WorldWideScience

Sample records for vertical velocity gradient

  1. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  2. Seismic Velocity Gradients Across the Transition Zone

    Science.gov (United States)

    Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.

    2006-12-01

    One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be

  3. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary

    OpenAIRE

    Serpelloni, Enrico; Faccenna, Claudio; Spada, Giorgio; DONG Danan; Williams, Simon D.P.

    2013-01-01

    We use 2.5 to 14 years long position time series from >800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ −0.7, we adopt a power l...

  4. Velocity Gradient Power Functional for Brownian Dynamics.

    Science.gov (United States)

    de Las Heras, Daniel; Schmidt, Matthias

    2018-01-12

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  5. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  6. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  7. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  8. On the measurement of vertical velocity by MST radar

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview is presented of the measurement of atmospheric vertical motion utilizing the MST radar technique. Vertical motion in the atmosphere is briefly discussed as a function of scale. Vertical velocity measurement by MST radars is then considered from within the context of the expected magnitudes to be observed. Examples are drawn from published vertical velocity observations.

  9. Refining geoid and vertical gradient of gravity anomaly

    Directory of Open Access Journals (Sweden)

    Zhang Chijun

    2011-11-01

    Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.

  10. Electromagnetic radiation in a medium with a velocity gradient

    Science.gov (United States)

    Gladyshev, V. O.; Tereshin, A. A.; Bazleva, D. D.

    2016-04-01

    A relativistic expression has been obtained for the curvature of trajectory of the wave vector of an electromagnetic wave in a moving optically transparent medium. It has been shown that the curvature of the trajectory and angular deviation of rays appear in a homogeneous isotropic medium if the gradient of the velocity field in the medium is nonzero. The bending of the trajectory in the medium with the velocity gradient is a firstorder effect in the ratio u/ c.

  11. Bathymetry predicted from vertical gravity gradient anomalies and ship soundings

    Directory of Open Access Journals (Sweden)

    Hu Minzhang

    2014-02-01

    Full Text Available In this paper, the admittance function between seafloor undulations and vertical gravity gradient anomalies was derived. Based on this admittance function, the bathymetry model of 1 minute resolution was predicted from vertical gravity gradient anomalies and ship soundings in the experimental area from the northwest Pacific. The accuracy of the model is evaluated using ship soundings and existing models, including ETOPOl, GEBCO, DTU10 and V15. 1 from SIO. The model's STD is 69.481m, comparable with V15. 1 which is generally believed to have the highest accuracy.

  12. Parachute landing fall characteristics at three realistic vertical descent velocities.

    Science.gov (United States)

    Whitting, John W; Steele, Julie R; Jaffrey, Mark A; Munro, Bridget J

    2007-12-01

    Although parachute landing injuries are thought to be due in part to a lack of exposure of trainees to realistic descent velocities during parachute landing fall (PLF) training, no research has systematically investigated whether PLF technique is affected by different vertical descent conditions, with standardized and realistic conditions of horizontal drift. This study was designed to determine the effects of variations in vertical descent velocity on PLF technique. Kinematic, ground reaction force, and electromyographic data were collected and analyzed for 20 paratroopers while they performed parachute landings, using a custom-designed monorail apparatus, with a constant horizontal drift velocity (2.3 m x s(-1)) and at three realistic vertical descent velocities: slow (2.1 m x s(-1)), medium (3.3 m x s(-1)), and fast (4.6 m x s(-1)). Most biomechanical variables characterizing PLF technique were significantly affected by descent velocity. For example, at the fast velocity, the subjects impacted the ground with 123 degrees of plantar flexion and generated ground reaction forces averaging 13.7 times body weight, compared to 106 degrees and 6.1 body weight, respectively, at the slow velocity. Furthermore, the subjects activated their antigravity extensor muscles earlier during the fast velocity condition to eccentrically control the impact absorption. As vertical descent rates increased, the paratroopers displayed a significantly different strategy when performing the PLF. It is therefore recommended that PLF training programs include ground training activities with realistic vertical descent velocities to better prepare trainees to withstand the impact forces associated with initial aerial descents onto the Drop Zone and, ultimately, minimize the potential for injury.

  13. Optimization of the Vertical Bridgman Method and the Vertical Gradient Method for CdZnTe Single Crystal Production

    Directory of Open Access Journals (Sweden)

    A. Kalbáč

    2000-01-01

    Full Text Available In designing optimum parameters of advanced crystal growth techniques, computer modeling has become an important tool owing to the fact that computer simulation is much cheaper than many experimental techniques based on the trial and error method. In this paper, the application of computational modeling in the optimization of experimental setups for the production of CdZnTe single crystals from the melt is demonstrated on two characteristic examples, namely on the vertical Bridgman and vertical gradient method. The influence of adjustable parameters on the temperature, concentration and velocity fields, and on the positions and velocities of the moving interface is studied. Finally, the effect of uncertainty in material parameters on computed results is analyzed.

  14. Some numerical calculations of the vertical velocity field in hurricanes

    OpenAIRE

    Krishnamurti, T. N.

    2011-01-01

    The commonly observed crescent-shaped geometry of the tangential wind field in hurricanes is imposed on the primitive equations of atmospheric motion, and solutions for the vertical velocity field are obtained. It is shown that the numerically computed vertical motion field exhibits a spiral form, very similar to what is observed in radar pictures in individual hurricanes. Aircraft flight data from the National Hurricane Research Project are utilized to carry out the numerical calculations i...

  15. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps

  16. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...... in the zone above the occupied zone. A model to calculate the two air temperatures has been developed and implemented in Suncode- PC, a thermal analysis programme for residential and small commercial buildings. The dimensionless temperature profile based on measurements in a laboratory test room is presented...

  17. Acoustic beam control in biomimetic projector via velocity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); Zhang, Yu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu; Tang, Liguo [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cao, Wenwu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu [Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Li, Songhai [Sanya Key Laboratory of Marin Mammal and Marine Bioacoustics, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya 57200 (China); Zhang, Sai [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2016-07-04

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  18. Using absolute gravimeter data to determine vertical gravity gradients

    Science.gov (United States)

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  19. Consolidation by Prefabricated Vertical Drains with a Threshold Gradient

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2014-01-01

    Full Text Available This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1 the flow with the threshold gradient would not occur instantaneously throughout the whole unit cell. Rather, it gradually occurs from the vertical drain to the outside; (2 the moving boundary would never reach the outer radius of influence if R+1gradient is, the greater the long-term excess pore pressure will be; and (5 the present solution could predict the consolidation behavior in soft clay better than previous methods.

  20. Modification of a variational objective analysis model for new equations for pressure gradient and vertical velocity in the lower troposphere and for spatial resolution and accuracy of satellite data

    Science.gov (United States)

    Achtemeier, G. L.

    1986-01-01

    Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.

  1. Wind Velocity Vertical Extrapolation by Extended Power Law

    Directory of Open Access Journals (Sweden)

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  2. Orthogonal Vertical Velocity Dispersion Distributions Produced by Bars

    Science.gov (United States)

    Du, Min; Shen, Juntai; Debattista, Victor P.; de Lorenzo-Cáceres, Adriana

    2017-02-01

    In barred galaxies, the contours of stellar velocity dispersions (σ) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct σ peaks on the minor axis of the inner bar, which we termed “σ-humps,” while two local σ minima are present close to the ends of inner bars, I.e., “σ-hollows.” Analysis of numerical simulations shows that {σ }z-humps or hollows should play an important role in generating the observed σ-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of {σ }z in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower {σ }z along the bar and enhance it perpendicular to the bar, thus generating {σ }z-humps+hollows. Such a result suggests that {σ }z-humps+hollows can be generated by the purely dynamical response of stars in the presence of a sufficiently massive, vertically thin bar, even without an outer bar. Using self-consistent N-body simulations, we verify the existence of vertically thin bars in the nuclear-barred and S2B models that generate prominent σ-humps+hollows. Thus, the ubiquitous presence of σ-humps+hollows in S2Bs implies that inner bars are vertically thin. The addition of a bulge makes the {σ }z-humps more ambiguous and thus tends to somewhat hide the {σ }z-humps+hollows. We show that {σ }z may be used as a kinematic diagnostic of stellar components that have different thicknesses, providing a direct perspective on the morphology and thickness of nearly face-on bars and bulges with integral field unit spectroscopy.

  3. Terminal velocity of a shuttlecock in vertical fall

    Science.gov (United States)

    Peastrel, Mark; Lynch, Rosemary; Armenti, Angelo

    1980-07-01

    We have performed a straightforward vertical fall experiment for a case where the effects of air resistance are important and directly measurable. Using a commonly available badminton shuttlecock, a tape measure, and a millisecond timer, the times required for the shuttlecock to fall given distances (up to almost ten meters) were accurately measured. The experiment was performed in an open stairwell. The experimental data was compared to the predictions of several models. The best fit was obtained with the model which assumes a resistive force quadratic in the instantaneous speed of the falling object. This model was fitted to the experimental data enabling us to predict the terminal velocity of the shuttlecock (6.80 m/sec). The results indicate that, starting from rest, the vertically falling shuttlecock achieves 99% of its terminal velocity in 1.84 sec, after falling 9.2 m. The relative ease in collecting the data, as well as the excellent agreement with theory, make this an ideal experiment for use in physics courses at a variety of levels.

  4. Heterogeneous fragmentation of metallic liquid microsheet with high velocity gradient

    Science.gov (United States)

    An-Min, He; Pei, Wang; Jian-Li, Shao

    2016-01-01

    Large-scale molecular dynamics simulations are performed to study the fragmentation of metallic liquid sheets with high velocity gradient. Dynamic fragmentation of the system involves the formation of a network of fragments due to the growth and coalescence of holes, decomposition of the network into filaments, and further breakup of the filaments into spherical clusters. The final size distribution of the fragmented clusters in the large volume limit is found to obey a bilinear exponential form, which is resulted from the heterogeneous breakup of quasi-cylindrical filaments. The main factors contributing to fragmentation heterogeneity are introduced, including strain rate inhomogeneity and matter distribution nonuniformity of fragments produced during decomposition of the network structure. Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0201010 and 2015B0201039) and the National Natural Science Foundation of China (Grant No. 11402032).

  5. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  6. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  7. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were

  8. Climate change and the Madden-Julian Oscillation: A vertically resolved weak temperature gradient analysis

    Science.gov (United States)

    Wolding, Brandon O.; Maloney, Eric D.; Henderson, Stephanie; Branson, Mark

    2017-03-01

    WTG balance is used to examine how changes in the moist thermodynamic structure of the tropics affect the MJO in two simulations of the Superparameterized Community Earth System Model (SP-CESM), one at preindustrial (PI) levels of CO2 and one where CO2 levels have been quadrupled (4×CO2). While MJO convective variability increases considerably in the 4×CO2 simulation, the dynamical response to this convective variability decreases. Increased MJO convective variability is shown to be a robust response to the steepening vertical moisture gradient, consistent with the findings of previous studies. The steepened vertical moisture gradient allows MJO convective heating to drive stronger variations in large-scale vertical moisture advection, supporting destabilization of the MJO. The decreased dynamical response to MJO convective variability is shown to be a consequence of increased static stability, which allows weaker variations in large-scale vertical velocity to produce sufficient adiabatic cooling to balance variations in MJO convective heating. This weakened dynamical response results in a considerable reduction of the MJO's ability to influence the extratropics, which is closely tied to the strength of its associated divergence. A composite lifecycle of the MJO was used to show that northern hemisphere extratropical 525 hPa geopotential height anomalies decreased by 27% in the 4×CO2 simulation, despite a 22% increase in tropical convective heating associated with the MJO. Results of this study suggest that while MJO convective variability may increase in a warming climate, the MJO's role in "bridging weather and climate" in the extratropics may not.

  9. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  10. Vertical Velocities in Cumulus Convection: Implications for Climate and Prospects for Realistic Simulation at Cloud Scale

    Science.gov (United States)

    Donner, Leo

    2014-05-01

    Cumulus mass fluxes are essential controls on the interactions between cumulus convection and large-scale flows. Cumulus parameterizations have generally been built around them, and these parameterizations are basic components of climate models. Several important questions in climate science depend also on cumulus vertical velocities. Interactions between aerosols and convection comprise a prominent example, and scale-aware cumulus parameterizations that require explicit information about cumulus areas are another. Basic progress on these problems requires realistic characterization of cumulus vertical velocities from observations and models. Recent deployments of dual-Doppler radars are providing unprecedented observations, which can be compared against cloud-resolving models (CRMs). The CRMs can subsequently be analyzed to develop and evaluate parameterizations of vertical velocities in climate models. Vertical velocities from several cloud models will be compared against observations in this presentation. CRM vertical velocities will be found to depend strongly on model resolution and treatment of sub-grid turbulence and microphysics. Although many current state-of-science CRMs do not simulate vertical velocities well, recent experiments with these models suggest that with appropriate treatments of sub-grid turbulence and microphysics robustly realistic modeling of cumulus vertical velocities is possible.

  11. Diagnosis of hydrometeor profiles from area-mean vertical-velocity data

    Science.gov (United States)

    Braun, Scott A.; Houze, Robert A., Jr.

    1995-01-01

    A simple one-dimensional microphysical retrieval model is developed for estimating vertical profiles of liquid and frozen hydrometeor mixing ratios from observed vertical profiles of area-mean vertical velocity in regions of convective and/or stratiform precipitation. The mean vertical-velocity profiles can be obtained from Doppler radar (single and dual) or other means. The one-dimensional results are shown to be in good agreement with two-dimensional microphysical fields from a previous study. Sensitivity tests are performed.

  12. 2-D inversion of P-wave polarization data to obtain maps of velocity gradient

    Science.gov (United States)

    Jing, Xili; Li, Li

    2017-11-01

    Gradient mapping is a technique employed in the interpretation of tomographic velocity images for delineating geological structures. In this paper, a tomographic method is proposed for determining relative velocity gradient field from seismic polarization directions. This inverse problem is iteratively resolved by the damped least squares method. With Hamiltonian formulation of ray theory and under the assumption that the medium is weakly inhomogeneous, the problem formulation for polarization direction is approximately expressed as a function of relative velocity gradient. Explicit expressions of the Frechet derivatives of polarization directions with respect to model parameters are given. The proposed tomographic method is illustrated by conducting synthetic experiments for showing the ability of our method to recover relative velocity gradient field as well as its potential applicability to complex media. The test results demonstrate that the proposed method is a promising approach for imaging geological structures.

  13. Diagnosing ocean vertical velocities off New Caledonia from a SPRAY glider

    Science.gov (United States)

    Fuda, Jean-Luc; Marin, Frédéric; Durand, Fabien; Terre, Thierry

    2013-04-01

    A SPRAY glider has been operated in the Coral Sea (South-Western tropical Pacific ocean) since 2011, with the primary goal of monitoring the boundary currents and jets. In this presentation, we will describe how oceanic vertical velocities can be estimated from SPRAY glider measurements, with application to the observation of internal waves off New Caledonia in May-June 2012. Pressure measurements by the glider allow estimating the vertical velocities of the glider (relative to ocean bottom) at each time. These vertical velocities are the sum of the vertical velocities of the glider relative to the water body (governed by the laws of motion of the glider) and of the oceanic vertical velocities (due to ocean internal dynamics). If we solve the laws of motion of the glider (via an adequate flight model), we can thus retrieve oceanic vertical velocities. On account of their small magnitude, the retrieval of ocean vertical velocities would be tricky - if not impossible - through other conventional instruments such as ADCPs. Following a couple of similar previous studies on the SLOCUM and SEAGLIDER gliders, we describe a simplified flight model for the SPRAY glider. This model has three parameters that only depend on the characteristics of the glider: the compressibility and thermal expansion coefficients (that are constant) and the drag coefficient (that is allowed to change dive after dive, because of potential fouling of the hull). We estimate these parameters under the assumption that the absolute vertical water velocity average to zero over a long enough spatio-temporal window (typically: a profile or a group of profiles). Unlike previous studies, our flight model takes into account the vehicle roll to assess its impact on the flight model and oceanic vertical velocity retrieval. We apply this approach to a 40-day/250 dives/800km mission performed in May-June 2012 along 167°E south of New Caledonia. Dramatic water vertical velocities variations (up to 3-4 cm

  14. SPH Simulations of Solute Transport in Flows with Steep Velocity and Concentration Gradients

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chang

    2017-02-01

    Full Text Available In this study, a meshless particle method, smoothed particle hydrodynamics (SPH, is adopted to solve the shallow water equations (SWEs and the advection diffusion equations (ADEs for simulating solute transport processes under 1D/2D conditions with steep gradients. A new SPH-SWEs-ADEs model is herein developed to focus on the numerical performance of solute transport in flows with steep velocity and concentration gradients, since the traditional mesh-based methods have numerical difficulties on solving such steep velocity/concentration gradient flows. The present model is validated by six benchmark study cases, including three steep concentration gradient cases and three coupled steep concentration/velocity gradient cases. The comparison between the simulated results and the exact solutions for the former three cases shows that complete mass concentration conservation in pure advection-dominated flows is preserved. The numerical oscillation in concentration and the negative concentration resulted from the discretization of the advection term of ADEs can be totally avoided. The other three cases confirm that this model can also well capture coupled steep gradients of velocities and concentrations. It is demonstrated that the presented solver is an effective and reliable tool to investigate solute transports in complex flows incorporating steep velocity gradients.

  15. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  16. Symmetrization of the growth deformation and velocity gradients in residually stressed biomaterials

    Science.gov (United States)

    Hoger, A.; van Dyke, T. J.; Lubarda, V. A.

    2004-09-01

    Some fundamental issues in the kinematic and kinetic analysis of the stress-modulated growth of residually stressed biological materials are addressed within the context of the multiplicative decomposition of deformation gradient into its elastic and growth parts. The symmetrizations of the growth part of the deformation gradient and the growth part of the velocity gradient are derived for isotropic pseudoelastic soft tissues. The significance of results in the formulation of the biomechanic constitutive theory is discussed.

  17. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    for African-Asian-Australian Monsoon Analysis and Prediction, in October-November 2006. Using an array of four subsurface moored acoustic Doppler current profilers, we estimated vertical velocity by applying the continuity equation. Results indicated...

  18. Estimates of vertical velocities and eddy coefficients in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Vertical velocities and eddy coefficients in the intermediate depths of the Bay of Bengal are calculated from mean hydrographic data for 300 miles-squares. The linear current density (sigma- O) versus log-depth plots show steady balance between...

  19. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  20. The Vertical Variation of HI Velocity Dispersion in Disk Galaxies

    NARCIS (Netherlands)

    Peters, Stephan Pieter Cornelis; Freeman, Ken; van der Kruit, Pieter C.

    2010-01-01

    One of the key assumptions in dynamical applications of the HI velocity dispersion in disk galaxies (e.g. to the flattening of the dark halo) has always been the isothermal nature of the HI distribution. There is no physical reason for this assumption: it is made because until now it has not been

  1. Cloud base vertical velocity statistics: a comparison between an atmospheric mesoscale model and remote sensing observations

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2011-09-01

    Full Text Available The statistics of cloud base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that AROME significantly underestimates the variability of vertical velocity at cloud base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4–8 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km explains 70–80 % of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 10 km in the presented case. Adding a TKE-term on the resolved grid-point vertical velocity can compensate for the underestimation, but only for altitudes below approximately the boundary layer top height. The results illustrate the need for a careful consideration of the scales the model is able to accurately resolve, as well as for a special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.

  2. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    Science.gov (United States)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  3. Daytime HONO vertical gradients during SHARP 2009 in Houston, TX

    Directory of Open Access Journals (Sweden)

    K. W. Wong

    2012-01-01

    Full Text Available Nitrous Acid (HONO plays an important role in tropospheric chemistry as a precursor of the hydroxyl radical (OH, the most important oxidizing agent in the atmosphere. Nevertheless, the formation mechanisms of HONO are still not completely understood. Recent field observations found unexpectedly high daytime HONO concentrations in both urban and rural areas, which point to unrecognized, most likely photolytically enhanced HONO sources. Several gas-phase, aerosol, and ground surface chemistry mechanisms have been proposed to explain elevated daytime HONO, but atmospheric evidence to favor one over the others is still weak. New information on whether HONO formation occurs in the gas-phase, on aerosol, or at the ground may be derived from observations of the vertical distribution of HONO and its precursor nitrogen dioxide, NO2, as well as from its dependence on solar irradiance or actinic flux.

    Here we present field observations of HONO, NO2 and other trace gases in three altitude intervals (30–70 m, 70–130 m and 130–300 m using UCLA's long path DOAS instrument, as well as in situ measurements of OH, NO, photolysis frequencies and solar irradiance, made in Houston, TX, during the Study of Houston Atmospheric Radical Precursor (SHARP experiment from 20 April to 30 May 2009. The observed HONO mixing ratios were often ten times larger than the expected photostationary state with OH and NO. Larger HONO mixing ratios observed near the ground than aloft imply, but do not clearly prove, that the daytime source of HONO was located at or near the ground. Using a pseudo steady-state (PSS approach, we calculated the missing daytime HONO formation rates, Punknown, on four sunny days. The NO2-normalized Punknown, Pnorm, showed a clear symmetrical diurnal variation with a maximum around noontime, which was well correlated with actinic flux (NO2 photolysis frequency and

  4. STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy); Materassi, Massimo, E-mail: giuseppe.consolini@iaps.inaf.it [Istituto dei Sistemi Complessi, CNR, Sesto Fiorentino (Italy)

    2015-10-10

    In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertial range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.

  5. The elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems

    Science.gov (United States)

    Bu, Q. T.; Hu, G. W.; Ye, Y. G.; Liu, C. L.; Li, C. F.; Best, A. I.; Wang, J. S.

    2017-06-01

    Knowledge of the elastic wave velocities of hydrate-bearing sediments is important for geophysical exploration and resource evaluation. Methane gas migration processes play an important role in geological hydrate accumulation systems, whether on the seafloor or in terrestrial permafrost regions, and their impact on elastic wave velocities in sediments needs further study. Hence, a high-pressure laboratory apparatus was developed to simulate natural continuous vertical migration of methane gas through sediments. Hydrate saturation (S h) and ultrasonic P- and S-wave velocities (V p and V s) were measured synchronously by time domain reflectometry (TDR) and by ultrasonic transmission methods respectively during gas hydrate formation in sediments. The results were compared to previously published laboratory data obtained in a static closed system. This indicated that the velocities of hydrate-bearing sediments in vertical gas migration systems are slightly lower than those in closed systems during hydrate formation. While velocities increase at a constant rate with hydrate saturation in the closed system, P-wave velocities show a fast-slow-fast variation with increasing hydrate saturation in the vertical gas migration system. The observed velocities are well described by an effective-medium velocity model, from which changing hydrate morphology was inferred to cause the fast-slow-fast velocity response in the gas migration system. Hydrate forms firstly at the grain contacts as cement, then grows within the pore space (floating), then finally grows into contact with the pore walls again. We conclude that hydrate morphology is the key factor that influences the elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems.

  6. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Rodríguez-Lorenzo Lois

    2016-12-01

    Full Text Available Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ; a countermovement jump without (CMJ and with the arm swing (CMJA and a reactive jump (RJ. Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001. Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking.

  7. Measurement and Calculation of Vertical Temperature Gradients in Rooms with Convective Flows

    DEFF Research Database (Denmark)

    Overby, H.

    The paper deals with experimental and theoretical examinations of the vertical temperature gradient in rooms with convective flows under transient conditions. The measurements are carried out in a laboratory test room of three different sizes. A small room (7.25 m2) with a normal room height of 2...

  8. Methane flux, vertical gradient and mixing ratio measurements in a tropical forest

    NARCIS (Netherlands)

    Querino, C.A.S.; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236; Vigano, I.|info:eu-repo/dai/nl/304831956; Holzinger, R.|info:eu-repo/dai/nl/337989338; Moura, V.; Gatti, L. V.; Martinewski, A.; Manzi, A.O.; de Araújo, A.C.; Röckmann, T.|info:eu-repo/dai/nl/304838233

    2011-01-01

    Measurements of CH4 mixing ratio, vertical gradients and turbulent fluxes were carried out in a tropical forest (Reserva Biológica Cuieiras), about 60 km north of Manaus, Brazil. The methane mixing ratio and flux measurements were performed at a height of 53 m (canopy height 35 m). In addition,

  9. Using smartphones' pressure sensors to measure vertical velocities in elevators, stairways and drones

    CERN Document Server

    Monteiro, Martin

    2016-01-01

    By means of smartphones' pressure sensors we measure vertical velocities of elevators, pedestrians climbing stairways and flying unmanned aerial vehicles (or \\textit{drones}). The barometric pressure obtained with the smartphone is related, thanks to the hydrostatic approximation, to the altitude of the device. From the altitude values, the vertical velocity is accordingly derived. The approximation considered is valid in the first hundreds meters of the inner layers of the atmosphere. Simultaneously to the pressure, the acceleration values, reported by the buit-in accelerometers, are also recorded. Integrating numerically the acceleration, vertical velocity and altitude are also obtained. We show that data obtained with the pressure sensor is considerable less noisy than that obtained with the accelerometer in the experiments proposed here. Accumulatioin of errors are also evident in the numerical integration of the acceleration values. The comparison with reference values taken from the architectural plans ...

  10. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  11. Velocity gradients in the Earth's upper mantle: insights from higher mode surface waves

    Science.gov (United States)

    Fishwick, Stewart; Maupin, Valerie; Afonso, Juan Carlos

    2016-04-01

    The majority of seismic tomographic models of the uppermost mantle beneath Precambrian regions show a positive velocity gradient from the Moho to depths of around 100 km. It is becoming increasingly well recognised that this gradient is not readily compatible with simple models of a craton with constant composition and a steady-state geotherm and more complex compositional variations are invoked to explain this feature. At these depths most of the models are dominated by data from fundamental mode surface waves, and the combination of the sensitivity kernels alongside the choice of model parameterisation means that the velocity gradient could be an artefact of the particular inversion. Indeed, recent work using thermodynamically consistent velocity models suggests that in some cases there is not a requirement of this style of gradient. We investigate this aspect of the mantle structure further by returning to the Sa phase. This phase can be considered as the build up of a wave packet due to the overlapping group velocities of higher modes at periods of around 8 - 30 s. Using the Australian shield as a test-case we compare waveforms built from three different styles of velocity model. Firstly, the 1D model AU3 (Gaherty & Jordan, 1995) which did incorporate the Sa phase as part of the waveform in their modelling. Secondly, recent tomographic models of the Australian continent are used, which include no a priori information from the phase. Thirdly, a thermodynamically consistent velocity model that fits the broad dispersion characteristics of the tomography is tested. Finally, these synthetic waveforms are compared to real data crossing the Australian shield. The results illustrate small, but clear, variations in waveform dependent on the velocity structure. Complicating factors in any analysis involve the importance of having good knowledge of the crustal structure and a very accurate source depth (particularly if this is similar to the average crustal thickness).

  12. VizieR Online Data Catalog: Velocity gradient and brightness in disc galaxies (Lelli+ 2013)

    NARCIS (Netherlands)

    Lelli, F.; Fraternali, F.; Verheijen, Marcus

    2014-01-01

    For disc galaxies, a close relation exists between the distribution of light and the shape of the rotation curve. We quantify this relation by measuring the inner circular-velocity gradient dRV(0) for spiral and irregular galaxies with high-quality rotation curves. We find that dRV(0) correlates

  13. Decorrelation-based blood flow velocity estimation: effect of spread of flow velocity, linear flow velocity gradients, and parabolic flow.

    NARCIS (Netherlands)

    Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de

    2002-01-01

    In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow

  14. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Bahreini, Mohammad, E-mail: m.bahreini1990@gmail.com; Ramiar, Abas, E-mail: aramiar@nit.ac.ir; Ranjbar, Ali Akbar, E-mail: ranjbar@nit.ac.ir

    2015-11-15

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  15. Numerical Study of the Shape Irregularity Gradient in Metallic Foams Under Different Impact Velocities

    Science.gov (United States)

    Wu, Yidong; Tang, Liqun; Liu, Zejia; Liu, Yiping; Jiang, Zhenyu; Zhang, Xiaoyang

    2017-08-01

    The properties of metallic foams are closely related to the average pore size, relative density and degree of the shape irregularity in the meso-structure. In this paper, gradient metallic foams with Voronoi structures based on different degrees of shape irregularity are constructed and numerically tested under different impact velocities. We combine three types of metallic foams with identical relative density but different degrees of shape irregularity in a specific sequence (from large to small or from small to large) to construct the new gradient models. A series of impact tests at different velocities are performed on the gradient metallic foams to acquire deformation characteristics and stress states. According to the results from the inertia effect and the energy absorption capacity, a gradient metallic foam with a shape irregularity that changes from large to small (negative gradient) is the optimal design. The simulation results provide a fresh perspective and methodology to design gradient metallic foams at the meso-structure scale for use as energy absorption materials.

  16. Vertical density gradient in the eastern North Atlantic during the last 30,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Rogerson, M.; Ramirez, J. [University of Hull, Geography Department, Hull (United Kingdom); Bigg, G.R. [University of Sheffield, Department of Geography, Sheffield (United Kingdom); Rohling, E.J. [University of Southampton, National Oceanography Centre, School of Ocean and Earth Science, Southampton (United Kingdom)

    2012-08-15

    Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000 years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations. (orig.)

  17. Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion.

    Science.gov (United States)

    Peer, Andreas; Teschner, Matthias

    2017-12-01

    Working with prescribed velocity gradients is a promising approach to efficiently and robustly simulate highly viscous SPH fluids. Such approaches allow to explicitly and independently process shear rate, spin, and expansion rate. This can be used to, e.g., avoid interferences between pressure and viscosity solvers. Another interesting aspect is the possibility to explicitly process the vorticity, e.g., to preserve the vorticity. In this context, this paper proposes a novel variant of the prescribed-gradient idea that handles vorticity in a physically motivated way. In contrast to a less appropriate vorticity preservation that has been used in a previous approach, vorticity is diffused. The paper illustrates the utility of the vorticity diffusion. Therefore, comparisons of the proposed vorticity diffusion with vorticity preservation and additionally with vorticity damping are presented. The paper further discusses the relation between prescribed velocity gradients and prescribed velocity Laplacians which improves the intuition behind the prescribed-gradient method for highly viscous SPH fluids. Finally, the paper discusses the relation of the proposed method to a physically correct implicit viscosity formulation.

