed to explain the significant change in incidence angles across the fault zone. Although we do not have adequate information to calculate the exact geometry of the fault zone well, the variation in incidence angles across the fault can be explained by the existence of a low-velocity zone that is about 3 km in width on the surface and extends downward to a depth of 5 km. The low-velocity zone along the Chaochou fault might imply that the fault system consists of several splay faults on the hanging wall in the Central Range.

  9. Vertical Movements and Patterns in Diving Behavior of Whale Sharks as Revealed by Pop-Up Satellite Tags in the Eastern Gulf of Mexico.

    Science.gov (United States)

    Tyminski, John P; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E

    2015-01-01

    The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark's sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003-2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks' long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5-9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks' vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey.

  10. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary

    OpenAIRE

    Serpelloni, Enrico; Faccenna, Claudio; Spada, Giorgio; DONG Danan; Williams, Simon D.P.

    2013-01-01

    We use 2.5 to 14 years long position time series from >800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ −0.7, we adopt a power l...

  11. Tissue Doppler echocardiography reveals distinct patterns of impaired myocardial velocities in different degrees of coronary artery disease

    DEFF Research Database (Denmark)

    Hoffmann, Soren; Mogelvang, Rasmus; Olsen, Niels Thue

    2010-01-01

    Aim To determine how the left ventricular wall motion assessed by echocardiographic Tissue Doppler Imaging (TDI) is affected by increasing severity of coronary artery disease (CAD) among patients with stable angina pectoris and preserved ejection fraction. METHODS AND RESULTS: This study comprises...... 82 patients with suspected angina pectoris, no previous cardiac history, and a normal ejection fraction, who were all examined with colour TDI prior to coronary angiography. Patients without significant stenoses (n = 35) constituted the control group and patients with significant stenoses (n = 47......) were divided into three groups according to significant one-, two-, or three-vessel disease (n = 18, n = 14, and n = 15, respectively). Regional longitudinal peak systolic (s'), early (e'), and late diastolic (a') myocardial velocities were measured at six mitral annular sites and averaged to provide...

  12. Annealed FINEMET ribbons: Structure and magnetic anisotropy as revealed by the high velocity resolution Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Klencsár, Z. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest (Hungary); Semionkin, V.A. [Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Kuzmann, E.; Homonnay, Z. [Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Varga, L.K. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-09-01

    The high velocity resolution {sup 57}Fe Mössbauer spectroscopy was used in order to elucidate structural and compositional details of FINEMET (Fe{sub 73.5}Si{sub 15.5}Nb{sub 3}B{sub 7}Cu{sub 1}) alloys obtained via the annealing (with and without external magnetic field) of rapidly quenched ribbons. The analysis of the measured Mössbauer spectra was carried out, on one hand, by considering the possibility of a random distribution of iron atoms substituting Si at the D sites in the well crystallized DO{sub 3} Fe-Si phase, on the other hand, by allowing for an arbitrary-shape hyperfine magnetic field distribution for the case of the amorphous matrix. The results refer to the influence of the next-nearest-neighbor configurations on the magnitude of iron magnetic moments at the D sites in the precipitated nanocrystalline Fe-Si phase. The applied analysis method enables us to draw conclusions regarding the relative occurrence of the various iron microenvironments in the nanocrystalline phase and amorphous matrix, and the associated Si concentration of the precipitated nanocrystalline DO{sub 3} Fe-Si phase. The studied samples provide further evidence concerning the correlation between the induced magnetic anisotropy and the magnetic permeability in annealed FINEMET ribbons. - Highlights: • FINEMET ribbons annealed with and without external magnetic field. • Mössbauer spectra of FINEMET measured with a high velocity resolution. • Application of novel fit model for the FINEMET Mössbauer spectra.

  13. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players.

    Science.gov (United States)

    Rodríguez-Rosell, David; Torres-Torrelo, Julio; Franco-Márquez, Felipe; González-Suárez, José Manuel; González-Badillo, Juan José

    2017-07-01

    The purpose of this study was to compare the effects of combined light-load maximal lifting velocity weight training (WT) and plyometric training (PT) with WT alone on strength, jump and sprint performance in semiprofessional soccer players. Experimental, pre-post tests measures. Thirty adult soccer players were randomly assigned into three groups: WT alone (FSG, n=10), WT combined to jump and sprint exercises (COM, n=10) and control group (CG, n=10). WT consisted of full squat with low load (∼45-60% 1RM) and low volume (4-6 repetitions). Training program was performed twice a week for 6 weeks of competitive season in addition to 4 soccer sessions a week. Sprint time in 10 and 20m, jump height (CMJ), estimated one-repetition maximum (1RM est ) and velocity developed against different absolute loads in full squat were measured before and after training period. Both experimental groups showed significant improvements in 1RM est (17.4-13.4%; p<0.001), CMJ (7.1-5.2%; p<0.001), sprint time (3.6-0.7%; p<0.05-0.001) and force-velocity relationships (16.9-6.1%; p<0.05-0.001), whereas no significant gains were found in CG. No significant differences were found between FSG and COM. Despite FSG resulted of greater increases in strength variables than COM, this may not translate into superior improvements in the sport-related performance. In fact, COM showed higher efficacy of transfer of strength gains to sprint ability. Therefore, these findings suggest that a combined WT and PT program could represent a more efficient method for improving activities which involve acceleration, deceleration and jumps compared to WT alone. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing

    KAUST Repository

    Qian, Peiyuan

    2010-07-29

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea. © 2011 International Society for Microbial Ecology All rights reserved.

  15. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  16. Vertical Movements and Patterns in Diving Behavior of Whale Sharks as Revealed by Pop-Up Satellite Tags in the Eastern Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    John P Tyminski

    Full Text Available The whale shark (Rhincodon typus is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark's sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003-2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks' long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5-9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks' vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (500 m that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m, had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1 than ascents (0.50 m sec-1. Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their

  17. Tissue Doppler echocardiography reveals distinct patterns of impaired myocardial velocities in different degrees of coronary artery disease

    DEFF Research Database (Denmark)

    Hoffmann, Soren; Mogelvang, Rasmus; Olsen, Niels Thue

    2010-01-01

    .86 +/- 0.24 vs. 1.00 +/- 0.28, P Colour TDI performed at rest in patients with stable angina and preserved ejection fraction reveals both diastolic and systolic dysfunction and the nature...... 82 patients with suspected angina pectoris, no previous cardiac history, and a normal ejection fraction, who were all examined with colour TDI prior to coronary angiography. Patients without significant stenoses (n = 35) constituted the control group and patients with significant stenoses (n = 47...... global estimates. Each patient with significant coronary disease was matched with a control of the same age, sex, body mass index, and status regarding diabetes and hypertension. Global systolic and diastolic performance by TDI (in terms of global s' and E/e') were negatively correlated to the number...

  18. Analysis of altimeter data jointly with seafloor electric data (vertically integrated velocity) and VCTD-yoyo data (detailed profiles of VCTD)

    Science.gov (United States)

    Tarits, Pascal D.; Menvielle, M.; Provost, C.; Filloux, J. H.

    1991-01-01

    We propose simultaneous analyses of the TOPEX/POSEIDON altimetry data, in situ data--mainly permanent seafloor electric recordings--and velocity, conductivity, temperature, density (VCTD)-yoyo data at several stations in areas of scientific interest. We are planning experiments in various areas of low and high energy levels. Several complementary and redundant methods will be used to characterize the ocean circulation and its short- and long-term variability. We shall emphasize long-term measurement using permanent stations. Our major initial objectives with the TOPEX/POSEIDON mission are the Confluence area in the Argentine Basin and the Circumpolar Antarctic Current. An early experiment was carried out in the Confluence zone in 1988 and 1990 (Confluence Principal Investigators, 1990) to prepare for an intensive phase later one. This intensive phase will include new types of instrumentation. Preliminary experiments will be carried out in the Mediterranean Sea (in 1991) and in the North Atlantic Ocean (in 1992, north of the Canary Islands) to test the new instrumentation.

  19. A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity

    Energy Technology Data Exchange (ETDEWEB)

    Wyant, Matthew C.; Bretherton, Christopher S. [University of Washington, Department of Atmospheric Sciences, Box 351640, Seattle, WA (United States); Bacmeister, Julio T. [Goddard Spaceflight Center, NASA Global Modeling and Assimilation Office, Greenbelt, MD (United States); Kiehl, Jeffrey T. [National Center for Atmospheric Research, Boulder, CO (United States); Held, Isaac M.; Zhao, Ming [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Klein, Stephen A. [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Lawrence Livermore National Laboratory, The Atmospheric Science Division, Livermore, CA (United States); Soden, Brian J. [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); University of Miami, Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, Miami, FL (United States)

    2006-08-15

    Low-latitude cloud distributions and cloud responses to climate perturbations are compared in near-current versions of three leading U.S. AGCMs, the NCAR CAM 3.0, the GFDL AM2.12b, and the NASA GMAO NSIPP-2 model. The analysis technique of Bony et al. (Clim Dyn 22:71-86, 2004) is used to sort cloud variables by dynamical regime using the monthly mean pressure velocity {omega} at 500 hPa from 30S to 30N. All models simulate the climatological monthly mean top-of-atmosphere longwave and shortwave cloud radiative forcing (CRF) adequately in all {omega}-regimes. However, they disagree with each other and with ISCCP satellite observations in regime-sorted cloud fraction, condensate amount, and cloud-top height. All models have too little cloud with tops in the middle troposphere and too much thin cirrus in ascent regimes. In subsidence regimes one model simulates cloud condensate to be too near the surface, while another generates condensate over an excessively deep layer of the lower troposphere. Standardized climate perturbation experiments of the three models are also compared, including uniform SST increase, patterned SST increase, and doubled CO{sub 2} over a mixed layer ocean. The regime-sorted cloud and CRF perturbations are very different between models, and show lesser, but still significant, differences between the same model simulating different types of imposed climate perturbation. There is a negative correlation across all general circulation models (GCMs) and climate perturbations between changes in tropical low cloud cover and changes in net CRF, suggesting a dominant role for boundary layer cloud in these changes. For some of the cases presented, upper-level clouds in deep convection regimes are also important, and changes in such regimes can either reinforce or partially cancel the net CRF response from the boundary layer cloud in subsidence regimes. This study highlights the continuing uncertainty in both low and high cloud feedbacks simulated by GCMs

  20. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Directory of Open Access Journals (Sweden)

    S. Tang

    2016-11-01

    Full Text Available This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1 and apparent moisture sink (Q2 profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs that were conducted from 15 February to 26 March 2014 (wet season and from 1 September to 10 October 2014 (dry season near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5 experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  1. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; Zhang, Minghua; Schumacher, Courtney; Upton, Hannah; Jensen, Michael P.; Johnson, Karen L.; Wang, Meng; Ahlgrimm, Maike; Feng, Zhe; Minnis, Patrick; Thieman, Mandana

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  2. Vertical shaft windmill

    Science.gov (United States)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  3. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    Science.gov (United States)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et

  4. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes.

    In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days.

    Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates

  5. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes. In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days. Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates that the temporal

  6. Eye-Tracking Reveals that the Strength of the Vertical-Horizontal Illusion Increases as the Retinal Image Becomes More Stable with Fixation

    Directory of Open Access Journals (Sweden)

    Philippe A. Chouinard

    2017-03-01

    Full Text Available The closer a line extends toward a surrounding frame, the longer it appears. This is known as a framing effect. Over 70 years ago, Teodor Künnapas demonstrated that the shape of the visual field itself can act as a frame to influence the perceived length of lines in the vertical-horizontal illusion. This illusion is typically created by having a vertical line rise from the center of a horizontal line of the same length creating an inverted T figure. We aimed to determine if the degree to which one fixates on a spatial location where the two lines bisect could influence the strength of the illusion, assuming that the framing effect would be stronger when the retinal image is more stable. We performed two experiments: the visual-field and vertical-horizontal illusion experiments. The visual-field experiment demonstrated that the participants could discriminate a target more easily when it was presented along the horizontal vs. vertical meridian, confirming a framing influence on visual perception. The vertical-horizontal illusion experiment determined the effects of orientation, size and eye gaze on the strength of the illusion. As predicted, the illusion was strongest when the stimulus was presented in either its standard inverted T orientation or when it was rotated 180° compared to other orientations, and in conditions in which the retinal image was more stable, as indexed by eye tracking. Taken together, we conclude that the results provide support for Teodor Künnapas’ explanation of the vertical-horizontal illusion.

  7. Numerical calculation of gas and liquid velocities along a vertical flat plate immersed in turbulent tow-phase bubbly flow. Kihoryuchu ni okareta suichoku heiban mawari no ranryu kieki 2 soryu ni kansuru suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, A.; Nakamura, H. (Daido Inst. of Technology, Nagoya (Japan)); Hiraoka, S.; Tada, Y.; Kato, Y. (Nagoya Inst. of Tech. (Japan))

    1993-11-10

    A numerical calculation was made on the bubbly flow using the Prandtl's mixing length theory. The calculation results agreed well with the experimental results in the turbulent flow rather than in the laminar flow. The necessity of discussion on the turbulent flow analysis was clarified. It was elucidated that the experimental results could be explained sufficiently even by the simplest mixing model. The liquid phase velocity vector was aligned on the same direction when the bubbly flow length exceeded 1 cm, and little change took place in the velocity distribution shape. In the analysis of laminar flow, the velocity boundary layer was developed together with tie bubbly flow length, while in the analysis of turbulent flow, such change did not take place. The liquid phase velocity in the vicinity of the inlet had a velocity component which directed to the outside of the wall at the wall side. It was quite different from the analytical result of the laminar flow. The gas phase velocity vector behaved in the similar way to the liquid phase. The velocity direction at the periphery of the velocity distribution in the vicinity of tie inlet was toward the wall surface, and the inlet velocity was rapidly accelerated. 12 refs., 4 figs.

  8. VELOCITY ANISOTROPY IN THE NIGER VDELTTXFSEDIMENTS ...

    African Journals Online (AJOL)

    Keywords: Intrinsic velocity anisotropy, Niger Delta, Thomsen's parameters, vertical i transverse isotropy (VT!) Introduction. In seismology, a layer is anisotropic if seismic waves propagate through it at different velocities in different directions. Sedimentary rocks possess some degree of intrinsic velocity anisotropy (Jones and.

  9. Neotectonics in Marajó Island, State of Pará (Brazil revealed by vertical electric sounding integrated with remote sensing and geological data

    Directory of Open Access Journals (Sweden)

    LENA S.B. SOUZA

    2013-03-01

    Full Text Available Studies suggest that the Marajó Island has experienced neotectonic activity during its latest evolution. However, there are no data demonstrating the presence of tectonic structures in its shallow subsurface. This work integrates vertical electric sounding, morphostructural lineaments, and geological data aiming to show fault control on the Late Pleistocene-Holocene sedimentation of this area. Resistivity values were related to mud ( 500 Ωm. The latest values were related to the unconformity with lateritic paleosol at the top of the Barreiras Formation. Despite the values ≤ 500 Ωm of both the Barreiras Formation and the Late Pleistocene-Holocene unit, the latter was distinguished along four electric sections due to the presence of this unconformity, combined with the integration of available 14C, and luminescence ages of Quaternary sediments. The electric sections recorded several places with lateral interruptions of resistivity values within short distances, which were related to faults. The Miocene strata were vertically displaced by normal faults, giving rise to new accommodation space where Late Pleistocene-Holocene sediments were deposited. Fault reactivation was crucial to renew sedimentation in eastern Marajó Island during its latest evolutionary stage.

  10. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  11. Waves, circulation and vertical dependence

    Science.gov (United States)

    Mellor, George

    2013-04-01

    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  12. Predissociation dynamics of N(2)O(+) at the A (2)Sigma(+) state: Three pathways to form NO(+)((1)Sigma(+)) revealed from ion velocity imaging.

    Science.gov (United States)

    Wang, Hua; Zhou, Xiaoguo; Liu, Shilin; Jiang, Bo; Dai, Dongxu; Yang, Xueming

    2010-06-28

    The predissociation dynamics of nitrous oxide ion (N(2)O(+)) at its first excited state A (2)Sigma(+) has been investigated with ion velocity imaging by probing the NO(+) fragments. The parent ion N(2)O(+), prepared at the ground state X (2)Pi(000) through (3+1) resonance-enhanced multiphoton ionization (REMPI) of jet-cooled N(2)O molecules at 360.55 nm, was excited to different vibrational levels of the A (2)Sigma(+) state in a wavelength range of 280-320 nm, and then predissociated to form NO(+) and N fragments. The internal energy distribution of the NO(+) fragment was determined from its ion velocity images. With the help of potential energy surfaces (PESs) of N(2)O(+), three dissociation pathways have been proposed to interpret the three kinds of NO(+) fragments with different internal state distributions: (1) the A (2)Sigma(+) state couples to a dissociative 1 (4)Sigma(-) state via a bound 1 (4)Pi state to form the NO(+)+N((4)S) channel, where NO(+) fragment is rotationally hot; (2) the A (2)Sigma(+) state couples to dissociative states (2)Sigma(-)/(2)Delta via the 1 (4)Pi state to form the NO(+)+N((2)D) channel, where NO(+) fragment is also rotationally hot; (3) the A (2)Sigma(+) state couples to the high energy region of the ground state X (2)Pi and then dissociates to form the NO(+)+N((2)D) channel, where NO(+) is rotationally cold.

  13. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus.

    Science.gov (United States)

    Klassen, Jonathan L; Foght, Julia M

    2011-01-01

    We isolated several Hymenobacter-like strains from Victoria Upper Glacier, Antarctica, basal ice that diverged substantially from currently defined Hymenobacter species according to their 16S rRNA and gyrB gene phylogenies. All strains were psychrotolerant, heterotrophic aerobes which grew preferentially on low salt and low nutrient strength agar. Further phenotypic and chemotaxonomic characterization of these isolates supported their assignment as five novel species: H. algoricola sp. nov., H. antarcticus sp. nov., H. elongatus sp. nov., H. fastidiosus sp. nov., and H. glaciei sp. nov. Remarkable among these data was the prevalence of horizontal gene transfers and phenotypic variation, even between apparently closely related strains. These results suggest extensive non-vertical evolution within the genus Hymenobacter, and may reflect evolutionary trajectories resulting from dormancy, e.g., during interment in glacial ice.

  14. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  15. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  16. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities

    Science.gov (United States)

    How, Penelope; Benn, Douglas I.; Hulton, Nicholas R. J.; Hubbard, Bryn; Luckman, Adrian; Sevestre, Heïdi; van Pelt, Ward J. J.; Lindbäck, Katrin; Kohler, Jack; Boot, Wim

    2017-11-01

    Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.

  17. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities

    Directory of Open Access Journals (Sweden)

    P. How

    2017-11-01

    Full Text Available Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.

  18. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  19. Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance.

    Science.gov (United States)

    Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H; De La Torre, Pedro R; Nornes, Stein M; Singh, Hanumant; Sørensen, Asgeir J; Daase, Malin; Johnsen, Geir

    2018-01-01

    Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.

  20. Transverse spectral velocity estimation.

    Science.gov (United States)

    Jensen, Jørgen

    2014-11-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile flow using the Womersly-Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer. A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected for angles from 0° to 70° to give fully quantitative velocity spectra without operator intervention.

  1. Effects of Foam Rolling on Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Andrew Jones

    2015-07-01

    Full Text Available Background: Foam rolling is a popular activity utilized by strength and conditioning coaches as it is believed to increase muscle length and break up fibrous adhesions located in connective tissue. However, there is little research investigating the effects of foam rolling on athletic performance. Objective: The purpose of this study was to investigate the effects of lower body foam rolling on vertical jump performance. Methods: Twenty males (age 24.05 ± 2.02 years; height 177.43 ± 6.31 cm; mass 81.41 ± 8.76 kg volunteered to participate. Subjects completed three days of testing, separated by at least twenty-four hours. Day one consisted of baseline vertical jumps on a force plate, followed by familiarization with foam rolling and control protocols. Subjects returned on days two and three and performed 30-second bouts of lower body foam rolling or mimicked foam rolling movements on a skateboard followed by vertical jumps on a force plate. The highest jump from each day was used for statistical analyses. Results: Repeated measures ANOVAs revealed no significant differences in Jump height, impulse, relative ground reaction force, or take-off velocity between conditions. Conclusion: 30-second bouts of lower body foam rolling do not improve vertical jump performance. Keywords: Dynamic Warm-Up, Foam Rolling, Vertical Jump

  2. Vertical saccades in dyslexic children.

    Science.gov (United States)

    Tiadi, Aimé; Seassau, Magali; Bui-Quoc, Emmanuel; Gerard, Christophe-Loïc; Bucci, Maria Pia

    2014-11-01

    Vertical saccades have never been studied in dyslexic children. We examined vertical visually guided saccades in fifty-six dyslexic children (mean age: 10.5±2.56 years old) and fifty-six age matched non dyslexic children (mean age: 10.3±1.74 years old). Binocular eye movements were recorded using an infrared video-oculography system (mobileEBT®, e(ye)BRAIN). Dyslexic children showed significantly longer latency than the non dyslexic group, also the occurrence of anticipatory and express saccades was more important in dyslexic than in non dyslexic children. The gain and the mean velocity values were significantly smaller in dyslexic than in non dyslexic children. Finally, the up-down asymmetry reported in normal population for the gain and the velocity of vertical saccades was observed in dyslexic children and interestingly, dyslexic children also reported an up-down asymmetry for the mean latency. Taken together all these findings suggested impairment in cortical areas responsible of vertical saccades performance and also at peripheral level of the extra-ocular oblique muscles; moreover, a visuo-attentionnal bias could explain the up-down asymmetry reported for the vertical saccade triggering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  4. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.

    Science.gov (United States)

    Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  5. Velocity anisotropy in the Niger Delta sediments derived from ...

    African Journals Online (AJOL)

    Seismic velocities decrease and increase laterally and vertically, respectively, towards the coast. These variations are attributable to the lateral and vertical changes in the degrees of compaction coastward and reduction in porosity with depth. Three zones of steep, moderate and slow velocity gradients, respectively, have ...

  6. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...... direction and the correct velocity magnitude for any orientation of the vessels. At complex geometries like bifurcations, branching and for valves the approach reveals how the velocity changes magnitude and direction over the cardiac cycle. Vector velocity reveals a wealth of new information that now...... is accessible to the ultrasound community. The displaying and studying of this information is challenging as complex flow changes rapidly over the cardiac cycle....

  7. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  8. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  9. Vertical saccades in children: a developmental study.

    Science.gov (United States)

    Bucci, Maria Pia; Seassau, Magali

    2014-03-01

    There are no studies exploring the development of vertical saccades in large populations of children. In this study, we examined the development of vertical saccades in sixty-nine children. Binocular eye movements were recorded using an infrared video oculography system [Mobile EBT(®), e(ye)BRAIN], and movements from both eyes had been analyzed. The gain and the peak velocity of vertical saccades show an up-down asymmetry. Latency value decreases with the age of children, and it does not depend on the direction of the saccades; in contrast, the gain and the peak velocity values of vertical saccades are stable during childhood. We suggest that the up-down asymmetry is developed early, or is innate, in humans. Latencies of vertical saccades develop with the age of children, in relationship with the development of the cortical network responsible for the saccade preparation. In contrast, the precision and the peak velocity are not age-dependent as they are controlled by the cerebellum and brainstem structures.

  10. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system is often in the order of a couple kilometers long. Based on CFD analyses (computational fluid dynamics......Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  11. Acquired vertical accommodative vergence.

    Science.gov (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A

    2008-03-08

    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  12. Effects of Isometric Scaling on Vertical Jumping Performance

    NARCIS (Netherlands)

    Bobbert, M.F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does

  13. The Study on S-Wave Velocity Structure of Upper Crust in Three Gorges Region of Yangtze River

    Science.gov (United States)

    Li, X.; Zhu, P.; Zhou, Q.

    2014-12-01

    The profile of S-wave velocity structure along Badong-Maoping-Tumen is presented using the ambient noise data observed at 10 stations from mobile broadband seismic array which is located at Three Gorges Region. All of available vertical component time series during April and May,2011 have been cross-correlated to estimate the empirical Green functions. Group velocity dispersion curves were measured by applying multiple filtering technique. Using these dispersion curves,we obtain high resolution pure-path dispersions at 0.5-10 second periods. The S-wave velocity structure,which was reconstructed by inverting the pure-path dispersions,reveals the velocity variations of upper crust at Three Gorges Region. Main conclusions are as follows:(1)The velocity variations in the study region have a close relationship with the geological structure and the velocity profile suggests a anticline unit which core area is Huangling block;(2)The relative fast velocity variations beneath Jiuwanxi and its surrounding areas may correspond to the geological structure and earthquake activity there;(3) The high velocity of the upper crustal in Sandouping indicates that the Reservoir Dam of Three Gorges is located at a tectonic stable region.

  14. Free Convective Flow of a Reacting Fluid between Vertical Porous ...

    African Journals Online (AJOL)

    This study investigates free convective flow between vertical porous plates. The energy and momentum equations which arise from the definitions of temperature and velocity are written in dimensionless forms. The resulting second order equations are solved to obtain expressions for the velocity, temperature, mass transfer ...

  15. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. Depth-dependence of post-seismic velocity changes in and near source area of the 2013 M7.0 Lushan earthquake revealed by S coda of repeating events

    Science.gov (United States)

    Li, Le

    2017-10-01

    I investigated postseismic velocity changes within focal area of the 2013 M7.0 Lushan earthquake using coda-wave data of repeating small earthquakes. I employed template matching and grid search methods to identify well-defined repeating earthquakes in order to minimize artifacts induced by variations in source location. I identified a total of 3 isolated patches in a two-month period after the M7.0 mainshock. I applied the coda wave interferometry technique to the waveform data of the identified repeating earthquakes to estimate velocity changes between the first and subsequent events in each cluster. Up to 0.1-0.2% velocity increase is observed from the S coda of repeating events occurred at regions surrounding the large coseismic slip area at seismogenic depths. My observations suggest that a large percent of velocity changes may occur at surface near the stations or shallow, however, healing along the propagation paths in the deep ( 5-20 km) is likely have contributed to the amount of velocity changes observed after the Lushan earthquake.