  18. Simultaneous measurements of velocity gradients and rod rotation in 3D turbulence

    Science.gov (United States)

    Kramel, Stefan; Ni, Rui; Voth, Greg; Ouellette, Nicholas

    2013-11-01

    When anisotropic particles are advected in a fluid flow, they rotate in response to the velocity gradient tensor. In 3D turbulent flows, it has previously not been possible to experimentally measure both the motion of anisotropic particles and the velocity gradients simultaneously. We have built a scanning particle tracking velocimetry system in which we illuminate a narrow slab of the volume of interest and scan the illuminated slab through the entire volume, taking sequential images with four high speed cameras. Compared to full volume illumination, this technique enables us to greatly increase the particle concentration because it removes many stereo-matching ambiguities, resulting in a high spatial resolution of the fluid velocity. The trade-off is that the temporal resolution is decreased. We image a low concentration of rods in addition to a high concentration of tracer particles in order to allow extraction of the velocity gradient tensor at the positions of the rods. Rods are found to preferentially align with the direction of the vorticity vector and the intermediate strain-rate eigenvector. Support from NSF grant DMR-1208990.

  19. Simultaneous measurements of velocity gradients and tumbling motion of rods in 3D turbulence

    Science.gov (United States)

    Kramel, Stefan; Voth, Greg; Ni, Rui; Ouellette, Nicholas

    2014-11-01

    The tumbling motion of anisotropic particles, advected in a fluid flow, is governed by the velocity gradient tensor. We have simultaneously measured the orientation of neutrally buoyant, rod-shaped particles and the velocity gradient tensor surrounding them in a 3D turbulent flow. We have built a scanning particle tracking velocimetry (SPTV) system, in which we illuminate a narrow slab of the detection volume and scan the illuminated slab through the entire detection volume, taking sequential images with four stereoscopic high speed cameras. The advantage of this technique over other PTV systems is that it enables us to increase the tracer particle concentration, because it removes many stereo-matching ambiguities, resulting in a high spatial resolution of the fluid velocity field. A trade-off is the decrease in temporal resolution. Our measurements of the tumbling rate of rods is in good agreement with Jeffery's equation, and this provides a good way to quantify the accuracy of the velocity gradient measurements. Reconstructed individual rod trajectories show the complex way that alignment with the vorticity and eigenvectors of the strain-rate tensor affect the tumbling rate. NSF Grant DMR-1208990.

  20. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    Science.gov (United States)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-05-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  1. Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy

    Directory of Open Access Journals (Sweden)

    F. Fidecaro

    2008-06-01

    Full Text Available The site of the European Gravitational Observatory (EGO located in the countryside near Pisa (Tuscany, Italy was investigated by a microgravity vertical gradient (MVG survey. The EGO site houses the VIRGO interferometric antenna for gravitational waves detection. The microgravity survey aims to highlight the gravity anomalies of high-frequency related to more superficial geological sources in order to obtain a detailed model of the lithologic setting of the VIRGO site, that will allow an estimate of the noise induced by seismic waves and by Newtonian interference. This paper presents the results of the gradiometric survey of 2006 in the area of the interferometric antenna. MVG measurements allow us to enhance the high frequency signal strongly associated with the shallow structures. The gradient gravity map shows a main negative pattern that seems related to the trending of the high density layer of gravel that was evidenced in geotechnical drillings executed along the orthogonal arms during the construction of the VIRGO complex. Calibrating the relationship between the vertical gradient and the depth of the gravel interface we have computed a model of gravity gradient for the whole VIRGO site, defining the 3D distribution of the top surface of this layer. This latter shows a NE-SW negative pattern that may represent a palaeo-bed alluvial of the Serchio from the Bientina River system.

  2. Velocity measurements in the wake of laboratory-scale vertical axis turbines and rotating circular cylinders

    Science.gov (United States)

    Araya, Daniel; Dabiri, John

    2014-11-01

    We present experimental data to compare the wake characteristics of a laboratory-scale vertical-axis turbine with that of a rotating circular cylinder. The cylinder is constructed to have the same diameter and height as the turbine in order to provide a comparison that is independent of the tunnel boundary conditions. Both the turbine and cylinder are motor-driven to tip-speed ratios based on previous experiments. An analysis of the effect of the motor-driven flow is also presented. These measurements are relevant for exploring the complex structure of the vertical axis turbine wake relative to the canonical wake of a circular cylinder. 2D particle image velocimetry is used to measure the velocity field in a two-dimensional plane normal to the axis of rotation. This velocity field is then used to compare time-averaged streamwise velocity, phase-averaged vorticity, and the velocity power spectrum in the wake of the two configurations. The results give insight into the extent to which solid cylinders could be used as a simplified model of the flow around vertical axis turbines in computational simulations, especially for turbine array optimization.

  3. Estimating of turbulent velocity fluctuations in boundary layer with pressure gradient by Smoke Image Velocimetry

    Science.gov (United States)

    Mikheev, N. I.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    The results of the experimental estimating of the velocity profiles and turbulent pulsations in the boundary layer for adverse and favorable pressure gradients are presented. The profiles of characteristics based on the dynamics of two-component instantaneous velocity vector fields measured by the field optical method of Smoke Image Velocimetry are estimated. The measurements are performed with a large spatial and temporal resolution, the measurement results are relevant for estimating the terms of the conservation equation of turbulent energy in the boundary layer and for improving semiempirical turbulence models.

  4. The influence of velocity gradient on properties and filterability of suspension formed during water treatment

    Czech Academy of Sciences Publication Activity Database

    Bubáková, Petra; Pivokonský, Martin

    2012-01-01

    Roč. 92, May (2012), s. 161-167 ISSN 1383-5866. [European Conference on Fluid-Particle Separation (FPS 2010). Lyon, 05.10.2010-07.10.2010] R&D Projects: GA ČR GAP105/11/0247 Institutional research plan: CEZ:AV0Z20600510 Keywords : aggregation * fractal dimension * filtration * particle size distribution * velocity gradient Subject RIV: BK - Fluid Dynamics Impact factor: 2.894, year: 2012

  5. Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions

    Science.gov (United States)

    Vemareddy, P.

    2017-12-01

    We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.

  6. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  7. On the role of vertical electron density gradients in the generation of type II irregularities associated with blanketing ES (ESb) during counter equatorial electrojet events: A case study

    Science.gov (United States)

    Devasia, C. V.; Jyoti, N.; Subbarao, K. S. V.; Tiwari, Diwakar; Reddi, C. Raghava; Sridharan, R.

    2004-06-01

    The characteristics of different types of Sporadic E (ES) layers and the associated plasma density irregularities over the magnetic equator have been studied in a campaign mode using VHF backscatter radar, digital ionosonde, and ground magnetometer data from Trivandrum (dip latitude 0.5°N, geographic latitude 8.5°N, geographic longitude 77°E), India. The presence of blanketing type ES (ESb) in the ionograms with varying intensity and duration were observed in association with afternoon Counter Equatorial Electrojet (CEEJ) events. ESb was associated with intense backscatter returns and with either very low zonal electric field and/or with distortions present in the altitude profile of the drift velocity of the type II irregularities. The results of the coordinated study indicate the possible role of vertical electron density gradients in ESb layers in addition to providing evidence for the local winds to be responsible for the vertical gradients themselves.

  8. The vertical gradient of gravity wave momentum flux in global observations and modeling

    Science.gov (United States)

    Preusse, Peter; Trinh, Thai; Chen, Dan; Ern, Manfred; Krisch, Isabell; Nogai, Karlheinz; Riese, Martin; Strube, Cornelia

    2017-04-01

    In their recent review paper Geller et al. (2013) compared climatologies of gravity wave momentum flux (GWMF) from various global models with GWMF inferred from different observation techniques. They find a generally good agreement in the global distributions in the lower stratosphere, but a strong difference in the vertical gradient of GWMF profiles: observations from various satellite data sets show a strong decrease of GWMF with a scale height of 9-12km while parametrized GWMF in ECHAM decreases only slowly with a scale height of 24km. The authors hint that this may be caused by the fact that observations see only part of the wave spectrum. In particular, gravity waves (GWs) with short horizontal scales are not seen by the infrared limb sounders. Is the horizontal scale the major reason? Are there other effects responsible for the different vertical gradients? We here consider this question using the GROGRAT ray-tracing model and GWs that are, in principle, visible to infrared limb sounding instruments. For this we analyze GWs in high resolution ECMWF analysis fields at 25km altitude and determine wave amplitudes and the 3D wave vector. The horizontal distribution of GWMF from these ECMWF-resolved waves matches observed distributions well. The inferred wave parameters are used as launch parameters and the GWs are propagated upward with GROGRAT up to 90km altitude. GROGRAT is here used as a 3D ray-tracer with wave action flux conservation and a Fritts and Rastogi saturation scheme, i.e. it is similar to a GW parametrization but can handle 3D propagation in addition. The GROGRAT results also display a very weak decrease of GWMF in the stratosphere and lower mesosphere, similar as the GW parametrization, and are thus an interesting test-bed for searching reasons for the difference between observed and modeled vertical gradients as they were seen in Geller et al. (2013). Using the GROGRAT simulations we investigate the following potential reasons for the difference

  9. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  10. Vertical velocity distribution in open-channel flow with rigid vegetation.

    Science.gov (United States)

    Zhu, Changjun; Hao, Wenlong; Chang, Xiangping

    2014-01-01

    In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the approaching flow in a rectangular channel. Vertical distributions of time-averaged velocity at various streamwise distances were evaluated using an acoustic Doppler velocimeter (ADV). The results indicate that, in submerged conditions, it is difficult to described velocity distribution along the entire depth using unified function. The characteristic of vertical distribution of longitudinal velocity is the presence of inflection. Under the inflection, the line is convex and groove above inflection. The interaction of high and low momentum fluids causes the flow to fold and creates strong vortices within each mixing layer. Understanding the flow phenomena in the area surrounding the tall vegetation, especially in the downstream region, is very important when modeling or studying the riparian environment. ADV measures of rigid vegetation distribution of the flow velocity field can give people a new understanding.

  11. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (˜T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (˜ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  12. Estimation of vertical migration velocity of (137)Cs in the Mount IDA/Kazdagi, Turkey.

    Science.gov (United States)

    Karadeniz, Özlem; Çakır, Rukiye; Karakurt, Hidayet

    2015-08-01

    This paper presents the results obtained from a radioecological study carried out in the forest sites of Mount IDA (Kazdagi)/Edremit, Turkey. For 118 soil profiles, the depth distribution of (137)Cs activity was established by fitting the experimental points to an exponential, a gaussian or a log-normal function. The relaxation lengths were in the range of 1.09-16.7 cm with a mean of 5.73 cm, showing a slow transport and a strong retention capacity of (137)Cs even after the 26-y period of Chernobyl accident. From the data for the vertical distribution of (137)Cs in soil profiles, the mean annual migration velocity of (137)Cs was in the range of 0.11-0.62 cm year(-1) with a mean of 0.30 cm year(-1). Statistically significant correlations between the thickness of the humus layer and the mean annual velocity of (137)Cs were found for both coniferous and mixed forest sites. The mean annual velocity of (137)Cs in the forests sites with Pinus nigra var pallasiana was significantly higher than sites with Pinus brutia. External dose-rates from the (137)Cs in forest soils were estimated using a conversion factor used in many studies and comprised with the external dose-rates determined according to the vertical distribution of (137)Cs within the soil depth profiles. It is clearly seen that both levels and spatial distribution patterns of the external dose-rates from (137)Cs were influenced considerably with the vertical migration rate and the vertical distribution of (137)Cs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Influence of running velocity on vertical, leg and joint stiffness : modelling and recommendations for future research.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John

    2008-01-01

    Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.

  14. Velocity ratio predicts outcomes in patients with low gradient severe aortic stenosis and preserved EF

    DEFF Research Database (Denmark)

    Jander, Nikolaus; Hochholzer, Willibald; Kaufmann, Beat A

    2014-01-01

    OBJECTIVE: To evaluate the usefulness of velocity ratio (VR) in patients with low gradient severe aortic stenosis (LGSAS) and preserved EF. BACKGROUND: LGSAS despite preserved EF represents a clinically challenging entity. Reliance on mean pressure gradient (MPG) may underestimate stenosis severity...... for severe stenosis. We hypothesised that VR may have conceptual advantages over MPG and AVA, predict clinical outcomes and thereby be useful in the management of patients with LGSAS. METHODS: Patients from the prospective Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study with an AVA....25 suggesting non-severe stenosis. Aortic valve-related events (mean follow-up 42±14 months) were more frequent in patients with VRanalysis, MPG was the strongest independent predictor...

  15. Velocity gradient as a tool to characterise the link between mixing and biogas production in anaerobic waste digesters.

    Science.gov (United States)

    Sindall, R; Bridgeman, J; Carliell-Marquet, C

    2013-01-01

    Whilst the importance of mixing in anaerobic digesters to enhance process performance and gas production is well recognised, the specific effects of mixing regime on biogas production are not clear. Here, the velocity gradient is used to demonstrate the importance of minimally mixed zones in a digester, with computational fluid dynamics (CFD) models indicating that 20-85% of a laboratory-scale digester experiences local velocity gradients of less than 10 s⁻¹, dependent on mixing speed. Experimental results indicate that there is a threshold above which increased mixing speed (and hence velocity gradient) becomes counter-productive and biogas production falls. The effects of minimal mixing on digester microbiology are considered with the creation or destruction of localised pockets of high acetate concentration providing a possible explanation for the velocity gradient threshold. The identification of this threshold represents a valuable contribution to the understanding of the effects of mixing on gas production in anaerobic digesters.

  16. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  17. Thermal stratification patterns in urban ponds and their relationships with vertical nutrient gradients.

    Science.gov (United States)

    Song, Keunyea; Xenopoulos, Marguerite A; Buttle, James M; Marsalek, Jiri; Wagner, Nicole D; Pick, Frances R; Frost, Paul C

    2013-09-30

    Ponds that collect and process stormwater have become a prominent feature of urban landscapes, especially in areas recently converted to residential land use in North America. Given their increasing number and their tight hydrological connection to residential catchments, these small aquatic ecosystems could play an important role in urban biogeochemistry. However, some physicochemical aspects of urban ponds remain poorly studied. Here we assessed the frequency and strength of water column stratification, using measurements of vertical water temperature profiles at high spatial and temporal frequency, in 10 shallow urban stormwater management ponds in southern Ontario, Canada. Many of the ponds were well stratified during much of the summer of 2010 as indicated by relatively high estimates of thermal resistance to mixing (RTRM) indices. Patterns of stratification reflected local weather conditions but also varied among ponds depending on their morphometric characteristics such as maximum water depth and surface area to perimeter ratio. We found greater vertical nutrient gradients and more phosphorus accumulation in bottom waters in ponds with strong and persistent stratification, which likely results from limited particle resuspension and more dissolved phosphorus (P) release from sediments. However, subsequent mixing events in the fall diminished vertical P gradients and possibly accelerated internal loading from the sediment-water interface. Our results demonstrate that stormwater ponds can experience unexpectedly long and strong thermal stratification despite their small size and shallow water depth. Strong thermal stratification and episodic mixing in ponds likely alter the quantity and timing of internal nutrient loading, and hence affect water quality and aquatic communities in downstream receiving waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Synthetic velocity gradient tensors and the identification of statistically significant aspects of the structure of turbulence

    Science.gov (United States)

    Keylock, Christopher J.

    2017-08-01

    A method is presented for deriving random velocity gradient tensors given a source tensor. These synthetic tensors are constrained to lie within mathematical bounds of the non-normality of the source tensor, but we do not impose direct constraints upon scalar quantities typically derived from the velocity gradient tensor and studied in fluid mechanics. Hence, it becomes possible to ask hypotheses of data at a point regarding the statistical significance of these scalar quantities. Having presented our method and the associated mathematical concepts, we apply it to homogeneous, isotropic turbulence to test the utility of the approach for a case where the behavior of the tensor is understood well. We show that, as well as the concentration of data along the Vieillefosse tail, actual turbulence is also preferentially located in the quadrant where there is both excess enstrophy (Q>0 ) and excess enstrophy production (Rtopology implied by the strain eigenvalues and find that for the statistically significant results there is a particularly strong relative preference for the formation of disklike structures in the (Q<0 ,R<0 ) quadrant. With the method shown to be useful for a turbulence that is already understood well, it should be of even greater utility for studying complex flows seen in industry and the environment.

  19. Estimating a continuous p-wave velocity profile with constant squared-slowness gradient models from seismic field data

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2015-01-01

    We inverted seismic field data for a continuous, laterally invariant P-wave velocity profile. Instead of the usual approach that involves horizontal layers with piecewise constant densities and velocities, we consider models of one or two layers with a constant gradient of the squared slowness above

  20. Impacts of a flaring star-forming disc and stellar radial mixing on the vertical metallicity gradient

    Science.gov (United States)

    Kawata, Daisuke; Grand, Robert J. J.; Gibson, Brad K.; Casagrande, Luca; Hunt, Jason A. S.; Brook, Chris B.

    2017-01-01

    Using idealized N-body simulations of a Milky Way-sized disc galaxy, we qualitatively study how the metallicity distributions of the thin disc star particles are modified by the formation of the bar and spiral arm structures. The thin disc in our numerical experiments initially has a tight negative radial metallicity gradient and a constant vertical scaleheight. We show that the radial mixing of stars drives a positive vertical metallicity gradient in the thin disc. On the other hand, if the initial thin disc is flared, with vertical scaleheight increasing with galactocentric radius, the metal-poor stars, originally in the outer disc, become dominant in regions above the disc plane at every radii. This process can drive a negative vertical metallicity gradient, which is consistent with the current observed trend. This model mimics a scenario where the star-forming thin disc was flared in the outer region at earlier epochs. Our numerical experiment with an initial flared disc predicts that the negative vertical metallicity gradient of the mono-age relatively young thin disc population should be steeper in the inner disc, and the radial metallicity gradient of the mono-age population should be shallower at greater heights above the disc plane. We also predict that the metallicity distribution function of mono-age young thin disc populations above the disc plane would be more positively skewed in the inner disc compared to the outer disc.

  1. The large low velocity province and the vertical flow beneath the Pacific

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Tsuchiya, T.

    2010-12-01

    Since tomographic studies found the large low velocity province (LLVP) (degree-2 pattern) in the lowermost mantle in 1980's, it has been controversial whether it is due to thermal effects, chemical heterogeneity, or both. Geodynamical studies have suggested that both effects can explain the LLVP but that the large thermo-chemical pile model is preferred (e.g., Bull et al. 2009). Our seismological group has developed waveform inversion techniques and applied them to data from recently deployed broad-band seismic arrays such as US-Array. We found that there are notable S-velocity decreases beneath the D" discontinuity as the CMB is approached within the high average velocity regions such as the lowermost mantle beneath Central America, the Arctic, and Siberia (Kawai et al. 2007a,b, 2009). We also found "S-shaped" velocity models in the lowermost mantle in regions with low average S-velocity such as beneath the western Pacific and the Pacific (Konishi et al. 2009; Kawai & Geller 2010a). We performed analyses based on ab-initio mineral physics (Kawai & Tsuchiya 2009), which showed that these velocity profiles can be explained by a simple thermal boundary layer (TBL) model with a CMB temperature of about 3800 K. The TBL model can also explain most of the important seismological properties in the lowermost mantle such as the LLVP, so that the large thermo-chemical pile model appears to be inappropriate. On the other hand, the S-velocity model beneath Hawaii requires the existence of localized chemical heterogeneity (Kawai & Geller 2010b), which could be due to an accumulated Fe-rich dense pile (Kawai & Tsuchiya in prep.). To better constrain the nature of the LLVP, we inverted the horizontal components of observed radial and transverse waveforms of S and ScS phases to determine the radial profile of TI shear wave velocity at the northeastern edge of the LLVP in the lowermost mantle beneath the Pacific (Kawai & Geller 2010c). We find that the radial (SV) component is 3

  2. Analysis of vertical wind direction and speed gradients for data from the met. mast at Hoevsoere

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, N.; Wagner, R.; Gottschall, J.

    2010-05-15

    The task of this project has been to study the vertical gradient of the wind direction from experimental data obtained with different measurement instruments at the Hoevsoere test site, located at the west coast of Denmark. The major part of the study was based on data measured by wind vanes mounted at a meteorological (met.) mast. These measurements enabled us to make an analysis of the variation of the direction with altitude, i.e. the wind direction shear. For this purpose, four years of wind direction measurements at two heights (60 m and 100 m) were analysed with special respect to the diurnal and seasonal variations of the direction gradient. The location of the test site close to the sea allowed for an investigation of specific trends for offshore and onshore winds, dependent on the considered wind direction sector. Furthermore, a comparison to lidar measurements showed the existence of an offset between the two vanes used for the analysis, which has to be considered for evaluating the significance and uncertainty of the results. Finally, the direction shear was analysed as function of wind speed and compared to the corresponding relation for the wind speed shear. Our observation from this is that the direction shear does not necessarily increase with the speed shear. (author)

  3. Vertical gradients of nitrous acid (HONO) measured in Beijing during winter smog events.

    Science.gov (United States)

    Kramer, Louisa; Crilley, Leigh; Thomson, Steven; Bloss, William; Tong, Shengrui

    2017-04-01

    HONO is an important atmospheric constituent, as the photolysis of HONO leads to the formation of OH radicals in the boundary layer, with contributions of up to 60% in urban regions. This is particularly important in mega-cities, such as Beijing, where measured HONO levels can reach parts per billion. Research has shown that direct emissions, homogeneous gas phase reactions and heterogeneous conversion of NO2 on surfaces all contribute to HONO in urban areas. There are, however, still uncertainties regarding the magnitude of these sources, and models are still unable to account for total measured HONO mixing ratios. To assess the sources of HONO, vertical profile measurements were performed up to an altitude of 260 m on the Institute of Atmospheric Physics (IAP) Meteorological Tower in Beijing. These measurements were performed as part of the Air Pollution and Human Health (APHH) project, during Nov/Dec 2016. Here we present HONO profile measurements using a long-path absorption photometer (LOPAP), during both clear and hazy days. HONO levels near the ground were very high during smog events with concentrations over 10 ppb observed. The data show a strong negative gradient with altitude, suggesting a source close to the surface. The largest gradients were observed overnight during smog events, with differences in HONO between the ground and the highest level up to 6 ppb.

  4. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  5. Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals

    Science.gov (United States)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2014-04-01

    The scanning Atmospheric Radiation Measurement (ARM) cloud radars (SACRs) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a suggested scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range-Height Indicator - CW-RHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Southern Great Plains and Cape Cod sites are post-processed (detection mask, gaseous attenuation correction, insect filtering and velocity de-aliasing). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimensions. Next the Cartesian-gridded Doppler velocity fields are decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith-pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D cloud dynamical representations up to 25-30 degrees off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics and anisotropy and lead to more realistic 3-D radiative transfer calculations.

  6. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    Science.gov (United States)

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms.

  7. Clogging of granular material in vertical pipes discharged at constant velocity

    Directory of Open Access Journals (Sweden)

    López-Rodríguez Diego

    2017-01-01

    Full Text Available We report an experimental study on the flow of spherical particles through a vertical pipe discharged at constant velocity by means of a conveyor belt placed at the bottom. For a pipe diameter 3.67 times the diameter of the particles, we observe the development of hanging arches that stop the flow as they are able to support the weight of the particles above them. We find that the distribution of times that it takes until a stable clog develops, decays exponentially. This is compatible with a clogging probability that remains constant during the discharge. We also observe that the probability of clogging along the pipe decreases with the height, i.e. most of the clogs are developed near the bottom. This spatial dependence may be attributed to different pressure values within the pipe which might also be related to a spontaneous development of an helical structure of the grains inside the pipe.

  8. Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang; Chen, Gao; Smeltzer, Charles; Crawford, James; Olson, Jennifer; Szykman, James; Weinheimer, Andrew J.; Knapp, David J.; Montzka, Denise D.; Wisthaler, Armin; Mikoviny, Tomas; Fried, Alan; Diskin, Glenn

    2016-02-01

    An often used assumption in air pollution studies is a well-mixed boundary layer (BL), where pollutants are evenly distributed. Because of the difficulty in obtaining vertically resolved measurements, the validity of the assumption has not been thoroughly evaluated. In this study, we use more than 200 vertical profiles observed in the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) aircraft campaign in July 2011 to examine the vertical distributions of pollutants over the Washington-Baltimore area. While many long-lived species are well mixed in daytime, the observed average vertical profile of NOx shows a large negative gradient with increasing altitude in the BL. Our analysis suggests that the magnitude of the NOx gradient is highly sensitive to atmospheric stability. We investigate how parameterizations of the BL and land-surface processes impact vertical profiles in a 1-D chemical transport model, using three BL schemes (Asymmetric Convective Model version 2 (ACM2), Yonsei University (YSU), and Mellor-Yamada-Janjic (MYJ)) and two land-surface schemes (Noah and Rapid Update Cycle (RUC)). The model reasonably reproduces the median vertical profiles of NOx under different BL stability conditions within 30% of observations, classified based on potential temperature gradient and BL height. Comparisons with NOx observations for individual vertical profiles reveal that while YSU performs better in the turbulent and deep BL case, in general, ACM2 (RMSE = 2.0 ppbv) outperforms YSU (RMSE = 2.5 ppbv) and MYJ (RMSE = 2.2 ppbv). Results also indicate that the land-surface schemes in the Weather Research and Forecasting (WRF) model have a small impact on the NOx gradient. Using model simulations, we analyze the impact of BL NOx gradient on the calculation of the ozone production rate and satellite NO2 retrieval. We show that using surface measurements and the well-mixed BL assumption causes a

  9. The influence of vertical disparity gradient and cue conflict on EEG omega complexity in Panum's limiting case.

    Science.gov (United States)

    Li, Huayun; Jia, Huibin; Yu, Dongchuan

    2017-12-06

    Using behavioral measures and ERP technique, researchers discovered at least two factors could influence the final perception of depth in Panum's limiting case, which are the vertical disparity gradient and the degree of cue conflict between 2D and 3D shapes. Although certain ERP components have been proved to be sensitive to the different levels of these two factors, some methodological limitations existed in this technique. In this study, we proposed that the omega complexity of EEG signal may serve as an important supplement of the traditional ERP technique. We found that the trials with lower vertical gradient disparity has lower omega complexity (i.e., higher global functional connectivity) of the occipital region, especially that of the right-occipital hemisphere. Moreover, for occipital omega complexity, the trials with low cue conflict have significantly larger omega complexity than those with medium and high cue conflict. It is also found that the electrodes located in the middle-line of occipital region (i.e., POz and Oz) are more crucial to the impact of different levels of cue conflict on omega complexity than the other electrodes located in the left- and right-occipital hemisphere. These evidences demonstrated that the EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations with different levels of vertical disparity gradient and cue conflict. Besides, the influence of vertical disparity gradient and cue conflict on spatial omega complexity may be regional-dependent.

  10. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.

    Science.gov (United States)

    Rime, Thomas; Hartmann, Martin; Brunner, Ivano; Widmer, Franco; Zeyer, Josef; Frey, Beat

    2015-03-01

    Spatial patterns of microbial communities have been extensively surveyed in well-developed soils, but few studies investigated the vertical distribution of micro-organisms in newly developed soils after glacier retreat. We used 454-pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils. © 2014 John Wiley & Sons Ltd.

  11. Effects of volume averaging on the line spectra of vertical velocity from multiple-Doppler radar observations

    Science.gov (United States)

    Gal-Chen, T.; Wyngaard, J. C.

    1982-01-01

    Calculations of the ratio of the true one-dimensional spectrum of vertical velocity and that measured with multiple-Doppler radar beams are presented. It was assumed that the effects of pulse volume averaging and objective analysis routines is replacement of a point measurement with a volume integral. A u and v estimate was assumed to be feasible when orthogonal radars are not available. Also, the target fluid was configured as having an infinite vertical dimension, zero vertical velocity at the top and bottom, and having homogeneous and isotropic turbulence with a Kolmogorov energy spectrum. The ratio obtained indicated that equal resolutions among radars yields a monotonically decreasing, wavenumber-dependent response function. A gain of 0.95 was demonstrated in an experimental situation with 40 levels. Possible errors introduced when using unequal resolution radars were discussed. Finally, it was found that, for some flows, the extent of attenuation depends on the number of vertical levels resolvable by the radars.

  12. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  13. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    Science.gov (United States)

    Debnath, Mithu; Valerio Iungo, G.; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  14. Electron backscatter diffraction analysis of a CZT growth tip from a vertical gradient freeze furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.

    2011-08-15

    Electron backscatter diffraction (EBSD) was used to characterize the growth-tip region of a 4.2-cm diameter CdZnTe (CZT) boule grown using low-pressure Bridgman method in a vertical gradient freeze furnace. The boule was sectioned and polished and a section taken along the boule longitudinal centerline with an approximate surface area of 1-cm2 was used for optical and scanning electron microscopy. A collage was assembled using EBSD/SEM images to show morphological features, e.g., twin structure, grain structure, and overall crystal growth direction. Severely twinned regions originating from the tip and side walls were observed. The overall growth orientation was close to (1 1 0) and (1 1 2) directions. In some regions, the (0 0 1) poles of the CZT matrix aligned with the growth direction, while twins aligned such that (1 1 1) and (1 1 2) poles aligned with the growth direction. Finally, in some other areas, (1 1 2) or (0 1 1) poles of the CZT matrix aligned with the growth direction. New relationships between the CZT matrix and large Te polycrystalline particles were revealed: {1 1 2-}CZTΙΙ{1 1- 0 0}Te and {0 0 1}CZTII{0 1-1-1}Te.

  15. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    Science.gov (United States)

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  16. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    Science.gov (United States)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  17. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  18. Phase-contrast velocity mapping for highly diffusive fluids: optimal bipolar gradient pulse parameters for hyperpolarized helium-3.

    Science.gov (United States)

    Martin, Lionel; Maître, Xavier; de Rochefort, Ludovic; Sarracanie, Mathieu; Friese, Marlies; Hagot, Pascal; Durand, Emmanuel

    2014-10-01

    In MR-velocity phase-contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal-to-noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2 *. Experimental validation using hyperpolarized (3) He diluted in various buffer gases ((4) He, N2 , and SF6 ) is presented at 1.5 Tesla (T) in a straight pipe. Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Copyright © 2013 Wiley Periodicals, Inc.

  19. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  20. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Science.gov (United States)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  1. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2014-07-01

    Full Text Available A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU. An Extended Kalman Filter (EKF estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  2. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    Science.gov (United States)

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-07-24

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  3. Influence of vertical temperature gradients on wafer quality and cell efficiency of Seed-assisted high-performance multi-crystalline silicon

    Science.gov (United States)

    Chen, Wei; Wang, Quanzhi; Yang, Deren; Li, Lin Dong; Yu, Xue Gong; Wang, Lei; Jin, Hao

    2017-06-01

    The effect of vertical temperature gradients on the performance of Seed-assisted high-performance (HP) multi-crystalline silicon (mc-Si) is investigated by numerical simulations and contrast experiments. The vertical temperature gradients are designed by keeping the temperatures at the top and lowering the temperatures at the bottom. Two Seed-assisted HP mc-Si ingots were grown by means of a larger and a conventional vertical temperature gradient. It is found that the larger vertical temperature gradients result in the more parallel growth direction of grains and the longer crystal growth length, increases the percentages of grain orientation and random grain boundaries, which are benefit for crystal quality. The experimental results also confirm that the wafer of ingot grown with a larger vertical gradient has the better quality, and their cell efficiency can increase.

  4. Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes.

    Science.gov (United States)

    Manshour, Pouya; Ghasemi, Fatemeh; Matsumoto, T; Gómez, J; Sahimi, Muhammad; Peinke, J; Pacheco, A F; Tabar, M Reza Rahimi

    2010-09-01

    High-quality measurements of seismic activities around the world provide a wealth of data and information that are relevant to understanding of when earthquakes may occur. If viewed as complex stochastic time series, such data may be analyzed by methods that provide deeper insights into their nature, hence leading to better understanding of the data and their possible implications for earthquakes. In this paper, we provide further evidence for our recent proposal [P. Mansour, Phys. Rev. Lett. 102, 014101 (2009)10.1103/PhysRevLett.102.014101] for the existence of a transition in the shape of the probability density function (PDF) of the successive detrended increments of the stochastic fluctuations of Earth's vertical velocity V_{z} , collected by broadband stations before moderate and large earthquakes. To demonstrate the transition, we carried out extensive analysis of the data for V_{z} for 12 earthquakes in several regions around the world, including the recent catasrophic one in Haiti. The analysis supports the hypothesis that before and near the time of an earthquake, the shape of the PDF undergoes significant and discernable changes, which can be characterized quantitatively. The typical time over which the PDF undergoes the transition is about 5-10 h prior to a moderate or large earthquake.

  5. The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2014-03-01

    Full Text Available While the formation of equatorial electrojet (EEJ and its temporal variation is believed to be fairly well understood, the longitudinal variability at all local times is still unknown. This paper presents a case and statistical study of the longitudinal variability of dayside EEJ for all local times using ground-based observations. We found EEJ is stronger in the west American sector and decreases from west to east longitudinal sectors. We also confirm the presence of significant longitudinal difference in the dusk sector pre-reversal drift, using the ion velocity meter (IVM instrument onboard the C/NOFS satellite, with stronger pre-reversal drift in the west American sector compared to the African sector. Previous satellite observations have shown that the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This study's results raises the question if the vertical drift, which is believed to be the main cause for the enhancement of Rayleigh–Taylor (RT instability growth rate, is stronger in the American sector and weaker in the African sector – why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?

  6. Velocity ratio predicts outcomes in patients with low gradient severe aortic stenosis and preserved EF.

    Science.gov (United States)

    Jander, Nikolaus; Hochholzer, Willibald; Kaufmann, Beat A; Bahlmann, Edda; Gerdts, Eva; Boman, Kurt; Chambers, John B; Nienaber, Christoph A; Ray, Simon; Rossebo, Anne; Pedersen, Terje R; Wachtell, Kristian; Gohlke-Bärwolf, Christa; Neumann, Franz-Josef; Minners, Jan

    2014-12-01

    To evaluate the usefulness of velocity ratio (VR) in patients with low gradient severe aortic stenosis (LGSAS) and preserved EF. LGSAS despite preserved EF represents a clinically challenging entity. Reliance on mean pressure gradient (MPG) may underestimate stenosis severity as has been reported in the context of paradoxical low flow, LGSAS. On the other hand, grading of stenosis severity by aortic valve area (AVA) may overrate stenosis severity due to erroneous underestimation of LV outflow tract (LVOT) diameter, small body size or inconsistencies in cut-off values for severe stenosis. We hypothesised that VR may have conceptual advantages over MPG and AVA, predict clinical outcomes and thereby be useful in the management of patients with LGSAS. Patients from the prospective Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study with an AVA<1.0 cm(2), MPG≤40 mm Hg and EF≥55% and asymptomatic at baseline were stratified according to VR with a cut-off value of 0.25. Outcomes were evaluated according to aortic valve-related events and cardiovascular death. Of 435 patients with LGSAS, 197 (45%) had VR<0.25 suggesting severe and 238 (55%) had VR≥0.25 suggesting non-severe stenosis. Aortic valve-related events (mean follow-up 42±14 months) were more frequent in patients with VR<0.25 (57% vs 41%; p<0.001) as was cardiovascular death within the first 24 months (p<0.05). In multivariable Cox regression analysis, MPG was the strongest independent predictor of aortic valve events (p<0.001) followed by VR (p<0.02). Adjusting AVA by VR increased predictive accuracy for aortic valve events (area under the receiver operating curve 0.62 (95% CI 0.57 to 0.67) vs 0.56 (95% CI 0.51 to 0.61) for AVA, p=0.02) with net reclassification improvement calculated at 0.36 (95% CI 0.17 to 0.54, p<0.001). VR did not improve the prediction of clinical events by MPG. In the difficult setting of LGSAS, VR shows a strong association with valve-related events and-although not

  7. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Combining high resolution vertical gradients and sequence stratigraphy to delineate hydrogeologic units for a contaminated sedimentary rock aquifer system

    Science.gov (United States)

    Meyer, Jessica R.; Parker, Beth L.; Arnaud, Emmanuelle; Runkel, Anthony C.

    2016-03-01

    Hydrogeologic units (HGUs), representing subsurface contrasts in hydraulic conductivity, form the basis for all conceptual and numerical models of groundwater flow. However, conventionally, delineation of these units relies heavily on data sets indirect with respect to hydraulic properties. Here, we use the spatial and temporal characteristics of the vertical component of hydraulic gradient (i.e., vertical gradient) as the primary line of evidence for delineating HGUs for Cambrian-Ordovician sedimentary rocks at a site in Dane County, Wisconsin. The site includes a 16 km2 area encompassing a 3 km long mixed organic contaminants plume. The vertical gradients are derived from hydraulic head profiles obtained using high resolution Westbay multilevel systems installed at 7 locations along two, orthogonal 4 km long cross-sections and monitoring to depths between 90 and 146 m with an average of 3-4 monitoring zones per 10 m. These vertical gradient cross-sections reveal 11 laterally extensive HGUs with contrasting vertical hydraulic conductivity (Kv). The position and thickness of the Kv contrasts are consistently associated with sequence stratigraphic features (maximum flooding intervals and sequence boundaries) distinguished at the site using cores and borehole geophysical logs. The same sequence stratigraphic features are also traceable across much of the Cambrian-Ordovician aquifer system of the Midwest US. The vertical gradients and sequence stratigraphy were arrived at independently and when combined provide a hydraulically calibrated sequence stratigraphic framework for the site. This framework provides increased confidence in the precise delineation and description of the nature of HGU contacts in each borehole, reduced uncertainty in interpolation of the HGUs between boreholes, and some capability to predict HGU boundaries and thickness in offsite areas where high resolution hydraulic data sets are not available. Consequently, this HGU conceptual model will

  8. Variations of n /sub e/h/ profiles and of vertical gradients at low latitudes during disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Goncharova, E.E.; Zevakina, R.A.; Palacio, L.

    1979-11-01

    The paper examines the electron density height profile and vertical gradients of electron density distribution as a function of the type and phase of ionospheric disturbances on the basis of data from the Cuban geophysical center for 1968. The difference between low-latitude height variations of electron density and those at midlatitudes is investigated, and possible causes of electron density height variations at low latitudes are discussed.

  9. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-01-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2≈0.95-0.98) with those calculated from sonic anemometer measurements.

  10. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    Science.gov (United States)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  11. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    Science.gov (United States)

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  12. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    Science.gov (United States)

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  13. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations

    Science.gov (United States)

    Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.

    2017-06-01

    The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.type="synopsis">type="main">Plain Language SummaryEquatorial plasma bubbles are plasma density irregularities in the ionosphere. The radio waves passing through these irregular density structures undergo severe degradation/scintillation that could cause severe disruption of satellite-based communication and augmentation systems such as GPS navigation. These bubbles develop at geomagnetic equator, grow vertically, and elongate along the field lines to latitudes away from the equator. The knowledge on bubble rise velocities and their maximum attainable

  14. On vertical velocity fluctuations and internal tides in an upwelling region off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    of flow and wind and temperature oscillations at a mooring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection... of tem- perature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10-l to lo-* cm s-i, with a mean value of - 2.77 x lo-* cm s-i indicating a net upward movement of water. The com- puted...

  15. Measurements of the fluctuating liquid velocity of a bidisperse suspension of bubbles rising in a vertical channel

    Science.gov (United States)

    Serrano, Juan Carlos; Mendez, Santos; Zenit, Roberto

    2009-11-01

    Experiments were performed in a vertical channel to study the behaviour of a bidisperse suspension of bubbles. Bubbles were produced using capillaries of two distinct inner diameters. The capillaries are small enough to generate bubbles in the range of 1 to 6 mm in diameter. Using water and water-glycerin mixtures, the vertical component of the fluctuating liquid velocity was obtained using a flying hot wire anemometer technique. The system is characterized by the dimensionless Reynolds and Weber numbers in the range of 22bubble concentration. We also found that the variance, normalized with the mean bubble velocity squared, Tf% =Uf^^'2/Ub^2, increased as the Reynolds number decreased. Bidisperse flows, in general, show larger values of fluctuation.

  16. On the role of vertical electron density gradients in the generation of type II irregularities associated with blanketing Es during counter electrojet events - a case study

    Science.gov (United States)

    Devasia, C.; Jyoti, N.; Sridharan, R.; Raghava Reddi, C.; Diwakar, T.; Subba Rao, K.

    The characteristics of different types of Sporadic E (ES) layers and the associated plasma density irregularities over the magnetic equator have been studied in a campaign mode, using VHF backscatter radar, digital ionosonde and ground magnetometer data from Trivandrum (dip lat. 0.5°N, geog. lat. 8.5°N, geog. long. 77°E), India. Blanketing type Es (ESb) with varying intensity and duration were observed in association with afternoon counter electrojet (CEJ). ESb was associated with intense backscatter returns and with either very low zonal electric fields and/or with distortion present in the altitude profile of the phase velocity of the type II irregularities. The results of the coordinator study indicate the possible role of electron density gradients and the role of local winds in their generation, eventually resulting in the ESb layers. Evidences for the local winds to be responsible for the generation of steep vertical gradients based on the VHF backscatter radar data are provided and discussed.

  17. Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping

    Science.gov (United States)

    Nikolaidou, Maria Elissavet; Marzilger, Robert; Bohm, Sebastian; Mersmann, Falk

    2017-01-01

    Humans achieve greater jump height during a counter-movement jump (CMJ) than in a squat jump (SJ). However, the crucial difference is the mean mechanical power output during the propulsion phase, which could be determined by intrinsic neuro-muscular mechanisms for power production. We measured M. vastus lateralis (VL) fascicle length changes and activation patterns and assessed the force–length, force–velocity and power–velocity potentials during the jumps. Compared with the SJ, the VL fascicles operated on a more favourable portion of the force–length curve (7% greater force potential, i.e. fraction of VL maximum force according to the force–length relationship) and more disadvantageous portion of the force–velocity curve (11% lower force potential, i.e. fraction of VL maximum force according to the force–velocity relationship) in the CMJ, indicating a reciprocal effect of force–length and force–velocity potentials for force generation. The higher muscle activation (15%) could therefore explain the moderately greater jump height (5%) in the CMJ. The mean fascicle-shortening velocity in the CMJ was closer to the plateau of the power–velocity curve, which resulted in a greater (15%) power–velocity potential (i.e. fraction of VL maximum power according to the power–velocity relationship). Our findings provide evidence for a cumulative effect of three different mechanisms—i.e. greater force–length potential, greater power–velocity potential and greater muscle activity—for an advantaged power production in the CMJ contributing to the marked difference in mean mechanical power (56%) compared with SJ. PMID:28573027

  18. Addition of Vertical Velocity to a One-Dimensional Aerosol and Trace Gas Model

    National Research Council Canada - National Science Library

    Hoppel, William A; Caffrey, Peter; Frick, Glendon M

    2005-01-01

    ... (Coupled Ocean Atmosphere Meteorological Prediction System). The aerosol model is run along an air-mass trajectory generated from the output of COAMPS that includes vertical profiles of meteorological data required by the aerosol model...

  19. Steering compensation for strong vertical refraction gradients in a long-distance free-space optical communication link over water

    Science.gov (United States)

    Suite, M. R.; Moore, C. I.; Burris, H. R., Jr.; Wasiczko, L.; Stell, M. F.; Rabinovich, W. S.; Scharpf, W. J.; Gilbreath, G. C.

    2005-08-01

    It is important to be able to characterize and compensate for refraction effects in free-space optical laser communication (FSO lasercom). The refractive index depends on various properties of the propagation medium such as temperature, pressure, and moisture, with temperature having the largest affect. Very strong but slow-varying thermal gradients have been observed at the NRL Chesapeake Bay lasercom testbed, which offers a 16 km one-way (32 km round-trip) FSO lasercom link over water. Thermal gradients affect the elevation-pointing angle, and their magnitudes are a function of the time of day and year and also the weather conditions. These vertical refraction errors are corrected by the use of a fiber positioner controlled by a position-sensing detector (PSD). This system is implemented into the receiver at the NRL Chesapeake Bay lasercom testbed. System test results will be presented.

  1. Vertical gradients in the fauna and oxidation of two exposed sandy ...

    African Journals Online (AJOL)

    Fenchel & Riedl (1970), while gradients of the Metazoa and chemistry in the partly oxidized redox potential discontinuity (RPD) zone have been studied in detail by. McLachlan (1978). Much of the South African coastline consists of high- energy beaches and work done on such areas in the eastern. Cape Province showed ...

  2. Variability of Vertical Velocity Statistics in the Cloud-Free Convective Boundary Layer as Revealed by Doppler Lidar

    Science.gov (United States)

    Berg, L. K.; Newsom, R. K.; Turner, D. D.

    2016-12-01

    The majority of our understanding of the behavior of vertical velocity in the convective boundary layer is based on a small number of short-term observations made using either in situ or with remote sensing techniques over a limited number of sites. Analysis of long-term statistics have been lacking due to the scarcity of appropriate measurements. The US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is addressing this shortcoming through the deployment of a suite of scanning Doppler Lidars at a number of locations, associated with reconfiguration of the ARM Southern Great Plains site and the recent Holistic Interaction of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) field campaign. In this study, we utilize data collected by a Doppler Lidar system that has operated continuously from 2011 to the present at a location in north-central Oklahoma to examine the long-term behavior of the vertical velocity variance, skewness, and kurtosis. The application of standard normalization techniques, such as the mixed-layer depth and Deardorff convective velocity scale, do a good job in collapsing the data onto a single curve during periods in which the boundary layer is well developed, albeit with considerable amounts of scatter. During non-steady conditions, such as those found in the morning, scaling using the Deardorff convective velocity scale is found to work poorly. This behavior is likely due to the eddy turnover time and the growth rate of the boundary-layer depth. Systematic differences in the turbulence statistics are found by season, for non-stationary conditions, or periods with relatively small and large values of the surface friction velocity measured at the surface, amount of static instability, and wind shear across the boundary-layer top.

  3. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  4. Calculation and analysis of velocity and viscous drag in an artery with a periodic pressure gradient

    Science.gov (United States)

    Alizadeh, M.; Seyedpour, S. M.; Mozafari, V.; Babazadeh, Shayan S.

    2012-07-01

    Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers. Any changes in blood pressure and its normal velocity can be a sign of a disease. Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag, velocity and periodic blood pressure in vessels. In this paper, by considering available experimental quantities, for blood pressure and velocity in periodic time of a thigh artery of a living dog, at first it is written into Fourier series, then by solving Navier-Stokes equations, a relation for curve drawing of vessel blood pressure with rigid wall is obtained. Likewise in another part of this paper, vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series. In this case, by solving Navier-Stokes equations, some relations for blood velocity, viscous drag on vessel wall and blood pressure are obtained. In this study by noting that vessel diameter is almost is large (3.7 mm), and blood is considered as a Newtonian fluid. Finally, available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared. In blood analysis in rigid vessel, existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall, results in new relations for blood flow description. The Resultant curve is obtained from new relations holding 10% variance in systole peak.

  5. Vertical gradients in the fauna and oxidation of two exposed sandy ...

    African Journals Online (AJOL)

    Vertical profiles of oxygenation and fauna were measured in two exposed sandy beaches. At the less exposed site the whole upper metre of sediment was oxidized although the redox potential discontinuity started at 85 cm. Meiofauna were concentrated in the upper 40 cm and protozoa in the upper 55 cm, but bacteria ...

  6. Spectral sensitivity analysis of FWI in a constant-gradient background velocity model

    NARCIS (Netherlands)

    Kazei, V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Full waveform inversion suffers from local minima, due to a lack of low frequencies in the data. A reflector below the zone of interest may help in recovering the long-wavelength components of a velocity perturbation, as demonstrated in a paper by Mora. Because smooth models are more popular as

  7. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunmei [Department; Kukkadapu, Ravi K. [Environmental; Lazareva, Olesya [Department; Sparks, Donald L. [Department

    2017-06-30

    Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplain profiles, which exhibited a succession of oxic, anoxic and suboxic-oxic zones with increasing depth along the vertical profiles. The anoxic conditions at the intermediate horizon (55-80 cm) of the eastern floodplain resulted in extensive depletion of Fe(III)-oxides including both ferrihydrite and goethite, concurrent with a corresponding reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II). In addition, the anoxic conditions increased the crystallinity of Fe(III)-oxides in this reduced zone, relative to the oxic zones. In the most reduced intermediate sediments at 80-120cm of the western floodplain, the anoxic conditions drove the complete reductive dissolution of Fe(III) oxides, as well as the greatest reduction (48-55%) in PS-Fe(III). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.

  8. Vertical concentration gradients in bulk heterojunction solar cells induced by differential material solubility

    Energy Technology Data Exchange (ETDEWEB)

    Susarova, Diana K. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, Moscow region, 142432 (Russian Federation); Troshin, Pavel A., E-mail: troshin@cat.icp.ac.r [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, Moscow region, 142432 (Russian Federation); Moskvin, Yuriy L.; Babenko, Sergey D. [Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences (Branch), Semenov Prospect 1/10, Chernogolovka, Moscow region, 142432 (Russian Federation); Razumov, Vladimir F. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, Moscow region, 142432 (Russian Federation)

    2011-04-01

    Highly soluble fullerene derivatives (HSFD) and a low soluble polymer (LSP) were investigated as modifiers of the active layer morphology in conventional P3HT/PCBM bulk heterojunction solar cells. The observed changes in photovoltaic and electrical characteristics of the devices after addition of one or two modifiers suggest that they induced favourable vertical phase separation in the blends simply due to different solubilities of the components. In particular, HSFD is supposed to accumulate at the top of the film serving as a hole-blocking interlayer at the cathode/active layer interface. On the contrary, LSP seems to form electron-blocking buffer layer at the bottom of the device at the active layer/anode interface. Thus, the differential material solubility was suggested as a tool for adjustment of vertical morphology of organic bulk heterojunction solar cells.

  9. Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles.

    Science.gov (United States)

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2017-03-21

    The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10-4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10-7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.

  10. Differences in vertical jumping and mae-geri kicking velocity between international and national level karateka

    Directory of Open Access Journals (Sweden)

    Carlos Balsalobre-Fernández

    2013-04-01

    Full Text Available Aim: Lower limb explosive strength and mae-geri kicking velocity are fundamental in karate competition; although it is unclear whether these variables could differentiate the high-level athletes. The objective of this research is to analyze the differences in the mae-geri kicking velocity and the counter-movement jump (CMJ between a group of international top level karateka and another group of national-level karateka.Methods: Thirteen international-level karateka and eleven national-level karateka participated in the study. After a standard warm-up, CMJ height (in cm and mae-geri kicking velocity (in m/s was measured using an IR-platform and a high-speed camera, respectively.Results: Proceeding with MANCOVA to analyze the differences between groups controlling the effect of age, the results show that the international-level karateka demonstrated significantly higher levels of CMJ than national-level competitors (+22.1%, F = 9.47, p = 0.006, η2 = 0.311. There were no significant differences between groups in the mae-geri kicking velocity (+5,7%, F=0.80; p=0.38; η2=0.03.Conclusion: Our data shows, first, the importance of CMJ assessment as a tool to detect talent in karate and, second, that to achieve international-level in karate it may be important to increase CMJ levels to values ​​similar to those offered here.

  11. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Science.gov (United States)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  12. Variation in community structure across vertical intertidal stress gradients: how does it compare with horizontal variation at different scales?

    Directory of Open Access Journals (Sweden)

    Nelson Valdivia

    Full Text Available In rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval. Because broad-scale processes can generate geographical patterns in community structure, we tested the hypothesis that vertical ecological variation is higher than fine-scale horizontal variation but lower than broad-scale horizontal variation. To test this prediction, we compared the variation in community structure across intertidal elevations on rocky shores of Helgoland Island with independent estimates of horizontal variation measured at the scale of patches (quadrats separated by 10s of cm, sites (quadrats separated by a few m, and shores (quadrats separated by 100s to 1000s of m. The multivariate analyses done on community structure supported our prediction. Specifically, vertical variation was significantly higher than patch- and site-scale horizontal variation but lower than shore-scale horizontal variation. Similar patterns were found for the variation in abundance of foundation taxa such as Fucus spp. and Mastocarpus stellatus, suggesting that the effects of these canopy-forming algae, known to function as ecosystem engineers, may explain part of the observed variability in community structure. Our findings suggest that broad-scale processes affecting species performance increase ecological variability relative to the pervasive fine-scale patchiness already described for marine coasts and the well known variation caused by vertical stress gradients. Our results also indicate that experimental research aiming to understand community structure on

  13. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  14. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  15. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  16. Evolution of Area-Averaged Vertical Velocity in the Convective Region of a Midlatitude Squall Line

    Science.gov (United States)

    1992-12-01

    Ms. Svetla Veleva, Mr. Rusty Billingsly, and Capt. Kevin Mattison for their help in unfolding the raw Doppler-velocity fields; Mr. Robert Barritt for...and evolution of this important class of mesoscale convective system (MCS) (e.g., Zipser 1969, 1977; Houze 1977; LeMonc and Zipser 1980; Ogura and Liou...1980; Zipser and LeMone 1980; Gamache and ltouze 1982, 1985; Houze and Rappaport 1984; Heymsfield and Schotz 1985; Smull and Houze 1985, 1987a,b

  17. Organic matter along longitudinal and vertical gradients in the Black Sea

    Science.gov (United States)

    Kaiser, David; Konovalov, Sergey; Schulz-Bull, Detlef E.; Waniek, Joanna J.

    2017-11-01

    We studied organic matter in the central Black Sea and its northeastern and northwestern shelf break within three weeks in November 2013 to test the hypothesis that in situ production could explain lateral and vertical variability in its composition and distribution. The wide spatial coverage over a short period of time achieved during this study revealed longitudinal variability in organic matter characteristics reflecting productivity at the Black Sea surface. Particulate organic matter was dominantly autochthonous in the central Black Sea. Allochthonous influence of river discharge was only traced on the northwestern shelf by high concentrations but low freshness of particulate organic matter. Compared to the NW shelf break and central Black Sea, primary production was high near the NE shelf break, likely fueled by input from the Azov Sea. Vertical patterns were similar throughout the deep Black Sea and appeared to also be governed by in situ processes rather than reflect variability in the surface water. As concentrations of organic matter decreased with depth, its elemental and isotopic composition indicated chemoautotrophic production at the oxic-anoxic interface and organic matter degradation in the benthic boundary layer. Though profiles of dissolved organic carbon indicated a minor source in anoxic deep water, likely linked to chemosynthesis and reflux from sediments, a negative deviation of concentrations from a conservative mixing line between two endmembers suggested net removal of labile dissolved organic carbon.

  18. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  19. Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau

    Science.gov (United States)

    Guo, X.; Wang, L.; Tian, L.

    2015-12-01

    The near-surface air temperature lapse rate (TLR), wind speed gradient (WSG), and precipitation gradient (PG) provide crucial parameters used in models of mountain climate and hydrology. The complex mountain terrain and vast area of the Tibetan Plateau (TP) make such factors particularly important. With daily data from 161 meteorological stations over the past 43 years (1970-2012), we analyse the spatio-temporal variations of TLRs, WSGs, and PGs over and around TP, derived using linear regression methods and dividing the study area into zones based on spatial variations. Results of this study include: (1) The observed TLR varies from -0.46 to -0.73 ∘C (100 m) -1, with averaged TLRs of -0.60,-0.62, and -0.59 ∘C (100 m) -1 for Tmax, Tmin,and Tmean , respectively. The averaged TLR is slightly less than the global mean of -0.65 ∘C (100 m) -1 . The spatial variability of TLR relates to climate conditions, wherein the TLR increases in dry conditions and in cold months (October-April), while it lessens in humid regions and during warm months (May-September). (2) The estimated annual WSG ranges from 0.07 to 0.17m s -1 (100 m) -1. Monthly WSGs show a marked seasonal shift, in which higher WSGs can be explained by the high intensity of prevailing wind. (3) Positive summer PGs vary from 12.08 in the central TP to 26.14 mm (100 m) -1 in northeastern Qinghai and the southern TP, but a reverse gradient prevails in Yunnan and parts of Sichuan Province. (4) The regional warming over TP is more evident in winter, and Tmin demonstrated the most prominent warming compared with Tmax and Tmean. Environments at high elevations experience more rapid changes in temperatures (Tmax, Tmin,and Tmean) than those at low elevations, which is especially true in winter and for Tmin. Furthermore, inter-annual variation of TLRs is linked to elevation-dependent warming.

  20. Velocity anisotropy in the Niger Delta sediments derived from ...

    African Journals Online (AJOL)

    Seismic velocities decrease and increase laterally and vertically, respectively, towards the coast. These variations are attributable to the lateral and vertical changes in the degrees of compaction coastward and reduction in porosity with depth. Three zones of steep, moderate and slow velocity gradients, respectively, have ...

  1. On the refinement of the rotation rate based Smagorinsky model using velocity field gradients

    Science.gov (United States)

    Ghorbaniasl, Ghader; Ricks, Nathan; Siozos-Rousoulis, Leonidas; Degrez, Gérard; Contino, Francesco

    2017-10-01

    In this paper, a gradient-based refinement of the rotation rate-based Smagorinsky (RoSM) subgrid scale (SGS) model is presented. The refined model satisfies the Galilean invariance condition generally, without any assumptions. The suggested model retains the advantages offered by the original RoSM, thus being simple and efficient. It provides a Smagorinsky model constant that is always positive, with low fluctuations in space and time, without the need for any numerical stability control algorithms. The validity of the proposed SGS model is shown through three test cases, namely, a turbulent channel flow, subcritical flow past a stationary cylinder, and a spatially developing free round jet. The refined RoSM provides comparable results with the dynamic Smagorinsky, while matching well to reference data. The refined RoSM is shown to be computationally efficient, being 20% faster than the dynamic Smagorinsky model.

  2. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  3. On the effects of vertical air velocity on winter precipitation types

    Directory of Open Access Journals (Sweden)

    J. M. Thériault

    2007-01-01

    Full Text Available The various precipitation types formed within winter storms (such as snow, wet snow and freezing rain often lead to very hazardous weather conditions. These types of precipitation often occur during the passage of a warm front as a warm air mass ascends over a cold air mass. To address this issue further, we used a one-dimensional kinematic cloud model to simulate this gentle ascent (≤10 cm/s of warm air. The initial temperature profile has an above 0°C inversion, a lower subfreezing layer, and precipitation falls from above the temperature inversion. The cloud model is coupled to a double-moment microphysics scheme that simulates the production of various types of winter precipitation. The results are compared with those from a previous study carried out in still air. Based on the temporal evolution of surface precipitation, snow reaches the surface significantly faster than in still air whereas other precipitation types including freezing rain and ice pellets have a shorter duration. Overall, even weak background vertical ascent has an important impact on the precipitation reaching the surface, the time of the elimination of the melting layer, and also the evolution of the lower subfreezing layer.