  17. Heat and mass transfer on unsteady MHD free convection rotating flow through a porous medium over an infinite vertical plate with hall effects

    Science.gov (United States)

    Babu, D. Dastagiri; Venkateswarlu, S.; Reddy, E. Keshava

    2017-07-01

    In this paper, we have considered the unsteady MHD free convection flow of an incompressible electrically conducting fluid through porous medium bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a rotating system taking hall current into account. The flow through porous medium is governed by Brinkman's model for the momentum equation. In the undisturbed state, both the plate and fluid in porous medium are in solid body rotation with the same angular velocity about normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform constant suction perpendicular to it and the temperature on the surface varies with time about a non-zero constant mean while the temperature of free stream is taken to be constant. The exact solutions for the velocity, temperature and concentration are obtained making use of perturbation technique. The velocity expression consists steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi-layer character. The influence of various flow parameters on the velocity, temperature and concentration is analysed graphically, and computational results for the skin friction, Nusselt number and Sherwood number are also obtained in the tabular forms.

  18. On the axis ratio of the stellar velocity ellipsoid in disks of spiral galaxies

    NARCIS (Netherlands)

    van der Kruit, PC; de Grijs, R

    1999-01-01

    The spatial distribution of stars in a disk of a galaxy can be described by a radial scale length and a vertical scale height. The ratio of these two scale parameters contains information on the axis ratio of the velocity ellipsoid, i.e. the ratio of the vertical to radial stellar velocity

  19. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  20. Bench test and preliminary results of vertical compact torus injection experiments on the STOR-M tokamak

    Science.gov (United States)

    Liu, D.; Xiao, C.; Singh, A. K.; Hirose, A.

    2006-01-01

    The University of Saskatchewan compact torus injector has been modified to allow vertical injection of the compact torus (CT) into the STOR-M tokamak. The injector stayed at the horizontal position and the CT trajectory was bent by 90° using a curved conducting drift tube. The curved drift tube did not significantly slow the CT velocity down or change the CT magnetic field topology. Preliminary vertical CT injection experiments have revealed a prompt increase in the line averaged electron density and in the soft x-ray radiation level in the tokamak discharge immediately following vertical CT injection. Suppression of the m = 2 Mirnov oscillation amplitude has also been observed after CT injection.

  1. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Numerical Modeling of the Vertical Heat Transport Through the Diffusive Layer of the Arctic Ocean

    Science.gov (United States)

    2013-03-01

    transport through thermohaline staircases in the Arctic region. Results revealed that vertical fluxes exceeded those of extant “four-thirds flux...vertical heat flux, thermohaline staircase 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...DNS) were conducted to assess the vertical heat transport through thermohaline staircases in the Arctic region. Results revealed that vertical

  3. Probability distribution of vertical longitudinal shear fluctuations.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    This paper discusses some recent measurements of third and fourth moments of vertical differences (shears) of longitudinal velocity fluctuations obtained in unstable air at the NASA 150 m meteorological tower site at Cape Kennedy, Fla. Each set of measurements consisted of longitudinal velocity fluctuation time histories obtained at the 18, 30, 60, 90, 120 and 150 m levels, so that 15 wind-shear time histories were obtained from each set of measurements. It appears that the distribution function of the longitudinal wind fluctuations at two levels is not bivariate Gaussian. The implications of the results relative to the design and operation of aerospace vehicles are discussed.-

  4. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging...... of RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....

  5. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    Science.gov (United States)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  6. Vertical vergence adaptation produces an objective vertical deviation that changes with head tilt.

    Science.gov (United States)

    Irsch, Kristina; Guyton, David L; Ramey, Nicholas A; Adyanthaya, Rohit S; Ying, Howard S

    2013-05-03

    To document the cyclovertical ocular motor mechanism used for vertical fusion in healthy subjects, and to explore whether vertical vergence training in healthy individuals can produce objectively confirmed vertical deviations that change with head tilt, revealing a basic mechanism that can produce a pattern of misalignment in an otherwise normal ocular motor system that is similar to superior oblique muscle paresis (SOP). Seven subjects with normal orthoptic examinations were adapted to vertical image disparities using our tilting haploscopic eye-tracking apparatus presenting concentric circle targets without torsional cues. Static eye positions were recorded with head straight and when tilted 45 degrees to the left and right, during both binocular and monocular viewing. Vertical fusional vergence was accompanied by a cycloversion, with the downward-moving eye intorting and the upward-moving eye extorting, implicating primary involvement of the oblique extraocular muscles. After adaptation to the slowly increasing vertical target separation, all subjects developed a temporary vertical deviation in the straight ahead position that increased with head tilt to one side and decreased with head tilt to the other side. These results not only show that head-tilt-dependent changes in vertical deviation are not necessarily pathognomonic for SOP, but also, and more importantly, suggest mechanisms that can mimic SOP and suggest a possible role for vertical vergence training in reducing deviations and thus the amount of head tilt required for fusion. Ultimately, vertical vergence training may provide an adjunct or alternative to extraocular muscle surgery in selected cases.

  7. INTERNATIONAL SPECIALIZATION AND VERTICAL DIFFERENTIATION

    Directory of Open Access Journals (Sweden)

    Furia Donatella

    2010-07-01

    Full Text Available During the last decades, market segmentation and intra-industry trade have become increasingly relevant. The underlying hypothesis of our work is that distinct articles have heterogeneous potential for vertical differentiation, implying that different patterns of international specialization should be identifiable. We carry out an analysis on revealed comparative advantage (through the Lafay Index in specific sectors of interest. Then we highlight the emergence of diverse degrees of product quality differentiation among sectors (through the Relative Quality Index. Results confirm our hypothesis. Indeed it appears that only certain goods, for which the pace of either creative or technological innovation (or both is particularly fast, present a high degree of vertical differentiation and market segmentation. This allows countries to specialize in a particular product variety and gain market power position for that variety. These findings should be taken in due consideration when designing trade policies.

  8. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Directory of Open Access Journals (Sweden)

    Milana Damjenić

    2016-07-01

    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  9. High-Velocity Clouds

    NARCIS (Netherlands)

    Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard

    2013-01-01

    The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes

  10. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  11. Vertical atlantoaxial dislocation

    OpenAIRE

    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.

    1999-01-01

    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  12. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  13. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  14. Composition of vertical gardens

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  15. Eccentricity samples: Implications on the potential and the velocity distribution

    Directory of Open Access Journals (Sweden)

    Cubarsi R.

    2017-01-01

    Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  16. Eccentricity Samples: Implications on the Potential and the Velocity Distribution

    Science.gov (United States)

    Cubarsi, R.; Stojanović, M.; Ninković, S.

    2017-06-01

    Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples.

  17. Analyses of Current And Wave Forces on Velocity Caps

    OpenAIRE

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.; Jensen, Bjarne

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system...

  18. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  19. Coding of Velocity Storage in the Vestibular Nuclei

    Science.gov (United States)

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO

  20. Wind tunnel investigation of a 14 foot vertical axis windmill

    Science.gov (United States)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  1. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  2. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  3. Vertical jump coordination: fatigue effects.

    Science.gov (United States)

    Rodacki, André Luiz Felix; Fowler, Neil E; Bennett, Simon J

    2002-01-01

    The aim of this study was to investigate the segmental coordination of vertical jumps under fatigue of the knee extensor and flexor muscles. Eleven healthy and active subjects performed maximal vertical jumps with and without fatigue, which was imposed by requesting the subjects to extend/flex their knees continuously in a weight machine, until they could not lift a load corresponding to approximately 50% of their body weight. Knee extensor and flexor isokinetic peak torques were also measured before and after fatigue. Video, ground reaction forces, and electromyographic data were collected simultaneously and used to provide several variables of the jumps. Fatiguing the knee flexor muscles did not reduce the height of the jumps or induce changes in the kinematic, kinetic, and electromyographic profiles. Knee extensor fatigue caused the subjects to adjust several variables of the movement, in which the peak joint angular velocity, peak joint net moment, and power around the knee were reduced and occurred earlier in comparison with the nonfatigued jumps. The electromyographic data analyses indicated that the countermovement jumps were performed similarly, i.e., a single strategy was used, irrespective of which muscle group (extensor or flexors) or the changes imposed on the muscle force-generating characteristics (fatigue or nonfatigue). The subjects executed the movements as if they scaled a robust template motor program, which guided the movement execution in all jump conditions. It was speculated that training programs designed to improve jump height performance should avoid severe fatigue levels, which may cause the subjects to learn and adopt a nonoptimal and nonspecific coordination solution. It was suggested that the neural input used in the fatigued condition did not constitute an optimal solution and may have played a role in decreasing maximal jump height achievement.

  4. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    Directory of Open Access Journals (Sweden)

    Xinhui Zhu

    2016-02-01

    Full Text Available Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF. The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System and VLBI (very long baseline interferometry velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  5. Using remotely sensed data to estimate river characteristics including water-surface velocity and discharge

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; Legleiter, Carl; McDonald, Richard R.; Overstreet, Brandon; Conaway, Jeff

    2017-01-01

    This paper describes a project combining field studies and analyses directed at providing an assessment of the accuracy of remotely sensed methods for determining river characteristics such as velocity and discharge. In particular, we describe a remote sensing method for surface velocities using mid-wave thermal camera videography combined with image analysis. One of the critical problems in this work is determining a method for relating remotely measured water-surface velocities to vertically averaged velocities through a velocity index. We explore three similarity profiles that allow a relationship between surface and vertically averaged velocity to be found either using empirical results or simple roughness-to-depth ratios. To test the approaches we compare them in a situation where vertical structure is known over most of the flow depth through ADCP measurements. By determining best-fit profiles through the ADCP profiles, average values of the velocity index are found for the cross-sections where measurement were made. By comparing these to the predicted velocity indices from the three similarity profiles, we find that, although the differences between the various similarity profiles are substantial, they are smaller than differences associated with local nonuniformity and nonhydrostatic flow. Nevertheless, the velocity indices are accurate to about +/-5%, meaning that remotely sensed vertically averaged velocities can be computed to well within the current accuracy standard for such values when used for river gaging.

  6. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race

    Directory of Open Access Journals (Sweden)

    Elissavet N. Rousanoglou, Konstantinos Noutsos, Achilleas Pappas, Gregory Bogdanis, Georgios Vagenas, Ioannis A. Bayios, Konstantinos D. Boudolos

    2016-06-01

    Full Text Available The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre, immediately after the race (Post 1 and five minutes after Post 1 (Post 2. Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz, anterior-posterior force (Fx, Velocity and Power, in the eccentric (tECC and concentric (tCON phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05. The jump height decrease was significant in Post 2 (-7.9% but not in Post 1 (-4.1%. Fx and Velocity decreased significantly in both Post 1 (only in tECC and Post 2 (both tECC and tCON. Α timing shift of the Fz peaks (earlier during tECC and later during tCON and altered relative peak times (only in tECC were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action.

  7. A dynamical approach to identify vertices' centrality in complex networks

    Science.gov (United States)

    Guo, Long; Zhang, Wen-Yao; Luo, Zhong-Jie; Gao, Fu-Juan; Zhang, Yi-Cheng

    2017-12-01

    In this paper, we proposed a dynamical approach to assess vertices' centrality according to the synchronization process of the Kuramoto model. In our approach, the vertices' dynamical centrality is calculated based on the Difference of vertices' Synchronization Abilities (DSA), which are different from traditional centrality measurements that are related to the topological properties. Through applying our approach to complex networks with a clear community structure, we have calculated all vertices' dynamical centrality and found that vertices at the end of weak links have higher dynamical centrality. Meanwhile, we analyzed the robustness and efficiency of our dynamical approach through testing the probabilities that some known vital vertices were recognized. Finally, we applied our dynamical approach to identify community due to its satisfactory performance in assessing overlapping vertices. Our present work provides a new perspective and tools to understand the crucial role of heterogeneity in revealing the interplay between the dynamics and structure of complex networks.

  8. High-velocity penetrators

    Science.gov (United States)

    Lundgren, Ronald G.

    This paper summarizes the results of studies, coupled with a series of tests, that investigated rigid-body projectiles (penetrators) at high (up to 5500 ft/sec) velocities. Before these studies, it had been hypothesized that a velocity limit would be reached at which increasing the velocity would not commensurately increase depth of penetration into a target. It was further inferred that a given velocity/ penetration depth curve would avalanche into the hydrodynamic regime; that is, increasing the velocity past a certain point would decrease penetration performance. The test series utilized 1/2-in., 3-in., and 5 1/2-in. diameter, ogive-nose steel projectiles and grout and concrete targets. The tests confirmed that penetration depth increased as striking velocity increased to 4000 ft/sec. However, beyond striking velocities of 4000 ft/sec, asymmetric erosion and indentation of the projectile nose from the aggregate caused the projectile trajectories to deviate severely from the target centerline. These trajectory deviations caused the projectile to exit the side of the target, severely bend, break, or exhibit decreased penetration performance, confirming the hypothesis. Clearly, these results were dependent on the specific material and geometric parameters. The projectiles had 3.0 and 4.25 CRH (Caliber-Radius-Head) nose shapes and were heat-treated to R(sub c) 38-40. The grout targets had a maximum aggregate diameter of 3/16 in. and a nominal unconfined compressive strength of 2.5 ksi. The concrete targets had a maximum aggregate diameter of 3/4 in. and unconfined compressive strength of 5.5 ksi.

  9. Experimental study of ``laminar'' bubbly flows in a vertical pipe

    Science.gov (United States)

    Kashinsky, O. N.; Timkin, L. S.; Cartellier, A.

    1993-09-01

    Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.

  10. Diel vertical migrat..

    African Journals Online (AJOL)

    2002-01-24

    Jan 24, 2002 ... crustacean zooplankton but also in a Wide array of different marine zooplankton groups. (Russell 1927, McLaren 1963). Thus there is no doubt that ..... cooperation during field work and for their fruitful discussion on the draft manuscript. REFERENCES. Bayly lAE 1986 Aspects of diel vertical migration in ...

  11. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  12. Hunting Voronoi vertices

    NARCIS (Netherlands)

    Ferrucci, V.; Overmars, Mark; Rao, A.; Vleugels, J.

    1994-01-01

    Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously from each. In this paper, we consider the problem of computing Voronoi vertices for planar objects of xed but possibly unknown shape; we only require the ability to query the closest point on an object

  13. Vertical deformation at western part of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  14. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  15. Similarity solution for rarefied flow over a vertical stretched surface

    Science.gov (United States)

    Al-Kouz, W.; Kiwan, S.; Sari, M.; Alkhalidi, A.

    2017-07-01

    Similarity technique is used to solve for the laminar natural convection heat transfer for rarefied flows over a linearly vertical stretched surface. Such flows have significant importance in many engineering and manufacturing applications. It is found that the flow is affected by flow parameters, namely, velocity slip (K1), temperature jump (K2), and the Prandtl number (Pr).

  16. Comparison of Vertical Ionospheric Drifts Obtained by Different Techniques

    Science.gov (United States)

    Kouba, D.

    2016-12-01

    Since 2004 the ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde. In addition to classical ionograms the drift velocities in both E and F region using DDA method are measured routinely. However, vertical component of the drift velocity vector can be estimated by several different methods which can be found in the literature; for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper the direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. The ionospheric observatory in Pruhonice is midlatitudinal station and typicaly provides measurements in 15 minutes cadence. Due to the fact that the most papers use different indirect methods use equatorial data, we also focuse on results of equatorial stations and other stations that carry out measurements with higher cadence (5 minutes). Our comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisondes.

  17. Vertical gastroplasty: evolution of vertical banded gastroplasty.

    Science.gov (United States)

    Mason, E E; Doherty, C; Cullen, J J; Scott, D; Rodriguez, E M; Maher, J W

    1998-09-01

    The objective of this paper is to summarize the goals, technical requirements, advantages, and potential risks of gastroplasty for treatment of severe obesity. Gastroplasty is preferred to more complex operations, as it preserves normal digestion and absorption and avoids complications that are peculiar to exclusion operations. The medical literature and a 30-year experience at the University of Iowa Hospitals and Clinics (UIHC) provides an overview of vertical banded gastroplasty (VBG) evolution. Preliminary 10-year results with the VBG technique currently used at UIHC are included. At UIHC the VBG is preferred to other gastroplasties because it provides weight control that extends for at least 10 years and the required objective, intraoperative quality control required for a low rate of reoperation. It is recommended that modifications of the operative technique not be attempted until a surgeon has had experience with the standardized operation--and then only under a carefully designed protocol. Realistic goals for surgery and criteria of success influence the choice of operation and the optimum, lifelong risk/benefit ratio. In conclusion, VBG is a safe, long-term effective operation for severe obesity with advantages over complex operations and more restrictive simple operations.

  18. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  19. Density - Velocity Relationships in Explosive Volcanic Plumes

    Science.gov (United States)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2015-12-01

    Positively buoyant volcanic plumes rise until the bulk density of the plume is equal to the density of the ambient atmosphere. As ambient air mixes with the plume, it lowers the plume bulk density; thus, the plume is diluted enough to reach neutral density in a naturally stratified atmospheric environment. We produced scaled plumes in analogue laboratory experiments by injecting a saline solution with a tracer dye into distilled water, using a high-pressure injection system. We recorded each eruption with a CASIO HD digital camera and used ImageJ's FeatureJ Edge toolbox to identify individual eddies. We used an optical flow software based off the ImageJ toolbox FlowJ to determine the velocities along the edge of each eddy. Eddy densities were calculated by mapping the dye concentration to the RGB digital color value. We overlaid the eddy velocities over the densities in order to track the behavioral relationship between the two variables with regard to plume motion. As an eddy's bulk density decreases, the vertical velocity decreases; this is a result of decreased mass, and therefore momentum, in the eddy. Furthermore as the density rate of change increases, the eddy deceleration increases. Eddies are most dense at their top and least dense at their bottom. The less dense sections of the eddies have lower vertical velocities than the sections of the eddies with the higher densities, relating to the expanding radial size of an eddy as it rises and the preferential ingestion of ambient air at the base of eddies. Thus the mixing rate in volcanic plumes fluctuates not only as a function of height as described by the classic 1D entrainment hypothesis, but also as a function of position in an eddy itself.

  20. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  1. Seismic Velocity Gradients Across the Transition Zone

    Science.gov (United States)

    Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.

    2006-12-01

    One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be

  2. The soil moisture velocity equation

    Science.gov (United States)

    Ogden, Fred L.; Allen, Myron B.; Lai, Wencong; Zhu, Jianting; Seo, Mookwon; Douglas, Craig C.; Talbot, Cary A.

    2017-06-01

    Numerical solution of the one-dimensional Richards' equation is the recommended method for coupling groundwater to the atmosphere through the vadose zone in hyperresolution Earth system models, but requires fine spatial discretization, is computationally expensive, and may not converge due to mathematical degeneracy or when sharp wetting fronts occur. We transformed the one-dimensional Richards' equation into a new equation that describes the velocity of moisture content values in an unsaturated soil under the actions of capillarity and gravity. We call this new equation the Soil Moisture Velocity Equation (SMVE). The SMVE consists of two terms: an advection-like term that accounts for gravity and the integrated capillary drive of the wetting front, and a diffusion-like term that describes the flux due to the shape of the wetting front capillarity profile divided by the vertical gradient of the capillary pressure head. The SMVE advection-like term can be converted to a relatively easy to solve ordinary differential equation (ODE) using the method of lines and solved using a finite moisture-content discretization. Comparing against analytical solutions of Richards' equation shows that the SMVE advection-like term is >99% accurate for calculating infiltration fluxes neglecting the diffusion-like term. The ODE solution of the SMVE advection-like term is accurate, computationally efficient and reliable for calculating one-dimensional vadose zone fluxes in Earth system and large-scale coupled models of land-atmosphere interaction. It is also well suited for use in inverse problems such as when repeat remote sensing observations are used to infer soil hydraulic properties or soil moisture.Plain Language SummarySince its original publication in 1922, the so-called Richards' equation has been the only rigorous way to couple groundwater to the land surface through the unsaturated zone that lies between the water table and land surface. The soil moisture distribution and

  3. Binocular responses and vertical strabismus

    Directory of Open Access Journals (Sweden)

    Risović Dušica

    2007-01-01

    Full Text Available Background/Aim. Elevation in adduction is the most common pattern of vertical strabismus, and it is mostly treated with surgery. The results of weaking of inferior oblique muscle are very changeable. The aim of this study was to evaluate binocular vision using sensory tests before and one and six months after the surgery. Methods. A total of 79 children were divided in two groups: the first, with inferior oblique muscle of overaction (n = 52, and the second with dissociated vertical deviation (DVD, and primary inferior oblique muscle overaction (n = 27. We tested them by polaroid mirror test (PMT, Worth test at distance and near, fusion amplitudes on sinoptofore, Lang I stereo test and Wirt-Titmus stereo test. We examined our patients before and two times after the surgery for vertical strabismus. Results. Foveal suppression in the group I was found in 60.5% of the patients before, and in 56.4% after the surgery. In group II Foveal suppression was detected in 64.7% of the patients before, but in 55.6% 6 months after the surgery with PMT. Worth test revealed suppression in 23.5% of the patients before, and in 40.7% after the vertical muscle surgery. Parafoveal fussion persisted in about 1/3 of the patients before the surgery, and their amplitudes were a little larger after the surgery in the group I patients. Lang I stereo test was negative in 53.9% before and 51.9% after the surgery in the group I, and in 48.2% of the patients before and after the surgery in the group II patients. Wirt-Titmus stereo test was negative in 74.5% of the patients before and in 72.9% after the surgery in the group I, but in the group II it was negative in 70.8% before and in 68.0% of the patients 6 months after the surgery. Conclusion. Binocular responses were found after surgery in 65.7% of the patients the group I and in 55.6% patients the group II. There was no significant difference between these two groups, but binocular responses were more often in the patients

  4. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  5. Impact of Lipid Oxidization on Vertical Structures and Electrostatics of Phospholipid Monolayers Revealed by Combination of Specular X-ray Reflectivity and Grazing-Incidence X-ray Fluorescence.

    Science.gov (United States)

    Korytowski, Agatha; Abuillan, Wasim; Makky, Ali; Konovalov, Oleg; Tanaka, Motomu

    2015-07-30

    The influence of phospholipid oxidization of floating monolayers on the structure perpendicular to the global plane and on the density profiles of ions near the lipid monolayer has been investigated by a combination of grazing incidence X-ray fluorescence (GIXF) and specular X-ray reflectivity (XRR). Systematic variation of the composition of the floating monolayers unravels changes in the thickness, roughness and electron density of the lipid monolayers as a function of molar fraction of oxidized phospholipids. Simultaneous GIXF measurements enable one to qualitatively determine the element-specific density profiles of monovalent (K(+) or Cs(+)) and divalent ions (Ca(2+)) in the vicinity of the interface in the presence and absence of two types of oxidized phospholipids (PazePC and PoxnoPC) with high spatial accuracy (±5 Å). We found the condensation of Ca(2+) near carboxylated PazePC was more pronounced compared to PoxnoPC with an aldehyde group. In contrast, the condensation of monovalent ions could hardly be detected even for pure oxidized phospholipid monolayers. Moreover, pure phospholipid monolayers exhibited almost no ion specific condensation near the interface. The quantitative studies with well-defined floating monolayers revealed how the elevation of lipid oxidization level alters the structures and functions of cell membranes.

  6. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    Science.gov (United States)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  7. Rotating optical tubes for vertical transport of atoms

    Science.gov (United States)

    Al Rsheed, Anwar; Lyras, Andreas; Aldossary, Omar M.; Lembessis, Vassilis E.

    2016-12-01

    The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The rotation of the HOT induces a vertical motion for an atom initially at rest. The motion is a result of the action of two inertial forces, namely, the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom's global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported along the axis of the HOT. In this case, the rotating HOT operates as an optical Archimedes' screw for atoms.

  8. Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO

    Science.gov (United States)

    Heuzé, C.; Ridley, J. K.; Calvert, D.; Stevens, D. P.; Heywood, K. J.

    2015-03-01

    Most CMIP5 models unrealistically form Antarctic Bottom Water by open ocean deep convection in the Weddell and Ross Seas. To identify the triggering mechanisms leading to Southern Ocean deep convection in models, we perform sensitivity experiments on the ocean model NEMO forced by prescribed atmospheric fluxes. We vary the vertical velocity scale of the Langmuir turbulence, the fraction of turbulent kinetic energy transferred below the mixed layer, and the background diffusivity and run short simulations from 1980. All experiments exhibit deep convection in the Riiser-Larsen Sea in 1987; the origin is a positive sea ice anomaly in 1985, causing a shallow anomaly in mixed layer depth, hence anomalously warm surface waters and subsequent polynya opening. Modifying the vertical mixing impacts both the climatological state and the associated surface anomalies. The experiments with enhanced mixing exhibit colder surface waters and reduced deep convection. The experiments with decreased mixing are warmer, open larger polynyas and have deep convection across the Weddell Sea until the simulations end. Extended experiments reveal an increase in the Drake Passage transport of 4 Sv each year deep convection occurs, leading to an unrealistically large transport at the end of the simulation. North Atlantic deep convection is not significantly affected by the changes in mixing parameters. As new climate model overflow parameterisations are developed to form Antarctic Bottom Water more realistically, we argue that models would benefit from stopping Southern Ocean deep convection, for example by increasing their vertical mixing.

  9. Three-dimensional flow observation on the air entrainment into a vertical-wet-pit pump

    Science.gov (United States)

    Hirata, K.; Maeda, T.; Nagura, T.; Inoue, T.

    2016-11-01

    The authors consider the air entrainment into a suction pipe which is vertically inserted down into a suction sump across a mean free-water surface. This configuration is often referred to as the “vertical wet-pit pump,” and has many practical advantages in construction, maintenance and operation. Most of the flows appearing in various industrial and environmental problems like the present suction- sump flow become often complicated owing to both of their unsteadiness with poor periodicity and their fully-three-dimensionality. In order to understand the complicated flow inside a suction sump in the vertical-wet-pit-pump configuration, the authors experimentally observe the flow using the three-dimensional particle tracking velocimetry (3D-PTV) technique, which includes more unknown factors in accuracy and reliability than other established measuring techniques. So, the authors examine the simultaneous measurement by the 3D-PTV with another velocimetry the ultrasonic velocity profiler. As a result, under the suitable condition with high accuracy, the authors have revealed the complicated flow.

  10. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  11. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  12. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    Science.gov (United States)

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  13. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...

  14. High-Velocity Clouds

    CERN Document Server

    Woerden, Hugo; Schwarz, Ulrich J; Boer, Klaas S

    2005-01-01

    This book contains 17 chapters reviewing our knowledge of the high-velocity clouds (HVCs) as of 2004, bringing this together in one place for the first time. Each of the many different aspects of HVC research is addressed by one of the experts in that subfield. These include a historical overview of HVC research and analyses of the structure and kinematics of HVCs. Separate chapters address the intermediate-velocity clouds, the Magellanic Stream, and neutral hydrogen HVCs discovered in external galaxies. Reviews are presented of the Ha emission and of optical and UV absorption-line studies, followed by discussions of the hot Galactic Halo and of the interactions between HVCs and their surroundings. Four chapters summarize the ideas about the origin of the high-velocity gas, with detailed discussions of connections between HVCs and the Galactic Fountain, tidally-stripped material, and remnants of the Milky Way's formation. A chapter outlining what we do not know completes the book. The book comes at a time whe...

  15. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  16. Mixed convection of micropolar fluid in a vertical double-passage ...

    African Journals Online (AJOL)

    The effect of the presence of a thin perfectly conductive baffle on the fully developed laminar mixed convection in a vertical channel containing micropolar fluid is analyzed. The channel has different constant wall temperatures. Analytical expressions for velocity and microrotation velocity are obtained. The solutions are ...

  17. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    de Jong, B.

    1994-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate

  18. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    Principles used when constructing models for velocity spectra are reviewed. Based upon data from the Kansas and Minnesota experiments, simple spectral models are set up for all velocity components in stable air at low heights, and for the vertical spectrum in unstable air through a larger part of...

  19. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  20. Integrative velocity model building for imaging a geothermal reservoir in southern Tuscany, Italy

    Science.gov (United States)

    Schreiter, Lena; Loch, Felix; Ciuffi, Simonetta; Buske, Stefan

    2017-04-01

    Deep geothermal reservoirs are generally characterized by high temperatures and pressures, sometimes located in hard rock environments and even close to a super-critical state. For characterization of such a deep super-critical geothermal reservoir, the imaging of the subsurface at the highest possible resolution is required to reduce the uncertainties in exploration prior to the drilling phase. Several seismic surveys were carried out for characterization of a possible drilling target within a deep super-critical geothermal reservoir in Tuscany (project DESCRAMBLE). Seismic data were acquired in the form of 2D seismic reflection surveys as well as Vertical Seismic Profiling (VSP), the latter complemented by simultaneous recording of the source signals by a surface network covering an area of approximately 6 km x 6 km around the drill site. The investigation area itself is characterized by a complex geology with strong velocity contrasts, near-surface inhomogeneities and fracture zones. At first, the processing of the recorded seismic wavefields aimed at the determination of a seismic velocity model by a multidisciplinary approach. The application of conventional methods is limited due to the low resolution of the stacking velocities, significant lateral velocity changes and strong influence of noise. We performed first-arrival traveltime tomography and derived borehole velocities to tackle the complexity of the geology. Below the bottom of the borehole, results from laboratory measurements of rock samples from deeper neighboring wells were integrated into the velocity model. This approach limits the ambiguity, which depends on the existence and distribution of the neighboring wells in the investigation area. The results contribute to a robust migration velocity model used for an uncertainty depth analysis at the target horizon. In a next step, the influence of the velocity model on imaging is tested within an advanced seismic imaging workflow for several 2D

  1. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...... in order to analyse the effect of different layouts on the flow characteristics. In particular, flow configurations going all the way through the structure were revealed. A couple of suggestions to minimize the risk for flow through have been tested....

  2. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  3. Remarks on the Definition and Estimation of Friction Velocity

    Science.gov (United States)

    Weber, Rudolf O.

    One of the mainscaling parameters in similarity theory of the atmospheric boundary layer is friction velocity. Unfortunately, several definitions of friction velocity exist in the literature. Some authors use the component of the horizontal Reynolds stress vector in the direction of the mean wind vector to define friction velocity. Others define the friction velocity by means of the absolute value of the horizontal Reynolds stress vector. The two definitions coincide only if the direction of the mean wind vector is parallel to the horizontal Reynolds stress vector. In general, the second definition gives larger values for the friction velocity. Over complex terrain the situation is further complicated by the fact that the terrain following flow is not necessarily horizontal. Thus, several authors have proposed to use terrain following coordinate systems for the definition of friction velocity. By means of a large dataset of fast-response wind measurements with an ultrasonic anemometer the friction velocities resulting from the different definitions are compared. Furthermore, it is shown that friction velocity can be well estimated from horizontal wind speed, and even better from simple horizontal or vertical turbulence parameters.

  4. A non-hydrostatic global spectral dynamical core using a height-based vertical coordinate

    Directory of Open Access Journals (Sweden)

    Juan Simarro

    2013-06-01

    Full Text Available Most of the dynamical cores of operational global models can be broadly classified according to the spatial discretisation into two categories: spectral models with mass-based vertical coordinate and grid point models with height-based vertical coordinate. This article describes a new non-hydrostatic dynamical core for a global model that uses the spectral transform method for the horizontal directions and a height-based vertical coordinate. Velocity is expressed in the contravariant basis (instead of the geographical orthonormal basis pointing to the East, North and Zenith directions so that the expressions of the boundary conditions and the divergence of the velocity are simpler. Prognostic variables in our model are the contravariant components of the velocity, the logarithm of pressure and the logarithm of temperature. Covariant tensor analysis is used to derive the differential operators of the prognostic equations, such as the curl, gradient, divergence and covariant derivative of the contravariant velocity. A Lorenz type grid is used in the vertical direction, with the vertical contravariant velocity staggered with respect to the other prognostic variables. High-order vertical operators are constructed following the finite difference technique. Time stepping is semi-implicit because it allows for long time steps that compensates the cost of the spectral transformations. A set of experiments reported in the literature is implemented so as to confirm the accuracy and efficiency of the new dynamical core.

  5. Impaired Velocity Processing Reveals an Agnosia for Motion in Depth

    NARCIS (Netherlands)

    Barendregt, Martijn; Dumoulin, Serge O.; Rokers, Bas

    2016-01-01

    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a

  6. Critical Landau velocity in helium nanodroplets.

    Science.gov (United States)

    Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel

    2013-10-11

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  7. Predicting Vertical Motion within Convective Storms

    Science.gov (United States)

    van den Heever, S. C.

    2016-12-01

    Convective storms are both beneficial in the fresh water they supply and destructive in the life-threatening extreme weather they produce. They are found throughout the tropics and midlatitudes, vary in structure from isolated to highly organized systems, and are the sole source of precipitation in many regions of Earth. Convective updrafts and downdrafts plays a crucial role in cloud and precipitation formation, latent heating, water vapor transport, storm organization, and large-scale atmospheric circulations such as the Hadley and Walker cells. These processes, in turn, impact the strength and longevity of updrafts and downdrafts through complex, non-linear feedbacks. In spite of the significant influence of convective updrafts and downdrafts on the weather and climate system, accurately predicting vertical motion using numerical models remains challenging. In high-resolution cloud-resolving models where vertical motion is normally resolved, significant biases exist in the predicted profiles of updraft and downdraft velocities, at least for the limited cases where observational data have been available for model evaluation. It has been suggested that feedbacks between the vertical motion and microphysical processes may be one cause of these discrepancies, however, our understanding of these feedbacks remains limited. In this talk, the results of a small field campaign conducted over northeastern Colorado designed to observe storm vertical motion and cold pool characteristics within isolated and organized deep convective storms will be described. High frequency radiosonde, radar and drone measurements of a developing through mature supercell storm updraft and cold pool will be presented and compared with RAMS simulations of the same supercell storm. An analysis of the feedbacks between the storm dynamical and microphysical processes will be presented, and implications for regional and global modeling of severe storms will be discussed.

  8. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  9. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    composition, and it is truly commonplace in today’s communication with the diversity of VPNs and secure browser sessions. In fact, it is normal that we have several layers of secure channels: For instance, on top of a VPN-connection, a browser may establish another secure channel (possibly with a different...... end point). Even using the same protocol several times in such a stack of channels is not unusual: An application may very well establish another TLS channel over an established one. We call this selfcomposition. In fact, there is nothing that tells us that all these compositions are sound, i.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  10. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index......, an index of refraction of the second low-index layer or air being less than 2; and a thickness of the cap layer and a thickness of the grating layer, and a pitch and a duty cycle of the grating structure are selected to obtain a resonance having a free-space resonance wavelength in the interval 300 nm to 3...... microns, the cap layer comprises an active region configured to generate or absorb photons at the free-space resonance wavelength by stimulated emission or absorption when a sufficient forward or reverse bias voltage is applied across the active region, a thickness of the first low-index layer is less...

  11. Tomographic Inversion for Shear Velocity Beneath the North American Plate

    Science.gov (United States)

    Grand, Stephen P.

    1987-12-01

    A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.

  12. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  13. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  14. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation oriented management

    Science.gov (United States)

    Ulyshen Michael

    2011-01-01

    Studies on the vertical distribution patterns of arthropods in temperate deciduous forests reveal highly stratified (i.e., unevenly vertically distributed) communities. These patterns are determined by multiple factors acting simultaneously, including: (1) time (forest age, season, time of day); (2) forest structure (height, vertical foliage complexity, plant surface...

  15. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2016-09-22

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate the iPhone app, My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4 ± 1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the mobile application My Jump. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC = 1.000, P Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  16. Characteristics of slug flow in narrow rectangular channels under vertical condition

    Science.gov (United States)

    Wang, Yang; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Yan, Chaoxing; Tian, Daogui

    2013-07-01

    Gas-liquid slug flow is widely encountered in many practical industrial applications. A detailed understanding of the hydrodynamics of gas slug has important significance for modeling of the slug flow. Non-intrusive flow visualization using a high speed video camera system is applied to study characteristics of slug flow in a vertical narrow rectangular channel (3.25×40 mm2). Ideal Taylor bubbles are hardly observed, and most of the gas slugs are deformed, much more seriously at high liquid superficial velocity. The liquid film thicknesses of left and right narrow sides surrounding gas slug are divergent and wavy, but it has weak effect on liquid film velocity. The gas and liquid velocity as well as the length of gas slug have significant effect on the separating liquid film thickness. The separating liquid film velocity is decreased with the increase of gas superficial velocity at low liquid velocity, and increased with the increase of liquid superficial velocity. The film stops descending and the gas superficial velocity has no significant effect on liquid film separating velocity at high liquid velocity (jL≥1.204 m/s), and it is mainly determined by the liquid flow rate. The shape of slug nose has a significant effect on its velocity, while the effect of its length is very weak. The Ishii&Jones-Zuber drift flux correlation could predict slug velocity well, except at low liquid superficial velocity by reason of that the calculated drift velocity is less than experimental values.

  17. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  18. Vertical and Interfacial Transport in Wetlands (Invited)

    Science.gov (United States)

    Variano, E. A.

    2010-12-01

    The objective of this work is to understand the fluxes connecting the water column, substrate, and atmosphere in wetland environments. To do this, analytical, numerical, and laboratory models have been used to quantify the hydrodynamic contributions to vertical fluxes. A key question is whether the hydrodynamic transport can be modeled as a diffusivity, and, if so, what the vertical structure of this diffusivity is. This question will be addressed in a number of flow types and for a number of fluxes. The fluxes of interest are heat, sediment, dissolved gases (such as methane and oxygen) and other dissolved solutes (such as nutrients and pollutants). The flows of interest include: unidirectional current, reversing flow (under waves, seiches, and tides), wind-sheared surface flows, and thermal convection. Rain and bioturbation can be important, but are not considered in the modeling work discussed herein. Specifically, we will present results on gas transport at wind-sheared free surface, sediment transport in unidirectional flow, and heat transfer in an oscillating flow cause by a seiche. All three of these will be used to consider the question of appropriate analytical models for vertical transport. The analytic models considered here are all 1D models that assume homogeneity in the horizontal plane. The numerical models use finite element methods and resolve the flow around individual vegetation stems in an idealized geometry. Laboratory models discussed herein also use an idealized geometry. Vegetation is represented by an array of cylinders, whose geometry is modeled after Scirpus spp. wetlands in Northern California. The laboratory model is constructed in a way that allows optical access to the flow, even in dense vegetation and far from boundaries. This is accomplished by using fluoropolymer plastics to construct vegetation models. The optical access allows us to employ particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) to measure

  19. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 _ 0.9 and 1.6 _ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 _ 0.6 and -0.1 _ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  20. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  1. Vertical allometry: fact or fiction?

    Science.gov (United States)

    Mahmood, Iftekhar; Boxenbaum, Harold

    2014-04-01

    In pharmacokinetics, vertical allometry is referred to the clearance of a drug when the predicted human clearance is substantially higher than the observed human clearance. Vertical allometry was initially reported for diazepam based on a 33-fold higher human predicted clearance than the observed human clearance. In recent years, it has been found that many other drugs besides diazepam, can be classified as drugs which exhibit vertical allometry. Over the years, many questions regarding vertical allometry have been raised. For example, (1) How to define and identify the vertical allometry? (2) How much difference should be between predicted and observed human clearance values before a drug could be declared 'a drug which follows vertical allometry'? (3) If somehow one can identify vertical allometry from animal data, how this information can be used for reasonably accurate prediction of clearance in humans? This report attempts to answer the aforementioned questions. The concept of vertical allometry at this time remains complex and obscure but with more extensive works one can have better understanding of 'vertical allometry'. Published by Elsevier Inc.

  2. Transverse vertical dispersion in groundwater and the capillary fringe.

    Science.gov (United States)

    Klenk, I D; Grathwohl, P

    2002-09-01

    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  3. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  4. Pulsejet engine dynamics in vertical motion using momentum conservation

    OpenAIRE

    Cheche, Tiberius O.

    2017-01-01

    The momentum conservation law is applied to analyse the dynamics of pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts existence of a terminal speed given frequency of the short pulses. The conditions that the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitationa...

  5. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  6. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  7. Optimization of the Vertical Bridgman Method and the Vertical Gradient Method for CdZnTe Single Crystal Production

    Directory of Open Access Journals (Sweden)

    A. Kalbáč

    2000-01-01

    Full Text Available In designing optimum parameters of advanced crystal growth techniques, computer modeling has become an important tool owing to the fact that computer simulation is much cheaper than many experimental techniques based on the trial and error method. In this paper, the application of computational modeling in the optimization of experimental setups for the production of CdZnTe single crystals from the melt is demonstrated on two characteristic examples, namely on the vertical Bridgman and vertical gradient method. The influence of adjustable parameters on the temperature, concentration and velocity fields, and on the positions and velocities of the moving interface is studied. Finally, the effect of uncertainty in material parameters on computed results is analyzed.

  8. Protected Vertices in Motzkin trees

    OpenAIRE

    Van Duzer, Anthony

    2017-01-01

    In this paper we find recurrence relations for the asymptotic probability a vertex is $k$ protected in all Motzkin trees. We use a similar technique to calculate the probabilities for balanced vertices of rank $k$. From this we calculate upper and lower bounds for the probability a vertex is balanced and upper and lower bounds for the expected rank of balanced vertices.

  9. Effect of bubble deformability on the vertical channel bubbly flow

    OpenAIRE

    Dabiri, Sadegh; Lu, Jiacai; Tryggvason, Gretar

    2012-01-01

    This article describes the fluid dynamics video: "Effect of bubble deformability on the vertical channel bubbly flow". The effect of bubble deformability on the flow rate of bubbly upflow in a turbulent vertical channel is examined using direct numerical simulations. A series of simulations with bubbles of decreasing deformability reveals a sharp transition from a flow with deformable bubbles uniformly distributed in the middle of the channel to a flow with nearly spherical bubbles with a wal...

  10. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  11. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  12. Vertical motion of particles in vibration-induced granular capillarity

    Directory of Open Access Journals (Sweden)

    Fan Fengxian

    2017-01-01

    Full Text Available When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon – which we term granular capillarity – we numerically investigate the system using the Discrete Element Method (DEM. We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  13. Geotail observations of FTE velocities

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2009-01-01

    Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.

  14. Vertical variations of coral reef drag forces

    Science.gov (United States)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration

    2017-11-01

    Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.

  15. The dependence of sheet erosion velocity on slope angle

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2014-09-01

    Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.

  16. Vertical alignment of stagnation points in pseudo-plane ideal flows

    Science.gov (United States)

    Sun, Che

    2017-09-01

    Recent studies of pseudo-plane ideal flow (PIF) reveal a ubiquitous presence of vortex alignment in both homogeneous and stratified fluids, and in both inertial and rotating reference frames as well. The exact solutions of a steady-state PIF model suggest that stagnation points tend to be vertically aligned and the concentric structure represents a fixed-point phenomenon of the Euler equations. Exception occurs in the rotating frame when a flow holds inertial period and skew center becomes possible. Properties of stagnation points based on Morse theory are obtained, leading to a topological explanation of vertical alignment via pressure Hessian. The study thus uncovers a new aspect of vortex behavior in ideal fluid that requires vortex center to align with the direction of gravity when vortex evolution reaches a laminar end state characterized by steady pseudo-plane velocities. Though the phenomenon arises from the constraint of the Euler equations, under specific conditions the topological theory is applicable to viscous fluid and explains the curvilinear tilting of von Kármán swirling vortex.

  17. Training methods to improve vertical jump performance.

    Science.gov (United States)

    Perez-Gomez, J; Calbet, J A L

    2013-08-01

    This study aims to review the main methods used to improve vertical jump performance (VJP). Although many training routines have been proposed, these can be grouped into four main categories: plyometric training (PT), weight training (WT), whole body vibration training (VT) and electromyostimulation training (ET). PT enhances muscular force, the rate of force development (RFD), muscular power, muscle contraction velocity, cross-sectional area (CSA), muscle stiffness allowing greater storage and release of elastic energy. WT improve muscular force, velocity, power output, and RFD during jumping on a force plate, muscle hypertrophy and neural adaptations. One of the most effective methods to improve VJP is the combination of PT with WT, which takes advantage of the enhancement of maximal dynamic force through WT and the positive effects of PT on speed and force of muscle contraction through its specific effect on type II fibers. Some authors have found an increase in VJP with the use of VT while other did not see such an effect. However, it remains unknown by which mechanisms VT could enhance VJP. ET has been shown to elicit muscle hypertrophy. The VJP may be improved when ET is applied concomitantly with PT or practice of sports. In summary, scientific evidence suggests that the best way to improve VJP is through the combination of PT with WT. Further research is needed to establish if better results are possible by more complex strategies.

  18. Investigating the effect of tractive parameters on imposed vertical stresses under driving wheel using a soil bin test rig facility

    Directory of Open Access Journals (Sweden)

    H Taghavifar

    2015-09-01

    traction force. Furthermore, it was deduced that the increase in depth leads to a reduction of soil vertical stresses. Conclusions: The present study is aimed at investigating the effect of net traction force on the imposed vertical stress under the 220/65R21 driving wheel. Hence, velocity at three levels (i.e. 0.8, 1, 1.2 m s-1, wheel load at three levels (i.e. 2, 3, and 4 kN and slippage at three levels (i.e. 8, 12, and 15% were considered to obtain traction force and soil vertical stress at three depths of 0.1, 0.15 and 0.2 m. Experiments were carried out in the complete randomized block design with three replicates on clay loam soil at 12% moisture content. The vertical stress was measured using a manufactured soil stress transducer where the net traction was measured using four horizontally installed load cells between the tester rig and the carriage. A correlation was developed between soil stress and traction force. The results revealed that vertical stress increases with respect to increase of wheel load and slippage, whereas vertical stress decreases by increase in depth and velocity. Additionally, it was found that wheel load and slippage bring about increased traction force while velocity has no significant effect on traction force at 1% significance level. Finally, it was deduced that an increase of traction force results in an increase of vertical stress transmission.

  19. Buoyancy induced Couette-Poiseuille flow in a vertical microchannel

    Science.gov (United States)

    Narahari, M.

    2017-10-01

    The fully developed buoyancy-induced (natural convective) Couette-Poiseuille flow in a vertical microchannel is investigated with the velocity slip and temperature jump boundary conditions. Closed form analytical solutions for the velocity and temperature fields are obtained. The effects of the fluid-wall interaction parameter, wall-ambient temperature difference ratio, Knudsen number, mixed convection parameter, and the dimensionless pressure gradient on the velocity, temperature, volume flow rate, heat flux between the plates and the Nusselt number have been discussed in detail through graphs. The outcomes of the investigation indicate that the volume flow rate increases with increasing values of mixed convection parameter, wall-ambient temperature difference ratio, and Knudsen number.

  20. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  1. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  2. Temporal variability of vertical export flux at the DYFAMED time-series station (Northwestern Mediterranean Sea)

    Science.gov (United States)

    Heimbürger, Lars-Eric; Lavigne, Héloïse; Migon, Christophe; D'Ortenzio, Fabrizio; Estournel, Claude; Coppola, Laurent; Miquel, Juan-Carlos

    2013-12-01

    The temporal evolution of the vertical export flux at the DYFAMED time-series station (Ligurian Sea) over the last 20 years reveals a strong interannual variability. Winter convection allows particulate (and dissolved) matter to be vertically exported (“flush-down” effect). The efficiency of this process determines also the concentration of nutrients brought to surface waters and, therefore, the intensity of the subsequent phytoplankton bloom. The sequence “convection-bloom” is the main driving force of vertical export flux in this region. The present work attempts to better identify the parameters that control vertical export flux dynamics by observing a 20 year time-series in relation with the temporal variability of mixed layer depth and surface primary production. The consequences of a more stratified water column in the future on biological productivity and vertical export flux are pointed out. In winter, the cooling of surface water, combined with evaporation, increases its density and determines the vertical convection. This allows for a rapid downward transfer of dissolved and particulate matter, yielding high vertical export flux. This “flush-down effect” results from a combination of convection and gravitational flux, since the diving of dense surface waters breaks the stratification of the water column and carries all material (particulate + dissolved) accumulated in the surface layer to depth. The rapid downward transfer of dissolved and particulate matter by this “flush-down effect” yields high vertical export fluxes. The magnitude of these fluxes may vary according to the amount of atmospheric material accumulated in surface waters during the preceding stratified period. In the present data set, highest vertical export fluxes were observed in 1999, 2003 and 2004. In those years, the MLD was greater (Fig. 2), suggesting a causal relationship between the efficiency of vertical mixing and the subsequent vertical export flux. In spring

  3. Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein A.

    2008-01-01

    Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .

  4. Kaleidoscopic motion and velocity illusions

    NARCIS (Netherlands)

    Helm, P.A. van der

    2007-01-01

    A novel class of vivid motion and velocity illusions for contrast-defined shapes is presented and discussed. The illusions concern a starlike wheel that, physically, rotates with constant velocity between stationary starlike inner and outer shapes but that, perceptually, shows pulsations, jolts

  5. Velocity Structure and Spatio-temporal Evolution in the Head Turbidity Currents based on Ultrasound Doppler Velocity Profiling

    Science.gov (United States)

    Nomura, Shun; Cesare Giovanni, De; Takeda, Yasushi; Yoshida, Taiki; Tasaka, Yuji; Sakaguchi, Hide

    2017-04-01

    Particle laden flow or turbidity current along the sea floor are important as a sediment conveyer and a formation factor of the submarine topography in the geological field. Especially, in the head of the flow, the kinematic energy is frequently exchanged through the boundary of the ambient water and the seabed floor, and it dominants the substantial dynamics of turbidity currents. An understanding of its turbulence structure helps to predict the sediment transport and layer development processes. To comprehend its dynamics precisely, flume test were conducted with continuously fed fluid quartz flour mixture supply. The flow velocities were measured at two different angles by the ultrasound Doppler velocity profiler UVP and both velocity components, in flow direction and on the vertical axis, were extracted. The fundamental velocity structure corresponds to the theories found in literature. Its spatio-temporal evolution was examined from the velocity distribution profiles along the downstream directions. Additionally, developing processes of head structures were also discussed through hydraulic statistic values such as mean velocity, Reynolds stress, and turbulent kinematic energy.

  6. The derivation of an anisotropic velocity model from a combined surface and borehole seismic survey in crystalline environment at the COSC-1 borehole, central Sweden

    Science.gov (United States)

    Simon, H.; Buske, S.; Krauß, F.; Giese, R.; Hedin, P.; Juhlin, C.

    2017-09-01

    The Scandinavian Caledonides provide a well-preserved example of a Palaeozoic continent-continent collision, where surface geology in combination with geophysical data provides information about the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep cored boreholes in western Jämtland, central Sweden. In 2014, the COSC-1 borehole was successfully drilled through a thick section of the Seve Nappe Complex. This tectonostratigraphic unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during the collisional orogeny. After the drilling, a major seismic survey was conducted in and around the COSC-1 borehole with the aim to recover findings on the structure around the borehole from core analysis and downhole logging. The survey comprised both seismic reflection and transmission experiments, and included zero-offset and multiazimuthal walkaway Vertical Seismic Profile (VSP) measurements, three long offset surface lines centred on the borehole, and a limited 3-D seismic survey. In this study, the data from the multiazimuthal walkaway VSP and the surface lines were used to derive detailed velocity models around the COSC-1 borehole by inverting the first-arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated directly from the zero-offset VSP revealed clear differences in velocities for horizontally and vertically travelling waves. Therefore, an anisotropic VTI (transversely isotropic with vertical axis of symmetry) model was found that explains first-arrival traveltimes from both the surface and borehole seismic data. The model is described by a vertical P-wave velocity function derived from zero-offset VSP and the Thomsen parameters ε = 0

  7. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all......We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final-good...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  8. Horizontal and Vertical Line Designs.

    Science.gov (United States)

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  9. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  10. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  11. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

  12. Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4

    Science.gov (United States)

    Heuzé, C.; Ridley, J. K.; Calvert, D.; Stevens, D. P.; Heywood, K. J.