  4. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan; Pothos, Stamatios

    2005-08-01

    Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (Reτ ˜ 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35° to the streamwise-spanwise plane with a resulting projected eddy inclination of 43° in the streamwise-wall-normal plane.

  5. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan [University of Minnesota, Department of Aerospace Engineering and Mechanics, Minneapolis, MN (United States); Pothos, Stamatios [TSI Incorporated, Shoreview, MN (United States)

    2005-08-01

    Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (Re{sub {tau}} {proportional_to} 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35 to the streamwise-spanwise plane with a resulting projected eddy inclination of 43 in the streamwise-wall-normal plane. (orig.)

  6. Analysis of Vertical Velocities and Elevated Instability in the Comma-Head of Continental Winter Cyclones

    Science.gov (United States)

    Rosenow, Andrew

    The vertical motion and physical structure of elevated convection and generating cells within the comma heads of three continental winter cyclones are investigated using the Wyoming W-band Cloud Radar mounted on the NSF/NCAR C-130, supplemented by analyses from the Rapid Update Cycle model and WSR-88D data. The cyclones followed three distinct archetypical tracks and were typical of those producing winter weather in the Midwestern United States. In two of the cyclones, dry air in the middle and upper troposphere behind the Pacific cold front intruded over moist Gulf of Mexico air at lower altitudes within the comma head, separating the comma head into two zones. Elevated convection in the southern zone extended from the cold frontal surface to the tropopause. The stronger convective updrafts ranged from 2 to 7 m s-1 and downdrafts from -2 to -6 m s-1. The horizontal scale of the convective cells was ˜5 km. The poleward zone of the comma head was characterized by deep stratiform clouds topped by cloud top generating cells that reached the tropopause. Updrafts and downdrafts within the generating cells ranged from 1-2 m s-1, with the horizontal scale of the cells ˜1-2 km. Precipitation on the poleward side of the comma head conformed to a seeder-feeder process, the generating cells seeding the stratiform cloud, which was forced by synoptic scale ascent. In one case, shallow clouds behind the cyclone's cold front were also topped by cloud top generating cells, with vertical motions ranging from 1 2 m s-1. The development and distribution of potential instability in the elevated convective region of one of these cyclones is examined using a Weather Research and Forecasting (WRF) model simulation. The strong 8-9 December 2009 cyclone is simulated with a large outer domain and convection-allowing nest to simulate the convective region of the cyclone. The distribution of Most Unstable Convective Available Potential Energy (MUCAPE) is presented, with MUCAPE values up to

  7. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  8. EnKF assimilation of simulated spaceborne Doppler observations of vertical velocity: impact on the simulation of a supercell thunderstorm and implications for model-based retrievals

    Directory of Open Access Journals (Sweden)

    W. E. Lewis

    2006-01-01

    Full Text Available Recently, a number of investigations have been made that point to the robust effectiveness of the Ensemble Kalman Filter (EnKF in convective-scale data assimilation. These studies have focused on the assimilation of ground-based Doppler radar observations (i.e. radial velocity and reflectivity. The present study differs from these investigations in two important ways. First, in anticipation of future satellite technology, the impact of assimilating spaceborne Doppler-retrieved vertical velocity is examined; second, the potential for the EnKF to provide an alternative to instrument-based microphysical retrievals is investigated. It is shown that the RMS errors of the analyzed fields produced by assimilation of vertical velocity alone are in general better than those obtained in previous studies: in most cases assimilation of vertical velocity alone leads to analyses with small errors (e.g. <1 ms-1 for velocity components after only 3 or 4 assimilation cycles. The microphysical fields are notable exceptions, exhibiting lower errors when observations of reflectivity are assimilated together with observations of vertical velocity, likely a result of the closer relationship between reflectivity and the microphysical fields themselves. It is also shown that the spatial distribution of the error estimates improves (i.e. approaches the true errors as more assimilation cycles are carried out, which could be a significant advantage of EnKF model-based retrievals.

  9. Flow-suppressed hyperpolarized 13 C chemical shift imaging using velocity-optimized bipolar gradient in mouse liver tumors at 9.4 T.

    Science.gov (United States)

    Lee, Hansol; Lee, Joonsung; Joe, Eunhae; Yang, Seungwook; Song, Jae Eun; Choi, Young-Suk; Wang, Eunkyung; Joo, Chan Gyu; Song, Ho-Taek; Kim, Dong-Hyun

    2017-11-01

    To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized 13 C chemical shift imaging (CSI) of mouse liver at 9.4 T. The trade-off between the amount of flow suppression using bipolar gradients and T2* effect from static spins was simulated. A free induction decay CSI sequence with alternations between the flow-suppressed and non-flow-suppressed acquisitions for each repetition time was developed and was applied to liver tumor-bearing mice via injection of hyperpolarized [1-13 C] pyruvate. The in vivo results from flow suppression using the velocity-optimized bipolar gradient were comparable with the simulation results. The vascular signal was adequately suppressed and signal loss in stationary tissue was minimized. Application of the velocity-optimized bipolar gradient to tumor-bearing mice showed reduction in the vessel-derived pyruvate signal contamination, and the average lactate/pyruvate ratio increased by 0.095 (P flow suppression. Optimization of the bipolar gradient is essential because of the short 13 C T2* and high signal in venous flow in the mouse liver. The proposed velocity-optimized bipolar gradient can suppress the vascular signal, minimizing T2*-related signal loss in stationary tissues at 9.4 T. Magn Reson Med 78:1674-1682, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Predicting nitrogen flux along a vertical canopy gradient in a mixed conifer forest stand of the San Bernardino Mountains in California

    Science.gov (United States)

    Michael J. Arbaugh; Andrzej Bytnerowicz; Mark E. Fenn

    1998-01-01

    A 3-year study of nitrogenous (N) air pollution deposition to ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) seedlings along a mature tree vertical canopy gradient was conducted in the mixed conifer forest of the San Bernardino Mountains of southern California. Concentrations of nitric acid vapor (HNO3), particulate nitrate...

  11. Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre.

    Science.gov (United States)

    Sommer, Stephanie A; Van Woudenberg, Lauren; Lenz, Petra H; Cepeda, Georgina; Goetze, Erica

    2017-11-01

    Although metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0-1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology-based studies in the region (4,024 OTUs, 10-fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic-upper mesopelagic depths (100-300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies. Four distinct depth-stratified species assemblages were identified, with faunal transitions occurring at 100 m, 300 m and 500 m. Highest diversity occurred in the smallest zooplankton size fractions (0.2-0.5 mm), which had significantly lower % OTUs classified due to poor representation in reference databases, suggesting a deep reservoir of poorly understood diversity in the smallest metazoan animals. A diverse meroplankton assemblage also was detected (350 OTUs), including larvae of both shallow and deep living benthic species. Our results provide some of the first insights into the hidden diversity present in zooplankton assemblages in midwaters, and a molecular reappraisal of vertical gradients in species richness, depth distributions and community composition for the full zooplankton assemblage across the epipelagic, mesopelagic and upper bathypelagic zones. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  12. An experimental study of wave propagation and velocity distributions in a vertically driven time-dependent granular gas

    Science.gov (United States)

    Perez, John Anthony

    Averaged over appropriate space and time scales the dynamics of highly fluidized granular systems are often reminiscent of molecular fluid flows. As a result, theoretical efforts to describe these systems have borrowed heavily from continuum mechanics, particularly hydrodynamics. This has led to various proposed granular hydrodynamic theories which have been used to simulate granular materials in various states of confinement and excitation. These studies suggest that a continuum model for granular gasses can accurately reproduce the mean density, velocity and temperature profiles for an experimental granular gas. This thesis contributes to this body of work by presenting an experimental study of the hydrodynamic fields and velocity distributions within a vertically driven quasi-2D granular gas. We have taken pictures as fast as possible of a time-dependent granular gas using a high-speed CCD camera. We have extracted the positions and velocities of 57-564 particles per frame over 400 GB of raw images collected at 3700 fps. We used this data to compute the density, velocity and temperature fields as functions of time and space to a very high resolution. This approach led to the discovery of novel substructures within the hydrodynamic fields which would have been overlooked had we chosen to average over a drive cycle as earlier studies have done. In particular, the high spatial resolution available from our measurements reveals a serrated substructure in the shock waves which has not been reported before. This substructure is the result of collisional momentum transport . One of the current issues in formulating a granular continuum model is how to incorporate local and non-local dependencies between stress and strain correctly. In this thesis we demonstrate that the collisional transfer of momentum produces a non-local effect in the stress tensor which plays a major role in determining the mean flow. Current models have incorporated only the collisional or

  13. Vertical gradients in water chemistry in the central High Plains aquifer, southwestern Kansas and Oklahoma panhandle, 1999

    Science.gov (United States)

    McMahon, Peter B.

    2001-01-01

    The central High Plains aquifer is the primary source of water for domestic, industrial, and irrigation uses in parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas. Water-level declines of more than 100 feet in some areas of the aquifer have increased the demand for water deeper in the aquifer. The maximum saturated thickness of the aquifer ranged from 500 to 600 feet in 1999. As the demand for deeper water increases, it becomes increasingly important for resource managers to understand how the quality of water in the aquifer changes with depth. In 1998?99, 18 monitoring wells at nine sites in southwestern Kansas and the Oklahoma Panhandle were completed at various depths in the central High Plains aquifer, and one monitoring well was completed in sediments of Permian age underlying the aquifer. Water samples were collected once from each well in 1999 to measure vertical gradients in water chemistry in the aquifer. Tritium concentrations measured in ground water indicate that water samples collected in the upper 30 feet of the aquifer were generally recharged within the last 50 years, whereas all of the water samples collected at depths more than 30 feet below the water table were recharged more than 50 years ago. Dissolved oxygen was present throughout the aquifer, with concentrations ranging from 1.7 to 8.4 mg/L. Water in the central High Plains aquifer was predominantly a calcium-bicarbonate type that exhibited little variability in concentrations of dissolved solids with depth (290 to 642 mg/L). Exceptions occurred in some areas where there had been upward movement of mineralized water from underlying sediments of Permian age and areas where there had been downward movement of mineralized Arkansas River water to the aquifer. Calcium-sulfate and sodium-chloride waters dominated and concentrations of dissolved solids were elevated (862 to 4,030 mg/L) near the base of the aquifer in the areas of upward leakage. Dissolution of gypsum or anhydrite and halite

  14. High-resolution Vertical Profiling of Ocean Velocity and Water Properties Under Hurricane Frances in September 2004

    Science.gov (United States)

    Sanford, T. B.; D'Asarp, E. A.; Girton, J. B.; Price, J. F.; Webb, D. C.

    2006-12-01

    In ONR's CBLAST Hurricane research program observations were made of the upper ocean's response to Hurricane Frances. Three EM-APEX floats (velocity sensing versions of Webb Research APEX floats) and two Lagrangian floats were deployed north of Hispaniola from a C-130 aircraft ahead of Hurricane Frances in September 2004. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. The Lagrangian floats measured temperature and salinity while following the three- dimensional boundary layer turbulence in the upper 40 m. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX and two Lagrangian floats went in about 50 km to the right of the track (where the surface winds are strongest) and the third float was about 100 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m, then continued profiling between 35 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean turbulence, momentum, and salt and heat changes in response to the hurricane. The buildup of surface gravity waves in advance of the storm was also observed in the velocity profiles, with significant wave heights of up to 11 m. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s stimulated vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.5 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of

  15. Influence of velocity gradient in a hydraulic flocculator on NOM removal by aerated spiral-wound ultrafiltration membranes (ASWUF).

    Science.gov (United States)

    Rojas, J C; Moreno, B; Garralón, G; Plaza, F; Pérez, J; Gómez, M A

    2010-06-15

    A hydraulic coagulation-flocculation processes combined with aerated spiral-wound ultrafiltration membranes (ASWUF) was designed with the objective of improving natural organic matter (NOM) removal by ASWUF in the treatment of water for human consumption. The pilot-scale experimental system had capacity for treating 0.9 m(3)/h. Dosage of Cl(3)Fe as coagulant and hydraulic retention time (HRT) were calculated to generate microflocculation and different velocity gradients (G=27, 47, 87 and 104 s(-1)) were applied in the hydraulic flocculator. Operating alone, the ASWUF system achieved an NOM removal performance of 39% without problems of membrane clogging, although there was a significant correlation between effluent and influent quality. Application of microflocculation achieved considerable improvement in NOM removal, but values of GNOM removal capacity and membrane clogging. For G=104 s(-1) an NOM removal yield of 90% was reached, while transmembrane pressure (TMP) was stabilised as a result of the control of membrane clogging. Copyright 2010 Elsevier B.V. All rights reserved.

  16. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  17. Soil Organic δ13C Change Along a Vertical Gradient in the Northern Slop of Tianshan Mountains

    Directory of Open Access Journals (Sweden)

    XU Wen-qiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC pool integrated the vegetation succession information from several years to thousands of years scales. It is an ideal tool to understand carbon isotope composition change and terrestrial ecosystem pathways. In this study, the Sangong river watershed was taken as a case. We had estimated the change of vegetation and soil organic along a vertical gradient using the carbon isotopic method, and analyzed the variations of mean SOC δ13C values with the annual precipitation, and researched the variations in SOC and δ13C values with profile depth in the study area. The results showed that the SOC δ13C decreased significantly with the increasing annual precipitation (R2=0.97 where the annual precipitation was less than 300 mm. When the annual precipitation was 300 mm~500 mm, the SOC δ13C was not significant changed with the increasing annual precipitation (R2=0.04. The enrichment effect of SOC δ13C with depth was significant in the sample site of pure C3 vegetation, that means lower layer SOC δ13C of profile was greater than the upper layer. The average difference of SOC δ13C between lower layer and upper layer was 1.01‰. The opposite trend of SOC δ13C was presented in the Desert and Shrubland sites. And that, the SOC δ13C value of upper layer closed to C4 vegetation source, and the lower layer closed to C3 vegetation source. Therefore, we can infer that the vegetation may have experienced from C3 to C4 in the sandy desert and terrene desert sites.

  18. Waves, circulation and vertical dependence

    Science.gov (United States)

    Mellor, George

    2013-04-01

    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  19. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  20. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    Science.gov (United States)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  1. The research of the cross-links effect influence in the color matrix photodetector on an error of the air tract vertical temperature gradient determination

    Science.gov (United States)

    Nekrylov, Ivan S.; Kleshchenok, Maksim A.; Timofeev, Aleksandr N.; Sycheva, Elena A.; Gusarov, Vadim F.

    2017-06-01

    The research of the cross-links effect influence in the color matrix photodetector on an error of the air tract vertical temperature gradient determination is provided. It is invited to consider the influence of the signals from matrix photodetector channels on each other. There is a method to determine the value of the cross-links effect ant its influence on the energy center coordinates determination.

  2. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany

    Directory of Open Access Journals (Sweden)

    Stephanie Stiegel

    2018-01-01

    Full Text Available Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient.

  3. Estimations of Vertical Velocities Using the Omega Equation in Different Flow Regimes in Preparation for the High Resolution Observations of the SWOT Altimetry Mission

    Science.gov (United States)

    Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.

    2016-02-01

    Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.

  4. A Method for Retrieving Vertical Air Velocities in Convective Clouds over the Tibetan Plateau from TIPEX-III Cloud Radar Doppler Spectra

    Directory of Open Access Journals (Sweden)

    Jiafeng Zheng

    2017-09-01

    Full Text Available In the summertime, convective cells occur frequently over the Tibetan Plateau (TP because of the large dynamic and thermal effects of the landmass. Measurements of vertical air velocity in convective cloud are useful for advancing our understanding of the dynamic and microphysical mechanisms of clouds and can be used to improve the parameterization of current numerical models. This paper presents a technique for retrieving high-resolution vertical air velocities in convective clouds over the TP through the use of Doppler spectra from vertically pointing Ka-band cloud radar. The method was based on the development of a “small-particle-traced” idea and its associated data processing, and it used three modes of radar. Spectral broadening corrections, uncertainty estimations, and results merging were used to ensure accurate results. Qualitative analysis of two typical convective cases showed that the retrievals were reliable and agreed with the expected results inferred from other radar measurements. A quantitative retrieval of vertical air motion from a ground-based optical disdrometer was used to compare with the radar-derived result. This comparison illustrated that, while the data trends from the two methods of retrieval were in agreement while identifying the updrafts and downdrafts, the cloud radar had a much higher resolution and was able to reveal the small-scale variations in vertical air motion.

  5. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  6. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  7. Escape Velocity

    Directory of Open Access Journals (Sweden)

    Nikola Vlacic

    2010-01-01

    Full Text Available In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.

  8. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    OpenAIRE

    Angelo Maria Sabatini; Vincenzo Genovese

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally,...

  9. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    Science.gov (United States)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  10. Acute Effect of Biomechanical Muscle Stimulation on the Counter-Movement Vertical Jump Power and Velocity in Division I Football Players.

    Science.gov (United States)

    Jacobson, Bert H; Monaghan, Taylor P; Sellers, John H; Conchola, Eric C; Pope, Zach K; Glass, Rob G

    2017-05-01

    Jacobson, BH, Monaghan, TP, Sellers, JH, Conchola, EC, Pope, ZK, and Glass, RG. Acute effect of biomechanical muscle stimulation on the counter-movement vertical jump power and velocity in division I football players. J Strength Cond Res 31(5): 1259-1264, 2017-Research regarding whole body vibration (WBV) largely supports such training augmentation in attempts to increase muscle strength and power. However, localized biomechanical vibration has not received the same attention. The purpose of this study was to assess peak and average power before and after acute vibration of selected lower-body sites in division I athletes. Twenty-one subjects were randomly assigned to 1 of 2 conditions using a cross-over design. Pretest consisted of a counter-movement vertical jump (VJ) followed by either localized vibration (30 Hz) to 4 selected lower-body areas or 4 minutes of moderately low-resistance stationary cycling (70 rpm). Vibration consisted of 1 minute bouts at each lower-leg site for a total of 4 minutes followed by an immediate post-test VJ. Repeated measures analysis of variance yielded no significant differences (p > 0.05) in either peak power or peak velocity. Similarly, no significant differences were found for average power and velocity between conditions. It should be noted that, while not significant, the vibration condition demonstrated an increase in peak power and velocity while the bike condition registered slight decreases. Comparing each of the post-VJ repetitions (1, 2, and 3) the vibration condition experienced significantly greater peak power and velocity from VJ 1 to VJ 3 compared with the bike condition which demonstrated no significant differences among the post-test VJs. These results yielded similar, although not statistically significant outcomes to previous studies using WBV. However, the novelty of selected site biomechanical vibration merits further investigation with respect to frequency, magnitude, and duration of vibration.

  11. Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test.

    Science.gov (United States)

    Driss, T; Vandewalle, H; Monod, H

    1998-12-01

    The aim of this study was to propose a test battery adjusted to volleyball players and to study the links between dynamic (vertical jump, force-velocity relationships and maximal anaerobic power in cranking and cycling) and static (maximal voluntary force and rate of force development in isometric conditions) performances. The relationships between braking force (F) and peak velocity (V) have been determined for cycling and cranking exercises in 18 male volleyball players of a district league. According to previous studies, these F-V relationships were assumed to be linear and were expressed as follows: V = V0(1-F/F0), where V0 should be an estimate of the maximal velocity at zero braking force whereas F0 is assumed to be a braking force corresponding to zero velocity. Maximal anaerobic power in cycling (Pmax leg) and cranking (Pmax arm) were calculated as equal to 0.25 V0F0. The same subjects performed a vertical jump test (VJ) and a strength test on an isometric leg press with the measurement of the unilateral isometric maximal voluntary force (MVF) and indices of rate of isometric force development (RFD): maximal rate of force development (MRFD) and the time from 25% to 50% of MVF (T25-50). Pmax leg (15.8 +/- 1.4 W.kg-1) and V0 arm (259.6 +/- 13.1 rpm) were high but similar to the results of elite athletes, previously collected with the same protocols and the same devices. VJ was significantly with F0 leg, Pmax leg and Pmax arm related to body mass. The performances of the dynamic tests were significantly correlated and especially the parameters (V0, F0, Pmax) of the force velocity tests in cycling were significantly correlated with the same parameters in cranking. The results of the isometric tests (MVF, MRFD) were not correlated with VJ, except T25-50 of the left leg. A vertical jump test and a force velocity test with the arms are proposed for a test battery in volleyball players.

  12. Computational algorithm for predicting the pressure gradient in vertical wells by correlating multiphase flow Hagedorn and Brown

    OpenAIRE

    Luis Jose Duarte Bohorquez; María Duarte

    2015-01-01

    The accurate prediction of the pressure drop expected to occur during the multiphase flow of fluids in the flow string of a well is a widely recognized problem in the petroleum industry. There are many correlations and mechanistic models that estimate pressure gradients in wells as correlations: Duns & Ros (2008); Orkiszewski (1967); Hagedorn & Brown (1965), Beggs & Brill (1973), Govier & col. (1999), etc. Each one is based on application criteria that transform it into...

  13. CO2 dynamics along Danish lowland streams: water-air gradients, piston velocities and evasion rates

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Stæhr, Peter A.

    2012-01-01

    We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means...

  14. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  15. Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid

    Science.gov (United States)

    Kardri, M. A.; Bachok, N.; Arifin, N. M.; Ali, F. M.

    2017-09-01

    The steady axisymmetric stagnation point flow with second-order velocity slip due to a stretching vertical plate with the existence of copper-water nanofluid was investigated. Similarity transformation has been applied to reduce the governing partial differential equations to ordinary differential equations. Then the self-similar equations are solved numerically using solver bvp4c available in Matlab with Prandtl number, Pr = 6.2. It is found that the dual solutions exist for the certain range of mixed convection parameter. The effects of the governing parameters on the velocity and temperature profile, skin friction coefficient and the local Nusselt number are observed. The results show that the inclusion of nanoparticle copper, will increase the shear stress on the stretching sheet and decrease the heat transfer rate for the slip parameters.

  16. The growth of a cubic, single phase, Cd 0.6Mn 0.4Te single crystal by the vertical gradient freeze method

    Science.gov (United States)

    Azoulay, M.; Raizman, A.; Weingarten, R.; Shacham, H.; Feldstein, H.

    1993-03-01

    The growth of CdMnTe single crystals faces some difficulties due to the phase transition in the solid state at high temperatures, just after solidification. To overcome this problem, it has been suggested to grow the crystals from a Te-rich solution by the traveling heater method at a lower temperature than that of growth from the melt, or alternatively to grow the crystal from the melt at high axial thermal gradient near the interface. In this paper, we present for the first time the growth of cubic, single phase, CdxMn1-xTe single crystals by the vertical gradient freeze technique under a very low axial thermal gradient in the melt (3°C/cm) and high manganese content (x ≈ 40%). The solidification stage is characterized by a rapid cooling of the crystal through the phase transition temperature region, followed by annealing at about 800°C. The crystal exhibits a very high crystalline perfection, as measured by the double-crystal X-ray rocking curves with a full width at half maximum of 30 arc sec and low optical losses of about 1 dB/mm between 650 and 820 nm with λ-cutoff at 630 nm. Further magneto-optical properties are currently examined for a possible application in devices.

  17. Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within canopy removal of NOx

    Science.gov (United States)

    Min, K.-E.; Pusede, S. E.; Browne, E. C.; LaFranchi, B. W.; Wooldridge, P. J.; Cohen, R. C.

    2013-05-01

    Exchange of NOx (NO+NO2) between the atmosphere and biosphere is important for air quality, climate change, and ecosystem nutrient dynamics. There are few direct ecosystem scale measurements of the direction and rate of atmosphere-biosphere exchange of NOx. As a result, a complete description of the processes affecting NOx following emission from soils and/or plants as they transit from within the plant/forest canopy to the free atmosphere remains poorly constrained and debated. Here, we describe measurements of NO and NO2 fluxes and vertical concentration gradients made during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009. In general, during daytime we observe upward fluxes of NO and NO2 with counter-gradient fluxes of NO. We find that NOx fluxes from the forest canopy are smaller than calculated using observed flux-gradient relationships for conserved tracers and also smaller than measured soil NO emissions. We interpret these differences as evidence for the existence of a "canopy reduction factor". We suggest that at this site it is primarily due to chemistry converting NOx to higher nitrogen oxides within the forest canopy.

  18. Possible relationship between the equatorial electrojet (EEJ) and daytime vertical E × B drift velocities in F region from ROCSAT observations

    Science.gov (United States)

    Kumar, Sandeep; Veenadhari, B.; Tulasi Ram, S.; Su, S.-Y.; Kikuchi, T.

    2016-10-01

    The vertical E × B drift is very important parameter as its day to day variability has great influence on the variability in the low latitude F-region ion and electron density distributions. The measurements of vertical ion velocity from the first Republic of China Satellite (ROCSAT-1) provide a unique data base for the development of possible relationship between vertical E × B drifts and ground based magnetometer observation. An attempt has been made to derive quantitative relationship between F-region vertical E × B drifts measured by ROCSAT-1 (600 km) and ground measured equatorial electrojet for the solar maximum period 2001-2003 for Indian and Japanese sectors. The results consistently indicate existence of linear relationship between the measured vertical E × B drifts at topside F-region and EEJ for both the sectors, with a moderate to high correlation coefficients. The linear relationship between ROCSAT-1 measured E × B drifts and EEJ for Indian and Japanese sectors has been compared with a similar relationship with Jicamarca Unattended Long-term Ionosphere Atmosphere Radar (JULIA) measured E × B drifts (150 km echos) and EEJ strength from Peruvian sector during 2003. It has been found that ROCSAT-1 measured E × B drifts shows linear relationship with EEJ, however, exhibits a larger scatter unlike JULIA radar observed E × B drifts. This may be attributed to the large height difference as ROCSAT-1 measures E × B drifts at 600 km altitude and the EEJ is E-region (110 km) phenomenon.

  19. Determining Effects of Wagon Mass and Vehicle Velocity on Vertical Vibrations of a Rail Vehicle Moving with a Constant Acceleration on a Bridge Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    C. Mızrak

    2015-01-01

    Full Text Available Vibrations are vital for derailment safety and passenger comfort which may occur on rail vehicles due to the truck and nearby conditions. In particular, while traversing a bridge, dynamic interaction forces due to moving loads increase the vibrations even further. In this study, the vertical vibrations of a rail vehicle at the midpoint of a bridge, where the amount of deflection is expected to be maximum, were determined by means of a 1 : 5 scaled roller rig and Newmark-β numerical method. Simulations for different wagon masses and vehicle velocities were performed using both techniques. The results obtained from the numerical and experimental methods were compared and it was demonstrated that the former was accurate with an 8.9% error margin. Numerical simulations were performed by identifying different test combinations with Taguchi experiment design. After evaluating the obtained results by means of an ANOVA analysis, it was determined that the wagon mass had a decreasing effect on the vertical vibrations of the rail vehicle by 2.087%, while rail vehicle velocity had an increasing effect on the vibrations by 96.384%.

  20. Vertical and longitudinal gradients in HNA-LNA cell abundances and cytometric characteristics in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    F. Van Wambeke

    2011-07-01

    Full Text Available Heterotrophic bacterioplankton abundance and production were investigated with depth (down to bathypelagic layers and with longitude (from 4.9° E to 32.7° E along a cruise track across the Mediterranean Sea in early summer 2008. Abundances and flow cytometric characteristics (green fluorescence and side scatter signals of high nucleic acid (HNA and low nucleic acid (LNA bacterial cells were determined using flow cytometry. Contrary to what is generally observed, the relative importance of HNA cells, as a percent of total cells, (%HNA, range 30–69 % was inversely related to bacterial production (range 0.15–44 ng C l−1 h−1 although the negative relation was weak (log–log regression r2=0.19. The %HNA as well as the mean side scatter of HNA group increased significantly with depth in the meso and bathypelagic layers. Vertical stratification played an important role in influencing the distribution and characteristics of bacterial cells especially with regard to layers located above, within or below the deep chlorophyll maximum. Within a given layer, the relationships between the flow cytometric characteristics and environmental variables such as chlorophyll-a, nutrients or bacterial production changed. Overall, the relationships between HNA and LNA cells and environmental parameters differed vertically more than longitudinally.

  1. Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding

    Directory of Open Access Journals (Sweden)

    L. F. Millán

    2016-09-01

    Full Text Available This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS, the HALogen Occultation Experiment (HALOE and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery than coarse nonuniform sampling such as that of solar occultation instruments.

  2. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  3. Forma da interface e gradiente de pressão no padrão liquido-liquido anular vertical ascendente

    OpenAIRE

    Oscar Mauricio Hernandez Rodriguez

    2002-01-01

    Resumo: Neste trabalho foi estudado o padrão de escoamento bifásico líquido-líquido anular vertical ascendente, visando sua aplicação para a elevação de petróleo pesado. Um dos principais problemas referentes à viabilidade econômica da movimentação deste tipo de óleo são os enormes gradientes de pressão por fricção envolvidos. A técnica estudada consiste no transporte hidráulico de fluidos altamente viscosos através da injeção de pequenas quantidades de água, de tal forma a criar uma adequada...