    2015-10-01

    Most CMIP5 (Coupled Model Intercomparison Project Phase 5) models unrealistically form Antarctic Bottom Water by open ocean deep convection in the Weddell and Ross seas. To identify the mechanisms triggering Southern Ocean deep convection in models, we perform sensitivity experiments on the ocean model NEMO3.4 forced by prescribed atmospheric fluxes. We vary the vertical velocity scale of the Langmuir turbulence, the fraction of turbulent kinetic energy transferred below the mixed layer, and the background diffusivity and run short simulations from 1980. All experiments exhibit deep convection in the Riiser-Larsen Sea in 1987; the origin is a positive sea ice anomaly in 1985, causing a shallow anomaly in mixed layer depth, hence anomalously warm surface waters and subsequent polynya opening. Modifying the vertical mixing impacts both the climatological state and the associated surface anomalies. The experiments with enhanced mixing exhibit colder surface waters and reduced deep convection. The experiments with decreased mixing give warmer surface waters, open larger polynyas causing more saline surface waters and have deep convection across the Weddell Sea until the simulations end. Extended experiments reveal an increase in the Drake Passage transport of 4 Sv each year deep convection occurs, leading to an unrealistically large transport at the end of the simulation. North Atlantic deep convection is not significantly affected by the changes in mixing parameters. As new climate model overflow parameterisations are developed to form Antarctic Bottom Water more realistically, we argue that models would benefit from stopping Southern Ocean deep convection, for example by increasing their vertical mixing.

  13. Loading effects in GPS vertical displacement time series

    Science.gov (United States)

    Memin, A.; Boy, J. P.; Santamaría-Gómez, A.; Watson, C.; Gravelle, M.; Tregoning, P.

    2015-12-01

    Surface deformations due to loading, with yet no comprehensive representation, account for a significant part of the variability in geodetic time series. We assess effects of loading in GPS vertical displacement time series at several frequency bands. We compare displacement derived from up-to-date loading models to two global sets of positioning time series, and investigate how they are reduced looking at interannual periods (> 2 months), intermediate periods (> 7 days) and the whole spectrum (> 1day). We assess the impact of interannual loading on estimating velocities. We compute atmospheric loading effects using surface pressure fields from the ECMWF. We use the inverted barometer (IB) hypothesis valid for periods exceeding a week to describe the ocean response to the pressure forcing. We used general circulation ocean model (ECCO and GLORYS) to account for wind, heat and fresh water flux. We separately use the Toulouse Unstructured Grid Ocean model (TUGO-m), forced by air pressure and winds, to represent the dynamics of the ocean response at high frequencies. The continental water storage is described using GLDAS/Noah and MERRA-land models. Non-hydrology loading reduces the variability of the observed vertical displacement differently according to the frequency band. The hydrology loading leads to a further reduction mostly at annual periods. ECMWF+TUGO-m better agrees with vertical surface motion than the ECMWF+IB model at all frequencies. The interannual deformation is time-correlated at most of the locations. It is adequately described by a power-law process of spectral index varying from -1.5 to -0.2. Depending on the power-law parameters, the predicted non-linear deformation due to mass loading variations leads to vertical velocity biases up to 0.7 mm/yr when estimated from 5 years of continuous observations. The maximum velocity bias can reach up to 1 mm/yr in regions around the southern Tropical band.

  14. Backward integration, forward integration, and vertical foreclosure

    OpenAIRE

    Spiegel, Yossi

    2013-01-01

    I show that partial vertical integration may either alleviates or exacerbate the concern for vertical foreclosure relative to full vertical integration and I examine its implications for consumer welfare.

  15. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Deng, Guodong; Zhang, Jiasheng; Wu, Wenbing; Shi, Xiong; Meng, Fei

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  16. Explosive movement in the older men: analysis and comparative study of vertical jump.

    Science.gov (United States)

    Argaud, Sébastien; Pairot de Fontenay, Benoit; Blache, Yoann; Monteil, Karine

    2017-10-01

    Loss of power has been demonstrated to have severe functional consequences to perform physical daily living tasks in old age. This study aimed to assess how moment and velocity were affected for each joint of the lower limbs during squat jumping for older men in comparison with young adults. Twenty-one healthy older men (74.5 ± 4.6 years) and 22 young men (21.8 ± 2.8 years) performed maximal squat jumps. Inverse dynamics procedure was used to compute the net joint power, moment and velocity produced at the hip, knee and ankle joints. Vertical jump height of the elderly was 64 % lower than the young adults. The maximal power of the body mass center (P maxbmc ) was 57 % lower in the older population. For the instant at P maxbmc , the vertical ground reaction force and the vertical velocity of the body mass center were 26 % and 35 % less in the older adults than in the young adults, respectively (p vertical ground reaction force; p vertical jump. This smaller power resulted from both a lower moment and angular velocity produced at each joint.

  17. A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates

    Science.gov (United States)

    Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.

    2010-12-01

    Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.

  18. New GNSS velocity field and preliminary velocity model for Ecuador

    Science.gov (United States)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  19. Method of design for vertical oil shale retorting vessels and retorting therewith

    Science.gov (United States)

    Reeves, Adam A.

    1978-01-03

    A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.

  20. Vertical compact torus injection into the STOR-M tokamak

    Science.gov (United States)

    Liu, Dazhi

    experiments have been performed in STOR-M by using the USCTI device (University of Saskatchewan Compact Torus Injector). To perform vertical injection, the original USCTI has been modified by attaching a segment of 90° curved tube to deflect CT injection from horizontal to vertical direction. Therefore, a CT formed and accelerated by USCTI in horizontal direction will change its trajectory to vertical and be injected into STOR-M through a vertical port. The main findings of this thesis are: (1) The horizontally injected CT could be deflected to the vertical direction with a velocity ˜ 130 kms-1 and penetrated into the STOR-M plasma by the curved drift tube. A significant increase in the CT velocity after passing the curved tube, from 130 kms-1 to 270 kms-1, has been achieved by further attaching a copper inner electrode. (2) Vertical compact torus injection for fuelling a tokamak has been successfully demonstrated for the first time. Disruption-free discharges of STOR-M have been obtained with vertical CT injection. Prompt increases both in line-averaged density and in the soft X-ray emission level have been observed. The typical density increase is about 20% within 600 mus. Some signatures of confinement improvement of the STOR-M plasma induced by vertical CT injection have also been observed.

  1. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  2. A mechanical diagnosis of the ice flow around Dome C: Elmer/Ice 3D simulations constrained by measured surface velocities and radar isochrones.

    Science.gov (United States)

    Passalacqua, Olivier; Cavitte, Marie; Frezzotti, Massimo; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Parrenin, Frédéric; Ritz, Catherine; Vittuari, Luca; Young, Duncan

    2017-04-01

    The Dome C region has been densely surveyed and studied for the last decades, in particular to describe the shape of the ice surface, the bedrock relief, the surface velocity, the age and fabric structure of the ice, and its vertical temperature profile. No comprehensive ice flow modelling constrained by all of these field data has been done so far in this region. In particular, the Dome C has recently been targetted as an oldest-ice area, so that we intend to take advantage of a 2016 airborne radar survey that revealed the deep radar isochrones south-west of Dome C, and provides unprecendented constraints for the ice flow description. The Stokes equations are solved with the Elmer/Ice finite element solver, on a 80x110 km2 3D domain, for three different values of the Glen exponent n (1, 3 and 4.5), and for different fabric profiles. The goal of this study is threefold. First, as the range of stress types (longitudinal, transverse, and vertical compression-only) are well covered around Dome C, the observed surface velocities should efficiently constrain the possible values of the rheological parameters (Glen exponent and fluidity), and the basal sliding. Then, we apply an anisotropic flow law to correctly model the age structure, observed on the top 4/5th of the ice thickness, so that we induce mechanically-correct ages for the basal layers. Finally, once the ice mechanics is obtained, we compare the modelled vertical velocity profiles with 1D synthetic profiles, to assess the validity conditions of 1D modelling approaches, which are much more flexible tools for ensemble simulations or inversions.

  3. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  4. Altered velocity processing in schizophrenia during pursuit eye tracking.

    Science.gov (United States)

    Nagel, Matthias; Sprenger, Andreas; Steinlechner, Susanne; Binkofski, Ferdinand; Lencer, Rebekka

    2012-01-01

    Smooth pursuit eye movements (SPEM) are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%-80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal) guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s) both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD) signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP) bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen) implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity.

  5. Altered velocity processing in schizophrenia during pursuit eye tracking.

    Directory of Open Access Journals (Sweden)

    Matthias Nagel

    Full Text Available Smooth pursuit eye movements (SPEM are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%-80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity.

  6. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  7. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    Science.gov (United States)

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle.

  8. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-01-02

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers

    Science.gov (United States)

    Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut

    2017-04-01

    Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the

  10. Effect of flow distributors on uniformity of velocity profile in a baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Jen Chen; Man-Ting Cheng [Tajen Institute of Technology, Ping-Tung Hsien (Taiwan). Department of Environmental Engineering and Science

    2005-07-01

    In recent years, baghouses have been used as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance. 11 refs., 10 figs.

  11. Effect of flow distributors on uniformity of velocity profile in a baghouse.

    Science.gov (United States)

    Chen, Chi-Jen; Cheng, Man-Ting

    2005-07-01

    In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.

  12. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  13. A neural circuit for angular velocity computation.

    Science.gov (United States)

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  14. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 ¡_ 0.9 and 1.6 ¡_ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 ¡_ 0.6 and -0.1 ¡_ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  15. From Surface Flow Velocity Measurements to Discharge Assessment by the Entropy Theory

    Directory of Open Access Journals (Sweden)

    Tommaso Moramarco

    2017-02-01

    Full Text Available A new methodology for estimating the discharge starting from the monitoring of surface flow velocity, usurf, is proposed. The approach, based on the entropy theory, involves the actual location of maximum flow velocity, umax, which may occur below the water surface (dip phenomena, affecting the shape of velocity profile. The method identifies the two-dimensional velocity distribution in the cross-sectional flow area, just sampling usurf and applying an iterative procedure to estimate both the dip and umax. Five gage sites, for which a large velocity dataset is available, are used as a case study. Results show that the method is accurate in simulating the depth-averaged velocities along the verticals and the mean flow velocity with an error, on average, lower than 12% and 6%, respectively. The comparison with the velocity index method for the estimation of the mean flow velocity using the measured usurf, demonstrates that the method proposed here is more accurate mainly for rivers with a lower aspect ratio where secondary currents are expected. Moreover, the dip assessment is found more representative of the actual location of maximum flow velocity with respect to the one estimated by a different entropy approach. In terms of discharge, the errors do not exceed 3% for high floods, showing the good potentiality of the method to be used for the monitoring of these events.

  16. Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    S. Das

    2016-03-01

    Full Text Available The transient natural convection in a vertical channel filled with nanofluids has been studied when thermal radiation is taken into consideration. The equations governing the flow are solved by employing the Laplace transform technique. Exact solutions for the velocity and temperature of nanofluid are obtained in cases of both prescribed surface temperature (PST and prescribed heat flux (PHF. The numerical results for the velocity and temperature of nanofluid are presented graphically for the pertinent parameters and discussed in detail. The fluid velocity is greater in the case of PST than that of PHF.

  17. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  18. Physics and the Vertical Jump

    Science.gov (United States)

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  19. Multiservice Vertical Handoff Decision Algorithms

    Directory of Open Access Journals (Sweden)

    Zhu Fang

    2006-01-01

    Full Text Available Future wireless networks must be able to coordinate services within a diverse-network environment. One of the challenging problems for coordination is vertical handoff, which is the decision for a mobile node to handoff between different types of networks. While traditional handoff is based on received signal strength comparisons, vertical handoff must evaluate additional factors, such as monetary cost, offered services, network conditions, and user preferences. In this paper, several optimizations are proposed for the execution of vertical handoff decision algorithms, with the goal of maximizing the quality of service experienced by each user. First, the concept of policy-based handoffs is discussed. Then, a multiservice vertical handoff decision algorithm (MUSE-VDA and cost function are introduced to judge target networks based on a variety of user- and network-valued metrics. Finally, a performance analysis demonstrates that significant gains in the ability to satisfy user requests for multiple simultaneous services and a more efficient use of resources can be achieved from the MUSE-VDA optimizations.

  20. Advanced high performance vertical hybrid synthetic jet actuator

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  1. ISAL experiment documentation of vertical tail and OMS pods

    Science.gov (United States)

    1983-01-01

    Investigation of Space Transportation System (STS) Atmospheric Luminosities (ISAL) experiment documentation includes vertical tail and orbital maneuvering system (OMS) pods with surface glow against the blackness of space. This glowing scene was provided by a long duration exposure with a 35mm camera aimed toward the tail of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. OV-099 was maneuvered to a 120-nautical-mile altitude and flown with open payload bay (PLB) in the velocity vector for the conducting of a test titled, 'Evaluation of Oxygen Interaction with Materials (EOIM)'. Atomic oxygen within the low orbital environment is known to be extremely reactive when in contact with solid surfaces. In the darkened area between the camera and the glowing OMS pods and vertical stabilizer are two trays of test materials.

  2. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  3. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance......Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...

  4. Galactic subsystems on the basis of cumulative distribution of space velocities

    Directory of Open Access Journals (Sweden)

    Vidojević S.

    2008-01-01

    Full Text Available A sample containing 4 614 stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92%, thick disc 6% and halo 2%. These results are verified by analyzing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  5. Multi-Joint Coordination of Vertical Arm Movement

    Directory of Open Access Journals (Sweden)

    Ajay Seth

    2003-01-01

    Full Text Available A model of the human arm was developed to study coordination of multi-joint movement in the vertical plane. The arm was represented as a two-segment, two-degree of freedom dynamic system with net muscle torques acting at the shoulder and elbow. Kinematic data were collected from a subject who performed unrestrained vertical movements with only the initial and final hand elevations prescribed. Movements were performed with and without a hand-held load. The method of computed torques was implemented to obtain net muscle torques, which enables position and velocity feedback to be used to estimate joint angular accelerations that produce a more stable simulation of arm movement. The model simulation was then used to calculate the contributions of the net muscle torques, gravitational torques and velocity-interaction torques to the angular accelerations of the shoulder and elbow and also to the vertical acceleration of the hand. The net muscle torques and gravity were the prime movers of the arm. The velocity-dependent effects contributed little to the dynamics of arm movement and were, in fact, insignificant when the hand was loaded. The muscles of the shoulder and elbow acted synergistically to elevate the arm in the sagittal plane. The hand was accelerated upward by the elbow first, until the point of maximum elbow flexion, after which the shoulder became the prime mover. Gravity acted consistently to accelerate the hand downward. Coordination was notably invariant to changes in external load. Some compensation for load was observed in the control, and these differences were attributed mainly to an increase in system inertia.

  6. Are there any differences in physical fitness and throwing velocity between national and international elite female handball players?

    Science.gov (United States)

    Granados, Cristina; Izquierdo, Mikel; Ibáñez, Javier; Ruesta, Maite; Gorostiaga, Esteban M

    2013-03-01

    This study compared physical characteristics in a 2003 national elite female team (NE; n = 16; fourth in the Spanish Championship) to the same team when it reached international level in 2009 (IE; n = 14; winner of the Spanish Championship and the European Handball Cup). Body height, body mass, body fat, and fat-free mass, 1-repetition maximum bench press (1RMBP), vertical jumping height, handball throwing velocity, power-load relationship of the leg and arm extensor muscles, 5- and 15-m sprint running time, and running endurance were measured in the second competitive mesocycle of a season. Results revealed that, compared with NE, IE players presented similar values in body mass, body height, sprint running time, handball throwing velocity, and jumping, but higher values (p < 0.01-0.05) in age (17%), 1RMBP (15%), power-load relationship of the arm (16%), and leg (10%) extensors, and endurance running velocities (7%). Significant correlations (r = 0.71-0.72, p < 0.05) were observed in IE, but not in NE, between individual values of standing throw and individual values of power at 30% of 1RMBP, and individual values of power at 60% of body mass during half-squat actions. The present results suggest that more experienced, powerful and aerobically conditioned players are at an advantage in international-level female handball. The ball throwing velocity of international elite female handball players depends on their ability to produce muscle power at submaximal loads with the upper and lower extremities. However, in lower-level players, this depends on the level of performance at maximal strength of the upper extremities.

  7. Signal velocity in oscillator arrays

    Science.gov (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  8. Constraining the depth of the time-lapse changes of P- and S-wave velocities in the first year after the 2011 Tohoku earthquake, Japan

    Science.gov (United States)

    Sawazaki, K.; Kimura, H.; Uchida, N.; Takagi, R.; Snieder, R.

    2012-12-01

    Using deconvolutions of vertical array of KiK-net (nationwide strong-motion seismograph digital network in Japan) records and applying coda wave interferometry (CWI) to Hi-net (high-sensitivity seismograph network in Japan; collocated with a borehole receiver of KiK-net) borehole records, we constrain the responsible depth of the medium changes associated with the 2011 Tohoku earthquake (MW9.0). There is a systematic reduction in VS up to 6% in the shallow subsurface which experienced strong dynamic strain by the Tohoku earthquake. In contrast, both positive and negative changes are observed for VP, which are less than 2% for both directions. We propose that this discrepancy between the changes of VS and VP is explained by the behavior of shear and bulk moduli of a porous medium exposed to an increase of excess pore fluid pressure. At many stations, VS recovers proportional to logarithm of the lapse time after the mainshock, and mostly recovers to the reference value obtained before the mainshock in one year. However, some stations that have been exposed by additional strong motions of aftershocks and/or other earthquakes take much longer time for the recovery. The CWI technique applied to horizontal components of S-coda reveals a velocity reduction up to 0.2% widely along the coastline of northeastern Japan. For the vertical component of P-coda, however, the velocity change is mostly less than 0.1% at the same region. From single scattering model including P-S and S-P conversion scatterings, we verify that both components are sensitive to VS change around the source, but the vertical component of P-coda is sensitive to VP change around the receiver. Consequently, the difference in velocity changes revealed from the horizontal and vertical components represents the difference of VS and VP changes near the receiver. As the conclusion, VS reduction ratio in the deep lithosphere is smaller than that at the shallow ground by 1 to 2 orders.

  9. Finite Difference Study of MHD Stokes Problem for a Vertical Infinite ...

    African Journals Online (AJOL)

    The explicit finite difference method is employed to study the effects of both the Hall and ionslip currents on a free convective flow of a viscous heat generating rotating fluid past an impulsively started infinite vertical plate, to which a strong magnetic field is applied perpendicularly. The velocity (both primary and secondary) ...

  10. Noninvasive monitoring of vocal fold vertical vibration using the acoustic Doppler effect.

    Science.gov (United States)

    Tao, Chao; Jiang, Jack J; Wu, Dan; Liu, Xiaojun; Chodara, Ann

    2012-11-01

    To validate a proposed method of noninvasively monitoring vocal fold vertical vibration through utilization of the acoustic Doppler effect and the waveguide property of the vocal tract. Validation case-control study. In this device, an ultrasound beam is generated and directed into the mouth. The vocal tract, acting as a natural waveguide, guides the ultrasound beam toward the vibrating vocal folds. The vertical velocity of vocal fold vibration is then recovered from the Doppler frequency of the reflected ultrasound. One subject (age 32, male) was studied and measurements were taken under three modes of vocal fold vibration: breathing (no vibration), whispering (irregular vibration), and normal phonation (regular vibration). The peak-to-peak amplitude of the measured velocity of vocal fold vertical vibration was about 0.16 m/s, and the fundamental frequency was 172 Hz; the extracted velocity information showed a reasonable waveform and value in comparison with the previous studies. In all three modes of phonation, the Doppler frequencies derived from the reflected ultrasound corresponded with the vertical velocity of vocal fold vibration as expected. The proposed method can accurately represent the characteristics of different phonation modes such as no phonation, whisper and normal phonation. The proposed device could be used in daily monitoring and assessment of vocal function and vocal fold vibration. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  12. High-reliability vertical-axis wind turbine

    Science.gov (United States)

    Noll, R. B.; Zvara, J.

    A review of the design and development of a 1-kW high-reliability vertical-axis small wind energy conversion system (SWECS) is presented. The SWECS is a straight-bladed version of the Darrieus design. It incorporates high-reliability components in order to obtain a design value of mean time between failures of ten years based on one maintenance day a year. Design features are described, automatic control of the turbine is discussed, and typical results from controlled velocity testing are presented.

  13. Vertical Heat Flux in the Ocean: Estimates from Observations, and Comparisons with a Coupled General Circulation Model

    Science.gov (United States)

    Cummins, P. F.; Masson, D.; Saenko, O.

    2016-02-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of the absolute geostrophic flow. Results are compared with a non-eddy resolving, coupled atmosphere-ocean general circulation model. This shows reasonable agreement in the latitudinal distribution of the heat flux, along with net integrated vertical heat flux below about 300 meters depth. The mean vertical heat flux is shown to be dominated by the downward contribution from the southern hemisphere and, in particular, the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward vertical transport of seawater that is cold relative to the lateral average at a given depth. The correspondence with the coupled model breaks down at depths shallower than 300 m due to the dominant contribution of equatorial regions which have been excluded from the calculation. It appears that the vertical transport of heat by the large-scale mean circulation is consistent with simple linear vorticity dynamics over much of the ocean.

  14. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    Science.gov (United States)

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  15. Velocity potential formulations of highly accurate Boussinesq-type models

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Madsen, Per A.; Fuhrman, David R.

    2009-01-01

    processes on the weather side of reflective structures. Coast. Eng. 53, 929-945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position z=(z) over cap. For practical implementation however, the solution is expanded based on a slow...... variation of (z) over cap and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators...

  16. Maximum height and minimum time vertical jumping.

    Science.gov (United States)

    Domire, Zachary J; Challis, John H

    2015-08-20

    The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Relationship between vertical and horizontal jump variables and muscular performance in athletes.

    Science.gov (United States)

    Dobbs, Caleb W; Gill, Nicholas D; Smart, Daniel J; McGuigan, Michael R

    2015-03-01

    This study investigated the relationship between vertical and horizontal measures in bilateral and unilateral countermovement jump, drop jump and squat jump (SJ), and sprinting speed and muscle architecture of both the vastus lateralis and gastrocnemius. Subjects (n = 17) completed a 30-m sprint test, muscle stiffness test; ultrasound measures, and a jump testing session. Measures of horizontal peak and mean force, in both bilateral and unilateral jumps, tended to have greater relationships to sprint speeds (R = 0.132-0.576) than peak and mean force in the vertical plane (R = 0.008-0.504). Vertical velocity variables also showed some large and very large correlations to sprint speed (R = 0.062-0.635). Unilateral measures of velocity tended to have larger correlations to sprint performance than their bilateral counterparts across all jump types and peak and mean velocity in SJ showed large and very large correlations to sprint speed (bilateral R = 0.227-0.635; unilateral 0.393-0.574). Few large correlations were shown between muscle stiffness measures of muscle architecture and kinetic and kinematic variables in either vertical or horizontal jumps. The present findings suggest that sport scientists and strength and conditioning practitioners concerned with the prognostic value of kinetic variables to functional movements such as sprint speed should also use horizontal jumps in addition to vertical jumps in testing and training.

  18. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  19. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  20. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  1. Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider

    Science.gov (United States)

    2014-09-30

    as well as notes on the spurious stalls incurred due to the mechanical braking system. The second generation UWW was delivered by MacArtney in May...power system was developed for the UWW to limit back electromotive force (back- EMF ) induced by current surges from the UWW’s motor. Majority of the

  2. Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider

    Science.gov (United States)

    2012-09-30

    Liquid Robotics navigated a Wave Glider from San Diego to Hawaii on a 82 day-long voyage that covered approximately 2500 nautical miles (http...Gawarkiewicz, G., et al. (2011), Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome ., Oceanography, 24(4), 110...121. Lee, D.-K., and P. Niiler (2010), Influence of warm SST anomalies formed in the eastern Pacific subduction zone on recent El Nino events, J Mar Res, 68(3-4), 459-477.

  3. Horizontal and Vertical Structure of Velocity, Potential Vorticity and Energy in the Gulf Stream.

    Science.gov (United States)

    1985-02-01

    Number OCE-8208 746; and by the Office of Naval Research under contract Number NOOG 14-82-C -0019, NR 083-004. Reproduction in whole or in part is...The first term on the RHiS can be written 1 (p(0)+ :1)( ufO )+eufl)) 1 (0+P 1 *l 1O)CUI) 0 0 -H 1 HI () (-) pi O / V.1 (pa) +ft w 01 0j~ EoPO o1 1

  4. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Science.gov (United States)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  5. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  6. The Risk of Airborne Cross-Infection in a Room with Vertical Low-Velocity Ventilation

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de

    2013-01-01

    Downward flow ventilation systems are one of the most recommended ventilation strategies when contaminants in rooms must be removed and people must be protected from the risk of airborne cross-infection. This study is based on experimental tests carried out in a room with downward flow ventilation....... Two breathing thermal manikins are placed in a room face to face. One manikin’s breathing is considered to be the contaminated source to simulate a risky situation with airborne cross-infection. The position of the manikins in relation to the diffuser and the location of diffuser in the room as well...

  7. The nature of subslab slow velocity anomalies beneath South America

    Science.gov (United States)

    Portner, Daniel Evan; Beck, Susan; Zandt, George; Scire, Alissa

    2017-05-01

    Slow seismic velocity anomalies are commonly imaged beneath subducting slabs in tomographic studies, yet a unifying explanation for their distribution has not been agreed upon. In South America two such anomalies have been imaged associated with subduction of the Nazca Ridge in Peru and the Juan Fernández Ridge in Chile. Here we present new seismic images of the subslab slow velocity anomaly beneath Chile, which give a unique view of the nature of such anomalies. Slow seismic velocities within a large hole in the subducted Nazca slab connect with a subslab slow anomaly that appears correlated with the extent of the subducted Juan Fernández Ridge. The hole in the slab may allow the subslab material to rise into the mantle wedge, revealing the positive buoyancy of the slow material. We propose a new model for subslab slow velocity anomalies beneath the Nazca slab related to the entrainment of hot spot material.

  8. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  9. A new maximum likelihood blood velocity estimator incorporating spatial and temporal correlation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2001-01-01

    The blood flow in the human cardiovascular system obeys the laws of fluid mechanics. Investigation of the flow properties reveals that a correlation exists between the velocity in time and space. The possible changes in velocity are limited, since the blood velocity has a continuous profile in time...... of possible velocities. In the new estimator an additional similarity investigation for each evaluated velocity and the available velocity estimates in a temporal (between frames) and spatial (within frames) neighborhood is performed. An a priori probability density term in the distribution...... of the observations gives a probability measure of the correlation between the velocities. Both the MLE and the STC-MLE have been evaluated on simulated and in-vivo RF-data obtained from the carotid artery. Using the MLE 4.1% of the estimates deviate significantly from the true velocities, when the performance...

  10. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos

    2003-01-01

    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  11. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mattione, Paul [Rice Univ., Houston, TX (United States)

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  12. Vertical distribution of Arctic methane

    Science.gov (United States)

    Tukiainen, Simo; Karppinen, Tomi; Hakkarainen, Janne; Kivi, Rigel; Heikkinen, Pauli; Tamminen, Johanna

    2017-04-01

    In this study we show the vertical distribution of atmospheric methane (CH4) measured in Sodankylä, Northern Finland. The CH4 profiles are retrieved from the direct Sun FTS measurements using the dimension reduction retrieval method. In the retrieval method, we have a few degrees of freedom about the profile shape. The data set covers years 2010-2016 (from February to November) and altitudes 0-40 km. The retrieved FTS profiles are validated against ACE satellite measurements and AirCore balloon measurements. The total columns derived from the FTS profiles are compared to the official TCCON XCH4 data. A vertically resolved methane data set can be used, e.g., to study stratospheric methane during the polar vortex.

  13. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    -orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.

  14. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field

    Science.gov (United States)

    Chen, Jui-Sheng; Jang, Cheng-Shin; Cheng, Chung-Ting; Liu, Chen-Wuing

    2010-09-01

    SummaryThis study presents a novel mathematical model for describing the transport of the remedial reagent in a vertical circulation flow field in an anisotropic aquifer. To develop the mathematical model, the radial and vertical components of the pore water velocity are calculated first by using an analytical solution for steady-state drawdown distribution near a vertical circulation well. Next, the obtained radial and vertical components of the pore water velocity are then incorporated into a three-dimensional axisymmetrical advection-dispersion equation in cylindrical coordinates from which to build the reagent transport equation. The Laplace transform finite difference technique is applied to solve the three-dimensional axisymmetrical advection-dispersion equation with spatial variable-dependent coefficients. The developed mathematical model is used to investigate the effects of various parameters such as hydraulic conductivity anisotropy, longitudinal and transverse dispersivities, the placement of the extraction and injection screened intervals of the vertical circulation well and the injection modes on the transport regime of the remedial reagent. Results show that those parameters have different degrees of impacts on the distribution of the remedial reagent. The mathematical model provides an effective tool for designing and operating an enhanced groundwater remediation in an anisotropic aquifer using the vertical circulation well technology.

  15. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid

    Directory of Open Access Journals (Sweden)

    X. Ren

    2011-10-01

    Full Text Available A relaxed eddy accumulation (REA system combined with a nitrous acid (HONO analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1 a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2 a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3 a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009 at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.

  16. Poligonación Vertical

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La poligonación vertical es un método de medición de diferencias de altura que aprovecha las posibilidades de las estaciones totales. Se presta fundamentalmente para líneas de nivelación entre nodos formando red. El nombre se debe a que las visuales sucesivas se proyectan sobre aristas verticales en lugar de un plano horizontal, como ocurre en la poligonación convencional.

  17. Vertical Launch System Loadout Planner

    Science.gov (United States)

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...mathematically complex and require training to operate the software. A Visual Basic for Applications ( VBA ) Excel (Microsoft Corporation, 2015...lockheed/data/ms2/documents/laun chers/MK41 VLS factsheet.pdf Microsoft Excel version 14.4.3, VBA computer software. (2011). Redmond, WA: Microsoft

  18. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-economy property rights theory of the firm using firm-level data. Finally, we notice that our model's sorting pattern is in line with recent evidence when the wage difference across countries is not too big....

  19. Prophylaxis of vertical HBV infection.

    Science.gov (United States)

    Pawlowska, Malgorzata; Pniewska, Anna; Pilarczyk, Malgorzata; Kozielewicz, Dorota; Domagalski, Krzysztof

    2016-10-01

    An appropriate management of HBV infection is the best strategy to finally reduce the total burden of HBV infection. Mother-to-child transmission (MTCT) is responsible for more than one third of chronic HBV infections worldwide. Because HBV infection in infancy or early childhood often leads to chronic infection, appropriate prophylaxis and management of HBV in pregnancy is crucial to prevent MTCT. The prevention of HBV vertical transmission is a complex task and includes: universal HBV screening of pregnant women, administration of antivirals in the third trimester of pregnancy in women with high viral load and passive-active HBV immunoprophylaxis with hepatitis B vaccine and hepatitis B immune globulin in newborns of all HBV infected women. Universal screening of pregnant women for HBV infection, early identification of HBV DNA level in HBV-infected mothers, maternal treatment with class B according to FDA antivirals and passive/active anti-HBV immunoprophylaxis to newborns of HBV-positive mothers are crucial strategies for reducing vertical HBV transmission rates. Consideration of caesarean section in order to reduce the risk of vertical HBV transmission should be recommend in HBV infected pregnant women with high viral load despite antiviral therapy or when the therapy in the third trimester of pregnancy is not available.

  20. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  1. Combined imaging and velocity estimation by Joint Migration Inversion

    NARCIS (Netherlands)

    Staal, X.R.

    2015-01-01

    Seismic imaging projects aim to reveal the structure of the earths crust from seismic data. These projects typically include three separate processing steps, being: • attenuation of multiple reflections in the seismic data. • estimating seismic wave propagation velocities from the seismic data. •

  2. PREDICTING THE INTRA-CYCLIC VARIATION OF THE VELOCITY OF THE CENTRE OF MASS FROM SEGMENTAL VELOCITIES IN BUTTERFLY STROKE: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Joao P. Vilas-Boas

    2008-06-01

    end of the underwater path, should increase the vertical velocity during the downbeats and decrease the velocity during the hand's entry.

  3. Three-dimensional velocity imaging of the Kachchh seismic zone, Gujarat, India

    Science.gov (United States)

    Mandal, Prantik; Chadha, R. K.

    2008-06-01

    To understand the causative mechanism of the continued occurrence of earthquakes in Kachchh, Gujarat for the last six years, we estimated high-resolution three-dimensional Vp, Vs and Vp/Vs structures in the aftershock zones of the 2001 Mw7.7 Bhuj and 2006 Mw5.6 Gedi earthquakes. We used 13,862 P- and 13,736 S-wave high-quality arrival times collected from the seismograms of 2303 aftershocks recorded at 5-18 three-component seismograph stations during 2001-06. Seismic images revealed a marked spatial variation in the velocities (from - 20% to + 14% in Vp, from - 12% to 13% in Vs, and from - 12% to 12% increase in Vp/Vs) in the 0-34 km depth range beneath the Bhuj aftershock zone. Relatively more increase in Vp than Vs, resulting in an increase in Vp/Vs in the crust beneath the seismically active causative fault (North Wagad Fault, NWF) zone of 2001 Bhuj mainshock suggests a rigid, mafic crust beneath the region. They also delineate an increase of 8% in Vp and 14% in Vs, and a decrease of 4% in Vp/Vs in the almost vertical rupture zone of the 2006 Gedi earthquake extending up to 12 km depth. This high velocity body associated with the Gedi mainshock is inferred to be a gabbroic intrusive. The Banni region and the Wagad uplift are found to be associated with high velocity intrusive bodies (inferred to be mafic) extending from 5 to 35 km depth, which might have intruded during the rifting in early Jurassic (~ 160 Ma). Aftershock activity is mainly confined to the zones characterized by high Vp, high Vs and low Vp/Vs ratio, which might be representing the strong, competent and brittle parts of the fault zone/intrusive bodies that could accumulate large strain energy for generating aftershocks for more than six years. It is inferred that the crustal stress concentrations associated with the intrusive bodies are contributing significant perturbation to the crustal stress regime to generate the intraplate earthquakes in the Kachchh rift zone. A few patches of slow (Vp and

  4. [Vertical fractures: apropos of 2 clinical cases].

    Science.gov (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  5. Evidence of diel vertical migration in Mnemiopsis leidyi.

    Directory of Open Access Journals (Sweden)

    Matilda Haraldsson

    Full Text Available The vertical distribution and migration of plankton organisms may have a large impact on their horizontal dispersal and distribution, and consequently on trophic interactions. In this study we used video-net profiling to describe the fine scale vertical distribution of Mnemiopsis leidyi in the Kattegat and Baltic Proper. Potential diel vertical migration was also investigated by frequent filming during a 24-hour cycle at two contrasting locations with respect to salinity stratification. The video profiles revealed a pronounced diel vertical migration at one of the locations. However, only the small and medium size classes migrated, on average 0.85 m h(-1, corresponding to a total migration distance of 10 m during 12 h. Larger individuals (with well developed lobes, approx. >27 mm stay on average in the same depth interval at all times. Biophysical data suggest that migrating individuals likely responded to light, and avoided irradiance levels higher than approx. 10 µmol quanta m(-2 s(-1. We suggest that strong stratification caused by low surface salinity seemed to prohibit vertical migration.

  6. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    Science.gov (United States)

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-04-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields.

  7. Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2017-01-01

    Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.

  8. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  9. Critical velocity experiments in space

    Science.gov (United States)

    Torbert, R. B.

    1988-01-01

    Published data from active space experiments designed to demonstrate the Alfven critical-velocity effect are compiled in graphs and compared with the predictions of numerical simulations. It is found that the discrepancies in the ionization yields obtained in shaped-charge releases of alkali metals are related to the macroscopic limits of time and energy in such releases. It is argued that the total ionization yield is an inadequate measure of the critical-velocity effect, and a new criterion based on eta, the efficiency of energy transfer from the recently ionized neutrals to a heated electron population, is proposed: the effect would be verified if eta values of 10 percent or greater were observed.

  10. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  11. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  12. Numerical study on small scale vertical axis wind turbine

    Science.gov (United States)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  13. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  14. Development of Vertical Cable Seismic System (3)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of

  15. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating

  16. Conundrum on magmatic reservoir of Soufriere Hills volcano, Montserrat: enigmatic evidence and the case for a vertically-elongated reservoir

    Science.gov (United States)

    Voight, B.; Widiwijayanti, C.; Mattioli, G.; Ammon, C.; Elsworth, D.; Foroozan, R.; Hidayat, D.; Humphreys, M.; Minshull, T.; Paulatto, M.; Shalev, E.; Sparks, S.

    2008-12-01

    The Soufriere Hills Volcano(SHV) has been heavily investigated 1995-present but its magma storage structure remains poorly constrained and some critical evidence conflicts. The reservoir top is >5km (~130MPa) based on phenocryst assemblages, melt inclusion data on volatiles, and the deepest locations of volcano-tectonic earthquakes occurring near the conduit. Early GPS data were interpreted to suggest a reservoir depth of ~5km coupled to a deforming dike, but post-1997 data supported a deeper source, >9km, assuming a spherical reservoir geometry. The cumulative volume of the eruption (~0.9km3) and its chemical and petrological consistency over 13 years suggests that the shallow andesite magma source is voluminous, many km3. The response of CALIPSO borehole strainmeters to a major dome collapse suggested a volatile-saturated magma body of several km3 with a top 5-7km depth. Some crystal phases suggest incorporation >10km, and mixed lavas require a deep supply of mafic magma. Earthquakes are too shallow to enable passive source tomography or S-wave shadows of the magma reservoir. Teleseismic events are being studied but probably cannot resolve reservoir details. The SEA-CALIPSO active source experiment (Dec 2007) aimed to image the lithosphere and, if possible, region of magma storage, but velocity tomography reveals a difficulty in 3D imaging >5km (where magma storage is) due to control of ray curvature by velocity structure. Above this level, the several volcanic centers show higher speed perturbations with respect to the initial velocity model. Travel times from four OBSs and four land stations on a SE-NW line through SHV were inverted to obtain a 2D seismic section, revealing a body with high average velocity underneath the island, about 10km wide, from the surface to 8km depth. These results can be explained by crystallized intrusions, with the currently active magma storage region(s) contained inside this body but masked at the seismic resolution achieved. Thus

  17. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    Science.gov (United States)

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  18. Coastal Vertical Land motion in the German Bight

    Science.gov (United States)

    Becker, Matthias; Fenoglio, Luciana; Reckeweg, Florian

    2017-04-01

    In the framework of the ESA Sea Level Climate Change Initiative (CCI) we analyse a set of GNSS equipped tide gauges at the German Bight. Main goals are the determination of tropospheric zenith delay corrections for altimetric observations, precise coordinates in ITRF2008 and vertical land motion (VLM) rates of the tide gauge stations. These are to be used for georeferencing the tide gauges and the correction of tide gauge observations for VLM. The set of stations includes 38 GNSS stations. 19 stations are in the German Bight, where 15 of them belong to the Bundesanstalt für Gewässerkunde, 3 to EUREF and 1 to GREF. These stations are collocated with tide gauges (TGs). The other 19 GNSS stations in the network belong to EUREF, IGS and GREF. We analyse data in the time span from 2008 till the end of 2016 with the Bernese PPP processing approach. Data are partly rather noisy and disturbed by offsets and data gaps at the coastal TG sites. Special effort is therefore put into a proper estimation of the VLM. We use FODITS (Ostini2012), HECTOR (Bos et al, 2013), CATS (Williams, 2003) and the MIDAS approach of Blewitt (2016) to robustly derive rates and realistic error estimates. The results are compared to those published by the European Permanent Network (EPN), ITRF and the Système d'Observation du Niveau des Eaux Littorales (SONEL) for common stations. Vertical motion is small in general, at the -1 to -2 mm/yr level for most coastal stations. A comparison of the standard deviations of the velocity differences to EPN with the mean values of the estimated velocity standard deviations for our solution shows a very good agreement of the estimated velocities and their standard deviations with the reference solution from EPN. In the comparison with results by SONEL the standard deviation of the differences is slightly higher. The discrepancies may arise from differences in the time span analyzed and gaps, offsets and data preprocessing. The combined estimation of functional

  19. ?Vertical Sextants give Good Sights?

    Science.gov (United States)

    Richey, Michael

    Mark Dixon suggests (Forum, Vol. 50, 137) that nobody thus far has attempted to quantify the errors from tilt that arise while observing with the marine sextant. The issue in fact, with the related problem of what exactly is the axis about which the sextant is rotated whilst being (to define the vertical), was the subject of a lively controversy in the first two volumes of this Journal some fifty years ago. Since the consensus of opinion seems to have been that the maximum error does not necessarily occur at 45 degrees, whereas Dixon's table suggests that it does, some reiteration of the arguments may be in order.

  20. BATCH SETTLING IN VERTICAL SETTLERS

    OpenAIRE

    Lama Ramirez, R.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú; Condorhuamán Ccorimanya, C.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú

    2014-01-01

    lt has been studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulphate and lead oxide , in vertical thickeners of rectangular and circular cross sectional area. Suspensions vary in concentration between 19.4 and 617.9 g/I and the rate of sedimentation obtained between 0.008 and 7.70 cm/min. The effect of the specific gravity of the solid on the rate of sedimentation is the same for all the suspensions, that is, the greater the value of the specif...

  1. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  2. Movement velocity vs. strength training

    Directory of Open Access Journals (Sweden)

    Mário C. Marques

    2017-06-01

    practice in strength training, but increasing evidence (Sanborn et al., 2000; Folland et al., 2002; Izquierdo et al., 2006; Drinkwater et al., 2007 shows that training to repetition failure does not necessarily produce better strength gains and that may even be counterproductive by inducing excessive fatigue, mechanical and metabolic strain (Fry, 2004. In fact, fatigue associated with training to failure not only significantly reduces the force that a muscle can generate, but also the nervous system’s ability to voluntarily activate the muscles (Häkkinen, 1993. Consequently, this approach, besides being very tiring and having shown no advantage over other lower effort types of training, it is unrealistic because it is practically impossible to know exactly how many repetitions can be done with a given absolute load without any initial reference. In addition, if in the first set the subject has completed the maximum number of repetitions, it will be very difficult or even impossible to perform properly the same number of reps in the following sets. Movement velocity is another variable which could be of great interest for monitoring exercise intensity, but surprisingly it has been vaguely mentioned in most studies to date. The importance that monitoring movement velocity for strength training programming have already been noticed in 1991 (González-Badillo, 1991. More recently, González-Badillo and Sánchez-Medina (2010, 2011 studied this hypothesis and confirmed that movement velocity provides as a determinant of the level of effort during resistance training as well as an indicator of the degree of fatigue. Unfortunately, the lack of use of this variable is likely because until recently it was not possible to accurately measure velocity in isoinertial strength training exercises/movements.  Indeed, most research that has addressed movement velocity in strength training was basically conducted using isokinetic apparatus which, unfortunately, is not an ideal or common

  3. Gestation and the evolution of vertical stance bipedal humans

    Directory of Open Access Journals (Sweden)

    D.S. Robertson

    2011-12-01

    Full Text Available During mammalian gestation a change in maternal stance alters the velocities of maternal blood flows and results in a changed rate of delivery and distribution of nutrients required to form the bone and tissue in various parts of a developing foetus. The latter in turn results in change in the extent and position of tissue and bone formation in the foetus. It is shown that such changes would, over many generations, alter the physical characteristics of the ancestor offspring under conditions where the pregnant maternal ancestor normally exhibiting horizontal stance was constrained to adopt a vertical stance for all or most of the gestation period. This behaviour produced the physical characteristics seen in humans and other Hominidae primates, including the vertical stance and bipedalism of the former accompanied by increase in skull and brain size. The manner in which difficulties of giving birth as the change from horizontal stance to vertical stance proceeded from generation to generation, limited survival is discussed andreasons for the adoption of this behaviour are proposed. The induction of evolutionary change and the operation of natural selection through alterations in the characteristics of embryo/foetus of an animal, induced by physical, chemical, mechanical or behavioural means, is shown to be feasible. The changes are not related to the Lamarckian principle of inheritance of acquired characteristics as the changes described occurred before birth and are not related to any physical or mental characteristics already present in or acquired during the lifetime of the breeding pair.

  4. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  5. Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction

    OpenAIRE

    Srinivasacharya D.; Kaladhar K.

    2013-01-01

    The Soret and Dufour effects in the presence of chemical reaction on natural convection heat and mass transfer of a couple stress fluid in a vertical channel formed by two vertical parallel plates is presented. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using Homotopy Analysis Method (HAM). Profiles of dimensionless velocity, temperature...

  6. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10 m a(-1...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  7. A comparison of two landing styles in a two-foot vertical jump.

    Science.gov (United States)

    Gutiérrez-Davila, Marcos; Campos, José; Navarro, Enrique

    2009-01-01

    In team sports, such as basketball and volleyball, the players use different takeoff styles to make the vertical jump. The two-foot vertical jump styles have been classified according to the landing style and identified as hop style, when both feet touch the ground at the same time, and step-close style, when there is a slight delay between the first and second foot making contact with the ground. The aim of this research is to identify the differences between the two styles. Twenty-three subjects participated in the study, of whom 14 were volleyball players and 9 were basketball players. The jumps were video recorded and synchronized with two force platforms at 250 Hz. Two temporal periods of the takeoff were defined according to the reduction or increase in the radial distance between the center of gravity (CG) and the foot support (T - RDCG and T + RDCG, respectively). The findings produced no specific advantages when both styles were compared with respect to takeoff velocity and, consequently, to jump height, but takeoff time was significantly shorter (p vertical velocity of CG at the beginning of the takeoff is significantly lower. Moreover, the mean vertical force developed during T - RDCG was reduced by -627.7 +/- 251.1 N, thus lessening impact on landing. Horizontal velocity at the end of the takeoff is less when the step-close style is used (p jumps where it is necessary to move horizontally during the flight against an opponent.

  8. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    OpenAIRE

    Altab Hossain; A.K.M.P. Iqbal; Ataur Rahman; M. Arifin; M. Mazian

    2007-01-01

    This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag...

  9. Anomalous thermal anisotropy of two-dimensional nanoplates of vertically grown MoS2

    Science.gov (United States)

    Li, Xiuqiang; Liu, Yueyang; Zheng, Qinghui; Yan, Xuejun; Yang, Xin; Lv, Guangxin; Xu, Ning; Wang, Yuxi; Lu, Minghui; Chen, Keqiu; Zhu, Jia

    2017-10-01

    Heat flow control plays a significant role in thermal management and energy conversion processes. Recently, two dimensional (2D) materials with unique anisotropic thermal properties are attracting a lot of attention, as promising building blocks for molding the heat flow. Originated from its crystal structure, in most if not all the 2D materials, the thermal conductivity along the Z direction (kz) is much lower than x-y plane thermal conductivity (kxy). In this work, we demonstrate that 2D nanoplates of vertically grown molybdenum disulfide (VG MoS2) can have anomalous thermal anisotropy, in which kxy (about 0.83 W/m K at 300 K) is ˜1 order of magnitude lower than kz (about 9.2 W/m K at 300 K). Lattice dynamics analysis reveals that this anomalous thermal anisotropy can be attributed to the anisotropic phonon dispersion relations and the anisotropic phonon group velocities along different directions. The low kxy can be attributed to the weak phonon coupling near the x-y plane interfaces. It is expected that this 2D nanoplates of VG MoS2 with anomalous thermal anisotropy and low kxy can serve as a complementary building block for device designs and advanced heat flow control.

  10. Strong influence of deposition and vertical mixing on secondary organic aerosol concentrations in CMAQ and CAMx

    Science.gov (United States)

    Shu, Qian; Koo, Bonyoung; Yarwood, Greg; Henderson, Barron H.

    2017-12-01

    Differences between two air quality modeling systems reveal important uncertainties in model representations of secondary organic aerosol (SOA) fate. Two commonly applied models (CMAQ: Community Multiscale Air Quality; CAMx: Comprehensive Air Quality Model with extensions) predict very different OA concentrations over the eastern U.S., even when using the same source data for emissions and meteorology and the same SOA modeling approach. Both models include an option to output a detailed accounting of how each model process (e.g., chemistry, deposition, etc.) alters the mass of each modeled species, referred to as process analysis. We therefore perform a detailed diagnostic evaluation to quantify simulated tendencies (Gg/hr) of each modeled process affecting both the total model burden (Gg) of semi-volatile organic compounds (SVOC) in the gas (g) and aerosol (a) phases and the vertical structures to identify causes of concentration differences between the two models. Large differences in deposition (CMAQ: 69.2 Gg/d; CAMx: 46.5 Gg/d) contribute to significant OA bias in CMAQ relative to daily averaged ambient concentration measurements. CMAQ's larger deposition results from faster daily average deposition velocities (VD) for both SVOC (g) (VD,cmaq = 2.15 × VD,camx) and aerosols (VD,cmaq = 4.43 × Vd,camx). Higher aerosol deposition velocity would be expected to cause similar biases for inert compounds like elemental carbon (EC), but this was not seen. Daytime low-biases in EC were also simulated in CMAQ as expected but were offset by nighttime high-biases. Nighttime high-biases were a result of overly shallow mixing in CMAQ leading to a higher fraction of EC total atmospheric mass in the first layer (CAMx: 5.1-6.4%; CMAQ: 5.6-6.9%). Because of the opposing daytime and nighttime biases, the apparent daily average bias for EC is reduced. For OA, there are two effects of reduced vertical mixing: SOA and SVOC are concentrated near the surface, but SOA yields are reduced

  11. Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using Fast Fourier Transform (FFT) Technique

    Science.gov (United States)

    Wongsaroj, W.; Hamdani, A.; Thong-un, N.; Takahashi, H.; Kikura, H.

    2017-10-01

    In two-phase bubbly flow, measurement of liquid and bubble velocity is a necessity to understand fluid characteristic. The conventional ultrasonic velocity profiler (UVP), which has been known as a nonintrusive measurement technique, can measure velocity profile of liquid and bubble simultaneously by applying a separation technique for both phases (liquid and bubble) and transparent test section is unnecessary. The aim of this study was to develop a new technique for separating liquid and bubble velocity data in UVP method to measure liquid and bubble velocity profiles separately. The technique employs only single resonant frequency transducer and a simple UVP system. An extra equipment is not required. Fast Fourier Transform (FFT) based frequency estimator paralleled with other signal processing techniques, which is called as proposed technique, was proposed to measure liquid and bubble velocity separately. The experimental facility of two-phase bubbly flow in the vertical pipe was constructed. Firstly, the Doppler frequency estimation by using the FFT technique was evaluated in single-phase liquid flow. Results showed that FFT technique showed a good agreement with autocorrelation and maximum likelihood estimator. Then, separation of liquid and bubble velocity was demonstrated experimentally in the two-phase bubbly flow. The proposed technique confirmed that liquid and bubble velocity could be measured efficiently.

  12. Throwing velocity and jump height in female water polo players: performance predictors.

    Science.gov (United States)

    McCluskey, Lisa; Lynskey, Sharon; Leung, Chak Kei; Woodhouse, Danielle; Briffa, Kathy; Hopper, Diana

    2010-03-01

    Throwing velocity and vertical jumping ability are essential components for shooting and passing in water polo. The purpose of this study was to determine whether there is a relationship between throwing velocity and water jump height in highly skilled female water polo players. Throwing velocity and head height at ball release were measured in twenty-two female players (age 20.41 years (6.16); weight 68.28 kg (8.87)) with two 50 frames per second cameras while shooting at goal. Water jump height was also measured with a modified Yardstick device. Multiple regression analyses showed that peak lower limb power was the most significant predictor of maximal velocity. Power alone accounted for 62% of the variance in maximum velocity (pheight and anthropometry) made a significant contribution to throwing velocity. After controlling for the effect of power, head height at ball release accounted for an additional significant proportion of the variance in maximal velocity (R(2) change 7%; p=0.049). Lower body power was a significant predictor of higher throwing velocity in highly skilled female water polo players. Players with relatively higher underlying levels of lower limb power who are able to generate greater elevation out of the water are able to throw the ball faster. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10(4) loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  14. Cavity Enhanced Velocity Modulation Spectroscopy

    Science.gov (United States)

    Siller, Brian; Mills, Andrew; Porambo, Michael; McCall, Benjamin

    2010-11-01

    Over the past several decades, velocity modulation spectroscopy has been used to study dozens of molecular ions of astronomical importance. This technique has been so productive because it provides the advantage of ion-neutral discrimination, which is critically important when interfering neutral molecules are many orders of magnitude more abundant, and when combined with heterodyne techniques, its sensitivity can approach the shot noise limit. Traditionally, velocity modulation experiments have utilized unidirectional multipass White cells to achieve up to about 8 passes through a positive column discharge cell. But by positioning the cell within an optical cavity, it is possible to obtain an effective path length orders of magnitude longer than was previously possible. We have demonstrated this novel technique using a Ti:Sapp laser in the near-IR to observe rovibronic transitions of N2+. By demodulating at twice the modulation frequency, 2nd derivative-like lineshapes are observed for ions that are velocity-modulated, while Gaussian lineshapes are observed for excited neutral that are concentration-modulated. The signals for N2+ and N2+* have been observed to be 78° out of phase with one another, so ion-neutral discrimination is retained. And due to the laser power enhancement and geometry of the optical cavity, Doppler-free saturation spectroscopy is now possible. Observed Lamb dips have widths of 50 MHz, and when combined with calibration by an optical frequency comb, this allows for determination of line centers to within 1 MHz. In our original demonstration of this technique, our sensitivity was limited by noise in the laser-cavity lock. Since then, we have integrated Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) by adding sidebands to the laser at an exact multiple of the cavity free spectral range, and demodulating at the sideband frequency before sending the signal to a lock-in amplifier for demodulating at twice the

  15. Yielding transition of Carbopol gel in a vertical pipe

    Science.gov (United States)

    Liu, Yang; de Bruyn, John R.; John de Bruyn Team

    2016-11-01

    We have investigated the yielding transition of a simple yield-stress fluid (Carbopol 940) in a vertical pipe. The Carbopol gel was displaced by a Newtonian liquid injected at a constant, controlled rate at the bottom of the pipe. Rough- and smooth-walled pipes were used to study the effects of wall boundary conditions. The pressure in the Carbopol was measured by a pressure gauge fixed on the pipe wall, and the velocity profile in the Carbopol was measured by particle-image velocimetry (PIV). When the Newtonian liquid was injected, the rate of pressure increase was initially high, then decreased to a constant slow rate at later times. A time tc was defined by the intersection of straight lines fit to the pressure-time data at early and late times. In the rough pipe, the wall shear stress at tc is equal to the yield stress, suggesting that this time corresponds to yielding of the fluid. The velocity profiles were parabolic before yielding, and nearly a plug-like afterwards. In the smooth pipe, the pressure and velocity profiles appeared to show similar behavior to that in the rough pipe, but the wall shear stress at tc is substantially smaller than the yield stress and fluid motion was due to wall slip. NSERC.