  4. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Vertical E × B drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data

    Directory of Open Access Journals (Sweden)

    I. Horvath

    2003-04-01

    Full Text Available With a well-selected data set, the various events of the vertical E × B drift velocity variations at magnetic-equator-latitudes, the resultant ionospheric features at low-and mid-latitudes, and the practical consequences of these E × B events on the equatorial radio signal propagation are demonstrated. On a global scale, the development of a equatorial anomaly is illustrated with a series of 1995 global TOPEX TEC (total electron content maps. Locally, in the Australian longitude region, some field-aligned TOPEX TEC cross sections are combined with the matching Guam (144.86° E; 13.59° N, geographic GPS (Global Positioning System TEC data, covering the northern crest of the equatorial anomaly. Together, the 1998 TOPEX and GPS TEC data are utilized to show the three main events of vertical E × B drift velocity variations: (1 the pre-reversal enhancement, (2 the reversal and (3 the downward maximum. Their effects on the dual-frequency GPS recordings are documented with the raw Guam GPS TEC data and with the filtered Guam GPS dTEC/min or 1-min GPS TEC data after Aarons et al. (1997. During these E × B drift velocity events, the Port Moresby (147.10° E; - 9.40° N, geographic virtual height or h'F ionosonde data (km, which cover the southern crest of the equatorial anomaly in the Australian longitude region, show the effects of plasma drift on the equatorial ionosphere. With the net (D horizontal (H magnetic field intensity parameter, introduced and called DH or Hequator-Hnon-equator (nT by Chandra and Rastogi (1974, the daily E × B drift velocity variations are illustrated at 121° E (geographic in the Australian longitude region. The results obtained with the various data show very clearly that the development of mid-latitude night-time TEC increases is triggered by the westward electric field as the appearance of such night-time TEC increases coincides with the E × B drift velocity reversal. An explanation is offered with the F

  6. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  7. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  8. Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere

    Directory of Open Access Journals (Sweden)

    H. Luce

    2007-02-01

    Full Text Available Many experimental studies have demonstrated that VHF Stratosphere-Troposphere (ST radar echo power is proportional to the generalized refractive index gradient squared M2 when using a vertically oriented beam. Because humidity is generally negligible above the tropopause, VHF ST radars can thus provide information on the static stability (quantified by the squared Brunt-Väisälä frequency N2 at stratospheric heights and this capability is useful for many scientific applications. Most studies have been performed until now at a vertical resolution of 150 m or more. In the present paper, results of comparisons between radar- and (balloon borne radiosonde-derived M2 and N2 are shown at a better vertical resolution of 50 m with the MU radar (34.85° N, 136.15° E; Japan by benefiting from the range resolution improvement provided by the multi-frequency range imaging technique, using the Capon processing method. Owing to favorable winds in the troposphere, the radiosondes did not drift horizontally more than about 30 km from the MU radar site by the time they reached an altitude of 20 km. The measurements were thus simultaneous and almost collocated. Very good agreements have been obtained between both high resolution profiles of M2, as well as profiles of N2. It is also shown that this agreement can still be improved by taking into account a frozen-in advection of the air parcels by a horizontally uniform wind. Therefore, it can be concluded that 1 the range imaging technique with the Capon method really provides substantial range resolution improvement, despite the relatively weak Signal-to-Noise Ratios (SNR over the analyzed region of the lower stratosphere, 2 the proportionality of the radar echo power to M2 at a vertical scale down to 50 m in the lower stratosphere is experimentally demonstrated, 3 the MU radar can provide stability profiles with a vertical resolution of 50 m at heights where humidity is negligible, 4 stable stratospheric

  9. Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere

    Directory of Open Access Journals (Sweden)

    H. Luce

    2007-02-01

    Full Text Available Many experimental studies have demonstrated that VHF Stratosphere-Troposphere (ST radar echo power is proportional to the generalized refractive index gradient squared M2 when using a vertically oriented beam. Because humidity is generally negligible above the tropopause, VHF ST radars can thus provide information on the static stability (quantified by the squared Brunt-Väisälä frequency N2 at stratospheric heights and this capability is useful for many scientific applications. Most studies have been performed until now at a vertical resolution of 150 m or more. In the present paper, results of comparisons between radar- and (balloon borne radiosonde-derived M2 and N2 are shown at a better vertical resolution of 50 m with the MU radar (34.85° N, 136.15° E; Japan by benefiting from the range resolution improvement provided by the multi-frequency range imaging technique, using the Capon processing method. Owing to favorable winds in the troposphere, the radiosondes did not drift horizontally more than about 30 km from the MU radar site by the time they reached an altitude of 20 km. The measurements were thus simultaneous and almost collocated. Very good agreements have been obtained between both high resolution profiles of M2, as well as profiles of N2. It is also shown that this agreement can still be improved by taking into account a frozen-in advection of the air parcels by a horizontally uniform wind. Therefore, it can be concluded that 1 the range imaging technique with the Capon method really provides substantial range resolution improvement, despite the relatively weak Signal-to-Noise Ratios (SNR over the analyzed region of the lower stratosphere, 2 the proportionality of the radar echo power to M2 at a vertical scale down to 50 m in the lower stratosphere is experimentally demonstrated, 3 the MU radar can

  10. Variations in the structural and functional diversity of zooplankton over vertical and horizontal environmental gradients en route to the Arctic Ocean through the Fram Strait.

    Science.gov (United States)

    Gluchowska, Marta; Trudnowska, Emilia; Goszczko, Ilona; Kubiszyn, Anna Maria; Blachowiak-Samolyk, Katarzyna; Walczowski, Waldemar; Kwasniewski, Slawomir

    2017-01-01

    A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical

  11. THE EFFECTS OF GRADIENT VELOCITY AND DETENTION TIME TO COAGULATION – FLOCCULATION OF DYES AND ORGANIC COMPOUND IN DEEP WELL WATER

    Directory of Open Access Journals (Sweden)

    Muhamad Lindu

    2010-06-01

    Full Text Available The treatment of deep well water of Trisakti University by coagulation and flocculation using baffle channel system has been conducted. The detention time of hydrolic were varied. The coagulant dose was varied as 50, 100, 150, 200, 300, 350, 400, 450 and 500 ppm. Water of well sampel was added by coagulant with rotation velocity 200 rpm for 1 minute. The optimal coagulant dose was determined by measuring turbidity, colour, total suspended solids and organic compound. The result showed that the organic compound and colour of deep well water of Trisakti University could be reduced by coagulation and flocculation process by hydrolyc system. The optimal dose of the coagulant was 250 ppm. The removal efficiency of colour and organic compound using optimal dose for continuous flow reactor reached after water flow passed the reactor for 3 - 5 times detention time in the reactor. The optimal gradient velocity (G was 30 - 35 sec-1 and collision energy (GT was 65.000 - 79.000 to get optimal flocculation. With this condition, the removal efficiency of turbidity, colour and organic was more than 90%.   Keywords: coagulation, flocculation, colour, organic compound, deep well

  12. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system is often in the order of a couple kilometers long. Based on CFD analyses (computational fluid dynamics......Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  13. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    Science.gov (United States)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( global warming where intensification and/or expansion of the oceanic OMZs is projected.

  14. Reconstructing the Late Pleistocene Southern Ocean biological pump using the vertical gradient of Cd/Ca in planktic and benthic foraminifera

    Science.gov (United States)

    Charidemou, Miros; Hall, Ian; Ziegler, Martin

    2015-04-01

    The Southern Ocean is a particularly important region in the global carbon cycle because its wind-driven upwelling regime brings CO2-rich deep waters to the ocean surface. However, outgassing of CO2 to the atmosphere is ultimately determined by the efficiency of the soft-tissue biological pump which transfers carbon back into the deep sea. Biological productivity in the Southern Ocean on glacial-interglacial timescales is thought to be influenced by the availability of iron from terrestrial dust sources (Martin, 1990). However, the exact nature of the relationship between productivity and dust flux is still debated (Ziegler et al., 2013; Martinez-Garcia et al., 2014) and remains unclear for earlier times such as during the Middle Pleistocene Transition (MPT). Changes in the strength of the soft-tissue biological pump can be reconstructed with relative ease by measuring carbon isotopes in planktic and benthic foraminifera and quantifying the vertical gradient between them (Ziegler et al., 2013). Our ultimate aim is to use this technique to reconstruct changes in the biological pump in the Southern Ocean during the MPT, when a sharp rise in dust flux is observed in the sedimentary record (Martinez-Garcia et al., 2011). This will allow us to assess the contribution of changes in the Southern Ocean biological pump to the climatic reorganisation that occurred during the MPT. However, before the Δδ13C record is constructed for the MPT it is vital to confirm that this method is indeed a reliable proxy for the soft-tissue biological pump. Records of Δδ13C can be influenced by changes in the whole ocean inventory of δ13C, changes in circulation and changes in the degree of fractionation between the ocean and the atmosphere. The impact of inventory and circulation changes can be minimised by careful selection of study sites and by targeting foraminifera that live within specific water masses. However, deviations of Δδ13C from the biological signal could certainly

  15. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    Science.gov (United States)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p

  16. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Jean A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te

  17. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst).

    Science.gov (United States)

    Adriaenssens, Sandy; Hansen, Karin; Staelens, Jeroen; Wuyts, Karen; De Schrijver, An; Baeten, Lander; Boeckx, Pascal; Samson, Roeland; Verheyen, Kris

    2012-03-15

    To assess the impact of air pollution on forest ecosystems, the canopy is usually considered as a constant single layer in interaction with the atmosphere and incident rain, which could influence the measurement accuracy. In this study the variation of througfall deposition and derived dry deposition and canopy exchange were studied along a vertical gradient in the canopy of one European beech (Fagus sylvatica L.) tree and two Norway spruce (Picea abies (L.) Karst) trees. Throughfall and net throughfall deposition of all ions other than H(+) increased significantly with canopy depth in the middle and lower canopy of the beech tree and in the whole canopy of the spruce trees. Moreover, throughfall and net throughfall of all ions in the spruce canopy decreased with increasing distance to the trunk. Dry deposition occurred mainly in the upper canopy and was highest during the growing season for H(+), NH(4)(+), NO(3)(-) and highest during the dormant season for Na(+), Cl(-), SO(4)(2-) (beech and spruce) and K(+), Ca(2+) and Mg(2+) (spruce only). Canopy leaching of K(+), Ca(2+) and Mg(2+) was observed at all canopy levels and was higher for the beech tree compared to the spruce trees. Canopy uptake of inorganic nitrogen and H(+) occurred mainly in the upper canopy, although significant canopy uptake was found in the middle canopy as well. Canopy exchange was always higher during the growing season compared to the dormant season. This spatial and temporal variation indicates that biogeochemical deposition models would benefit from a multilayer approach for shade-tolerant tree species such as beech and spruce. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients

    Directory of Open Access Journals (Sweden)

    S. Krause

    2012-06-01

    Full Text Available This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS and observations of vertical hydraulic gradients (VHG.

    FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature.

    VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.

  19. Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: A new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity

    Science.gov (United States)

    Pinault, Jean-Louis; Baubron, Jean-Claude

    1997-08-01

    Signal processing of diurnal and semidiurnal variations of both atmospheric pressure and radon concentration in soil gases is shown to be useful for estimating soil gas transport parameters. The two daily-cycle peaks at 12- and 24-hour periods in the Power Spectral Density (PSD) of atmospheric pressure seem to be present everywhere on Earth's surface, and it is the effect of these regular pressure variations on the radon concentration in soil gases that makes it possible to determine three soil gas transport parameters which can be used to estimate real gas velocity; i.e. tortuosity τ, the ratio k/n between intrinsic permeability and effective porosity (that part of porosity involved in gas transport), and the pressure gradient α. The parameters k and n can be determined independently if the gas flux at the surface is measured at the same time. The method is robust, representative, and accurate: since it allows reliable estimation of transport parameters, it can provide relevant information about the depth of the radon source and the time it takes for information to reach the surface when radon bursts occur at depth. Radon is an appropriate soil gas tracer because it exists in all soils. Moreover, the measurement of radon concentration requires only passive sensors that do not hamper the rising gas column. Gas flux data obtained in Andalusia, Spain, in connection with mineral exploration are processed as examples. Determining the complete set of transport parameters helps in the interpretation of recorded radon outbursts, which are found to be correlated with regional seismic activity.

  20. Analyses of Current And Wave Forces on Velocity Caps

    OpenAIRE

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.; Jensen, Bjarne

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system...

  1. Inversion gradients for acoustic VTI wavefield tomography

    KAUST Repository

    Li, Vladimir

    2017-03-21

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  2. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  3. Vertically aligned CNT growth on a microfabricated silicon heater with integrated temperature control—determination of the activation energy from a continuous thermal gradient

    DEFF Research Database (Denmark)

    Engstrøm, Daniel Southcott; Rupesinghe, Nalin L; Teo, Kenneth B K

    2011-01-01

    Silicon microheaters for local growth of a vertically aligned carbon nanotube (VACNT) were fabricated. The microheaters had a four-point-probe structure that measured the silicon conductivity variations in the heated region which is a measure of the temperature. Through FEM simulations...

  4. The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NARCIS (Netherlands)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of

  5. The ATLAS(3D) project : XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NARCIS (Netherlands)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-01-01

    We explore the connection between the local escape velocity, V-esc, and the stellar population properties in the ATLAS(3D) survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses

  6. The effect of horizontal gradients and spatial measurement resolution on the retrieval of global vertical NO2 distributions from SCIAMACHY measurements in limb only mode

    Directory of Open Access Journals (Sweden)

    U. Platt

    2010-08-01

    Full Text Available Limb measurements provided by the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY on the ENVISAT satellite allow retrieving stratospheric profiles of various trace gases on a global scale. Combining measurements of the same air volume from different viewing positions along the orbit, a tomographic approach can be applied and 2-D distribution fields of stratospheric trace gases can be acquired in one inversion. With this approach, it is possible to improve the accounting for the effect of horizontal gradients in the trace gas distribution on the profile retrieval. This was shown in a previous study for the retrieval of NO2 and OClO profiles in the Arctic region near the polar vortex boundary. In this study, the tomographic retrieval is applied on measurements during special limb-only orbits performed on 14 December 2008. For these orbits the distance between consecutive limb scanning sequences was reduced to ~3.3° of the orbital circle (i.e. more than two times with respect to the nominal operational mode. Thus, the same air volumes are scanned successively by more than one scanning sequence also for midlatitudes and the tropics. It is found that the profiles obtained by the tomographic 2-D approach show significant differences to those obtained by the 1-D approach. In particular, for regions close to stratospheric transport barriers (i.e. near to the edge of the polar vortex and subtropical transport barrier up to 50% larger or smaller NO2 number densities (depending on the sign of the gradient along the line of sight for altitudes below the peak of the profile (around 20 km are obtained. The limb-only measurements allow examining the systematic error if the horizontal gradient is not accounted for, and studying the impact of the gradient strength on the profile retrieval on a global scale. The findings for the actual SCIAMACHY observations are verified by sensitivity studies for simulated data for which the NO2

  7. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    Science.gov (United States)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  8. Effects of light conditions and temperature gradients on vertical migration behavior of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma)

    Science.gov (United States)

    Flanders, K. R.; Laurel, B.

    2016-02-01

    Early life stages of marine fishes must maximize growth while minimizing vulnerability to predators. Larval stages in particular are subject to ocean currents, but encounter favorable habitats by adjusting their vertical position in the water column. The investigation of environmental cues that change larval fish behavior is therefore crucial to understanding larval drift and dispersal modeling, and subsequently population structure and connectivity. In this study, the behavioral responses of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma) in a vertical water column were examined. Two prominent environmental variables, light and temperature, were manipulated over 3 h during observational trials. Light intensity was studied at two levels (1.484 x 101 μE m-2 s-1 ; 2.54 x102 μE m-2 s-1), and a diel effect was studied through the removal of light after 2 h. Light intensity did not significantly impact the position of either species in a vertical water column. However, a significant difference by species was apparent when all light levels were considered: the mean position of Arctic cod was closer to the surface of the water than that of walleye pollock. The effect of temperature through the introduction of a thermocline (range 5.6°C - 1.5°C) was limited to walleye pollock given the Arctic cod larvae were surface oriented across all light treatments. However, the thermocline did not significantly impact the relative change in position from light to dark in walleye pollock, likely because they were also surface oriented in control treatments. These results could be incorporated into future larval dispersal and survival models, particularly in Alaskan and Arctic waters, to investigate changes in species distributions resulting from global warming impacts. These results also indicate population structures of Arctic cod and walleye pollock could be affected, which may be reflected in ecosystem and trophic interactions. Because Arctic cod

  9. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  10. A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930

  11. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players.

    Science.gov (United States)

    Rodríguez-Rosell, David; Torres-Torrelo, Julio; Franco-Márquez, Felipe; González-Suárez, José Manuel; González-Badillo, Juan José

    2017-07-01

    The purpose of this study was to compare the effects of combined light-load maximal lifting velocity weight training (WT) and plyometric training (PT) with WT alone on strength, jump and sprint performance in semiprofessional soccer players. Experimental, pre-post tests measures. Thirty adult soccer players were randomly assigned into three groups: WT alone (FSG, n=10), WT combined to jump and sprint exercises (COM, n=10) and control group (CG, n=10). WT consisted of full squat with low load (∼45-60% 1RM) and low volume (4-6 repetitions). Training program was performed twice a week for 6 weeks of competitive season in addition to 4 soccer sessions a week. Sprint time in 10 and 20m, jump height (CMJ), estimated one-repetition maximum (1RM est ) and velocity developed against different absolute loads in full squat were measured before and after training period. Both experimental groups showed significant improvements in 1RM est (17.4-13.4%; p<0.001), CMJ (7.1-5.2%; p<0.001), sprint time (3.6-0.7%; p<0.05-0.001) and force-velocity relationships (16.9-6.1%; p<0.05-0.001), whereas no significant gains were found in CG. No significant differences were found between FSG and COM. Despite FSG resulted of greater increases in strength variables than COM, this may not translate into superior improvements in the sport-related performance. In fact, COM showed higher efficacy of transfer of strength gains to sprint ability. Therefore, these findings suggest that a combined WT and PT program could represent a more efficient method for improving activities which involve acceleration, deceleration and jumps compared to WT alone. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. A non-hydrostatic global spectral dynamical core using a height-based vertical coordinate

    Directory of Open Access Journals (Sweden)

    Juan Simarro

    2013-06-01

    Full Text Available Most of the dynamical cores of operational global models can be broadly classified according to the spatial discretisation into two categories: spectral models with mass-based vertical coordinate and grid point models with height-based vertical coordinate. This article describes a new non-hydrostatic dynamical core for a global model that uses the spectral transform method for the horizontal directions and a height-based vertical coordinate. Velocity is expressed in the contravariant basis (instead of the geographical orthonormal basis pointing to the East, North and Zenith directions so that the expressions of the boundary conditions and the divergence of the velocity are simpler. Prognostic variables in our model are the contravariant components of the velocity, the logarithm of pressure and the logarithm of temperature. Covariant tensor analysis is used to derive the differential operators of the prognostic equations, such as the curl, gradient, divergence and covariant derivative of the contravariant velocity. A Lorenz type grid is used in the vertical direction, with the vertical contravariant velocity staggered with respect to the other prognostic variables. High-order vertical operators are constructed following the finite difference technique. Time stepping is semi-implicit because it allows for long time steps that compensates the cost of the spectral transformations. A set of experiments reported in the literature is implemented so as to confirm the accuracy and efficiency of the new dynamical core.

  13. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  14. Trophic structure of two intertidal Fucus spp. communities along a vertical gradient: Similarity and seasonal stability evidenced with δ13C and δ15N

    Science.gov (United States)

    Bordeyne, François; Davoult, Dominique; Migné, Aline; Bertaud du Chazaud, Euriell; Leroux, Cédric; Riera, Pascal

    2017-02-01

    Intertidal communities dominated by canopy-forming macroalgae typically exhibit some differences in their specific composition that are related to their location along the emersion gradient of rocky shores. Tidal level is also expected to affect resource availability for both primary producers and consumers, potentially leading to divergence in the trophic structure of these communities. Furthermore, in temperate areas, the alternation of seasons has usually a large influence on the primary production and on life-history traits of numerous species, which may induce some changes in the food webs of intertidal communities. Thus, this study aimed to investigate the trophic structure of two intertidal communities located at different tidal levels, over several seasons. Focusing on the dominant species of primary producers and consumers, the food webs of the Fucus vesiculosus Linnaeus and Fucus serratus Linnaeus communities were studied during four successive seasons, using an isotopic (δ13C and δ15N) approach. Due to the diversity of primary producers and consumers living in these two communities, food webs were relatively complex and composed of several trophic pathways. These food webs remained rather conserved over the successive seasons, even though some variability in isotopic signature and in diet has been highlighted for several species. Finally, despite their location at different tidal levels, the two Fucus spp. communities exhibited nearly the same trophic structure, with common consumer species displaying similar isotopic signature in both of them.

  15. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  16. Analysis of altimeter data jointly with seafloor electric data (vertically integrated velocity) and VCTD-yoyo data (detailed profiles of VCTD)

    Science.gov (United States)

    Tarits, Pascal D.; Menvielle, M.; Provost, C.; Filloux, J. H.

    1991-01-01

    We propose simultaneous analyses of the TOPEX/POSEIDON altimetry data, in situ data--mainly permanent seafloor electric recordings--and velocity, conductivity, temperature, density (VCTD)-yoyo data at several stations in areas of scientific interest. We are planning experiments in various areas of low and high energy levels. Several complementary and redundant methods will be used to characterize the ocean circulation and its short- and long-term variability. We shall emphasize long-term measurement using permanent stations. Our major initial objectives with the TOPEX/POSEIDON mission are the Confluence area in the Argentine Basin and the Circumpolar Antarctic Current. An early experiment was carried out in the Confluence zone in 1988 and 1990 (Confluence Principal Investigators, 1990) to prepare for an intensive phase later one. This intensive phase will include new types of instrumentation. Preliminary experiments will be carried out in the Mediterranean Sea (in 1991) and in the North Atlantic Ocean (in 1992, north of the Canary Islands) to test the new instrumentation.

  17. A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity

    Energy Technology Data Exchange (ETDEWEB)

    Wyant, Matthew C.; Bretherton, Christopher S. [University of Washington, Department of Atmospheric Sciences, Box 351640, Seattle, WA (United States); Bacmeister, Julio T. [Goddard Spaceflight Center, NASA Global Modeling and Assimilation Office, Greenbelt, MD (United States); Kiehl, Jeffrey T. [National Center for Atmospheric Research, Boulder, CO (United States); Held, Isaac M.; Zhao, Ming [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Klein, Stephen A. [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Lawrence Livermore National Laboratory, The Atmospheric Science Division, Livermore, CA (United States); Soden, Brian J. [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); University of Miami, Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, Miami, FL (United States)

    2006-08-15

    Low-latitude cloud distributions and cloud responses to climate perturbations are compared in near-current versions of three leading U.S. AGCMs, the NCAR CAM 3.0, the GFDL AM2.12b, and the NASA GMAO NSIPP-2 model. The analysis technique of Bony et al. (Clim Dyn 22:71-86, 2004) is used to sort cloud variables by dynamical regime using the monthly mean pressure velocity {omega} at 500 hPa from 30S to 30N. All models simulate the climatological monthly mean top-of-atmosphere longwave and shortwave cloud radiative forcing (CRF) adequately in all {omega}-regimes. However, they disagree with each other and with ISCCP satellite observations in regime-sorted cloud fraction, condensate amount, and cloud-top height. All models have too little cloud with tops in the middle troposphere and too much thin cirrus in ascent regimes. In subsidence regimes one model simulates cloud condensate to be too near the surface, while another generates condensate over an excessively deep layer of the lower troposphere. Standardized climate perturbation experiments of the three models are also compared, including uniform SST increase, patterned SST increase, and doubled CO{sub 2} over a mixed layer ocean. The regime-sorted cloud and CRF perturbations are very different between models, and show lesser, but still significant, differences between the same model simulating different types of imposed climate perturbation. There is a negative correlation across all general circulation models (GCMs) and climate perturbations between changes in tropical low cloud cover and changes in net CRF, suggesting a dominant role for boundary layer cloud in these changes. For some of the cases presented, upper-level clouds in deep convection regimes are also important, and changes in such regimes can either reinforce or partially cancel the net CRF response from the boundary layer cloud in subsidence regimes. This study highlights the continuing uncertainty in both low and high cloud feedbacks simulated by GCMs

  18. Using Borehole Vertical Array Data to Determine Local Attenuation and Velocity Structure: A Combined Global-Local Optimization Algorithm for Plane Wave Seismogram Inversion

    Science.gov (United States)

    Assimaki, D.; Tsuda, K.; Oakes, J.; Steidl, J.

    2004-12-01

    A seismic waveform inversion algorithm is demonstrated for the estimation of elastic soil properties from one-dimensional downhole array recordings. For a given bedrock motion, scarcity of near-surface geotechnical information, error propagation and limited resolution of the continuum usually result in predictions of surface ground motion that poorly compare with low amplitude observations. This discrepancy is further aggravated for strong ground motion, associated with hysteretic, nonlinear, and potentially irreversible material deformations. Seismogram inversion is a nonlinear multi-parameter optimization problem. Traditional search techniques that use characteristics of the problem to determine the next sampling point (e.g. gradients, Hessians, linearity and continuity) are computationally efficient, yet limited to convex regular functions. As a result, they fail to identify the best fit solution in seismogram inversion problems, when the starting model is too far from the global optimal solution. On the other hand, stochastic search techniques (e.g. genetic algorithms, simulated annealing) have been shown to efficiently identify promising regions in the search space, but perform very poorly in a localized search. The proposed inversion technique is a two-step process, namely a genetic algorithm in the wavelet domain in series with a nonlinear least-square fit in the frequency domain; we thus improve the computational efficiency of the former, while avoiding the pitfalls of using local linearization techniques such as the latter for the optimization of multi-modal, discontinuous and non-differentiable functions. The parameters to be estimated are stepwise variations of the shear modulus, attenuation and density with depth, for horizontally layered media with refined near-surface discretization. Equality constrains are imposed on the vector of unknowns to bound the search space, based on the available soil investigation. For the genetic algorithm, the objective

  19. Gradient computation for VTI acoustic wavefield tomography

    KAUST Repository

    Li, Vladimir

    2016-09-06

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a pseudospectral operator that employes a separable approximation of the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified stack-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations. Whereas the kernels computed with the two wave-equation operators are similar, the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show that the modified stack-power objective function produces cleaner gradients than the more conventional DSO operator.

  20. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Directory of Open Access Journals (Sweden)

    S. Tang

    2016-11-01

    Full Text Available This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1 and apparent moisture sink (Q2 profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs that were conducted from 15 February to 26 March 2014 (wet season and from 1 September to 10 October 2014 (dry season near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5 experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  1. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; Zhang, Minghua; Schumacher, Courtney; Upton, Hannah; Jensen, Michael P.; Johnson, Karen L.; Wang, Meng; Ahlgrimm, Maike; Feng, Zhe; Minnis, Patrick; Thieman, Mandana

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  2. Buoyancy induced Couette-Poiseuille flow in a vertical microchannel

    Science.gov (United States)

    Narahari, M.

    2017-10-01

    The fully developed buoyancy-induced (natural convective) Couette-Poiseuille flow in a vertical microchannel is investigated with the velocity slip and temperature jump boundary conditions. Closed form analytical solutions for the velocity and temperature fields are obtained. The effects of the fluid-wall interaction parameter, wall-ambient temperature difference ratio, Knudsen number, mixed convection parameter, and the dimensionless pressure gradient on the velocity, temperature, volume flow rate, heat flux between the plates and the Nusselt number have been discussed in detail through graphs. The outcomes of the investigation indicate that the volume flow rate increases with increasing values of mixed convection parameter, wall-ambient temperature difference ratio, and Knudsen number.

  3. Vertical shaft windmill

    Science.gov (United States)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  4. Applicability of Stokes method for measuring viscosity of mixtures with concentration gradient

    Directory of Open Access Journals (Sweden)

    César Medina

    2017-12-01

    Full Text Available After measuring density and viscosity of a mixture of glycerin and water contained in a vertical pipe, a variation of these properties according to depth is observed. These gradients are typical of non-equilibrium states related to the lower density of water and the fact that relatively long times are necessary to achieve homogeneity. In the same pipe, the falling velocity of five little spheres is measured as a function of depth, and then a numerical fit is performed which agrees very well with experimental data. Based on the generalization of these results, the applicability of Stokes method is discussed for measuring viscosity of mixtures with a concentration gradient.

  5. Lateral and vertical thermal diffusivities in a dense fluidized bed with tubes bundle

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, M.A.; Martin, G.; Le Gal, J.H. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1995-07-01

    Dense fluidized beds are acknowledge as homogeneous systems from both temperature and composition aspects. However, some situation such as very large units or fluidized beds with tubes bundle lead to thermal gradients within the bed. These thermal gradients are due to solids motion limitation and may have detrimental effects on the process. This paper relates investigations aiming an determining lateral and vertical thermal diffusivities in a dense fluidized bed with an without a tubes bundle. These investigations have been carried out with an experimental setup of significant size (bed size = 0.6 x 1.1 x 1.3) and with small particles (less 500 microns) so as to fill some gaps of the literature. Thermal diffusivities have been deduced from temperature gradients measured between a hot wall and a cold wall in a perpendicular fluidized bed and by applying a conventional 2-D conduction model. Lateral thermal conductivities as well as vertical thermal conductivities increase with the gas velocity and the height of the bed, and when the particle size decreases. Immersing a vertical tube bundle into the fluidized bed leads to a significant reduction of the lateral thermal diffusivity, while there is no effect on the vertical thermal diffusivity. Correlations have been drawn from the experimental results. They would have to be applied for calculation of any system running at gas velocity ranging from 0.05 to 0.3 m/s and with particle size between 50 and 300 microns. (authors). 14 refs., 14 figs., 2 tabs.

  6. Second gradient poromechanics

    CERN Document Server

    Sciarra, Giulio; Coussy, Olivier

    2010-01-01

    Second gradient theories have been developed in mechanics for treating different phenomena as capillarity in fluids, plasticity and friction in granular materials or shear band deformations. Here, there is an attempt of formulating a second gradient Biot like model for porous materials. In particular the interest is focused in describing the local dilatant behaviour of a porous material induced by pore opening elastic and capillary interaction phenomena among neighbouring pores and related micro-filtration phenomena by means of a continuum microstructured model. The main idea is to extend the classical macroscopic Biot model by including in the description second gradient effects. This is done by assuming that the surface contribution to the external work rate functional depends on the normal derivative of the velocity or equivalently assuming that the strain work rate functional depends on the porosity and strain gradients. According to classical thermodynamics suitable restrictions for stresses and second g...