  16. Exact solutions in a model of vertical gas migration

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy B.; Patzek, Tad W.; Benson, Sally M.

    2006-06-27

    This work is motivated by the growing interest in injectingcarbon dioxide into deep geological formations as a means of avoidingatmospheric emissions of carbon dioxide and consequent global warming.One of the key questions regarding the feasibility of this technology isthe potential rate of leakage out of the primary storage formation. Weseek exact solutions in a model of gas flow driven by a combination ofbuoyancy, viscous and capillary forces. Different combinations of theseforces and characteristic length scales of the processes lead todifferent time scaling and different types of solutions. In the case of athin, tight seal, where the impact of gravity is negligible relative tocapillary and viscous forces, a Ryzhik-type solution implies square-rootof time scaling of plume propagation velocity. In the general case, a gasplume has two stable zones, which can be described by travelling-wavesolutions. The theoretical maximum of the velocity of plume migrationprovides a conservative estimate for the time of vertical migration.Although the top of the plume has low gas saturation, it propagates witha velocity close to the theoretical maximum. The bottom of the plumeflows significantly more slowly at a higher gas saturation. Due to localheterogeneities, the plume can break into parts. Individual plumes alsocan coalesce and from larger plumes. The analytical results are appliedto studying carbon dioxide flow caused by leaks from deep geologicalformations used for CO2 storage. The results are also applicable formodeling flow of natural gas leaking from seasonal gas storage, or formodeling of secondary hydrocarbon migration.

  17. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  18. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  19. An Analysis of Pulsed Wave Ultrasound Systems for Blood Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, J. A.

    1995-01-01

    of the received signal. The time evolution and distribution of velocity can then be found by using samples from a number of pulse-echo lines. Making a short-time Fourier transform of the data reveals the velocity distribution in the range gate over time. Such systems are called Doppler ultrasound systems implying...

  20. HF Radar Observation of Velocity Fields Induced by Tsunami Waves in the Kii Channel, Japan

    OpenAIRE

    日向, 博文; 藤, 良太郎; 藤井, 智史; 藤田, 裕一; 花土, 弘; 片岡, 智哉; 水谷, 雅裕; 高橋, 智幸

    2012-01-01

    High frequency ocean surface radar observation reveals the velocity fields of propagating tsunami waves and subsequent 30-40 minute period natural oscillation in the Kii Channel, Japan induced by the March 11, 2011 moment magnitude 9.0 Tohoku-Oki earthquake. Technical issues of the ocean surface radar sysytem concerning the detection of tsunami waves and natural oscillation velocities are also discussed.

  1. Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model

    Energy Technology Data Exchange (ETDEWEB)

    Byrkjedal, Oeyvind [University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway); Kjeller Vindteknikk, PO-Box 122, Kjeller (Norway); Esau, Igor [University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway); Nansen Environmental and Remote Sensing Center, Bergen (Norway); Kvamstoe, Nils G. [University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway)

    2008-06-15

    The current state-of-the-art general circulation models, including several of those used by the IPCC, show considerable biases in the simulated present day high-latitude climate compared to observations and reanalysis data. These biases are most pronounced during the winter season. We here employ ideal vertical profiles of temperature and wind from turbulence-resolving simulations to perform a priori studies of the first-order eddy-viscosity closure scheme employed in the ARPEGE/IFS model. This reveals that the coarse vertical resolution (31 layers) of the model cannot be expected to realistically resolve the Arctic stable boundary layer. The curvature of the Arctic inversion and thus also the vertical turbulent-exchange processes cannot be reproduced by the coarse vertical mesh employed. To investigate how turbulent vertical exchange processes in the Arctic boundary layer are represented by the model parameterization, a simulation with high vertical resolution (90 layers in total) in the lower troposphere is performed. Results from the model simulations are validated against data from the ERA-40 reanalysis. The dependence of the surface air temperature on surface winds, surface energy fluxes, free atmosphere stability and boundary layer height is investigated. The coarse-resolution run reveals considerable biases in these parameters, and in their physical relations to surface air temperature. In the simulation with fine vertical resolution, these biases are clearly reduced. The physical relation between governing parameters for the vertical turbulent-exchange processes improves in comparison with ERA-40 data. (orig.)

  2. Joint probability discrimination between stationary tissue and blood velocity signals

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2001-01-01

    before and after echo-canceling, and (b) the amplitude variations between samples in consecutive RF-signals before and after echo-canceling. The statistical discriminator was obtained by computing the probability density functions (PDFs) for each feature through histogram analysis of data......In CFM-mode the blood velocity estimates are overlaid onto the B-mode image. The velocity estimation gives non-zero velocity estimates in both the surrounding tissue and the vessels. A discrimination algorithm is needed to determine, which estimates represent blood flow and should be displayed....... This study presents a new statistical discriminator. Investigation of the RF-signals reveals that features can be derived that distinguish the segments of the signal, which do an do not carry information on the blood flow. In this study 4 features, have been determined: (a) the energy content in the segments...

  3. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  4. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    Science.gov (United States)

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; Giangrande, Scott E.; Collis, Scott M.; Potvin, Corey K.

    2017-08-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with those from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s-1, respectively, and time-height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s-1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. The results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.

  5. Relação dos saltos vertical, horizontal e sêxtuplo com a agilidade e velocidade em crianças Relationship of vertical, horizontal and sextuple jumps with agility and speed in children

    Directory of Open Access Journals (Sweden)

    Diogo Henrique Constantino Coledam

    2013-03-01

    Full Text Available Os objetivos do presente estudo foram: 1 verificar a relação dos saltos vertical, horizontal e sêxtuplo com a agilidade e velocidade de 5, 10 e 25 m; 2 verificar a capacidade desses saltos em predizer o desempenho da agilidade e velocidade de 5, 10 e 25 m em crianças. Vinte e oito meninos (9,47 ± 0,64 anos e 30 meninas (9,69 ± 0,70 anos foram avaliados. Os valores de correlação entre a agilidade, velocidade de 5, 10 e 25 m foram, respectivamente, r = 0,63, 0,51, 0,44 e 0,64 com o salto vertical, r = 0,68, 0,62, 0,28 e 0,62 com o salto sêxtuplo, e r = 0,60, 0,50, 0,26 e 0,57 com o salto horizontal. O salto vertical e o salto sêxtuplo foram capazes de predizer o desempenho da agilidade e da velocidade de 25 m (p The aim of the present study were: 1 To verify the relationship of vertical, horizontal and sextuple jumps with agility and velocity of 5, 10 and 25 m; 2 To verify the capacity of these jumps to predict the agility and 5, 10 and 25 m velocity performance in children. Twenty eight boys (9.47 ± 0.64 years and thirty girls (9.69 ± 0.70 years were evaluated. The correlation values between agility and velocity on 5, 10 and 25 m velocity were, respectively, r = 0.63, 0.51, 0.44 and 0.64 with vertical jump, r = 0.68, 0.62, 0.28 and 0.62 with sextuple jump, and r = 0.60, 0.50, 0.26 and 0.57 with horizontal jump. The vertical and sextuple jumps were able to predict the agility and 25 m velocity performance (p < 0.05. Furthermore, they demonstrated capacity to predict 5 and 10 m velocity, respectively (p < 0.05. The vertical and sextuple jump tests may be used for assessment and control of training with children practicing activities that require agility and velocity, since both jumps predicted the agility and velocity performance, which did not occur with the horizontal jump.

  6. Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys: The methodology

    Science.gov (United States)

    Zhang, Pengjie; Pan, Jun; Zheng, Yi

    2013-03-01

    Massive spectroscopic surveys will measure the redshift space distortion (RSD) induced by galaxy peculiar velocity to unprecedented accuracy and open a new era of precision RSD cosmology. We develop a new method to improve the RSD modeling and to carry out robust reconstruction of the 3D large scale peculiar velocity through galaxy redshift surveys, in light of RSD. (1) We propose a mathematically unique and physically motivated decomposition of peculiar velocity into three eigencomponents: an irrotational component completely correlated with the underlying density field (vδ), an irrotational component uncorrelated with the density field (vS), and a rotational (curl) component (vB). The three components have different origins, different scale dependences, and different impacts on RSD. (2) This decomposition has the potential to simplify and improve the RSD modeling. (i) vB damps the redshift space clustering. (ii) vS causes both damping and enhancement to the redshift space power spectrum Ps(k,u). Nevertheless, the leading order contribution to the enhancement has a u4 directional dependence, distinctively different from the Kaiser formula. Here, u≡kz/k, k is the amplitude of the wave vector, and kz is the component along the line of sight. (iii) vδ is of the greatest importance for the RSD cosmology. We find that the induced redshift clustering shows a number of important deviations from the usual Kaiser formula. Even in the limit of vS→0 and vB→0, the leading order contribution ∝(1+fW˜(k)u2)2. It differs from the Kaiser formula by a window function W˜(k). Nonlinear evolution generically drives W˜(k)≤1. We hence identify a significant systematical error causing underestimation of the structure growth parameter f by as much as O(10%) even at a relatively large scale k=0.1h/Mpc. (iv) The velocity decomposition reveals the three origins of the “finger-of-God” (FOG) effect and suggests how to simplify and improve the modeling of FOG by treating the

  7. Tuning the Fano factor of graphene via Fermi velocity modulation

    Science.gov (United States)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  8. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  9. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  10. Velocity and Drag Evolution From the Leading Edge of a Model Mangrove Forest

    Science.gov (United States)

    Maza, Maria; Adler, Katherine; Ramos, Diogo; Garcia, Adrian Mikhail; Nepf, Heidi

    2017-11-01

    An experimental study of unidirectional flow through a model mangrove forest measured both velocity and forces on individual trees. The individual trees were 1/12th scale models of mature Rhizophora, including 24 prop roots distributed in a three-dimensional layout. Thirty-two model trees were distributed in a staggered array producing a 2.5 m long forest. The velocity evolved from a boundary layer profile at the forest leading edge to a vertical profile determined by the vertical distribution of frontal area, with significantly higher velocity above the prop roots. Fully developed conditions were reached at the fifth tree row from the leading edge. Within the root zone the velocity was reduced by up to 50% and the TKE was increased by as much as fivefold, relative to the upstream conditions. TKE in the root zone was mainly produced by root and trunk wakes, and it agreed in magnitude with the estimation obtained using the Tanino and Nepf (2008) formulation. Maximum TKE occurred at the top of the roots, where a strong shear region was associated with the change in frontal area. The drag measured on individual trees decreased from the leading edge and reached a constant value at the fifth row and beyond, i.e., in the fully developed region. The drag exhibited a quadratic dependence on velocity, which justified the definition of a quadratic drag coefficient. Once the correct drag length-scale was defined, the measured drag coefficients collapsed to a single function of Reynolds number.

  11. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    Science.gov (United States)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  12. Vertical uniformity of cells and nuclei in epithelial monolayers.

    Science.gov (United States)

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  13. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Yelena [Department of Chemical Engineering, Technion, Haifa (Israel); TowerJazz Ltd. Migdal Haemek (Israel); Shauly, Eitan [TowerJazz Ltd. Migdal Haemek (Israel); Paz, Yaron, E-mail: paz@tx.technion.ac.il [Department of Chemical Engineering, Technion, Haifa (Israel)

    2015-12-07

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  14. Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2018-01-01

    We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium-indium-tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.

  15. Shuttle vertical fin flowfield by the direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T.

    1985-01-01

    The flow properties in a model flowfield, simulating the shuttle vertical fin, determined using the Direct Simulation Monte Carlo method. The case analyzed corresponds to an orbit height of 225 km with the freestream velocity vector orthogonal to the fin surface. Contour plots of the flowfield distributions of density, temperature, velocity and flow angle are presented. The results also include mean molecular collision frequency (which reaches 1/60 sec near the surface), collision frequency density (approaches 7 x 10 to the 18/cu m sec at the surface) and the mean free path (19 m at the surface).

  16. Thermal diffusion effects on free convection and mass transfer flow for an infinite vertical plate

    CERN Document Server

    Abdel-Khalek, M M

    2003-01-01

    A theoretical study is performed to examine the effects of thermal diffusion on free convection and mass transfer flow for an infinite vertical plate. The governing equations for the fluid flow and the heat transfer are solved subject to the relevant boundary conditions. A perturbation technique is used to obtain expressions for the velocity field and skin friction. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles as well as skin friction and the rate of mass and heat transfer is done with the aid of graphs.

  17. Structure of central and southern Mexico from velocity and attenuation tomography

    OpenAIRE

    Chen, Ting; Robert W. Clayton

    2012-01-01

    The 3D V_p, V_p/_Vs, P- and S-wave attenuation structure of the Cocos subduction zone in Mexico is imaged using earthquakes recorded by two temporary seismic arrays and local stations. Direct P wave arrivals on vertical components and direct S wave arrivals on transverse components from local earthquakes are used for velocity imaging. Relative delay times for P and PKP phases from teleseismic events are also used to obtain a deeper velocity structure beneath the southern seismic array. Using ...

  18. Modeling Travel-Time Correlations Based on Sensitivity Kernels and Correlated Velocity Anomalies

    Science.gov (United States)

    2008-09-01

    sensitivity of 1-Hz Pn arrivals are sensitive to the entire velocity profile between the Moho and a maximum depth that reaches 200 km for an arrival at 15...the Earth’s surface, (2) de-correlation of velocity anomalies across interfaces, such as the Moho , and (3) allowing spatial dependence of σ, λ1 and λ2...the Moho down to a depth that increases with distance, with the vertical extent of significant sensitivity (τ ≤ 0.5 s) eventually exceeding our

  19. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  20. 2011 Tohoku tsunami video and TLS based measurements: hydrographs, currents, inundation flow velocities, and ship tracks

    Science.gov (United States)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.

    2012-12-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami

  1. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...

  2. Aggregate Settling Velocities in San Francisco Estuary Margins

    Science.gov (United States)

    Allen, R. M.; Stacey, M. T.; Variano, E. A.

    2015-12-01

    One way that humans impact aquatic ecosystems is by adding nutrients and contaminants, which can propagate up the food web and cause blooms and die-offs, respectively. Often, these chemicals are attached to fine sediments, and thus where sediments go, so do these anthropogenic influences. Vertical motion of sediments is important for sinking and burial, and also for indirect effects on horizontal transport. The dynamics of sinking sediment (often in aggregates) are complex, thus we need field data to test and validate existing models. San Francisco Bay is well studied and is often used as a test case for new measurement and model techniques (Barnard et al. 2013). Settling velocities for aggregates vary between 4*10-5 to 1.6*10-2 m/s along the estuary backbone (Manning and Schoellhamer 2013). Model results from South San Francisco Bay shoals suggest two populations of settling particles, one fast (ws of 9 to 5.8*10-4 m/s) and one slow (ws of Brand et al. 2015). While the open waters of San Francisco Bay and other estuaries are well studied and modeled, sediment and contaminants often originate from the margin regions, and the margins remain poorly characterized. We conducted a 24 hour field experiment in a channel slough of South San Francisco Bay, and measured settling velocity, turbulence and flow, and suspended sediment concentration. At this margin location, we found average settling velocities of 4-5*10-5 m/s, and saw settling velocities decrease with decreasing suspended sediment concentration. These results are consistent with, though at the low end of, those seen along the estuary center, and they suggest that the two population model that has been successful along the shoals may also apply in the margins.

  3. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding.

    Science.gov (United States)

    Schubert, Tilman; Bieri, Oliver; Pansini, Michele; Stippich, Christoph; Santini, Francesco

    2014-04-01

    was located in between 2D-3dir and 2D-tp without significant differences to either of the 2D sequences. Volumetric flow measurements were also significantly different between 2D and 4D acquisitions, but without a discernible trend. The SNR analysis clearly favored 2D over 4D acquisitions because of higher inflow enhancement. The results of the current study show that velocity measurements with a unidirectional encoded through-plane PC sequence lead to a significant underestimation of velocity values in tortuous vessels. In all 3 evaluated segments of the distal internal carotid artery, multidirectional velocity encoding revealed significantly higher PV values than those of unidirectional velocity encoding. These results indicate that multidirectional encoding should be preferred to unidirectional encoding for velocity measurements in tortuous vessels. Furthermore, 4D PC-MRI is superior to 2D-3dir in 2 of 3 locations. However, single-slice measurements with multidirectional velocity encoding have higher SNR and may be an alternative to 4D PC-MRI with a scan time of only approximately 90 seconds per slice.

  4. Application of High-Velocity Oxygen-Fuel (HVOF Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Emine Bakan

    2017-04-01

    Full Text Available From the literature, it is known that due to their glass formation tendency, it is not possible to deposit fully-crystalline silicate coatings when the conventional atmospheric plasma spraying (APS process is employed. In APS, rapid quenching of the sprayed material on the substrate facilitates the amorphous deposit formation, which shrinks when exposed to heat and forms pores and/or cracks. This paper explores the feasibility of using a high-velocity oxygen-fuel (HVOF process for the cost-effective fabrication of dense, stoichiometric, and crystalline Yb2Si2O7 environmental barrier coatings. We report our findings on the HVOF process optimization and its resultant influence on the microstructure development and crystallinity of the Yb2Si2O7 coatings. The results reveal that partially crystalline, dense, and vertical crack-free EBCs can be produced by the HVOF technique. However, the furnace thermal cycling results revealed that the bonding of the Yb2Si2O7 layer to the Silicon bond coat needs to be improved.

  5. MHD Natural Convection Flow of an incompressible electrically conducting viscous fluid through porous medium from a vertical flat plate

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,

    2015-04-01

    Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.

  6. Relative seismic velocity variations correlate with deformation at Kīlauea volcano.

    Science.gov (United States)

    Donaldson, Clare; Caudron, Corentin; Green, Robert G; Thelen, Weston A; White, Robert S

    2017-06-01

    Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression-hence closing cracks and producing faster velocities-and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool.

  7. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    Science.gov (United States)

    Petrichenko, Michail; Nemova, Darya; Reich, Elisaveta; Subbotina, Svetlana; Khayrutdinova, Faina

    2016-03-01

    Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nventilated vertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  8. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Directory of Open Access Journals (Sweden)

    Aaiza Gul

    Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  9. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  10. Analysis of debris-flow velocities due to superelevation

    Science.gov (United States)

    Scheidl, C.; Rickenmann, D.; McArdell, B. W.

    2012-12-01

    For debris flows the estimation of the maximum flow-velocity is considered to be essential. Often the runout or the degree of exposure of a debris-flow event can only be predicted, based on the assessment of the maximum velocity. In practice, geomorphologic traces like flood marks on banks provide important information about the flowing process of a debris flow. A possible approach to estimate maximum flow velocities is based on the vortex equation by using superelevation marks. Superelevation can be observed in bending channels, where the flow-height of the inner-curvature is lower than the flow-height of the outer-curvature, caused by the centrifugal acceleration of the flow. For the estimation of debris-flow velocities with the vortex equation, a correction factor (>1) is often introduced, accounting for the viscosity and vertical sorting of the bulk mixture. Several studies show that the correction factor may be as high as 10 and may depend on bend geometry and debris flow material properties. The objective of this work is therefore to analyze the influence of channel geometry and material properties on the vortex equation when applying to debris flows. In particular, the project aims to compare observed flow velocities from physical modeling in flume experiments with observations from debris-flow field sites. In a first step experimental investigations are done at the laboratory of the Swiss Federal Institute WSL, Birmensdorf. The flume consists of a flexible plastic half-pipe and is mounted on a wooden plane construction. At the moment two different bend radii (1.0 m and 3.0 m) with a bend angle of 60° are implemented. The total length of the flume is further covered with 40 grit silicon carbide sandpaper reflecting a constant basal friction layer. To apply for the complexity of a debris-flow process, three different material mixtures based on three different grain size distributions, were defined. Superelevation is measured by using high speed cameras

  11. Assessing Land Motion of Venice, Italy with GPS: Effects of Regional Filtering on Vertical Rate Estimates

    Science.gov (United States)

    Hammond, W. C.; Plag, H.

    2005-12-01

    We evaluate the vertical land motion in the city of Venice, Italy with data from 36 continuous Global Positioning System (GPS) receivers of the IGS, EUREF and FREDNET networks. This analysis has been undertaken in support of the Appraisal of Relative Sea Level Rise for Venice Project, which aims to define possible future relative sea level change scenarios for this World Heritage site over the next 100 years. Our objective is to quantify the present land surface vertical velocity in a geocentric reference frame so that the results can be combined with the other factors that contribute to the relative sea level rise. Vertical GPS velocities for the sites in the city and lagoon of Venice have been estimated from processing the daily continuous files with the GIPSY/OASIS II software package. Time series that are free of equipment changes or other apparent offsets are ~3.5 years long. We find their motion is significantly downward with respect to other GPS sites on the stable European plate that have long and linear time series. When cast in the ITRF2000 reference frame, however, their sense of motion is uniformly upward by an average of 0.5±0.2 mm/yr, but uncertainty of the motion of ITRF2000 with respect to the geocenter is on the order of 1 mm/yr, and dominates the error budget. To better resolve changes in the regional network shape over time, filtering is applied to mitigate the effects of daily reference frame noise. The filter assumes constant velocities and applies a daily Helmert transformation to minimize the misfit between the expected and actual positions. Generally, the filtering produces velocities that are better resolved, and time series that have ~35% less residual RMS scatter. After regional filtering the Venice city and lagoon sites move vertically downward at -2.7±0.2 mm/yr with respect to the geocenter and thus filtering strongly affects the perception of vertical motion. Results from numerical tests on subsets of the longer time series show that

  12. Measurement of the velocity of a quantum object: A role of phase and group velocities

    Science.gov (United States)

    Lapinski, Mikaila; Rostovtsev, Yuri V.

    2017-08-01

    We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.

  13. Broadband wavelength conversion in a silicon vertical-dual-slot waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Lin, Li; Christensen, Jesper Bjerge

    2017-01-01

    We propose a silicon waveguide structure employing silica-filled vertical-dual slots for broadband wavelength conversion, which can be fabricated using simple silicon-on-insulator technology. We demonstrate group-velocity dispersion tailoring by varying the width of the core, the slots and the si...... to significantly broaden the bandwidth of wavelength conversion via four-wave mixing, which is validated with experimentally measured 3 dB bandwidth of 76 nm....

  14. Pulsejet engine dynamics in vertical motion using momentum conservation

    Science.gov (United States)

    Cheche, Tiberius O.

    2017-03-01

    The momentum conservation law is applied to analyse the dynamics of a pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts the existence of a terminal speed given the frequency of the short pulses. The conditions where the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitational field intensity for a certain frequency of pulses. The pulsejet engine and turbojet engine aircraft models of dynamics are compared. Also the octopus dynamics is modelled. The paper is addressed to intermediate undergraduate students of classical mechanics and aerospace engineering.

  15. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  16. Experiment for estimating phase velocity and power fraction of Love wave from three component microtremor array observation in Morioka area; Moriokashiiki deno bido no sanseibun array kansoku ni yoru love ha no iso sokudo oyobi power hi suitei no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yakuwa, A.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Three component microtremor array observations were carried out in two locations in the city of Morioka for an attempt of estimating phase velocity and power fraction of Love wave by applying the expanded three component spatial self-correlation method. The microtremors were observed by using a seismograph with a natural period of one second. The arrays were so arranged as to form an equilateral triangle consisted of seven points. The maximum radii were 100 m, 50 m, 25 m and 12.5 m for vertical movements, and 100 m and 30 m for horizontal movements at the Iwate University, and 80 m, 40 m, 20 m and 10 m for vertical movements and 90 m for horizontal movements at the Morioka Technical Highschool. The analysis has used three sections, each with relatively steady state of about 40 seconds as selected from records of observations for about 30 minutes. The result of the discussions revealed that it is possible to derive phase velocity of not only Rayleigh waves but also Love waves by applying the expanded spatial self-correlation method to the observation record. Thus, estimation of underground structures with higher accuracy has become possible by using simultaneously the Rayleigh waves and Love waves. 3 refs., 11 figs., 2 tabs.

  17. Assessment of vertical fracture using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moudi, Ehsan; Madani, Zahrasadat; Alhavaz, Abdolhamid; Bijani, Ali [Dental Material Research Center, Dental School, Babol University of Medical Sciences, Babol, (Korea, Republic of); Bagheri, Mohammad [Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol (Korea, Republic of)

    2014-03-15

    The aim of this study was to investigate the accuracy of cone-beam computed tomography (CBCT) in the diagnosis of vertical root fractures in a tooth with gutta-percha and prefabricated posts. This study selected 96 extracted molar and premolar teeth of the mandible. These teeth were divided into six groups as follows: Groups A, B, and C consisted of teeth with vertical root fractures, and groups D, E, and F had teeth without vertical root fractures; groups A and D had teeth with gutta-percha and prefabricated posts; groups B and E had teeth with gutta-percha but without prefabricated posts, and groups C and F had teeth without gutta-percha or prefabricated posts. Then, the CBCT scans were obtained and examined by three oral and maxillofacial radiologists in order to determine the presence of vertical root fractures. The data were analyzed using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA). The kappa coefficient was 0.875 ± 0.049. Groups A and D showed a sensitivity of 81% and a specificity of 100%; groups E and B, a sensitivity of 94% and a specificity of 100%; and groups C and F, a sensitivity of 88% and a specificity of 100%. The CBCT scans revealed a high accuracy in the diagnosis of vertical root fractures; the accuracy did not decrease in the presence of gutta-percha. The presence of prefabricated posts also had little effect on the accuracy of the system, which was, of course, not statistically significant.

  18. Lidar measured vertical atmospheric scattering profiles

    NARCIS (Netherlands)

    Kunz, G.J.

    1985-01-01

    The vertical structure of the atmosphere, which is of invaluable interest to meteorologists, geo-physicists and environmental researchers, can be measured with LIDAR. A method has been proposed and applied to invert lidar signals from vertical soundings to height resolved scattering coefficients. In

  19. Vertical integration from the large Hilbert space

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian

    2017-12-01

    We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.

  20. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function as plas...

  1. A vertically resolved model for phytoplankton aggregation

    Indian Academy of Sciences (India)

    components undergo vertical mixing, and phytoplank- ton sink. Phytoplankton growth is limited by the product of nutrient and light terms. The equations for nitrate (NO3) and ... resolved model there is an extra complication: the largest particles that sink out of ...... and biogeochemistry with satellite ocean colour data. Vertically ...

  2. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function as plas...

  3. DESIGN, CONSTRUCTION AND EVALUATION OF A VERTICAL ...

    African Journals Online (AJOL)

    Vertical plate metering device is intended to minimize seed damage during planting while improving metering efficiency and field capacity. A vertical plate maize seed planter which is adapted for gardens and small holder farmers cultivating less than two hectares has been designed, constructed and tested. The major ...

  4. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  5. Vertical Integration, Monopoly, and the First Amendment.

    Science.gov (United States)

    Brennan, Timothy J.

    This paper addresses the relationship between the First Amendment, monopoly of transmission media, and vertical integration of transmission and content provision. A survey of some of the incentives a profit-maximizing transmission monopolist may have with respect to content is followed by a discussion of how vertical integration affects those…

  6. Irreducible, incarcerated vertical dislocation of patella into a Hoffa fracture

    Directory of Open Access Journals (Sweden)

    Prasad C Soraganvi

    2014-01-01

    Full Text Available Rotational dislocations of patella, which involve rotation of the patella around a horizontal or vertical axis are rare. These rotational dislocations of patella are difficult to reduce by close methods. These dislocations can have associated osteochondral and retinacular injury. We report a case of a 20-year-old male who presented with swelling and pain in the right knee following a motor cycle accident. Radiological evaluation using the computed tomography revealed a patellar dislocation with a concomitant Hoffa fracture. Patella was rotated around the vertical axis and was incarcerated into the Hoffa fracture. This is a very rare injury and first of its kind to be reported. The difficulties in diagnosis, mechanism of injury and management have been discussed. We feel closed reduction of such an injury is likely to fail and open reduction is recommended.

  7. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    Science.gov (United States)

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  8. Study of Vertical Movements of the European Crust Using Tide Gauge and Gnss Observations

    Directory of Open Access Journals (Sweden)

    Tretyak Kornyliy

    2015-02-01

    Full Text Available This research is devoted to the study of vertical movements of the European crust on the basis of two independent methods, namely tide gauge and GNSS observations results. The description and classification of factors affecting sea level change has been made. The precision with which the movement of the earth's crust according to the results of tide gauge observations can be explored has been calculated . A methodology to identify the duration of tide gauge observations required for studies of vertical movements of the earth 's crust has been presented. Approximation of tide gauge time series with the help of Fourier series has been implemented, the need for long-term observations in certain areas has been explained. The diagram of the velocities of the vertical movements of the European crust on the basis of the tide gauge data and GNSS observations has been built and the anomalous areas where the observations do not coincide have been identified.

  9. Influences of Carbody Vertical Flexibility on Ride Comfort of Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2017-06-01

    Full Text Available The article investigates the influence of the carbody vertical flexibility on the ride comfort of the railway vehicles. The ride comfort is evaluated via the comfort index calculated in three reference points of the carbody. The results of the numerical simulations bring attention to the importance of the carbody symmetrical vertical bending upon the dynamic response of the vehicle, mainly at high velocities. Another conclusion is that the ride comfort can be significantly affected as a function of the symmetrical bending frequency of the carbody. Similarly, there are improvement possibilities for the ride comfort when the best selection of the stiffness in the longitudinal traction system between the carbody and bogie and the vertical suspension damping is made.

  10. Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean

    Directory of Open Access Journals (Sweden)

    Diego Macías

    2013-10-01

    Full Text Available Vertical distributions of turbulent energy dissipation rates and fluorescence were measured simultaneously with a high-resolution micro-profiler in four different oceanographic regions, from temperate to polar and from coastal to open waters settings. High fluorescence values, forming a deep chlorophyll maximum (DCM, were often located in weakly stratified portions of the upper water column, just below layers with maximum levels of turbulent energy dissipation rate. In the vicinity of the DCM, a significant negative relationship between fluorescence and turbulent energy dissipation rate was found. We discuss the mechanisms that may explain the observed patterns of planktonic biomass distribution within the ocean mixed layer, including a vertically variable diffusion coefficient and the alteration of the cells’ sinking velocity by turbulent motion. These findings provide further insight into the processes controlling the vertical distribution of the pelagic community and position of the DCM.

  11. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  12. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  13. Experimental study of low-velocity impact on foam-filled Kraft paper honeycomb structure

    Science.gov (United States)

    Kadir, N. Abd; Aminanda, Y.; Ibrahim, M. S.; Mokhtar, H.

    2018-01-01

    Low-velocity impact tests of unfilled and foam-filled Kraft paper honeycomb are carried out to investigate the effect of foam, indenter size and location of indentation on maximum or peak force and energy absorption capability. In this study, three indenter sizes (10mm, 12mm, 15mm) and three different locations of indentation (vertical edge, double wall and single wall) were used and compared. The test results show that the foam is given a significant increment of peak force and specific energy absorption to the honeycomb structure subjected to indentation load. The peak force and energy absorption capability also effected by indenter size which due to the contact area of indentation. As for the location of indentation, vertical edge gives highest peak force and energy absorption by the fact that vertical edge is the intersection of three walls of honeycomb cell.

  14. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  15. What is the velocity profile of debris flows?

    Science.gov (United States)

    Walter, Fabian; McArdell, Brian

    2015-04-01

    The distribution of flow velocity within a debris flow is difficult to determine at full scale in the field due to the large forces and inherently destructive nature of the flow. However, knowledge of the distribution of velocity within a flow would be helpful to constrain rheological models and to better understand the internal dynamics of such flows. Here we describe recent efforts to determine the velocity of debris flows as a function of distance from the channel bed. Measurements were made at the Illgraben, Switzerland, which exhibits a wide variety of flows, ranging from turbulent debris floods to flows which resemble laminar mud flows to more classical debris flows with a clear granular front. The Illgraben observation station is therefore an ideal location to investigate debris flow dynamics. Our measurements were made using sensors embedded on a 14 m long, 2.5 m tall steel-reinforced concrete wall constructed flush with the torrent channel walls. The main instrumentation consists of 18 geophones (10 Hz natural frequency) installed on square steel plates with a side length of 0.3 m. Each steel plate is acoustically isolated from the wall and the other plates through the use of elastomer elements. The geophone plates are arranged in six rows of three sensors with a dimension of 1.8 m in the vertical direction and 1.5 m in the horizontal direction (i.e. parallel to the flow direction). A sensorless plate separates each plate in the horizontal direction. The data are collected at 2 kHz using a high-speed (synchronous) capture card in a pc. The elevation of the flow surface is determined at a cross-stream distance 1 m away from the wall, using a laser sensor installed on a bridge above the wall. We present a processing approach for the geophone data with the goal to track particle sliding across the sensor plates. For signals near or above the sensors' natural frequency (10 Hz), the measured time series are poorly correlated between sensors. Therefore, we use a

  16. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke

    Directory of Open Access Journals (Sweden)

    Sunku Kwon, Robin Pfister, Ronald L. Hager, Iain Hunter, Matthew K. Seeley

    2017-12-01

    Full Text Available Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1 ball TAV and (2 forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face, horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact. Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model and forehand accuracy (between-subjects model; α = 0.05. We observed an average (1 racquet head impact angle, (2 racquet head trajectory before impact, relative to horizontal, (3 racquet head horizontal velocity before impact, (4 racquet head vertical velocity before impact, and (5 hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01. None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging

  17. Optimal integration of gravity in trajectory planning of vertical pointing movements.

    Science.gov (United States)

    Crevecoeur, Frédéric; Thonnard, Jean-Louis; Lefèvre, Philippe

    2009-08-01

    The planning and control of motor actions requires knowledge of the dynamics of the controlled limb to generate the appropriate muscular commands and achieve the desired goal. Such planning and control imply that the CNS must be able to deal with forces and constraints acting on the limb, such as the omnipresent force of gravity. The present study investigates the effect of hypergravity induced by parabolic flights on the trajectory of vertical pointing movements to test the hypothesis that motor commands are optimized with respect to the effect of gravity on the limb. Subjects performed vertical pointing movements in normal gravity and hypergravity. We use a model based on optimal control to identify the role played by gravity in the optimal arm trajectory with minimal motor costs. First, the simulations in normal gravity reproduce the asymmetry in the velocity profiles (the velocity reaches its maximum before half of the movement duration), which typically characterizes the vertical pointing movements performed on Earth, whereas the horizontal movements present symmetrical velocity profiles. Second, according to the simulations, the optimal trajectory in hypergravity should present an increase in the peak acceleration and peak velocity despite the increase in the arm weight. In agreement with these predictions, the subjects performed faster movements in hypergravity with significant increases in the peak acceleration and peak velocity, which were accompanied by a significant decrease in the movement duration. This suggests that movement kinematics change in response to an increase in gravity, which is consistent with the hypothesis that motor commands are optimized and the action of gravity on the limb is taken into account. The results provide evidence for an internal representation of gravity in the central planning process and further suggest that an adaptation to altered dynamics can be understood as a reoptimization process.

  18. Lateral and vertical thermal diffusivities in a dense fluidized bed with tubes bundle

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, M.A.; Martin, G.; Le Gal, J.H. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1995-07-01

    Dense fluidized beds are acknowledge as homogeneous systems from both temperature and composition aspects. However, some situation such as very large units or fluidized beds with tubes bundle lead to thermal gradients within the bed. These thermal gradients are due to solids motion limitation and may have detrimental effects on the process. This paper relates investigations aiming an determining lateral and vertical thermal diffusivities in a dense fluidized bed with an without a tubes bundle. These investigations have been carried out with an experimental setup of significant size (bed size = 0.6 x 1.1 x 1.3) and with small particles (less 500 microns) so as to fill some gaps of the literature. Thermal diffusivities have been deduced from temperature gradients measured between a hot wall and a cold wall in a perpendicular fluidized bed and by applying a conventional 2-D conduction model. Lateral thermal conductivities as well as vertical thermal conductivities increase with the gas velocity and the height of the bed, and when the particle size decreases. Immersing a vertical tube bundle into the fluidized bed leads to a significant reduction of the lateral thermal diffusivity, while there is no effect on the vertical thermal diffusivity. Correlations have been drawn from the experimental results. They would have to be applied for calculation of any system running at gas velocity ranging from 0.05 to 0.3 m/s and with particle size between 50 and 300 microns. (authors). 14 refs., 14 figs., 2 tabs.

  19. Vertical Dynamic Response of Pile Embedded in Layered Transversely Isotropic Soil

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2014-01-01

    Full Text Available The dynamic response of pile embedded in layered transversely isotropic soil and subjected to arbitrary vertical harmonic force is investigated. Based on the viscoelastic constitutive relations for a transversely isotropic medium, the dynamic governing equation of the transversely isotropic soil is obtained in cylindrical coordinates. By introducing the fictitious soil pile model and the distributed Voigt model, the governing equations of soil-pile system are also derived. Firstly, the vertical response of the soil layer is solved by using the Laplace transform technique and the separation of variables technique. Secondly, the analytical solution of velocity response in the frequency domain and its corresponding semianalytical solution of velocity response in the time domain are derived by means of inverse Fourier transform and convolution theorem. Finally, based on the obtained solutions, a parametric study has been conducted to investigate the influence of the soil anisotropy on the vertical dynamic response of pile. It can be seen that the influence of the shear modulus of soil in the vertical plane on the dynamic response of pile is more notable than the influence of the shear modulus of soil in the horizontal plane on the dynamic response of pile.

  20. Featured Image: The Cosmic Velocity Web

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    You may have heard of the cosmic web, a network of filaments, clusters and voids that describes the three-dimensional distribution of matter in our universe. But have you ever considered the idea of a cosmic velocity web? In a new study led by Daniel Pomarde (IRFU CEA-Saclay, France), a team of scientists has built a detailed 3D view of the flows in our universe, showing in particular motions along filaments and in collapsing knots. In the image above (click for the full view), surfaces of knots (red) are embedded within surfaces of filaments (grey). The rainbow lines show the flow motion, revealing acceleration (redder tones) toward knots and retardation (bluer tones) beyond them. You can learn more about Pomarde and collaborators work and see their unusual and intriguing visualizationsin the video they produced, below. Check out the original paper for more information.CitationDaniel Pomarde et al 2017 ApJ 845 55. doi:10.3847/1538-4357/aa7f78

  1. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  2. Vertical Drop Test of a YS-11 Fuselage Section

    Science.gov (United States)

    Minegishi, Masakatsu; Kumakura, Ikuo; Iwasaki, Kazuo; Shoji, Hirokazu; Yoshimoto, Norio; Terada, Hiroyuki; Sashikuma, Hirofumi; Isoe, Akira; Yamaoka, Toshihiro; Katayama, Noriaki; Hayashi, Toru; Akaso, Tetsuya

    The Structures and Materials Research Center of the National Aerospace Laboratory of Japan (NAL) and Kawasaki Heavy Industories, Ltd. (KHI) conducted a vertical drop test of a fuselage section cut from a NAMIC YS-11 transport airplane at NAL vertical drop test facility in December 2001. The main objectives of this program were to obtain background data for aircraft cabin safety by drop test of a full-scale fuselage section and to develop computational method for crash simulation. The test article including seats and anthropomorphic test dummies was dropped to a rigid impact surface at a velocity of 6.1 m/s (20 ft/s). The test condition and result were considered to be severe but potentially survivable. A finite element model of this test article was also developed using the explicit nonlinear transient-dynamic analysis code, LS-DYNA3D. An outline of analytical method and comparison of analysis result with drop test data are presented in this paper.

  3. Snapshot wavefield decomposition for heterogeneous velocity media

    OpenAIRE

    Holicki, M.E.; Wapenaar, C.P.A.

    2017-01-01

    We propose a novel directional decomposition operator for wavefield snapshots in heterogeneous-velocity media. The proposed operator demonstrates the link between the amplitude of pressure and particlevelocity plane waves in the wavenumber domain. The proposed operator requires two spatial Fourier transforms (one forward and one backward) per spatial dimension and time slice. To illustrate the operator we demonstrate its applicability to heterogeneous velocity models using a simple velocity-b...

  4. Salt Interval Velocities vs Latitude in the Deepwater Gulf of Mexico: Keathley Canyon and Walker Ridge Areas

    Science.gov (United States)

    Cornelius, S.; Castagna, J. P.

    2016-12-01

    ABSTRACT A well log database of approximately 300 well logs from the Keathley Canyon and Walker Ridge areas of the Gulf of Mexico plus Mad Dog Field and Mission Deep Field in Green Canyon has been created for the purpose of building a geologically based 3D velocity model. While in the process of calibrating the finished velocity model, a scatter plot was made of all salt interval velocities versus latitude and an unexpected correlation was observed. Five different interval velocity zones have been identified with each having certain associated mineralogies within a latitude range. The salt interval velocity in the southern limits of the study area is higher than 15,000 ft/sec (4572 m/sec) due to the presence of gypsum. The northern most wells in the project area have anhydrite present inside the salt matrix such that their interval velocity can be as high as 18,535 ft/sec (5650 m/sec). In the mid-latitude zones, sylvite, siltstone, claystone, shale, tar and bitumen, with small traces of both anhydrite and gypsum, are found within the salt, yielding salt interval velocity variation from 14,388 ft/sec to 14,909 ft/sec (4386 m/sec to 4544 m/sec). The mineralogical content of the salt in each well was roughly estimated from mud logs and the corresponding interval velocities were determined from vertical seismic profiles, checkshot surveys, and sonic logs. Both geothermal gradients and overburden geopressure gradients between the mudline and the true vertical depth at well bottom calculated from this well database do not show the same correlation with latitude as the salt interval velocities. Mineralogical modeling of the salt composition using Hashin-Shtrikman bounds shows that these various inclusions within the salt matrix can be the cause of the observed variations in the salt interval velocities.

  5. Effect of viewing distance on the generation of vertical eye movements during locomotion

    Science.gov (United States)

    Moore, S. T.; Hirasaki, E.; Cohen, B.; Raphan, T.

    1999-01-01

    Vertical head and eye coordination was studied as a function of viewing distance during locomotion. Vertical head translation and pitch movements were measured using a video motion analysis system (Optotrak 3020). Vertical eye movements were recorded using a video-based pupil tracker (Iscan). Subjects (five) walked on a linear treadmill at a speed of 1.67 m/s (6 km/h) while viewing a target screen placed at distances ranging from 0.25 to 2.0 m at 0. 25-m intervals. The predominant frequency of vertical head movement was 2 Hz. In accordance with previous studies, there was a small head pitch rotation, which was compensatory for vertical head translation. The magnitude of the vertical head movements and the phase relationship between head translation and pitch were little affected by viewing distance, and tended to orient the naso-occipital axis of the head at a point approximately 1 m in front of the subject (the head fixation distance or HFD). In contrast, eye velocity was significantly affected by viewing distance. When viewing a far (2-m) target, vertical eye velocity was 180 degrees out of phase with head pitch velocity, with a gain of 0. 8. This indicated that the angular vestibulo-ocular reflex (aVOR) was generating the eye movement response. The major finding was that, at a close viewing distance (0.25 m), eye velocity was in phase with head pitch and compensatory for vertical head translation, suggesting that activation of the linear vestibulo-ocular reflex (lVOR) was contributing to the eye movement response. There was also a threefold increase in the magnitude of eye velocity when viewing near targets, which was consistent with the goal of maintaining gaze on target. The required vertical lVOR sensitivity to cancel an unmodified aVOR response and generate the observed eye velocity magnitude for near targets was almost 3 times that previously measured. Supplementary experiments were performed utilizing body-fixed active head pitch rotations at 1 and 2 Hz

  6. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  7. Conduction velocity of antigravity muscle action potentials.

    Science.gov (United States)

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  8. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  9. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  10. Experimental and theoretical studies of vertical annular liquid jets

    Science.gov (United States)

    Chigier, Norman; Ramos, J. I.; Kihm, K. D.

    1988-05-01

    The objectives of this study are to determine the stability, dynamics, and convergence of vertical annular liquid jets as a function of the initial radius, sheet thickness, and velocity. The influence of variation of Froude, Reynolds, and Weber numbers and geometry on convergence and stability are examined. An implicit finite-difference scheme is developed for solution of the steady-state and time-dependent axisymmetric Navier-Stokes equations. In collaboration with Westinghouse, a cylindrical film chemical reactor will be designed for control of reactions such as reduction of zirconium. Annular liquid curtains have been formed with an initial curtain radius of 50 mm and initial sheet thicknesses of 0.5 and 1.0 mm. Three Froude numbers have been studied: 1.27, 4.27, and 8.87 with variation of the liquid flow rate. Pressure within the curtains has been varied progressively from 0 to 3 Pa. Several flow regimes were found: (1) non-pressurized, (2) pressurized, (3) oscillating, and (4) punctured. Curtain shape and convergence length were determined for each condition by photography. Axial mean velocity in the liquid curtain was measured by Laser Doppler Anemometry along the length of the curtain. The variation of liquid film thickness with axial distance was determined.

  11. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    Directory of Open Access Journals (Sweden)

    Petrichenko Michail

    2016-01-01

    Full Text Available Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nvelocity versus flow resistance characteristic is ascertained. Largest extremum of channel flow coefficient is less than 0,707. Physical modelling of the flow is performed on a variable geometry unit. Calculation and experimental data established that an average velocity reaches a maximum in a ventilated vertical channel with free air access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  12. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    Science.gov (United States)

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-01

    The statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from the Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.

  13. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    Science.gov (United States)

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements.

  14. High-speed velocity measurements on an EFI-system

    Science.gov (United States)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  15. Unsteady nonlinear convective Darcy flow of a non-Newtonian fluid over a rotating vertical cone

    Science.gov (United States)

    Madhu Mohana Raju, A. B.; Raju, G. S. S.; Mallikarjuna, B.

    2017-11-01

    A numerical model on unsteady nonlinear convective flow of a Casson fluid past a vertical rotating cone in a porous medium has been developed. The conservations laws are transformed into non-linear problem using convenient similarity transformations. The resultant equations are solved numerically using Runge-Kutta based shooting technique for the velocity, temperature and concentration distributions, highlighted by physical parameters, Casson fluid parameter, unsteady parameter, non-linear temperature and concentration effects and discussed in detailed with graphical aid. Increasing non-linear temperature and concentration parameters accelerates the tangential velocity while normal and azimuthal velocities are decreased. Temperature and concentration distributions are also decreased as well. This study finds applications in industries like pharmaceutical industries, aerospace technology and polymer production etc.

  16. Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.

  17. Mixed convective flow of immiscible fluids in a vertical corrugated channel with traveling thermal waves

    Directory of Open Access Journals (Sweden)

    J.C. Umavathi

    2014-01-01

    Full Text Available Fully developed laminar mixed convection in a corrugated vertical channel filled with two immiscible viscous fluids has been investigated. By using a perturbation technique, the coupled nonlinear equations governing the flow and heat transfer are solved. The fluids are assumed to have different viscosities and thermal conductivities. Separate solutions are matched at the interface using suitable matching conditions. The velocity, the temperature, the Nusselt number and the shear stress are analyzed for variations of the governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, frequency parameter, traveling thermal temperature and are shown graphically. It is found that the Grashof number, viscosity ratio, width ratio and conductivity ratio enhance the velocity parallel to the flow direction and reduce the velocity perpendicular to the flow direction.

  18. MASS TRANSFER EFFECTS ON ACCELERATED VERTICAL PLATE IN A ROTATING FLUID WITH FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2012-12-01

    Full Text Available The precise analysis of the rotation effects on the unsteady flow of an incompressible fluid past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion has been undertaken, in the presence of a homogeneous first order chemical reaction. The dimensionless governing equations are solved using the Laplace-transform technique. The plate temperature as well as the concentration near the plate increase linearly with time. The velocity profiles, temperature and concentration are studied for different physical parameters, like the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing rotation parameter Ω.

  19. A critical examination of the maximum velocity of shortening used in simulation models of human movement.

    Science.gov (United States)

    Domire, Zachary J; Challis, John H

    2010-12-01

    The maximum velocity of shortening of a muscle is an important parameter in musculoskeletal models. The most commonly used values are derived from animal studies; however, these values are well above the values that have been reported for human muscle. The purpose of this study was to examine the sensitivity of simulations of maximum vertical jumping performance to the parameters describing the force-velocity properties of muscle. Simulations performed with parameters derived from animal studies were similar to measured jump heights from previous experimental studies. While simulations performed with parameters derived from human muscle were much lower than previously measured jump heights. If current measurements of maximum shortening velocity in human muscle are correct, a compensating error must exist. Of the possible compensating errors that could produce this discrepancy, it was concluded that reduced muscle fibre excursion is the most likely candidate.

  20. Unconventional vertical word-order impairs reading.

    Science.gov (United States)

    Bonfiglioli, Claudia

    2011-01-01

    Western written languages unfold across both the horizontal (from left to right) and the vertical (from top to bottom) dimensions. Culturally determined horizontal reading/writing habits are so pervasive that their influence can be found not only in visual scanning but also in performance across different domains and tasks. However, little is known on the effects of vertical word order. In the present study, a lexical decision task is used to show that reading performance is less efficient when verbal material is vertically arranged following a bottom-to-top order.