  7. Control of topography gradients on residence time distributions, mixing dynamics and reactive hotspot development

    Science.gov (United States)

    Bandopadhyay, Aditya; Le Borgne, Tanguy; Davy, Philippe

    2017-04-01

    Topography-driven subsurface flows are thought to play a central role in determining solute turnover and biogeochemical processes at different scales in the critical zone, including river-hyporheic zone exchanges, hillslope solute transport and reactions, and catchment biogeochemical cycles. Hydraulic head gradients, induced by topography gradients at different scales, generate a distribution of streamlines at depth, dictating the spatial distribution of redox sensitive species, the magnitude of surface water - ground water exchanges and ultimately the source/sink function of the subsurface. Flow velocities generally decrease with depth, leading to broad residence time distributions, which have been shown to affect river chemistry and geochemical reactions in catchments. In this presentation, we discuss the impact of topography-driven flows on mixing processes and the formation of localized reactive hotspots. For this, we solve analytically the coupled flow, mixing and reaction equations in two-dimensional vertical cross-sections of subsurface domains with different topography gradients. For a given topography gradient, we derive the spatial distribution of subsurface velocities, the rates of solute mixing accross streamlines and the induced kinetics of redox, precipitation and dissolution reactions using a Lagrangian approach (Le Borgne et al. 2014). We demonstrate that vertical velocity profiles driven by topography variations, act effectively as shear flows, hence stretching continuously the mixing fronts between recently infiltrated and resident water (Bandopadhyay et al. 2017). We thus derive analytical expressions for residence time distributions, mixing rates and kinetics of chemical reactions as a function of the topography gradients. We show that the rates dissolution and precipitation reactions are significantly enhanced by the existence of vertical velocity gradients and that reaction rates reach a maximum in a localized subsurface reactive layer, whose

  8. Gradient-drift instability and turbulence in the equatorial electrojet

    Science.gov (United States)

    Hu, Shuanghui

    The gradient-drift instability is of the Rayleigh-Taylor type, and is excited when equilibrium density gradients point in the direction of equilibrium electric fields. The linear and nonlinear evolution of the gradient-drift waves responsible for type II irregularities is studied theoretically using observed profiles in the equatorial electrojet. An outstanding challenge for theory is to account for the dominance of kilometer-scale structures in daytime as well as nighttime despite the fact that the density profiles during such conditions are quite different. A two-dimensional numerical system is designed to simulate gradient-drift turbulence in the equatorial electrojet, and to demonstrate the nonlinear energy cascade process. In the daytime, linearly unstable kilometer-scale waves grow at maximum growth rates as a result of the competition between the density-gradient drive and the damping due to diffusion, velocity shear, and recombination. The nonlinear mode coupling cascades energy from the linearly unstable long waves to the stable short waves, and results in turbulently saturated states with kilometer-scale structures, consistent with radar and in situ measurements. The vertical electron velocity spectra, constructed from the simulation output, show 1-2 km vertical structures which are qualitatively in agreement with high-resolution radar observations at the Jicamarca Radio Observatory in Peru. The nighttime density profiles, obtained by rocket flights at Alcantara (Brazil) during the Guara campaign in 1994, are much more jagged than the daytime ones and provide a strong density-gradient drive, with alternating stable and unstable regions in the vertical direction. In contrast with the daytime, the strong density-gradient drive produces peak linear growth rates at wavelengths of 10-20 meters. However, the kilometer-scale waves are also linearly unstable with sufficiently high growth rates that they play a crucial role in the nonlinear evolution of these

  9. Vertical compact torus injection into the STOR-M tokamak

    Science.gov (United States)

    Liu, Dazhi

    Central fuelling is a fundamental issue in the next generation tokamak-ITER (International Thermonuclear Experimental Reactor). It is essential for optimization of the bootstrap current which is proportional to the pressure gradient of trapped particles. The conventional fusion reactor fuelling techniques, such as gas puffing and cryogenic pellet injection, are considered inadequate to fulfill this goal due to premature ionization caused by high plasma temperature and density. Compact Torus (CT) injection is a promising fuelling technique for central fuelling a reactor-grade tokamak. An accelerated CT is expected to penetrate into the core region and deposit fuel there provided the CT kinetic energy density exceeds the magnetic energy density in a target plasma. This process is complicated and involves CT penetration into an external magnetic field, a CT stopping mechanism, magnetic reconnection, and excitation of plasma waves. CTs can be injected at different angles with respect to the tokamak toroidal magnetic field, either horizontally or vertically. Normally, CTs are injected radially in the mid-plane of a tokamak. In this configuration, CTs will undergo a decelerating force due to the gradient of the tokamak toroidal magnetic field. CTs will stop inside the tokamak chamber or bunce back depending on the relation between kinetic energy density of injected CTs and the tokamak toroidal magnetic field energy density. In the case of vertical injection, deeper penetration is expected due to the absence of the gradient of the tokamak toroidal field in that direction. Experimental investigations on vertical CT injection into a tokamak will be of great significance. The aim of this thesis is to experimentally investigate the feasibility of vertical CT injection into a tokamak and effects of CTs on tokamak plasma confinements. The Saskatchewan Torus-Modified (STOR-M) tokamak is currently the only tokamak equipped with a CT injector in the world. Vertical CT injection

  10. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  11. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  12. Numerical calculation of gas and liquid velocities along a vertical flat plate immersed in turbulent tow-phase bubbly flow. Kihoryuchu ni okareta suichoku heiban mawari no ranryu kieki 2 soryu ni kansuru suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, A.; Nakamura, H. (Daido Inst. of Technology, Nagoya (Japan)); Hiraoka, S.; Tada, Y.; Kato, Y. (Nagoya Inst. of Tech. (Japan))

    1993-11-10

    A numerical calculation was made on the bubbly flow using the Prandtl's mixing length theory. The calculation results agreed well with the experimental results in the turbulent flow rather than in the laminar flow. The necessity of discussion on the turbulent flow analysis was clarified. It was elucidated that the experimental results could be explained sufficiently even by the simplest mixing model. The liquid phase velocity vector was aligned on the same direction when the bubbly flow length exceeded 1 cm, and little change took place in the velocity distribution shape. In the analysis of laminar flow, the velocity boundary layer was developed together with tie bubbly flow length, while in the analysis of turbulent flow, such change did not take place. The liquid phase velocity in the vicinity of the inlet had a velocity component which directed to the outside of the wall at the wall side. It was quite different from the analytical result of the laminar flow. The gas phase velocity vector behaved in the similar way to the liquid phase. The velocity direction at the periphery of the velocity distribution in the vicinity of tie inlet was toward the wall surface, and the inlet velocity was rapidly accelerated. 12 refs., 4 figs.

  13. Salt Interval Velocities vs Latitude in the Deepwater Gulf of Mexico: Keathley Canyon and Walker Ridge Areas

    Science.gov (United States)

    Cornelius, S.; Castagna, J. P.

    2016-12-01

    ABSTRACT A well log database of approximately 300 well logs from the Keathley Canyon and Walker Ridge areas of the Gulf of Mexico plus Mad Dog Field and Mission Deep Field in Green Canyon has been created for the purpose of building a geologically based 3D velocity model. While in the process of calibrating the finished velocity model, a scatter plot was made of all salt interval velocities versus latitude and an unexpected correlation was observed. Five different interval velocity zones have been identified with each having certain associated mineralogies within a latitude range. The salt interval velocity in the southern limits of the study area is higher than 15,000 ft/sec (4572 m/sec) due to the presence of gypsum. The northern most wells in the project area have anhydrite present inside the salt matrix such that their interval velocity can be as high as 18,535 ft/sec (5650 m/sec). In the mid-latitude zones, sylvite, siltstone, claystone, shale, tar and bitumen, with small traces of both anhydrite and gypsum, are found within the salt, yielding salt interval velocity variation from 14,388 ft/sec to 14,909 ft/sec (4386 m/sec to 4544 m/sec). The mineralogical content of the salt in each well was roughly estimated from mud logs and the corresponding interval velocities were determined from vertical seismic profiles, checkshot surveys, and sonic logs. Both geothermal gradients and overburden geopressure gradients between the mudline and the true vertical depth at well bottom calculated from this well database do not show the same correlation with latitude as the salt interval velocities. Mineralogical modeling of the salt composition using Hashin-Shtrikman bounds shows that these various inclusions within the salt matrix can be the cause of the observed variations in the salt interval velocities.

  14. VELOCITY ANISOTROPY IN THE NIGER VDELTTXFSEDIMENTS ...

    African Journals Online (AJOL)

    Keywords: Intrinsic velocity anisotropy, Niger Delta, Thomsen's parameters, vertical i transverse isotropy (VT!) Introduction. In seismology, a layer is anisotropic if seismic waves propagate through it at different velocities in different directions. Sedimentary rocks possess some degree of intrinsic velocity anisotropy (Jones and.

  15. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Directory of Open Access Journals (Sweden)

    Aaiza Gul

    Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  16. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  17. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  18. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  19. The soil moisture velocity equation

    Science.gov (United States)

    Ogden, Fred L.; Allen, Myron B.; Lai, Wencong; Zhu, Jianting; Seo, Mookwon; Douglas, Craig C.; Talbot, Cary A.

    2017-06-01

    Numerical solution of the one-dimensional Richards' equation is the recommended method for coupling groundwater to the atmosphere through the vadose zone in hyperresolution Earth system models, but requires fine spatial discretization, is computationally expensive, and may not converge due to mathematical degeneracy or when sharp wetting fronts occur. We transformed the one-dimensional Richards' equation into a new equation that describes the velocity of moisture content values in an unsaturated soil under the actions of capillarity and gravity. We call this new equation the Soil Moisture Velocity Equation (SMVE). The SMVE consists of two terms: an advection-like term that accounts for gravity and the integrated capillary drive of the wetting front, and a diffusion-like term that describes the flux due to the shape of the wetting front capillarity profile divided by the vertical gradient of the capillary pressure head. The SMVE advection-like term can be converted to a relatively easy to solve ordinary differential equation (ODE) using the method of lines and solved using a finite moisture-content discretization. Comparing against analytical solutions of Richards' equation shows that the SMVE advection-like term is >99% accurate for calculating infiltration fluxes neglecting the diffusion-like term. The ODE solution of the SMVE advection-like term is accurate, computationally efficient and reliable for calculating one-dimensional vadose zone fluxes in Earth system and large-scale coupled models of land-atmosphere interaction. It is also well suited for use in inverse problems such as when repeat remote sensing observations are used to infer soil hydraulic properties or soil moisture.Plain Language SummarySince its original publication in 1922, the so-called Richards' equation has been the only rigorous way to couple groundwater to the land surface through the unsaturated zone that lies between the water table and land surface. The soil moisture distribution and

  20. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  1. Simulating high ebb currents in the North Passage of the Yangtze estuary using a vertical 1-D model

    Science.gov (United States)

    Shao, Yuyang; Shen, Xiaoteng; Maa, Jerome P.-Y.; Shen, Jian

    2017-09-01

    A strong maximum ebb current (>3 m/s) in the upper water column was observed at Station CS3 in the middle of the North Passage of the Yangtze River Estuary during the wet season, which was higher than either its upstream or downstream counterparts. To better understand the mechanisms and factors causing the strong ebb current, a vertical one-dimensional (1-D) model was used to conduct a diagnostic study. The model used time series of observed tidal amplitudes, vertical salinity, and suspended sediment concentration (SSC) profiles to compute the density and turbulence. Two tunable parameters, the tidal amplitude attenuation coefficient (i.e., the phase lag) and the background surface pressure gradient that represents the net pressure gradient induced by the freshwater discharge and baroclinic effect, were used to determine the best match with the observed high velocity amplitudes in addition to the bottom roughness height. Three hypotheses of possible causes are tested: (1) the large freshwater discharge, (2) the bottom stratification effects (which were caused by a possible high near-bed suspended sediment gradient), and (3) the unique location of the CS3 station that was influenced by local geometry. The findings show that neither of the first two factors has much influence on the pronounced ebb velocities. Instead, the energy loss caused by the change of channel geometry and a maximum convex bathymetry in the North Passage of the Yangtze River Estuary are the main reasons behind the extremely high observed ebb current velocity profiles. The high near-bottom SSC and gradient located within 0.5 m above the bed only slightly alters the velocity profiles. This 1-D model is convenient for testing a different hypothesis and for coupling with other selected variables to account for the floc size distributions in future studies.

  2. Kinematic Synthesis for Linkages with Velocity Targets

    Science.gov (United States)

    de-Juan, Ana; Sancibrian, Ramon; García, Pablo; Viadero, Fernando; Iglesias, Miguel; Fernández, Alfonso

    A gradient-based optimization method for designing linkages with velocity targets is described. Two theoretical application cases are established for four-bar linkage. In the first, a constant-velocity module is proposed for a point on the coupler. In the second, the goal is the velocity components. These cases are studied with and without coordination with the input link. The results obtained are compared with another gradient-based approach, and show that the method works efficiently for these types of target.

  3. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  4. Vertical saccades in dyslexic children.

    Science.gov (United States)

    Tiadi, Aimé; Seassau, Magali; Bui-Quoc, Emmanuel; Gerard, Christophe-Loïc; Bucci, Maria Pia

    2014-11-01

    Vertical saccades have never been studied in dyslexic children. We examined vertical visually guided saccades in fifty-six dyslexic children (mean age: 10.5±2.56 years old) and fifty-six age matched non dyslexic children (mean age: 10.3±1.74 years old). Binocular eye movements were recorded using an infrared video-oculography system (mobileEBT®, e(ye)BRAIN). Dyslexic children showed significantly longer latency than the non dyslexic group, also the occurrence of anticipatory and express saccades was more important in dyslexic than in non dyslexic children. The gain and the mean velocity values were significantly smaller in dyslexic than in non dyslexic children. Finally, the up-down asymmetry reported in normal population for the gain and the velocity of vertical saccades was observed in dyslexic children and interestingly, dyslexic children also reported an up-down asymmetry for the mean latency. Taken together all these findings suggested impairment in cortical areas responsible of vertical saccades performance and also at peripheral level of the extra-ocular oblique muscles; moreover, a visuo-attentionnal bias could explain the up-down asymmetry reported for the vertical saccade triggering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Program predicts two-phase pressure gradients

    Energy Technology Data Exchange (ETDEWEB)

    Jacks, D.C.; Hill, A.D.

    1983-11-18

    The calculator program discussed, ORK, was designed for the HP-41CV hand-held calculator and uses the Orkiszewski correlation for predicting 2-phase pressure gradients in vertical tubulars. Accurate predictions of pressure gradients in flowing and gas lift wells over a wide range of well conditions can be obtained with this method, which was developed based on data from 148 wells. The correlation is one of the best generalized 2-phase pressure gradient prediction methods developed to date for vertical flow. It is unique in that hold-up is derived from observed physical phenomena, and the pressure gradient is related to the geometrical distribution of the liquid and gas phase (flow regime).

  6. Thermal stability effects on the structure of the velocity field above an air-water interface

    Science.gov (United States)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  7. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons......, i.e. an ammonia concentration below which the trees and/or the surface emit ammonia due to an equilibrium with the ammonia inside the needles or on the surface. Emission of ammonia was also observed at relatively high ammonia concentration levels (above 2 mu g NH3-N m(-3)), mainly during one...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...

  8. Discussion of liquid threshold pressure gradient

    OpenAIRE

    Wang, Xiukun; James J. Sheng

    2017-01-01

    Some authors believe that a minimum pressure gradient (called threshold pressure gradient (TPG)) is required before a liquid starts to flow in a porous medium. In a tight or shale oil formation, this TPG phenomenon becomes more important, as it is more difficult for a fluid to flow. In this paper, experimental data on TPG published in the literature are carefully reviewed. What we found is that a very low flow velocity corresponding to a very low pressure gradient cannot be measured in the ex...

  9. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  10. Protein molecular weight computation from sedimentation velocity data

    NARCIS (Netherlands)

    Grievink, J; Houterman, R.T.B.; de Groot, K.

    1974-01-01

    In ultracentrifugation, the concentration gradient of mono-disperse samples obtained by sedimentation velocity experiments is described by Gehatia's equation which holds several parameters including the sedimentation and diffusion constants. Once these two constants are known, the molecular weight

  11. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  12. A process study of the interaction of tidal currents, tidal mixing and density gradients in a region of freshwater influence

    Science.gov (United States)

    Xing, Jiuxing; Chen, Shengli

    2017-08-01

    A three dimensional unstructured grid model of the west coast of Britain is used to study the process of the interaction of tidal currents, tidal mixing and density gradient in the Liverpool Bay region. Calculations with M2 tidal forcing and omitting freshwater discharge show that tidal currents in the region are strong (of order 1 ms- 1), with tidal current ellipses essentially rectilinear in the surface and bottom. In the absence of tidal forcing, the freshwater is confined to a thin surface layer. With the inclusion of tidal mixing the surface layer thickens, and in the shallow water area mixed layer occupies the whole water depth. This has a significant effect of reducing its lateral spread. A detailed study of time series of velocity, salinity and turbulence reveals that at flood tide, more saline water is advected into the coastal region and rapid vertical mixing occurs, whereas at ebb tide, fresher water is advected over more saline water. The induced strong pycnocline uncouples surface and bottom layers leading to more circular tidal ellipses which rotate in opposite directions in the vertical, as found in observations. The three dimensional nature of the model reveals that this process involves both horizontal and vertical density gradients, and shows significant horizontal variability in the Liverpool Bay region.

  13. Vertical saccades in children: a developmental study.

    Science.gov (United States)

    Bucci, Maria Pia; Seassau, Magali

    2014-03-01

    There are no studies exploring the development of vertical saccades in large populations of children. In this study, we examined the development of vertical saccades in sixty-nine children. Binocular eye movements were recorded using an infrared video oculography system [Mobile EBT(®), e(ye)BRAIN], and movements from both eyes had been analyzed. The gain and the peak velocity of vertical saccades show an up-down asymmetry. Latency value decreases with the age of children, and it does not depend on the direction of the saccades; in contrast, the gain and the peak velocity values of vertical saccades are stable during childhood. We suggest that the up-down asymmetry is developed early, or is innate, in humans. Latencies of vertical saccades develop with the age of children, in relationship with the development of the cortical network responsible for the saccade preparation. In contrast, the precision and the peak velocity are not age-dependent as they are controlled by the cerebellum and brainstem structures.

  14. A model for thin layer formation by delayed particle settling at sharp density gradients

    Science.gov (United States)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  15. Chemically grafted carbon nanotube surface coverage gradients.

    Science.gov (United States)

    Shearer, Cameron J; Ellis, Amanda V; Shapter, Joseph G; Voelcker, Nicolas H

    2010-12-07

    Two approaches to producing gradients of vertically aligned single-walled carbon nanotubes (SWCNTs) on silicon surfaces by chemical grafting are presented here. The first approach involves the use of a porous silicon (pSi) substrate featuring a pore size gradient, which is functionalized with 3-aminopropyltriethoxysilane (APTES). Carboxylated SWCNTs are then immobilized on the topography gradient via carbodiimide coupling. Our results show that as the pSi pore size and porosity increase across the substrate the SWCNT coverage decreases concurrently. In contrast, the second gradient is an amine-functionality gradient produced by means of vapor-phase diffusion of APTES from a reservoir onto a silicon wafer where APTES attachment changes as a function of distance from the APTES reservoir. Carboxylated SWCNTs are then immobilized via carbodiimide coupling to the amine-terminated silicon gradient. Our observations confirm that with decreasing APTES density on the surface the coverage of the attached SWCNTs also decreases. These gradient platforms pave the way for the time-efficient optimization of SWCNT coverage for applications ranging from field emission to water filtration to drug delivery.

  16. Measurement of velocity and velocity derivatives based on pattern tracking in 3D LIF images

    Energy Technology Data Exchange (ETDEWEB)

    Deusch, S.; Merava, H.; Rys, P. [Swiss Federal Inst. of Technol., Zurich (Switzerland). Dept. of Chem. Eng.; Dracos, T. [Swiss Federal Institute of Technology, Untergasse 14, 8126 Zumikon (Switzerland)

    2000-10-01

    Pattern tracking in consecutive 3D LIF images based on least squares matching (LSM) of grey levels has been developed recently for velocity and velocity gradient measurements. The shortcomings of this method are clearly shown. The present article presents an improvement on this method by introducing a local multi-patch (LMP) technique through the LSM approach. The method is validated using the flow field of a turbulent channel flow obtained by direct numerical simulation (DNS) and a synthetic image with grey-level patterns. The results show that LMP matching allows the determination of the velocity and the velocity gradient fields with high accuracy including the second derivatives. Measurements of a round non-buoyant jet are presented which demonstrate the good performance of the method when applied under laboratory conditions. This method can also be applied on two-dimensional images provided that the flow is strictly two-dimensional. (orig.)

  17. Measurement of velocity and velocity derivatives based on pattern tracking in 3D LIF images

    Science.gov (United States)

    Deusch, S.; Merava, H.; Dracos, T.; Rys, P.

    Pattern tracking in consecutive 3D LIF images based on least squares matching (LSM) of grey levels has been developed recently for velocity and velocity gradient measurements. The shortcomings of this method are clearly shown. The present article presents an improvement on this method by introducing a local multi-patch (LMP) technique through the LSM approach. The method is validated using the flow field of a turbulent channel flow obtained by direct numerical simulation (DNS) and a synthetic image with grey-level patterns. The results show that LMP matching allows the determination of the velocity and the velocity gradient fields with high accuracy including the second derivatives. Measurements of a round non-buoyant jet are presented which demonstrate the good performance of the method when applied under laboratory conditions. This method can also be applied on two-dimensional images provided that the flow is strictly two-dimensional.

  18. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  19. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia)

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.; Barkhatov, Y.V.; Tolomeev, A.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

    2010-01-01

    A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite

  20. Estuary-type circulation as a factor sustaining horizontal nutrient gradients in freshwater-influenced coastal systems

    Science.gov (United States)

    Hofmeister, Richard; Flöser, Götz; Schartau, Markus

    2017-04-01

    Estuary-type circulation is a residual circulation in coastal systems with horizontal density gradients. It drives the accumulation of suspended particulate matter in coastal embayments where density gradients are sustained by some freshwater inflow from rivers. Ebenhöh et al. (Ecol Model 174(3):241-252, 2004) found that shallow water depth can explain nutrient gradients becoming established towards the coast even in the absence of river inflow. The present study follows their concept and investigates the characteristic transport of organic matter towards the coast based on idealised scenarios whereby an estuary-type circulation is maintained by surface freshwater fluxes and pronounced shoaling towards the coast. A coupled hydrodynamical and biogeochemical model is used to simulate the dynamics of nutrient gradients and to derive budgets of organic matter flux for a coastal transect. Horizontal nutrient gradients are considered only in terms of tidal asymmetries of suspended matter transport. The results show that the accumulation of organic matter near the coast is not only highly sensitive to variations in the sinking velocity of suspended matter but is also noticeably enhanced by an increase in precipitation. This scenario is comparable with North Sea conditions. By contrast, horizontal nutrient gradients would be reversed in the case of evaporation-dominated inverse estuaries (cf. reverse gradients of nutrient and organic matter concentrations). Credible coastal nutrient budget calculations are required for resolving trends in eutrophication. For tidal systems, the present results suggest that these calculations require an explicit consideration of freshwater flux and asymmetries in tidal mixing. In the present case, the nutrient budget for the vertically mixed zone also indicates carbon pumping from the shelf sea towards the coast from as far offshore as 25 km.

  1. Acquired vertical accommodative vergence.

    Science.gov (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A

    2008-03-08

    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  2. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Directory of Open Access Journals (Sweden)

    Wenli Cai

    Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  3. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  4. Effects of Isometric Scaling on Vertical Jumping Performance

    NARCIS (Netherlands)

    Bobbert, M.F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does

  5. Vertical pneumatic conveying in dilute and dense-phase flows: experimental study of the influence of particle density and diameter on fluid dynamic behavior

    Directory of Open Access Journals (Sweden)

    Narimatsu C.P.

    2001-01-01

    Full Text Available In this work, the effects of particle size and density on the fluid dynamic behavior of vertical gas-solid transport of Group D particles in a 53.4 mm diameter transport tube were studied. For the conditions tested, the experimental curves of pressure gradient versus air velocity presented a minimum pressure gradient point, which is associated with a change in the flow regime from dense to dilute phase. The increases in particle size from 1.00 to 3.68 mm and in density from 935 to 2500 kg/m³ caused an increase in pressure gradient for the dense-phase transport region, but were not relevant in dilute transport. The transition velocity between dense and dilute flow (Umin also increased with increasing particle density and diameter. An empirical equation was fitted for predicting transition air velocity for the transport of glass spheres. Additional experiments, covering a wider range of conditions and particles properties, are still needed to allow the fitting of a generalized equation for prediction of Umin.

  6. Free Convective Flow of a Reacting Fluid between Vertical Porous ...

    African Journals Online (AJOL)

    This study investigates free convective flow between vertical porous plates. The energy and momentum equations which arise from the definitions of temperature and velocity are written in dimensionless forms. The resulting second order equations are solved to obtain expressions for the velocity, temperature, mass transfer ...

  7. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    Science.gov (United States)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  8. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  9. New principle of magnetophoretic velocity mass analysis.

    Science.gov (United States)

    Watanabe, Katsuya; Suwa, Masayori; Watarai, Hitoshi

    2004-11-01

    We propose a novel principle of velocity mass analysis of a micro-particle using magnetophoretic force. The new method can determine the mass of a particle from its magnetophoretic velocity change in a high magnetic field gradient in a low viscous medium such as air. In the present study, the new principle was demonstrated by the magnetophoretic acceleration of an aqueous manganese(II) chloride micro-droplet and the deceleration of a water micro-droplet in the atmosphere. The observed velocity change was analyzed taking into account the mass of the droplet through the acceleration term of the equation of motion. The experimental results proved that the inertia force in the magnetophoretic velocity of a micro-particle could be detected in air. The present method provided an innovative mass analysis method without any ionization of the sample.

  10. Universal gradient descent

    OpenAIRE

    Gasnikov, Alexander

    2017-01-01

    In this small book we collect many different and useful facts around gradient descent method. First of all we consider gradient descent with inexact oracle. We build a general model of optimized function that include composite optimization approach, level's methods, proximal methods etc. Then we investigate primal-dual properties of the gradient descent in general model set-up. At the end we generalize method to universal one.

  11. On the axis ratio of the stellar velocity ellipsoid in disks of spiral galaxies

    NARCIS (Netherlands)

    van der Kruit, PC; de Grijs, R

    1999-01-01

    The spatial distribution of stars in a disk of a galaxy can be described by a radial scale length and a vertical scale height. The ratio of these two scale parameters contains information on the axis ratio of the velocity ellipsoid, i.e. the ratio of the vertical to radial stellar velocity

  12. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  13. Gradient and vorticity banding

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2008-01-01

    "Banded structures" of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as "gradient banding" or "vorticity banding,"

  14. Probability distribution of vertical longitudinal shear fluctuations.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    This paper discusses some recent measurements of third and fourth moments of vertical differences (shears) of longitudinal velocity fluctuations obtained in unstable air at the NASA 150 m meteorological tower site at Cape Kennedy, Fla. Each set of measurements consisted of longitudinal velocity fluctuation time histories obtained at the 18, 30, 60, 90, 120 and 150 m levels, so that 15 wind-shear time histories were obtained from each set of measurements. It appears that the distribution function of the longitudinal wind fluctuations at two levels is not bivariate Gaussian. The implications of the results relative to the design and operation of aerospace vehicles are discussed.-

  15. The Shoulder Gradient in Patients with Unilateral Shoulder Impingement Syndrome

    OpenAIRE

    Kim, Hee-Sang; Lee, Jong Ha; Yun, Dong Hwan; Yun, Jee-Sang; Shin, Yong Won; Chon, Jinmann; Hwang, Dae Gyu

    2011-01-01

    Objective To investigate the relationship between the shoulder gradient and acromiohumeral interval of both shoulders in patients with unilateral shoulder impingement syndrome. Method Using the angulometer, we measured the shoulder gradient in patients with unilateral shoulder impingement syndrome in a standing position. Using the radiography, we measured the acromiohumeral interval and the angle between a vertical line and a line connecting a superior angle with an inferior angle of the scap...

  16. Annular beam with segmented phase gradients

    Directory of Open Access Journals (Sweden)

    Shubo Cheng

    2016-08-01

    Full Text Available An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  17. Annular beam with segmented phase gradients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shubo; Wu, Liang [School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Tao, Shaohua, E-mail: eshtao@csu.edu.cn [School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China)

    2016-08-15

    An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  18. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging...... of RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....

  19. Thermoacoustic mixture separation with an axial temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Drew W [Los Alamos National Laboratory; Swift, Gregory A [Los Alamos National Laboratory

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  20. Vertical and horizontal spheroidal boundary-value problems

    Science.gov (United States)

    Šprlák, Michal; Tangdamrongsub, Natthachet

    2017-12-01

    Vertical and horizontal spheroidal boundary-value problems (BVPs), i.e., determination of the external gravitational potential from the components of the gravitational gradient on the spheroid, are discussed in this article. The gravitational gradient is decomposed into the series of the vertical and horizontal vector spheroidal harmonics, before being orthogonalized in a weighted sense by two different approaches. The vertical and horizontal spheroidal BVPs are then formulated and solved in the spectral and spatial domains. Both orthogonalization methods provide the same analytical solutions for the vertical spheroidal BVP, and give distinct, but equivalent, analytical solutions for the horizontal spheroidal BVP. A closed-loop simulation is performed to test the correctness of the analytical solutions, and we investigate analytical properties of the sub-integral kernels. The systematic treatment of the spheroidal BVPs and the resulting mathematical equations extend the theoretical apparatus of geodesy and of the potential theory.