  1. Surface tension profiles in vertical soap films

    Science.gov (United States)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  2. A High-Velocity Collision With Our Galaxy's Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    University).Using the Arecibo radio telescope in Puerto Rico, Park and collaborators have observed a supershell in the outskirts of the Milky Way and it has a high-velocity cloud at its center! Could this pair of objects be the evidence needed?A Revealing PairThe supershell, GS040.2+00.670, is roughly 3,000 light-years across, and its in the process of expanding outwards. The interior of the shell is filled with a complex structure that looks almost like spokes extending from a central hub. CHVC040, a compact high-velocity cloud, is located right at the central hub; the authors calculate a probability of less than a thousandth of a percent that this alignment is random.An integrated intensity map (click for a better look!) of neutral hydrogen showing the overall picture of the supershell (left), with the hub-and-spoke complex structure indicated within the shell. Contours in a close-up view (right) shows the location of the high-velocity cloud directly at the central hub. [Park et al. 2016]Park and collaborators examine the morphology and the velocity data for the shell and the cloud. Based on the authors calculations, if CHVC040 were traveling at a typical velocity for high-velocity clouds (several hundred kilometers per second), it would have enough energy to have created the supershell when it slammed into the disk. The parameters of the shell allow the authors estimate when the collision happened: roughly five million years ago.If this scenario is correct, Park and collaborators observations demonstrate that some compact high-velocity clouds can survive their trip through the galactic halo to smash into the galactic disk, forming a supershell on impact. A systematic study of the ~300 known compact high-velocity clouds in the Milky Way may reveal other, similar systems of compact high-velocity clouds coincident with supershells.CitationGeumsook Park et al 2016 ApJ 827 L27. doi:10.3847/2041-8205/827/2/L27

  3. Intranasal triamcinolone and growth velocity.

    Science.gov (United States)

    Skoner, David P; Berger, William E; Gawchik, Sandra M; Akbary, Akbar; Qiu, Chunfu

    2015-02-01

    Inadequate designs and conflicting results from previous studies prompted the US Food and Drug Administration to publish guidelines for the design of clinical trials evaluating the effects of orally inhaled and intranasal corticosteroids on the growth of children. This study conformed to these guidelines to evaluate the effect of triamcinolone acetonide aqueous nasal spray (TAA-AQ) on the growth of children with perennial allergic rhinitis (PAR). This randomized, double-blind, placebo-controlled, parallel-group, multicenter study evaluated the effect of once-daily TAA-AQ (110 μg) on the growth velocity (GV) of children aged 3-9 years with PAR by using stadiometry at baseline (4-6 months), during treatment (12 months), and at follow-up (2 months). Hypothalamus-pituitary-adrenal (HPA) axis function was assessed by measuring urinary cortisol levels. Details of adverse events were recorded. Of 1078 subjects screened, 299 were randomized, and 216 completed the study (placebo, 107; TAA-AQ, 109). In the primary analysis (modified intent-to-treat: placebo, 133; TAA-AQ, 134), least-squares mean GV during treatment was lower in the TAA-AQ group (5.65 cm/year) versus placebo (6.09 cm/year). The difference (-0.45 cm/year; 95% confidence interval: -0.78 to -0.11; P = .01), although clinically nonsignificant, was evident within 2 months of treatment and stabilized thereafter. At follow-up, the GV approached baseline (6.70 cm/year) in the TAA-AQ group (6.59 cm/year) and decreased slightly in the placebo group (5.89 cm/year vs 6.06 cm/year at baseline). No HPA axis suppression was observed. By using rigorous Food and Drug Administration-recommended design elements, this study detected a small, statistically significant effect of TAA-AQ on the GV of children with PAR. Copyright © 2015 by the American Academy of Pediatrics.

  4. The manifestation of Alfven's hypothesis of critical ionization velocity in the performance of MPD thrusters

    Science.gov (United States)

    Choueiri, E. Y.; Kelly, A. J.; Jahn, R. G.

    1985-01-01

    The role of Alfven's critical ionization velocity in the performance of the self-field MPD thruster has been investigated. The existence of a well defined characteristic velocity can be attributed to an ionization process involving the production of a population of suprathermal electrons by an electrostatic instability. It is shown that for the MPD thruster plasma, suprathermalization of electrons via this electrostatic instability can only happen if ions are initially accelerated to velocities larger than the Alfven critical ionization velocity. When this occurs the mechanism will be initiated and the ions decelerated to velocities near the critical velocity. This mechanism ceases to be limiting when all neutrals are ionized. A model of MPD thruster terminal behavior, incorporating Alfven's hypothesis, is presented. Experiments with three different propellants reveal that operation at values of the current squared to total mass flow ratio corresponding to the Alfven critical velocity is marked by a transition wherein low frequency voltage oscillations and a notable change in the voltage-current dependence occurs. One major result of this study is the demonstration that the Alfven critical velocity is not a fundamental limitation on MPD exhaust velocity.

  5. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    for about 35 years, the radial velocity of HD 3345 began to decline in the new century, and in seven years it had fallen by 6 km s. −1 . The observations are listed in Table 2, with the phases and residuals that correspond to the adopted orbital parameters. The descending (minimum-velocity) node was passed early in 2009, a.

  6. Asymmetric Drift and the Stellar Velocity Ellipsoid

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Swaters, Rob A.

    2007-01-01

    We present the decomposition of the stellar velocity ellipsoid using stellar velocity dispersions within a 40° wedge about the major-axis (smaj), the epicycle approximation, and the asymmetric drift equation. Thus, we employ no fitted forms for smaj and escape interpolation errors resulting from

  7. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  8. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    Science.gov (United States)

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  9. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2017-09-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  10. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...

  11. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  12. Shear-wave reflection imaging using a MEMS-based 3C landstreamer and a vertical impact source - an esker study in SW Finland

    Science.gov (United States)

    Brodic, Bojan; Malehmir, Alireza; Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti

    2017-04-01

    Higher resolution of S-wave seismic data compared to the P-wave ones are attractive for the researches working with the seismic methods. This is particularly true for near-surface applications due to significantly lower shear-wave velocities of unconsolidated sediments. Shear-wave imaging, however, poses certain restrictions on both source and receiver selections and also processing strategies. With three component (3C) seismic receivers becoming more affordable and used, shear-wave imaging from vertical sources is attracting more attention for near-surface applications. Theoretically, a vertical impact source will always excite both P- and S-waves although the excited S-waves are radially polarized (SV). There is an exchange of seismic energy between the vertical and radial component of the seismic wavefield. Additionally, it is theoretically accepted that there is no energy conversion or exchange from vertical into the transverse (or SH) component of the seismic wavefield, and the SH-waves can only be generated using SH sources. With the objectives of imaging esker structure (glacial sediments), water table and depth to bedrock, we conducted a seismic survey in Virttaankangas, in southwestern Finland. A bobcat-mounted vertical drop hammer (500 kg) was used as the seismic source. To obtain better source coupling, a 75×75×1.5 cm steel plate was mounted at the bottom of the hammer casing and all the hits made on this plate after placing it firmly on the ground at every shot point. For the data recording, we used a state-of-the-art comprising of 100 units, 240 m-long, 3C MEMS (micro electro-mechanical system) based seismic landstreamer developed at Uppsala University. Although the focus of the study was on the vertical component data, careful inspection of the transverse (SH) component of the raw data revealed clear shear wave reflections (normal moveout velocities ranging from 280-350 m/s at 50 m depth) on several shot gathers. This indicated potential for their

  13. An upper-mantle S-wave velocity model for Northern Europe from Love and Rayleigh group velocities

    Science.gov (United States)

    Weidle, Christian; Maupin, Valérie

    2008-12-01

    A model of upper-mantle S-wave velocity and transverse anisotropy beneath northwestern Europe is presented, based on regional surface wave observations. Group velocities for both Love and Rayleigh surface waves are measured on waveform data from international and regional data archives (including temporary deployments) and then inverted for group velocity maps, using a method accounting for Fresnel zone sensitivity. The group velocity variations are larger than in global reference maps, and we are able to resolve unprecedented details. We then apply a linear inversion scheme to invert for local 1-D shear wave velocity profiles which are consequently assembled to a 3-D model. By choosing conservative regularization parameters in the 2-D inversion, we ensure the smoothness of the group velocity maps and hence of the resulting 3-D shear wave speed model. To account for the different tectonic regimes in the study region and investigate the sensitivity of the 1-D inversions to inaccuracies in crustal parameters, we analyse inversions with different reference models of increasing complexity (pure 1-D, 3-D crust/1-D mantle and pure 3-D). We find that all inverted models are very consistent at depths below 70 km. At shallower depths, the constraints put by the reference models, primarily Moho depth which we do not invert for, remain the main cause for uncertainty in our inversion. The final 3-D model shows large variations in S-wave velocity of up to +/-12 per cent. We image an intriguing low-velocity anomaly in the depth range 70-150 km that extends from the Iceland plume beneath the North Atlantic and in a more than 400 km wide channel under Southern Scandinavia. Beneath Southern Norway, the negative perturbations are around 10 per cent with respect to ak135, and a shallowing of the anomaly is indicated which could be related to the sustained uplift of Southern Scandinavia in Neogene times. Furthermore, our upper-mantle model reveals good alignment to ancient plate

  14. Postprocessing of velocity distributions in real-time ultrasonic color velocity imaging.

    Science.gov (United States)

    Collaris, R J; Hoeks, A P

    1994-10-01

    A robust processing scheme is proposed that improves the presentation of 2-dimensional velocity distributions in real-time ultrasonic color velocity images. Essentially, the algorithm is a modification of a first order recursive filter, processing each velocity signal in the spatial distribution separately from the others. It restores the sudden holes and notches in the velocity profiles that occur whenever the observed blood velocity is incidentally close to zero. At the same time, unlike conventional persistence filters, it does not influence any of the true velocity information that is measured. The result is a consistent sequence of color velocity images with smooth transitions between the borders of the consecutive velocity profiles and with an improved definition of the regions containing blood.

  15. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    lasting a few hundred thousand years as the island migrates over a broad flexural arch related to isostatic compensation of a nearby active volcano. The arch is located about 190±30 km away from the center of volcanic activity and is also related to the rejuvenated volcanic stage on the islands. Reefs on Oahu that are uplifted several tens of m above sea level are the primary evidence for uplift as the islands over-ride the flexural arch. At the other end of the movement spectrum, both in terms of magnitude and length of response, are the rapid uplift and subsidence that occurs as magma is accumulated within or erupted from active submarine volcanoes. These changes are measured in days to years and are of cm to m variation; they are measured using leveling surveys, tiltmeters, EDM and GPS above sea level and pressure gauges and tiltmeters below sea level. Other acoustic techniques to measure such vertical movement are under development. Elsewhere, evidence for subsidence of volcanoes is also widespread, ranging from shallow water carbonates on drowned Cretaceous guyots, to mapped shoreline features, to the presence of subaerially-erupted (degassed) lavas on now submerged volcanoes. Evidence for uplift is more limited, but includes makatea islands with uplifted coral reefs surrounding low volcanic islands. These are formed due to flexural uplift associated with isostatic loading of nearby islands or seamounts. In sum, oceanic volcanoes display a long history of subsidence, rapid at first and then slow, sometimes punctuated by brief periods of uplift due to lithospheric loading by subsequently formed nearby volcanoes.

  16. The effect of vertical advection and diffusion on nutrient supply to the euphotic zone: a model study of the Iceland-Faeroes Front

    Science.gov (United States)

    Popova, E.; Srokosz, M.

    2006-12-01

    This paper examines the effect of vertical advection and vertical diffusion on the supply of nutrients to the euphotic zone. This is done using a high resolution coupled biological-physical model, that has previously been used to reproduce in situ and satellite observations of physical and biological variability at the Iceland Faeroes Front (IFF). Oligotrophic conditions are imposed in the model in order to examine the vertical flux of nutrients.The results show that, while instantaneous vertical advective fluxes of nutrients can be much larger than vertical diffusive ones, over a period of days the latter act consistently to supply nutrients to the euphotic zone. In contrast, the spatially and temporally varying nature of the vertical velocity field means that there is no consistent vertical advective flux of nutrients. This suggests that for real "messy" complex flows, such as the one modelled here, ageostrophic vertical velocities induced by eddies and frontal meanders may not play as important a role in supplying nutrient to the euphotic zone, and in enhancing biological production there, as has previously been thought.

  17. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...... color image of velocity at up to 20 to 60 frames a second. Both measurements are performedby repeatedly pulsing in the same direction and then usethe correlation from pulse to pulse to determine the velocity.The paper gives a simple model for the interactionbetween the ultrasound and the moving blood....... The calculation of the velocity distribution is then explainedalong with the different physical effects influencing the estimation.The estimation of mean velocities using auto- andcross-correlation for color flow mapping is also described....

  18. Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures.

    Science.gov (United States)

    Kim, Kwanpyo; Lee, Tae Hoon; Santos, Elton J G; Jo, Pil Sung; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-06-23

    Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.

  19. Utilizing the Vertical Variability of Precipitation to Improve Radar QPE

    Science.gov (United States)

    Gatlin, Patrick N.; Petersen, Walter A.

    2016-01-01

    Characteristics of the melting layer and raindrop size distribution can be exploited to further improve radar quantitative precipitation estimation (QPE). Using dual-polarimetric radar and disdrometers, we found that the characteristic size of raindrops reaching the ground in stratiform precipitation often varies linearly with the depth of the melting layer. As a result, a radar rainfall estimator was formulated using D(sub m) that can be employed by polarimetric as well as dual-frequency radars (e.g., space-based radars such as the GPM DPR), to lower the bias and uncertainty of conventional single radar parameter rainfall estimates by as much as 20%. Polarimetric radar also suffers from issues associated with sampling the vertical distribution of precipitation. Hence, we characterized the vertical profile of polarimetric parameters (VP3)-a radar manifestation of the evolving size and shape of hydrometeors as they fall to the ground-on dual-polarimetric rainfall estimation. The VP3 revealed that the profile of ZDR in stratiform rainfall can bias dual-polarimetric rainfall estimators by as much as 50%, even after correction for the vertical profile of reflectivity (VPR). The VP3 correction technique that we developed can improve operational dual-polarimetric rainfall estimates by 13% beyond that offered by a VPR correction alone.

  20. HL-LHC vertical cryostat during construction

    CERN Multimedia

    Lanaro, Andrea

    2016-01-01

    7m high "Cluster D" vertical test cryostat during construction at contractor's premises, Alca Technology Srl, in Schio, Italy. The inner helium vessel with its heat exchanger are visible. To be installed in the D pit in SMA18.

  1. Thermal vertical bimorph actuators and their applications

    CERN Document Server

    Sehr, H J

    2002-01-01

    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  2. Multiloop string vertices from the path integral

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M.; Lerda, A.

    1989-02-02

    We derive the multiloop vertices for the bosonic string using path integral methods and establish a precise equivalence between the functional approach to string perturbation theory and the operator formalism on Riemann surfaces recently developed by various authors.

  3. Vertical Land Change, Perry County, Kentucky

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The vertical land change activity focuses on the detection, analysis, and explanation of topographic change. These detection techniques include both quantitative...

  4. An analysis of two styles of arm action in the vertical countermovement jump.

    Science.gov (United States)

    Gutiérrez-Dávila, Marcos; Amaro, Francisco J; Garrido, Juan M; Javier Rojas, F

    2014-06-01

    The aim of this study was to determine the effect of two arm swing techniques, the simultaneous arm swing and the early arm swing, on vertical countermovement jump performance and on the contribution of the arms to vertical movement at the centre of mass (CM) during the propulsion phase. Participants were 28 athletes practicing sports in which the vertical jump constitutes a basic ability. Ground reaction forces were recorded by a force platform and the sagittal plane motion was recorded by a video camera. Although at take-off the vertical velocity (2.7 +/- 0.2m/s for simultaneous technique vs. 2.8 +/- 0.2m/s for early technique; p = 0.040) and position (1.18 +/- 0.06m for simultaneous vs. 1.17 +/- 0.05m for early; p = 0.033) of the CM were significantly different, no difference was observed in jump height (1.56 +/- 0.01m in both techniques). The arm action differed during the initial and final propulsion phases in both styles but the accumulated vertical contribution was similar. The practical implication in sports is that the use of the arm-swing technique to reach the maximum jump height should be determined by tactical demands instead of the technical execution of the arms.

  5. Evaluation of vertical forces in the pads of Pitbulls with cranial cruciate ligament rupture.

    Science.gov (United States)

    Souza, Alexandre Navarro Alves; Tatarunas, Angelica Cecilia; Matera, Julia Maria

    2014-03-01

    Cranial cruciate ligament rupture (CCLR) is one of the most important stifle injuries and a common cause of lameness in dogs. Our objective was to measure the vertical forces in the pads of Pitbulls with cranial cruciate ligament rupture (CCLR) using a pressure sensitive walkway. A pressure sensitive walkway was used to collect vertical force data from the pads of 10 Pitbulls affected with unilateral CCLR. Ten healthy Pitbulls were included in the study as controls. Velocity varied between 1.3 and 1.6 m/s and acceleration was kept below ± 0.1 m/s2. Differences between groups and between pads in the same limb within groups were investigated using ANOVA and the Tukey test. The paired Student t-test was employed to assess gait symmetry (p < 0.05). Peak vertical forces (PVF) were lower in the affected limb, particularly in the metatarsal pad. Increased PVF values in the forelimb and the contralateral hind limb pads of affected dogs suggest a compensatory effect. A consistent pattern of vertical force distribution was observed in the pads of dogs with CCLR. These data are important for increased understanding of vertical force distribution in the limb of dogs with CCLR disease. Kinetic analysis using pressure sensitive walkways can be useful in follow-up assessment of surgically treated dogs regardless of the surgical technique employed.

  6. Vertical forces assessment according to radiographic hip grade in German shepherd dogs.

    Science.gov (United States)

    Souza, A N A; Pinto, A C B C F; Marvulle, V; Matera, J M

    2015-02-01

    To investigate the correlation between radiographic hip grade and kinetic parameters in German shepherd dogs. Dogs were distributed into five groups of eight dogs each according to hip grade (A, B, C, D or E). Dogs were submitted to clinical evaluation and kinetic analysis. Five valid passages were analysed using data collected from a pressure walkway. Peak vertical force, vertical impulse and stance phase duration were evaluated at velocity (1 · 2 to 1 · 4 m/s) ±0 · 1 m/s(2) acceleration. Kinetic data between groups were compared. In pelvic limbs, mean peak vertical force decreased progressively from grade C (mild) to grade E (severe) hip dysplasia. The vertical impulse was decreased in groups C and E compared to groups A, B and D; stance phase duration did not differ significantly between groups. Mean peak vertical force was lower in dogs with severe hip dysplasia compared with mildly dysplastic dogs. These results suggest that hip dysplasia degree can affect lameness severity. © 2014 British Small Animal Veterinary Association.

  7. Natural convection air flow in vertical upright-angled triangular cavities under realistic thermal boundary conditions

    Directory of Open Access Journals (Sweden)

    Sieres Jaime

    2016-01-01

    Full Text Available This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle φ is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles φ (= 15º, 30º and 45º and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.

  8. The minimal access deep plane extended vertical facelift.

    Science.gov (United States)

    Jacono, Andrew A; Parikh, Sachin S

    2011-11-01

    Modern facelift techniques have benefited from a "repopularization" of shorter incisions, limited skin elevation, and more limited dissection of the superficial musculoaponeurotic system (SMAS) and platysma in order to shorten postoperative recovery times and reduce surgical risks for patients. The authors describe their minimal access deep plane extended (MADE) vertical vector facelift, which is a hybrid technique combining the optimal features of the deep plane facelift and the short scar, minimal access cranial suspension (MACS) lift. The authors retrospectively reviewed the case records of 181 patients who underwent facelift procedures performed by the senior author (AAJ) during a two year period between March 2008 and March 2010. Of those patients, 153 underwent facelifting with the MADE vertical technique. With this technique, deep plane dissection releases the zygomatico-cutaneous ligaments, allowing for more significant vertical motion of the midface and jawline during suspension. Extended platysmal dissection was utilized with a lateral platysmal myotomy, which is not traditionally included in a deep plane facelift. The lateral platysmal myotomy allowed for separation of the vertical vector of suspension in the midface and jawline from the superolateral vector of suspension that is required for neck rejuvenation, obviating the need for additional anterior platysmal surgery. The average age of the patients was 57.8 years. The average length of follow-up was 12.7 months. In 69 consecutive patients from this series, average vertical skin excision measured 3.02 cm on each side of the face at the junction of the pre auricular and temporal hair tuft incision (resulting in a total excision of 6.04 cm of skin). Data from the entire series revealed a revision rate of 3.9%, a hematoma rate of 1.9%, and a temporary facial nerve injury rate of 1.3%. The common goal of all facelifting procedures is to provide a long-lasting, natural, balanced, rejuvenated aesthetic

  9. A Computational Framework for Vertical Video Editing

    OpenAIRE

    Gandhi, Vineet; Ronfard, Rémi

    2015-01-01

    International audience; Vertical video editing is the process of digitally editing the image within the frame as opposed to horizontal video editing, which arranges the shots along a timeline. Vertical editing can be a time-consuming and error-prone process when using manual key-framing and simple interpolation. In this paper, we present a general framework for automatically computing a variety of cinematically plausible shots from a single input video suitable to the special case of live per...

  10. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...... cargo ship regulations, was based on a very simplified presumption of bow heights. This paper investigates the development of this damage extent distribution based on three independent methodologies; actual casualty measurements, world fleet bow height statistics, and collision simulation modeling...

  11. Vertical Jump: Biomechanical Analysis and Simulation Study

    OpenAIRE

    Babic, Jan; Lenarcic, Jadran

    2007-01-01

    By building an efficient biorobotic model which includes an elastic model of the biarticular muscle gastrocnemius and by simulation of the vertical jump we have demonstrated that biarticular links contribute a great deal to the performance of the vertical jump. Besides, we have shown that timing of the biarticular link activation and stiffness of the biarticular link considerably influence the height of the jump. Methodology and results of our study offer an effective tool for the design of t...

  12. VERTIC SOILS IN CODRY REGIONS OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    A. Ursu

    2009-10-01

    Full Text Available The features of structure of some parent materials essentially influence of direction of pedogenesis, cause the processes of lithomorphism. On heavy tertiary clays in different conditionsare formed the special genetic type (vertisols or transitive to lithomorphic subtype of zonal soil (vertic soil. In article the characteristic of vertisols (the subtype of mollic and ochric and thesubtypes of vertic chernozems and grey soils is given.

  13. Vertical zonality of septal nectaries of Monocots

    Directory of Open Access Journals (Sweden)

    Аnastasiya Odintsova

    2013-04-01

    Full Text Available Considering the septal nectary as a system of exogenous cavities inside the ovary and taking account of possibilities of various ways of the formation of nectary walls we propose to apply the concept of vertical zonality to the analysis of the septal nectary structure. The comparative analysis of the gynoecium with septal nectaries must include data about the nectary vertical zones and its location in the structural zones of the gynoecium.

  14. Range/velocity limitations for time-domain blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The traditional range/velocity limitation for blood velocity estimation systems using ultrasound is elucidated. It is stated that the equation is a property of the estimator used, not the actual physical measurement situation, as higher velocities can be estimated by the time domain cross...

  15. a Comparison Between Zero-Offset and Vertical Radar Profiling Gpr Techniques with Emphasis on Problematic Borehole Effects

    Science.gov (United States)

    Rossi, M.; Vignoli, G.; Cassiani, G.; Deiana, R.

    2012-12-01

    Non-invasive geophysical techniques are increasingly used to study the unsaturated zone. In particular, cross-hole methods can are able to infer more detailed information about the subsoil than surface measurements. Two borehole Ground Penetrating Radar (GPR) techniques are discussed in our contribution: Zero-Offset Profiling (ZOP) and Vertical Radar Profiling (VRP). We make a direct comparison of these methods in a field case (Trecate site, Northern Italy), to explore each method's capabilities and limitations. Our analysis is focused on the results in the vadose zone and shows that the dielectric relative permittivity profiles recovered from ZOP and VRP first-break inversions are in strong disagreement, providing very different permittivity profiles. The analysis of synthetic radargrams shows the presence of an electromagnetic (EM) wave established by the joint presence of the air-filled borehole within a higher permittivity surrounding soil. This event has a velocity intermediate between the soil and air speed values, and interferes with the picking of first arrivals in the VRP mode. The numerical simulations are performed with different borehole diameters, confirming that the velocity of the first recorded event depends on the ratio between the wave length in air and the finite dimension of the borehole. Once these arrivals in the simulated VRP radargrams are recognized, their contribution can be removed by picking the "direct" arrivals, that correspond to the waves that directly propagates from source to receiver, through the unsaturated zone. Once the borehole effects are accounted for, the comparison between the ZOP and VRP permittivity profiles is reasonable and reveals the different resolution of these techniques, focusing on the information that can be inferred for hydrological characterizations. Thus, VRP surveys in vadose zone must be accurately interpreted, as the electromagnetic waves may propagate via guided modes along the borehole. Neglecting this

  16. Recent advances in blood flow vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Udesen, Jesper

    2011-01-01

    A number of methods for ultrasound vector velocity imaging are presented in the paper. The transverse oscillation (TO) method can estimate the velocity transverse to the ultrasound beam by introducing a lateral oscillation in the received ultrasound field. The approach has been thoroughly...... investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method...... with magnetic resonance phase contrast angiography (MRA) revealed a correlation between the stroke volume estimated by TO and MRA of 0.91 (pflow in e.g. bifurcations and around valves have...

  17. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.

    Science.gov (United States)

    Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo

    2017-08-01

    This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.

  18. A radial-velocity study of 18 emission-line B stars

    Science.gov (United States)

    Jarad, M. M.; Hilditch, R. W.; Skillen, Ian

    1989-06-01

    A total of 647 radial velocities of 18 northern-hemisphere Be stars obtained over two observing seasons (1983-1985) are presented. These velocities have been determined by the cross-correlation technique applied to selected spectral regions avoiding the hydrogen lines and including the He I lines. Analyses of these data via Fourier techniques suggest that three new spectroscopic binaries are discovered and that seven stars show variability in radial velocity which may be attributable to radial or nonradial pulsation. Four known binary orbits are confirmed. Only four stars in the sample are found to have constant radial velocity. These results strengthen and extend the evidence that the Be phenomenon can result from pulsational instability and that the proportion of binary systems among Be stars is about the same as the normal stellar population. Very-high-resolution spectroscopy of those stars found to be variable in velocity should reveal changes in line-profile shape due to nonradial pulsation.

  19. Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes

    Directory of Open Access Journals (Sweden)

    Justin R. Brown

    2014-05-01

    Full Text Available The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is important for such movements. The purpose of this study was to examine the relationship of both shoulder and hip angular kinematics with ball velocity during the volleyball spike. Methods: Fourteen Division I collegiate female volleyball players executed down the line (DL and diagonally across-court (DAC spikes in a laboratory setting to measure shoulder and hip angular kinematics and velocities. Each spike was analyzed using a 10 Camera Raptor-E Digital Real Time Camera System.  Results: DL SBV was significantly greater than for DAC, respectively (17.54±2.35 vs. 15.97±2.36 m/s, p<0.05.  The Shoulder Hip Separation Angle (S-HSA, Shoulder Angular Velocity (SAV, and Hip Angular Velocity (HAV were all significantly correlated with DAC SBV. S-HSA was the most significant predictor of DAC SBV as determined by regression analysis.  Conclusions: This study provides support for a relationship between a greater S-HSA and SBV. Future research should continue to 1 examine the influence of core training exercise and rotational skill drills on SBV and 2 examine trunk angular velocities during various types of spikes during play.

  20. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.

    Science.gov (United States)

    Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.