  1. Normal planar undulators doubling as transverse gradient undulators

    Science.gov (United States)

    Jia, Qika; Li, Heting

    2017-02-01

    The transverse gradient undulator (TGU) has important application in the short-wavelength high-gain free electron lasers (FELs) driven by laser-plasma accelerators. However, the usual transversely tapered TGUs need special design and manufacture, and the transverse gradient cannot be tuned arbitrarily. In this paper we explore a new and simple method of using the natural transverse gradient of a normal planar undulator to compensate the beam energy spread effect. In this method, a vertical dispersion on the electron beam is introduced, then the dispersed beam passes through a normal undulator with a vertical off-axis orbit where the vertical field gradient is selected properly related to the dispersion strength and the beam energy spread. Theoretical analysis and numerical simulations for self-amplified spontaneous emission FELs based on laser plasma accelerators are presented, and indicate that this method can greatly reduce the effect of the beam energy spread, leading to a similar enhancement on FEL performance as the usual transversely tapered TGU, but with the advantages of economy, tunable transverse gradient and no demand of extra field for correcting the orbit deflection induced by the field gradient.

  2. Noninvasive estimation of 2-D pressure gradients in steady flow using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2014-01-01

    A noninvasive method for estimating 2-D pressure gradients from ultrasound vector velocity data is presented. It relies on vector velocity fields acquired using the transverse oscillation method during steady flow conditions. The pressure gradients are calculated from the velocity fields using...... phantom. The geometry of the model is determined from magnetic resonance imaging. The presented study is conducted assuming steady flow using velocity data acquired at 18 frames per second. The proposed method shows pressure gradients at the constricted region from -8 kPa/m to 9 kPa/m, with a maximum bias...... of -7% for the axial component and -8% for the lateral component. The relative standard deviation of the estimator is 5% (axial component) and 30% (lateral component) when studying the pressure gradient across the constriction using 3 velocity frames per pressure estimate. The study shows that 2-D...

  3. Dynamics of Chemotactic Droplets in Salt Concentration Gradients

    DEFF Research Database (Denmark)

    Cejkova, J.; Novak, M.; Stepanek, F.

    2014-01-01

    The chemotactic movement of decanol droplets in aqueous solutions of sodium decanoate in response to concentration gradients of NaCl has been investigated. Key parameters of the chemotactic response, namely the induction time and the migration velocity, have been evaluated as a function of the so...... of movement repeatedly, to carry and release a chemically reactive cargo, to select a stronger concentration gradient from two options, and to initiate chemotaxis by an external temperature stimulus have been demonstrated....

  4. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Directory of Open Access Journals (Sweden)

    Milana Damjenić

    2016-07-01

    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  5. High-Velocity Clouds

    NARCIS (Netherlands)

    Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard

    2013-01-01

    The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes

  6. A one-dimensional model of vertical stratification of Lake Shira focussed on winter conditions and ice cover

    NARCIS (Netherlands)

    Genova, S.N.; Belolipetsky, V.M.; Rogozin, D.Y.; Degermendzhy, A.G.; Mooij, W.M.

    2010-01-01

    In meromictic lakes such as Lake Shira, horizontal inhomogeneity is small in comparison with vertical gradients. To determine the vertical distribution of temperature, salinity, and density of water in a deep zone of a Lake Shira, or other saline lakes, a one-dimensional (in vertical direction)

  7. Vertical atlantoaxial dislocation

    OpenAIRE

    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.

    1999-01-01

    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  8. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  9. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  10. Composition of vertical gardens

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  11. Evolution of a Planar Wake in Adverse Pressure Gradient

    Science.gov (United States)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  12. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    Science.gov (United States)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m‑2·s‑1 to 70 kg·m‑2·s‑1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  13. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  14. Preconditioned Stochastic Gradient Descent.

    Science.gov (United States)

    Li, Xi-Lin

    2017-03-09

    Stochastic gradient descent (SGD) still is the workhorse for many practical problems. However, it converges slow, and can be difficult to tune. It is possible to precondition SGD to accelerate its convergence remarkably. But many attempts in this direction either aim at solving specialized problems, or result in significantly more complicated methods than SGD. This paper proposes a new method to adaptively estimate a preconditioner, such that the amplitudes of perturbations of preconditioned stochastic gradient match that of the perturbations of parameters to be optimized in a way comparable to Newton method for deterministic optimization. Unlike the preconditioners based on secant equation fitting as done in deterministic quasi-Newton methods, which assume positive definite Hessian and approximate its inverse, the new preconditioner works equally well for both convex and nonconvex optimizations with exact or noisy gradients. When stochastic gradient is used, it can naturally damp the gradient noise to stabilize SGD. Efficient preconditioner estimation methods are developed, and with reasonable simplifications, they are applicable to large-scale problems. Experimental results demonstrate that equipped with the new preconditioner, without any tuning effort, preconditioned SGD can efficiently solve many challenging problems like the training of a deep neural network or a recurrent neural network requiring extremely long-term memories.

  15. Entire vertical graphs in Riemannian product spaces | de Lima ...

    African Journals Online (AJOL)

    We extend the technique developed by S.T. Yau in [21] in order to investigate the rigidity of entire vertical graphs in a Riemannian product space R × Mn, whose fiber Mn is supposed to have Ricci curvature with strict sign. In this setting, under a suitable restriction on the norm of the gradient of the function u which ...

  16. Viral lysis of marine microbes in relation to vertical stratification

    NARCIS (Netherlands)

    Mojica, K.D.A.

    2015-01-01

    The overall aim of this thesis is to investigate how changes in vertical stratification affect autotrophic and heterotrophic microbial communities along a meridional gradient in the Atlantic Ocean. The Northeast Atlantic Ocean is a key area in global ocean circulation and a important sink for

  17. Moisture content effect on ultrasonic velocity in Goupia glabra

    Directory of Open Access Journals (Sweden)

    Fabiana Goia Rosa de Oliveira

    2005-03-01

    Full Text Available This paper discusses the application of ultrasound waves on a Brazilian hardwood, Goupia glabra, to evaluate the sensitivity of the ultrasonic technique to the moisture content in wood. The velocity of ultrasonic wave is sensitive to the material's quality-determining factors; hence, this technique is an important industrial tool to improve the quality control of processes. The nature of the response of velocity of sound to changes in moisture content led us to conclude that moisture gradients during drying exert a dominating effect. The ultrasonic velocity was measured both parallel and perpendicular to the fibers of Goupia glabra during drying from green to 6% moisture content. The results of this study showed that velocity of ultrasonic waves is sensitive to changes in moisture content of lumber during drying. The velocity under dry conditions was always higher than the velocity under more humid conditions, in both directions of propagation.

  18. Eccentricity samples: Implications on the potential and the velocity distribution

    Directory of Open Access Journals (Sweden)

    Cubarsi R.

    2017-01-01

    Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  19. Eccentricity Samples: Implications on the Potential and the Velocity Distribution

    Science.gov (United States)

    Cubarsi, R.; Stojanović, M.; Ninković, S.

    2017-06-01

    Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples.

  20. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  1. Coding of Velocity Storage in the Vestibular Nuclei

    Science.gov (United States)

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO

  2. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes.

    Science.gov (United States)

    Murata, T; Secomb, T W

    1989-01-01

    The flow properties of aggregating red cell suspensions flowing at low rates through vertical tubes with diameters from 30 microns to 150 microns are analyzed using a theoretical model. Unidirectional flow is assumed, and the distributions of velocity and red cell concentration are assumed to be axisymmetric. A three-layer approximation is used for the distribution of red cells, with a cylindrical central core of aggregated red cells moving with uniform velocity, a cell-free marginal layer near the tube wall, and an annular region located between the core and the marginal layer containing suspended non-aggregating red cells. This suspension is assumed to behave approximately as a Newtonian fluid whose viscosity increases exponentially with red cell concentration. Physical arguments concerning the mechanics of red cell attachment to, and detachment from the aggregated core lead to a kinetic equation for core formation. From this kinetic equation and the equation for conservation of red cell volume flux, a relationship between core radius and pressure gradient is obtained. Then the relative viscosity is calculated as a function of pseudo-shear rate. At low flow rates, it is shown that the relative viscosity decreases with decreasing flow and that the dependence of relative viscosity on shear rates is more pronounced in larger tubes. It is also found that the relative viscosity decreases with increasing aggregation tendency of suspension. These theoretical predictions are in good qualitative and quantitative agreement with experimental results.

  3. Brine migration in salt in a thermal gradient

    Science.gov (United States)

    Kang, M.; Lerche, M.; Lesher, C. E.

    2015-12-01

    Salt deposits have long been considered viable repositories for long-term storage of high-level nuclear waste. However, brine trapped in salt tends to migrate up thermal gradients, such as can develop around radioactive waste storage containers, potentially promoting corrosion of containment structures. Brine inclusions move up the temperature gradient through the three main steps: 1) the dissolution of salt at the hot side of the inclusion caused by increased salt solubility, 2) ordinary and thermal diffusion of dissolved salt ions within the inclusion, and 3) precipitation of salt at the cold side of the inclusion due to local supersaturation. This process of brine transport through salt under a thermal gradient is generally referred to as thermal migration. Here we investigated thermal migration of brine inclusion in salts for a wide range of mean temperatures (~ 50 °C to ~200 °C) and temperature gradients (~ 10 °C/cm to ~57 °C/cm). With time brine inclusions moving towards the heat source become elongated parallel to the thermal gradient. We quantified the rate of brine migration as a function of mean temperature and thermal gradient using time-lapse optical microscope. X -ray and neutron tomography were used to visualize and quantify 3D spatial distribution of brine inclusion in a salt crystal at different stages of thermal migration. Migration velocities are shown to increase with temperature, temperature gradient and size of inclusion. We find an abrupt increase in migration velocity at certain time steps of thermal migration. Migration velocities of brine inclusions ranged from 0.1 m/year to 30.7 m/year. Empirical equations at different velocity regions for brine inclusions were obtained by fitting exponential equations to the experimental data with high coefficient of determination values (R2> 0.94).The experimental results are in good agreement with the theoretical migration rates obtained using a previous analytical model.

  4. Uniform gradient expansions

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2015-06-01

    Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  5. Wind tunnel investigation of a 14 foot vertical axis windmill

    Science.gov (United States)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  6. Auroral E-region electron density gradients measured

    Directory of Open Access Journals (Sweden)

    C. Haldoupis

    2000-09-01

    Full Text Available In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, ∇Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz=Ne/(dNe/dz, at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.Key words: Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities  

  7. Auroral E-region electron density gradients measured

    Directory of Open Access Journals (Sweden)

    G. Hussey

    Full Text Available In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, ∇Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz=Ne/(dNe/dz, at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.Key words: Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities  

  8. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  9. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  10. Probabilistic Multileave Gradient Descent

    NARCIS (Netherlands)

    Oosterhuis, H.; Schuth, A.; de Rijke, M.; Ferro, N.; Crestani, F.; Moens, M.-F.; Mothe, J.; Silvestri, F.; Di Nunzio, G.M.; Hauff, C.; Silvello, G.

    2016-01-01

    Online learning to rank methods aim to optimize ranking models based on user interactions. The dueling bandit gradient descent (DBGD) algorithm is able to effectively optimize linear ranking models solely from user interactions. We propose an extension of DBGD, called probabilistic multileave

  11. Developing Regionalized Models of Lithospheric Thickness and Velocity Structure Across Eurasia and the Middle East from Jointly Inverting P-Wave and S-Wave Receiver Functions with Rayleigh Wave Group and Phase Velocities

    Science.gov (United States)

    2011-09-01

    constant sub- Moho velocity and velocity gradient. Because the mantle lithosphere is parameterized as infinitely thick with a constant velocity...increase up to 4.5 km/s at Moho depths. The mantle is PREM-like and does not display any velocity decrease suggestive of a lithosphere-asthenosphere...models were inverted down to a depth of 250 km and constrained to be PREM below. The low-velocity channel is bounded by the red dotted lines, the Moho is

  12. Transverse spectral velocity estimation.

    Science.gov (United States)

    Jensen, Jørgen

    2014-11-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile flow using the Womersly-Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer. A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected for angles from 0° to 70° to give fully quantitative velocity spectra without operator intervention.

  13. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  14. Vertical slice modelling of nonlinear Eady waves using a compatible finite element method

    Science.gov (United States)

    Yamazaki, Hiroe; Shipton, Jemma; Cullen, Michael J. P.; Mitchell, Lawrence; Cotter, Colin J.

    2017-08-01

    A vertical slice model is developed for the Euler-Boussinesq equations with a constant temperature gradient in the direction normal to the slice (the Eady-Boussinesq model). The model is a solution of the full three-dimensional equations with no variation normal to the slice, which is an idealised problem used to study the formation and subsequent evolution of weather fronts. A compatible finite element method is used to discretise the governing equations. To extend the Charney-Phillips grid staggering in the compatible finite element framework, we use the same node locations for buoyancy as the vertical part of velocity and apply a transport scheme for a partially continuous finite element space. For the time discretisation, we solve the semi-implicit equations together with an explicit strong-stability-preserving Runge-Kutta scheme to all of the advection terms. The model reproduces several quasi-periodic lifecycles of fronts despite the presence of strong discontinuities. An asymptotic limit analysis based on the semi-geostrophic theory shows that the model solutions are converging to a solution in cross-front geostrophic balance. The results are consistent with the previous results using finite difference methods, indicating that the compatible finite element method is performing as well as finite difference methods for this test problem. We observe dissipation of kinetic energy of the cross-front velocity in the model due to the lack of resolution at the fronts, even though the energy loss is not likely to account for the large gap on the strength of the fronts between the model result and the semi-geostrophic limit solution.

  15. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    Science.gov (United States)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  16. Vertical jump coordination: fatigue effects.

    Science.gov (United States)

    Rodacki, André Luiz Felix; Fowler, Neil E; Bennett, Simon J

    2002-01-01

    The aim of this study was to investigate the segmental coordination of vertical jumps under fatigue of the knee extensor and flexor muscles. Eleven healthy and active subjects performed maximal vertical jumps with and without fatigue, which was imposed by requesting the subjects to extend/flex their knees continuously in a weight machine, until they could not lift a load corresponding to approximately 50% of their body weight. Knee extensor and flexor isokinetic peak torques were also measured before and after fatigue. Video, ground reaction forces, and electromyographic data were collected simultaneously and used to provide several variables of the jumps. Fatiguing the knee flexor muscles did not reduce the height of the jumps or induce changes in the kinematic, kinetic, and electromyographic profiles. Knee extensor fatigue caused the subjects to adjust several variables of the movement, in which the peak joint angular velocity, peak joint net moment, and power around the knee were reduced and occurred earlier in comparison with the nonfatigued jumps. The electromyographic data analyses indicated that the countermovement jumps were performed similarly, i.e., a single strategy was used, irrespective of which muscle group (extensor or flexors) or the changes imposed on the muscle force-generating characteristics (fatigue or nonfatigue). The subjects executed the movements as if they scaled a robust template motor program, which guided the movement execution in all jump conditions. It was speculated that training programs designed to improve jump height performance should avoid severe fatigue levels, which may cause the subjects to learn and adopt a nonoptimal and nonspecific coordination solution. It was suggested that the neural input used in the fatigued condition did not constitute an optimal solution and may have played a role in decreasing maximal jump height achievement.

  17. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    Directory of Open Access Journals (Sweden)

    Xinhui Zhu

    2016-02-01

    Full Text Available Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF. The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System and VLBI (very long baseline interferometry velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  18. Using remotely sensed data to estimate river characteristics including water-surface velocity and discharge

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; Legleiter, Carl; McDonald, Richard R.; Overstreet, Brandon; Conaway, Jeff

    2017-01-01

    This paper describes a project combining field studies and analyses directed at providing an assessment of the accuracy of remotely sensed methods for determining river characteristics such as velocity and discharge. In particular, we describe a remote sensing method for surface velocities using mid-wave thermal camera videography combined with image analysis. One of the critical problems in this work is determining a method for relating remotely measured water-surface velocities to vertically averaged velocities through a velocity index. We explore three similarity profiles that allow a relationship between surface and vertically averaged velocity to be found either using empirical results or simple roughness-to-depth ratios. To test the approaches we compare them in a situation where vertical structure is known over most of the flow depth through ADCP measurements. By determining best-fit profiles through the ADCP profiles, average values of the velocity index are found for the cross-sections where measurement were made. By comparing these to the predicted velocity indices from the three similarity profiles, we find that, although the differences between the various similarity profiles are substantial, they are smaller than differences associated with local nonuniformity and nonhydrostatic flow. Nevertheless, the velocity indices are accurate to about +/-5%, meaning that remotely sensed vertically averaged velocities can be computed to well within the current accuracy standard for such values when used for river gaging.

  19. High-velocity penetrators

    Science.gov (United States)

    Lundgren, Ronald G.

    This paper summarizes the results of studies, coupled with a series of tests, that investigated rigid-body projectiles (penetrators) at high (up to 5500 ft/sec) velocities. Before these studies, it had been hypothesized that a velocity limit would be reached at which increasing the velocity would not commensurately increase depth of penetration into a target. It was further inferred that a given velocity/ penetration depth curve would avalanche into the hydrodynamic regime; that is, increasing the velocity past a certain point would decrease penetration performance. The test series utilized 1/2-in., 3-in., and 5 1/2-in. diameter, ogive-nose steel projectiles and grout and concrete targets. The tests confirmed that penetration depth increased as striking velocity increased to 4000 ft/sec. However, beyond striking velocities of 4000 ft/sec, asymmetric erosion and indentation of the projectile nose from the aggregate caused the projectile trajectories to deviate severely from the target centerline. These trajectory deviations caused the projectile to exit the side of the target, severely bend, break, or exhibit decreased penetration performance, confirming the hypothesis. Clearly, these results were dependent on the specific material and geometric parameters. The projectiles had 3.0 and 4.25 CRH (Caliber-Radius-Head) nose shapes and were heat-treated to R(sub c) 38-40. The grout targets had a maximum aggregate diameter of 3/16 in. and a nominal unconfined compressive strength of 2.5 ksi. The concrete targets had a maximum aggregate diameter of 3/4 in. and unconfined compressive strength of 5.5 ksi.

  20. Estimating of gas transfer velocity using triple isotopes of dissolved oxygen.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Abe, O.; Honda, M.; Saino, T.

    The atmosphere-ocean exchange of climatically important gases is determined by the transfer velocity (k) and concentration gradient across the interface. Based on observations in the northwestern subarctic Pacific and Sagami Bay, we report here...

  1. Hepatic venous pressure gradients measured by duplex ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M

    2002-08-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  2. Experimental study of ``laminar'' bubbly flows in a vertical pipe

    Science.gov (United States)

    Kashinsky, O. N.; Timkin, L. S.; Cartellier, A.

    1993-09-01

    Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.

  3. Diel vertical migrat..

    African Journals Online (AJOL)

    2002-01-24

    Jan 24, 2002 ... crustacean zooplankton but also in a Wide array of different marine zooplankton groups. (Russell 1927, McLaren 1963). Thus there is no doubt that ..... cooperation during field work and for their fruitful discussion on the draft manuscript. REFERENCES. Bayly lAE 1986 Aspects of diel vertical migration in ...

  4. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  5. Hunting Voronoi vertices

    NARCIS (Netherlands)

    Ferrucci, V.; Overmars, Mark; Rao, A.; Vleugels, J.

    1994-01-01

    Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously from each. In this paper, we consider the problem of computing Voronoi vertices for planar objects of xed but possibly unknown shape; we only require the ability to query the closest point on an object

  6. Vertical deformation at western part of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  7. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  8. Plasma wave propagation with a plasma density gradient

    Science.gov (United States)

    Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup

    2011-03-01

    Plasma waves with the plasma diffusion velocity un due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 106 s-1 and it propagates with the group velocity ug˜cs2/un˜(105-106) m/s, where cs is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency ωpe. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

  9. Increasing SLEDed Linac Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2001-11-08

    This note will show how to increase the SLED [1] gradient by varying Q{sub e}, the external Q of the SLED cavity, by increasing its Q{sub 0} and by increasing the compression ratio. If varying the external Q is to be effective, then the copper losses should be small so that Q{sub 0} >> Q{sub e}. Methods of varying Q{sub e} will be indicated but no experimental data will be presented. If we increase the klystron pulse width from 3.5 to 5 {micro}S and increase Q{sub 0} from the present 100000 to 300000, then the gradient increases by 19% and the beam energy increases from 50 to 60 GeV. This note will also discuss SLED operation at 11424 MHz, the NLC frequency. Without Q{sub e} switching, using SLED at 11424 MHz increases the SLAC gradient from 21 MV/m to 34 MV/m, and at the same repetition rate, uses about 1/5 of rf average power. If we also double the compression ratio, we reach 47 MV/m and over 100 GeV beam energy.

  10. Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Olsen, Mark Holm; Svane, Inge Marie

    2015-01-01

    Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinement...

  11. Similarity solution for rarefied flow over a vertical stretched surface

    Science.gov (United States)

    Al-Kouz, W.; Kiwan, S.; Sari, M.; Alkhalidi, A.

    2017-07-01

    Similarity technique is used to solve for the laminar natural convection heat transfer for rarefied flows over a linearly vertical stretched surface. Such flows have significant importance in many engineering and manufacturing applications. It is found that the flow is affected by flow parameters, namely, velocity slip (K1), temperature jump (K2), and the Prandtl number (Pr).

  12. Comparison of Vertical Ionospheric Drifts Obtained by Different Techniques

    Science.gov (United States)

    Kouba, D.

    2016-12-01

    Since 2004 the ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde. In addition to classical ionograms the drift velocities in both E and F region using DDA method are measured routinely. However, vertical component of the drift velocity vector can be estimated by several different methods which can be found in the literature; for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper the direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. The ionospheric observatory in Pruhonice is midlatitudinal station and typicaly provides measurements in 15 minutes cadence. Due to the fact that the most papers use different indirect methods use equatorial data, we also focuse on results of equatorial stations and other stations that carry out measurements with higher cadence (5 minutes). Our comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisondes.

  13. Vertical gastroplasty: evolution of vertical banded gastroplasty.

    Science.gov (United States)

    Mason, E E; Doherty, C; Cullen, J J; Scott, D; Rodriguez, E M; Maher, J W

    1998-09-01

    The objective of this paper is to summarize the goals, technical requirements, advantages, and potential risks of gastroplasty for treatment of severe obesity. Gastroplasty is preferred to more complex operations, as it preserves normal digestion and absorption and avoids complications that are peculiar to exclusion operations. The medical literature and a 30-year experience at the University of Iowa Hospitals and Clinics (UIHC) provides an overview of vertical banded gastroplasty (VBG) evolution. Preliminary 10-year results with the VBG technique currently used at UIHC are included. At UIHC the VBG is preferred to other gastroplasties because it provides weight control that extends for at least 10 years and the required objective, intraoperative quality control required for a low rate of reoperation. It is recommended that modifications of the operative technique not be attempted until a surgeon has had experience with the standardized operation--and then only under a carefully designed protocol. Realistic goals for surgery and criteria of success influence the choice of operation and the optimum, lifelong risk/benefit ratio. In conclusion, VBG is a safe, long-term effective operation for severe obesity with advantages over complex operations and more restrictive simple operations.

  14. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  15. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  16. Near-wall velocity profile measurement for nanofluids

    Directory of Open Access Journals (Sweden)

    Anoop Kanjirakat

    2016-01-01

    Full Text Available We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.

  17. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  18. Wind-resistant design for high-rise buildings. Pt. 1. Vertical distribution of strong wind in typhoons captured by Doppler sodar; Chokoso kenchikubutsu no taifu sekkei ni kansuru kenkyu. 1. Kyofuji no fusoku no enchoku bunpu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Goto, A.; Kawaguchi, A. [Obayashi Corp., Tokyo (Japan)

    1999-07-10

    Wind structure in the lower atmosphere is studied observationally by using Doppler sodar. Observations have been carried out in Okinawa since 1994, focusing on the vertical profiles of the mean wind speed under strong wind conditions and comparing the differences of characteristics of wind structures between typhoon and non-typhoon conditions. It is found that the lower atmosphere tends to have a two-layered structure on typhoon days, where the layer with nearly constant wind speed is embedded in the other layer and has a vertical distribution of wind speed that is represented well by power laws. In the layer of nearly constant wind speed, the mean wind speed observed by the Doppler sodar corresponds well with that observed by rawin sonde. At the same time, it shows a good correspondence with the gradient wind speed derived from a theoretical typhoon model. Vertical profiles of mean wind speed under strong, but non-typhoon conditions, have similar profiles to those of the AIJ recommendation, while the lower boundary of the constant velocity layer often has an altitude of less than one hundred meters under typhoon conditions, which is significantly lower than the empirically known gradient height. Application of the results of this study to wind-resistant design of high-rise buildings is also discussed. (author)

  19. Density - Velocity Relationships in Explosive Volcanic Plumes

    Science.gov (United States)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2015-12-01

    Positively buoyant volcanic plumes rise until the bulk density of the plume is equal to the density of the ambient atmosphere. As ambient air mixes with the plume, it lowers the plume bulk density; thus, the plume is diluted enough to reach neutral density in a naturally stratified atmospheric environment. We produced scaled plumes in analogue laboratory experiments by injecting a saline solution with a tracer dye into distilled water, using a high-pressure injection system. We recorded each eruption with a CASIO HD digital camera and used ImageJ's FeatureJ Edge toolbox to identify individual eddies. We used an optical flow software based off the ImageJ toolbox FlowJ to determine the velocities along the edge of each eddy. Eddy densities were calculated by mapping the dye concentration to the RGB digital color value. We overlaid the eddy velocities over the densities in order to track the behavioral relationship between the two variables with regard to plume motion. As an eddy's bulk density decreases, the vertical velocity decreases; this is a result of decreased mass, and therefore momentum, in the eddy. Furthermore as the density rate of change increases, the eddy deceleration increases. Eddies are most dense at their top and least dense at their bottom. The less dense sections of the eddies have lower vertical velocities than the sections of the eddies with the higher densities, relating to the expanding radial size of an eddy as it rises and the preferential ingestion of ambient air at the base of eddies. Thus the mixing rate in volcanic plumes fluctuates not only as a function of height as described by the classic 1D entrainment hypothesis, but also as a function of position in an eddy itself.

  20. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  1. Scattering angle base filtering of the inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  2. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  3. METALLICITY DISTRIBUTION FUNCTIONS, RADIAL VELOCITIES, AND ALPHA ELEMENT ABUNDANCES IN THREE OFF-AXIS BULGE FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Kobayashi, Chiaki [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kunder, Andrea; De Propris, Roberto [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Pilachowski, Catherine A. [Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105 (United States); Koch, Andreas, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: c.kobayashi@herts.ac.uk, E-mail: akunder@ctio.noao.edu, E-mail: catyp@astro.indiana.edu, E-mail: akoch@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, Heidelberg (Germany)

    2013-03-10

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch stars in three Galactic bulge off-axis fields located near (l, b) = (-5.5, -7), (-4, -9), and (+8.5, +9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R Almost-Equal-To 18,000), high signal-to-noise ratio (S/N {approx} 75-300 pixel{sup -1}) spectra obtained with the Hydra spectrographs on the Blanco 4 m and WIYN 3.5 m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affected by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests that our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H] Almost-Equal-To -1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in off-axis fields. The off-axis vertical [Fe/H] gradient in the southern bulge is estimated to be {approx}0.4 dex kpc{sup -1}; however, comparison with the minor-axis data suggests that a strong radial gradient does not exist. The (+8.5, +9) field exhibits a higher than expected metallicity, with a median [Fe/H] = -0.23, that might be related to a stronger presence of the X-shaped bulge structure along that line-of-sight. This could also be the cause of an anomalous increase in the median radial velocity for intermediate metallicity stars in the (+8.5, +9) field. However, the overall radial velocity and dispersion for each field are in good agreement with recent surveys and bulge models. All fields exhibit an identical, strong decrease in velocity dispersion with increasing metallicity that is consistent with observations in similar minor-axis outer bulge fields. Additionally, the [O/Fe], [Si/Fe], and [Ca

  4. Rotating optical tubes for vertical transport of atoms

    Science.gov (United States)

    Al Rsheed, Anwar; Lyras, Andreas; Aldossary, Omar M.; Lembessis, Vassilis E.

    2016-12-01

    The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The rotation of the HOT induces a vertical motion for an atom initially at rest. The motion is a result of the action of two inertial forces, namely, the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom's global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported along the axis of the HOT. In this case, the rotating HOT operates as an optical Archimedes' screw for atoms.

  5. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  6. Compressive and extensive strain along gradient trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Gampert, Markus; Goebbert, Jens Henrik; Schaefer, Philip; Gauding, Michael; Peters, Norbert [Institut fuer Technische Verbrennung, RWTH Aachen (Germany); Aldudak, Fettah; Oberlack, Martin, E-mail: m.gampert@itv.rwth-aachen.de [Fachgebiet fuer Stroemungsdynamik, Technische Universitaet Darmstadt (Germany)

    2011-12-22

    Based on direct numerical simulations of forced turbulence, shear turbulence, decaying turbulence, a turbulent channel flow as well as a Kolmogorov flow with Taylor based Reynolds numbers Re{sub {lambda}} between 69 and 295, the normalized probability density function of the length distribution P-tilde (l-tilde) of dissipation elements, the conditional mean scalar difference < {Delta}k | l > at the extreme points as well as the scaling of the two-point velocity difference along gradient trajectories < {Delta}u{sub n}> are studied. Using the field of the instantanous turbulent kinetic energy k as a scalar, we find a good agreement between the model equation for P-tilde (l-tilde) as proposed by Wang and Peters (2008) and the results obtained in the different DNS cases. This confirms the independance of the model solution from both, the Reynolds number and the type of turbulent flow, so that it can be considered universally valid. In addition, we show a 2/3 scaling for the mean conditional scalar difference. In the second part of the paper, we examine the scaling of the conditional two-point velocity difference along gradient trajectories. In particular, we compare the linear s/{tau} scaling, where {tau} denotes an integral time scale and s the separation arclength along a gradient trajectory in the inertial range as derived by Wang (2009) with the s {center_dot} a{sub {infinity}} scaling, where a{sub {infinity}} denotes the asymtotic value of the conditional mean strain rate of large dissipation elements.

  7. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  8. Velocity and strain-rate analyses of the SCEC 3.0 velocity field

    Science.gov (United States)

    Wdowinski, S.; Bock, Y.

    2003-04-01

    The pre-released SCEC 3.0 velocity field consists of 845 velocity vectors, covering the entire Southern California region. It is about 3 times larger than the SCEC 2.0 field, which was released in 1998 and contains 343 velocity vectors. We analyze the new SCEC 3.0 velocity field following and improving the quasi-two-dimensional analyses developed by Wdowinski et al. [2001] for the 2.0 velocity field. The new analyses include the following steps: (1) Pole of Deformation (PoD) calculation; the PoD is a point on the Earth’s surface, in which small circles about this point are best, aligned with the velocity vectors of the deforming zone. (2) Transforming the velocity field into the PoD reference frame. (3) Characterization of the velocity field by segments of similar velocity transition between the Pacific and North American plates and orthogonal profiles along the plate boundary region. (4) Calculating velocity and velocity gradient for all segments and profiles using zero-phase digital filters and numerical derivation, respectively. (5) Calculation of regional strain-rate maps, and (6) back-transformation of the strain-rate maps into the regular north-pole reference frame. The results of our analyses show that shear deformation with high strain-rate is detected along a dozen narrow belts, which coincide with active geologic fault segments and high level of seismicity along the San Andreas Fault System. In the highly populated Los Angeles area, our analyses detected high strain-rate localization along the Newport-Inglewood fault and across the Ventura Basin. In the regional scale, our analyses show that the interseismic deformation of the wide diffused deforming NA-PA plate boundary region is localized along a finite number of narrow belts. Because no prior assumptions were made regarding the geology, tectonics, or seismicity of the region, our analysis demonstrates that geodetic observations alone can be used to detect active fault segments.

  9. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...

  10. Fracture gradient: a new methodology that allows for more safety and economy; Gradiente de fratura: nova metodologia proporciona seguranca e economia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Helio M.R. dos [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao; Foutoura, Sergio A.B. da [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    1989-12-31

    The purpose of this paper is to show the influence of in-situ stresses and well geometry (direction and inclinational) on the fracture gradient. The results that are presented, obtained through computer simulation using an analytical model of the stresses around the well, show that in some cases it may be very dangerous to use fracture gradient data from vertical wells when dealing with non vertical wells. Likewise, it may also be unsafe to use results from absorption tests as the fracture gradient for the complete phase. The paper also indicates that, depending on the in-situ stresses and on the geometry of the well, the fracture gradient of a non-vertical well may be larger or smaller than that of vertical wells. Another aspects emphasized is that, through the use of more accurate calculations of the fracture gradient, it is possible to obtain great cost reduction, due to the fact that the casing strings will be designed in a more appropriate manner. (author) 12 refs., 4 figs.

  11. High-Velocity Clouds

    CERN Document Server

    Woerden, Hugo; Schwarz, Ulrich J; Boer, Klaas S

    2005-01-01

    This book contains 17 chapters reviewing our knowledge of the high-velocity clouds (HVCs) as of 2004, bringing this together in one place for the first time. Each of the many different aspects of HVC research is addressed by one of the experts in that subfield. These include a historical overview of HVC research and analyses of the structure and kinematics of HVCs. Separate chapters address the intermediate-velocity clouds, the Magellanic Stream, and neutral hydrogen HVCs discovered in external galaxies. Reviews are presented of the Ha emission and of optical and UV absorption-line studies, followed by discussions of the hot Galactic Halo and of the interactions between HVCs and their surroundings. Four chapters summarize the ideas about the origin of the high-velocity gas, with detailed discussions of connections between HVCs and the Galactic Fountain, tidally-stripped material, and remnants of the Milky Way's formation. A chapter outlining what we do not know completes the book. The book comes at a time whe...

  12. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  13. Mixed convection of micropolar fluid in a vertical double-passage ...

    African Journals Online (AJOL)

    The effect of the presence of a thin perfectly conductive baffle on the fully developed laminar mixed convection in a vertical channel containing micropolar fluid is analyzed. The channel has different constant wall temperatures. Analytical expressions for velocity and microrotation velocity are obtained. The solutions are ...

  14. A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface

    Directory of Open Access Journals (Sweden)

    Motsa Sandile Sydney

    2015-01-01

    Full Text Available The behaviour of unsteady non-Darcian magnetohydrodynamic fluid flow past an impulsively started vertical porous surface is investigated. The effect of thermophoresis due to migration of colloidal particles in response to a macroscopic temperature gradient is taken into account. It is assumed that both dynamic viscosity and thermal conductivity are linear functions of temperature. The governing equations are non-dimensionalized by using suitable similarity transformation which can unravel the behaviour of the flow at short time and long time periods. A novel iteration scheme, called bivariate spectral local linearization method is developed for solving the corresponding systems of highly non-linear partial differential equations. The results of the numerical solutions obtained are presented graphically and analyzed for the effects of the various important parameters entering into the problem on velocity, temperature, and concentration field within the boundary layer.

  15. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    de Jong, B.

    1994-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate

  16. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    Principles used when constructing models for velocity spectra are reviewed. Based upon data from the Kansas and Minnesota experiments, simple spectral models are set up for all velocity components in stable air at low heights, and for the vertical spectrum in unstable air through a larger part of...

  17. Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. finite enclosures

    CERN Document Server

    Authie, G; Tagawa, T

    2003-01-01

    Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383-398), we model analytically the Ha...

  18. Biogeochemical gradients above a coal tar DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, Kerstin E., E-mail: kerstin.brandstaetter-scherr@boku.ac.at [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are

  19. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  20. The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C.U.

    1971-01-01

    physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate......The axial and radial gradients of the tangential velocity distribution are calculated from prescribed secondary flow functions on the basis of a zero-order approximation to the momentum equations developed by Lewellen. It is shown that secondary flow functions may be devised which meet pertinent...

  1. Generalized conjugate gradient squared

    Energy Technology Data Exchange (ETDEWEB)

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  2. Remarks on the Definition and Estimation of Friction Velocity

    Science.gov (United States)

    Weber, Rudolf O.

    One of the mainscaling parameters in similarity theory of the atmospheric boundary layer is friction velocity. Unfortunately, several definitions of friction velocity exist in the literature. Some authors use the component of the horizontal Reynolds stress vector in the direction of the mean wind vector to define friction velocity. Others define the friction velocity by means of the absolute value of the horizontal Reynolds stress vector. The two definitions coincide only if the direction of the mean wind vector is parallel to the horizontal Reynolds stress vector. In general, the second definition gives larger values for the friction velocity. Over complex terrain the situation is further complicated by the fact that the terrain following flow is not necessarily horizontal. Thus, several authors have proposed to use terrain following coordinate systems for the definition of friction velocity. By means of a large dataset of fast-response wind measurements with an ultrasonic anemometer the friction velocities resulting from the different definitions are compared. Furthermore, it is shown that friction velocity can be well estimated from horizontal wind speed, and even better from simple horizontal or vertical turbulence parameters.

  3. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium

    Science.gov (United States)

    Cole, James L.; Lary, Jeffrey W.; Moody, Thomas; Laue, Thomas M.

    2009-01-01

    Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference and fluorescence) that permit precise and selective observation of sedimentation in real time. In particular, the fluorescence system provides a new way to extend the scope of AUC to probe the behavior of biological molecules in complex mixtures and at high solute concentrations. In sedimentation velocity, the movement of solutes in high centrifugal fields is interpreted using hydrodynamic theory to define the size, shape and interactions of macromolecules. Sedimentation equilibrium is a thermodynamic method where equilibrium concentration gradients at lower centrifugal fields are analyzed to define molecule mass, assembly stoichiometry, association constants and solution nonideality. Using specialized sample cells and modern analysis software, researchers can use sedimentation velocity to determine the homogeneity of a sample and define whether it undergoes concentration-dependent association reactions. Subsequently, more thorough model-dependent analysis of velocity and equilibrium experiments can provide a detailed picture of the nature of the species present in solution and their interactions. PMID:17964931

  4. Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y.; Wu, S.C.; Yu, X.Z. [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2010-08-15

    An experiment was conducted to reveal the effects of rice cultivation as well as polycyclic aromatic carbohydrates (PAHs) degrading bacterium (Acinetobacter sp.) on the dissipation gradients of two PAHs (PHE and PYR) in the rhizosphere. The results showed that the presence of rice root and bacteria significantly accelerated the dissipation rate of PHE and PYR. The root exudates contributed to the formation of dissipation gradients of PHE and PYR along the vertical direction of roots, with a higher dissipation rate in the rhizosphere and near rhizosphere zone than the soil far away the rhizosphere. - The formation of dissipation gradients of PAHs were attributed to the presence of rice root and the degrading bacteria in paddy soil.

  5. Gradient Boosting Machines, A Tutorial

    Directory of Open Access Journals (Sweden)

    Alexey eNatekin

    2013-12-01

    Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

  6. Solitary states in the Taylo-Couette system with a radial temperature gradient

    Science.gov (United States)

    Savaro, Clément; Prigent, Arnaud; Mutabazi, Innocent

    2014-11-01

    The vertical Taylor-Couette system with a radial temperature gradient exhibits a rich variety of states since the base flow state is a combination of the circular Couette flow and an axial baroclinic flow. Two main control parameters characterize the flow: the Taylor number (Ta) for the rotation and the Grashof number (Gr) for the temperature difference. For small values of Gr , the critical state is the Taylor vortices, and for large values of Gr , the critical states appear either in form of helicoidal vortices or modulated waves. For a fixed value of Gr , increasing Ta leads to the appearance of higher instability modes where helicoidal vortices or traveling waves bifurcate into contrarotating vortices. A special attention will be focused on the states observed for | Gr | > 1500 and Ta ~= 12 when the base state bifurcates to a state of modulated wave. A small increase of Ta leads to the appearance of a solitary wave which is superimposed to the modulated wave state. Using visualization technique and particle image velocimetry (PIV) coupled with liquid crystal thermography (TLC), we have measured the amplitude of the solitary structure from velocity and temperature fields. The spatial and temporal localizations give the signature of the solitary wave. Supported by the French National Research Agency (ANR) through the program Investissements d'Avenir (ANR-10 LABX-09-01), LABEX EMC3.

  7. Predicting Vertical Motion within Convective Storms

    Science.gov (United States)

    van den Heever, S. C.

    2016-12-01

    Convective storms are both beneficial in the fresh water they supply and destructive in the life-threatening extreme weather they produce. They are found throughout the tropics and midlatitudes, vary in structure from isolated to highly organized systems, and are the sole source of precipitation in many regions of Earth. Convective updrafts and downdrafts plays a crucial role in cloud and precipitation formation, latent heating, water vapor transport, storm organization, and large-scale atmospheric circulations such as the Hadley and Walker cells. These processes, in turn, impact the strength and longevity of updrafts and downdrafts through complex, non-linear feedbacks. In spite of the significant influence of convective updrafts and downdrafts on the weather and climate system, accurately predicting vertical motion using numerical models remains challenging. In high-resolution cloud-resolving models where vertical motion is normally resolved, significant biases exist in the predicted profiles of updraft and downdraft velocities, at least for the limited cases where observational data have been available for model evaluation. It has been suggested that feedbacks between the vertical motion and microphysical processes may be one cause of these discrepancies, however, our understanding of these feedbacks remains limited. In this talk, the results of a small field campaign conducted over northeastern Colorado designed to observe storm vertical motion and cold pool characteristics within isolated and organized deep convective storms will be described. High frequency radiosonde, radar and drone measurements of a developing through mature supercell storm updraft and cold pool will be presented and compared with RAMS simulations of the same supercell storm. An analysis of the feedbacks between the storm dynamical and microphysical processes will be presented, and implications for regional and global modeling of severe storms will be discussed.

  8. Impact of the vertical dynamics on the thermosphere at low and middle latitudes: GITM simulations

    Science.gov (United States)

    Zhu, Qingyu; Deng, Yue; Maute, Astrid; Sheng, Cheng; Lin, Cissi Y.

    2017-06-01

    In this study, the influences of the electric fields at low and middle latitudes on the ionosphere and thermosphere are investigated by using the nonhydrostatic Global Ionosphere and Thermosphere Model (GITM). The equatorial ionization anomaly and the equatorial thermosphere anomaly (ETA) are well reproduced in the simulation when the electric fields are included. The term analysis of the continuity equation of the neutral mass density shows that the daytime upward vertical wind near the geomagnetic equator tends to increase the local neutral mass density at 400 km altitude, while the divergence in the meridional wind associated with the meridional ion-drag force tends to transport the neutral mass density away from the geomagnetic equator which might contribute to the formation of the ETA trough. The vertical dynamics is modulated by the vertical forces including ion-drag force and pressure gradient force acting on the neutrals, and the changing vertical dynamics can also feedback to vertical ion-drag and pressure gradient forces, particularly near the geomagnetic equator. The daytime vertical ion-drag force near the geomagnetic equator is generally upward, while the daytime vertical pressure gradient force near the geomagnetic equator is reduced at most times after adding in the electric fields at low and middle latitudes. Meanwhile, the sudden introduction of the electric fields at low and middle latitudes induces an acoustic wave.

  9. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  10. Simple haptotactic gradient generation within a triangular microfluidic channel.

    Science.gov (United States)

    Park, Jungyul; Kim, Deok-Ho; Kim, Gabriel; Kim, Younghoon; Choi, Eunpyo; Levchenko, Andre

    2010-08-21

    Most microfluidic devices developed to date for the analysis of live cells incorporate channels with relatively simple constant rectangular or semi-circular cross-sections, relying on complex channel network geometries rather than alteration of the shapes of the channels themselves for development of diverse functional fluidic controls, e.g., spatial gradients of bioactive ligands. In this study we describe a simple alternative method to create highly defined and predictable gradients of surface bound molecules. This method relies on the generation of a considerable variation in the spatial distribution of flow velocities within a channel with a triangular cross-section. The triangular shape can be easily implemented by using bulk wet etching and polydimethylsiloxane (PDMS) replica molding techniques. By analytical modeling and simulation, we predict that the deposition of the solute onto a channel boundary depends on the local flow rate values, yielding gradient spanning the whole width of the channel. This prediction was validated by direct visualization of the flow rate and fibronectin-rhodamine deposition in a fabricated microchannel. Using this experimental platform, we assessed cell migration in response to a fibronectin gradient deposited in the microchannels. We find that this gradient could induce robust haptotaxis of Chinese Hamster Ovary (CHO) cells towards the areas of higher fibronectin surface density. We propose that the described simple gradient generation method can help to avoid complexity present in many current device designs, allowing to introduce more easily other potentially useful design features.

  11. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    composition, and it is truly commonplace in today’s communication with the diversity of VPNs and secure browser sessions. In fact, it is normal that we have several layers of secure channels: For instance, on top of a VPN-connection, a browser may establish another secure channel (possibly with a different...... end point). Even using the same protocol several times in such a stack of channels is not unusual: An application may very well establish another TLS channel over an established one. We call this selfcomposition. In fact, there is nothing that tells us that all these compositions are sound, i.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  12. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index......, an index of refraction of the second low-index layer or air being less than 2; and a thickness of the cap layer and a thickness of the grating layer, and a pitch and a duty cycle of the grating structure are selected to obtain a resonance having a free-space resonance wavelength in the interval 300 nm to 3...... microns, the cap layer comprises an active region configured to generate or absorb photons at the free-space resonance wavelength by stimulated emission or absorption when a sufficient forward or reverse bias voltage is applied across the active region, a thickness of the first low-index layer is less...

  13. Tomographic Inversion for Shear Velocity Beneath the North American Plate

    Science.gov (United States)

    Grand, Stephen P.

    1987-12-01

    A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.

  14. Effects of Spatial Gradients on Electron Runaway Acceleration

    Science.gov (United States)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  15. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  16. Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code

    Science.gov (United States)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2018-02-01

    Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.

  17. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  18. Direct numerical simulation of turbulent core-annular flow in a vertical pipe

    Science.gov (United States)

    Kim, Kiyoung; Choi, Haecheon

    2014-11-01

    The core-annular flow has been considered as a useful tool to effectively transport highly viscous oil by having lower viscous fluid such as water near the pipe surface. There have been several studies to investigate turbulent core-annular flows but most of them have been conducted experimentally. We solve the three-dimensional Navier-Stokes equations in a cylindrical coordinate and use the level-set method for interface tracking between two fluids (oil and water). A few different flow parameters such as the superficial velocity of fluids and mean pressure gradient are considered in a vertical pipe. The results show that the oil core region is nearly a plug flow and the water region experiences high shear rates, which generate turbulence structures different from those of single phase flow. The interface wave suppresses the near-wall coherent structures but produces complex fluid motions caused by its interaction with the wall. The phenomenon of maximum drag reduction and the effect of water turbulence on total drag will be discussed at the presentation. We gratefully acknowledge financial support from the NRF Programs (No. 2012M2A8A4055647), Mest, Korea.

  19. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  20. MRI temperature and velocity measurements in a fluid layer with heat transfer

    Science.gov (United States)

    Leclerc, S.; Métivier, C.

    2018-02-01

    Magnetic resonance thermometry (MRT) is an innovative technique which can provide 2D and 3D temperature measurements using magnetic resonance imaging (MRI). Despite the powerful advantages of MRT, this technique is sparcely developed and used in the engineering sciences. In this paper, we investigate the possibility to measure temperatures with MRI in a fluid layer submitted to heat transfer. By imposing a vertical temperature gradient, we study the temperature fields in both conductive and convective regimes. The temperature fields are obtained by measuring the transverse relaxation time T_2 in glycerol, a Newtonian fluid. The MRT protocol is described in detail and the results are presented. We show that for a conductive regime, temperature measurements are in very good agreement with the theoretical profile. In the convective regime, when comparing the temperature and velocity fields obtained by MRI, we get an excellent agreement in terms of flow structure. Temperature uncertainties are found to be less than 1°C for all our results.

  1. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2016-09-22

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate the iPhone app, My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4 ± 1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the mobile application My Jump. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC = 1.000, P Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  2. Characteristics of slug flow in narrow rectangular channels under vertical condition

    Science.gov (United States)

    Wang, Yang; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Yan, Chaoxing; Tian, Daogui

    2013-07-01

    Gas-liquid slug flow is widely encountered in many practical industrial applications. A detailed understanding of the hydrodynamics of gas slug has important significance for modeling of the slug flow. Non-intrusive flow visualization using a high speed video camera system is applied to study characteristics of slug flow in a vertical narrow rectangular channel (3.25×40 mm2). Ideal Taylor bubbles are hardly observed, and most of the gas slugs are deformed, much more seriously at high liquid superficial velocity. The liquid film thicknesses of left and right narrow sides surrounding gas slug are divergent and wavy, but it has weak effect on liquid film velocity. The gas and liquid velocity as well as the length of gas slug have significant effect on the separating liquid film thickness. The separating liquid film velocity is decreased with the increase of gas superficial velocity at low liquid velocity, and increased with the increase of liquid superficial velocity. The film stops descending and the gas superficial velocity has no significant effect on liquid film separating velocity at high liquid velocity (jL≥1.204 m/s), and it is mainly determined by the liquid flow rate. The shape of slug nose has a significant effect on its velocity, while the effect of its length is very weak. The Ishii&Jones-Zuber drift flux correlation could predict slug velocity well, except at low liquid superficial velocity by reason of that the calculated drift velocity is less than experimental values.

  3. Vertical and Interfacial Transport in Wetlands (Invited)

    Science.gov (United States)

    Variano, E. A.

    2010-12-01

    The objective of this work is to understand the fluxes connecting the water column, substrate, and atmosphere in wetland environments. To do this, analytical, numerical, and laboratory models have been used to quantify the hydrodynamic contributions to vertical fluxes. A key question is whether the hydrodynamic transport can be modeled as a diffusivity, and, if so, what the vertical structure of this diffusivity is. This question will be addressed in a number of flow types and for a number of fluxes. The fluxes of interest are heat, sediment, dissolved gases (such as methane and oxygen) and other dissolved solutes (such as nutrients and pollutants). The flows of interest include: unidirectional current, reversing flow (under waves, seiches, and tides), wind-sheared surface flows, and thermal convection. Rain and bioturbation can be important, but are not considered in the modeling work discussed herein. Specifically, we will present results on gas transport at wind-sheared free surface, sediment transport in unidirectional flow, and heat transfer in an oscillating flow cause by a seiche. All three of these will be used to consider the question of appropriate analytical models for vertical transport. The analytic models considered here are all 1D models that assume homogeneity in the horizontal plane. The numerical models use finite element methods and resolve the flow around individual vegetation stems in an idealized geometry. Laboratory models discussed herein also use an idealized geometry. Vegetation is represented by an array of cylinders, whose geometry is modeled after Scirpus spp. wetlands in Northern California. The laboratory model is constructed in a way that allows optical access to the flow, even in dense vegetation and far from boundaries. This is accomplished by using fluoropolymer plastics to construct vegetation models. The optical access allows us to employ particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) to measure

  4. Strain gradients in epitaxial ferroelectrics

    NARCIS (Netherlands)

    Catalan, G; Noheda, Beatriz; McAneney, J; Sinnamon, LJ; Gregg, JM

    2005-01-01

    X-ray analysis of ferroelectric thin layers of Ba1/2Sr1/2TiO3 with different thicknesses reveals the presence of strain gradients across the films and allows us to propose a functional form for the internal strain profile. We use this to calculate the influence of strain gradient, through

  5. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...

  6. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  7. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 _ 0.9 and 1.6 _ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 _ 0.6 and -0.1 _ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  8. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  9. Evaluation of Maryland abutment scour equation through selected threshold velocity methods

    Science.gov (United States)

    Benedict, S.T.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.

  10. Vertical allometry: fact or fiction?

    Science.gov (United States)

    Mahmood, Iftekhar; Boxenbaum, Harold

    2014-04-01

    In pharmacokinetics, vertical allometry is referred to the clearance of a drug when the predicted human clearance is substantially higher than the observed human clearance. Vertical allometry was initially reported for diazepam based on a 33-fold higher human predicted clearance than the observed human clearance. In recent years, it has been found that many other drugs besides diazepam, can be classified as drugs which exhibit vertical allometry. Over the years, many questions regarding vertical allometry have been raised. For example, (1) How to define and identify the vertical allometry? (2) How much difference should be between predicted and observed human clearance values before a drug could be declared 'a drug which follows vertical allometry'? (3) If somehow one can identify vertical allometry from animal data, how this information can be used for reasonably accurate prediction of clearance in humans? This report attempts to answer the aforementioned questions. The concept of vertical allometry at this time remains complex and obscure but with more extensive works one can have better understanding of 'vertical allometry'. Published by Elsevier Inc.

  11. Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres.

    Science.gov (United States)

    Sheridan, T E; Katschke, M R; Wells, K D

    2007-02-01

    A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n = 2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model.

  12. Investigation of temporal and lateral variations of seismic velocities in south Iceland using ray tracing.

    Science.gov (United States)

    Kjartansson, Einar; Bjarnason, Ingi Th.

    2017-04-01

    Tools for ray-tracing through one dimensional earth models consisting of layers of constant velocity gradients, and continuous values across layers, have been developed. They are used to investigate stability and robustness of earthquake locations and velocity determinations in the South Iceland Lowlands (SIL) a transform seismic zone. These tools will also be used to invert for velocity functions for different regions and time periods, by inverting simultaneously for micro-earthquake source parameters and P and S velocities. Increase of velocity gradient with depth will cause rays with different take-off angles to cross, which can result in focusing and triplication when velocity is plotted versus time. It is therefore important to constrain the velocity solutions to avoid this. Large changes in gradient between adjacent layers causes variability of ray density and geometrical spreading, particularly for rays that turn just below the boundaries. This may create artificial clustering in the depth distribution of micro-earthquake source solutions. Resampling of the velocity functions using cubic spline interpolation can be used to reduce these effects. The software is open source and can be accessed at https://github.com/4dseismic

  13. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M. [Dipartimento di Fisica e Astronomia and LENS, Universita di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bertoldi, A. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud Campus Polytechnique, RD 128, F-91127 Palaiseau cedex (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Universita di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Angelis, M. de [Istituto di Fisica Applicata ' Nello Carrara' CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Prevedelli, M. [Dipartimento di Fisica dell' Universita di Bologna, Via Irnerio 46, I-40126, Bologna (Italy)

    2012-09-10

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  14. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    Science.gov (United States)

    Zipser, Edward J.; Lutz, Kurt R.

    1994-01-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.

  15. Gradient elution in capillary electrochromatography

    Energy Technology Data Exchange (ETDEWEB)

    Anex, D.; Rakestraw, D.J. [Sandia National Labs., Livermore, CA (United States); Yan, Chao; Dadoo, R.; Zare, R.N. [Stanford Univ., CA (United States). Dept. of Chemistry

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  16. Gradient zone boundary control in salt gradient solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  17. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.

  18. Transverse vertical dispersion in groundwater and the capillary fringe.

    Science.gov (United States)

    Klenk, I D; Grathwohl, P

    2002-09-01

    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  19. Universality of the Turbulent Velocity Profile

    Science.gov (United States)

    Luchini, Paolo

    2017-06-01

    For nearly a century, the universal logarithmic law of the mean velocity profile has been a mainstay of turbulent fluid mechanics and its teaching. Yet many experiments and numerical simulations are not fit exceedingly well by it, and the question whether the logarithmic law is indeed universal keeps turning up in discussion and in writing. Large experiments have been set up in various parts of the world to confirm or deny the logarithmic law and accurately estimate von Kármán's constant, the coefficient that governs it. Here, we show that the discrepancy among flows in different (circular or plane) geometries can be ascribed to the effect of the pressure gradient. When this effect is accounted for in the form of a higher-order perturbation, universal agreement emerges beyond doubt and a satisfactorily simple formulation is established.

  20. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    Science.gov (United States)

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  1. Modeling and comparative study of fluid velocities in heterogeneous rocks

    Science.gov (United States)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed

  2. Pulsejet engine dynamics in vertical motion using momentum conservation

    OpenAIRE

    Cheche, Tiberius O.

    2017-01-01

    The momentum conservation law is applied to analyse the dynamics of pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts existence of a terminal speed given frequency of the short pulses. The conditions that the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitationa...

  3. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  4. MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT

    Directory of Open Access Journals (Sweden)

    ZURAIDAH FITRIAH

    2017-10-01

    Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient  (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.

  5. Protected Vertices in Motzkin trees

    OpenAIRE

    Van Duzer, Anthony

    2017-01-01

    In this paper we find recurrence relations for the asymptotic probability a vertex is $k$ protected in all Motzkin trees. We use a similar technique to calculate the probabilities for balanced vertices of rank $k$. From this we calculate upper and lower bounds for the probability a vertex is balanced and upper and lower bounds for the expected rank of balanced vertices.

  6. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination......We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...

  7. Hall current effect on radiating span-wise fluctuating MHD convective flow through porous medium in a vertical porous channel

    Directory of Open Access Journals (Sweden)

    Dev Krishan Singh

    2015-01-01

    Full Text Available An analysis of an unsteady MHD convective flow of an electrically conducting viscous incompressible fluid through porous medium filled in a vertical porous channel is carried out. The two porous plates are subjected to a constant injection and suction velocity as shown in Fig. 1a, b. The temperature of the plate at y*= + 9 2 is assumed to be varying in space and time as T*(y*, z*, t* = T1 (y* + (T2 - T1COS (πz*d -ω*t*. A magnetic field of uniform strength is applied perpendicular to the plates of the channel. The temperature difference between the plates is high enough to induce the heat due to radiation. It is also assumed that the conducting fluid is opticallythin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects have also been taken into account. Exact solution of the partial differential equations governing the flow under the prescribed boundary conditions has been obtained for the velocity and the temperature fields. The primary and secondary velocities, temperature and the skin-friction and Nusselt number for the rate of heat transfer in terms of their amplitudes and phase angles have been shown graphically to observe the effects of suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure gradient A and the frequency of oscillation ω. The final results are then discussed in detail in the last section of the paper with the help of figures.

  8. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  9. Vertical motion of particles in vibration-induced granular capillarity

    Directory of Open Access Journals (Sweden)

    Fan Fengxian

    2017-01-01

    Full Text Available When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon – which we term granular capillarity – we numerically investigate the system using the Discrete Element Method (DEM. We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  10. Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    This paper demonstrates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The proposed method relies on vector velocity fields acquired from ultrasound data. 2-D flow data are acquired at 18-23 frames/sec using the Transverse Oscillation...... approach. Pressure gradients are calculated from the measured velocity fields using the Navier-Stokes equation. Velocity fields are measured during constant and pulsating flow on a carotid bifurcation phantom and on a common carotid artery in-vivo. Scanning is performed with a 5 MHz BK8670 linear...... transducer using a BK Medical 2202 UltraView Pro Focus scanner. The calculated pressure gradients are validated through a finite element simulation of the constant flow model. The geometry of the flow simulation model is reproduced using MRI data, thereby providing identical flow domains in measurement...

  11. Vertical variations of coral reef drag forces

    Science.gov (United States)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration

    2017-11-01

    Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.

  12. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients

    Science.gov (United States)

    Boeck, L. R.; Berger, F. M.; Hasslberger, J.; Sattelmayer, T.

    2016-03-01

    The influence of transverse concentration gradients on detonation propagation in H_2-air mixtures is investigated experimentally in a wide parameter range. Detonation fronts are characterized by means of high-speed shadowgraphy, OH* imaging, pressure measurements, and soot foils. Steep concentration gradients at low average H_2 concentrations lead to single-headed detonations. A maximum velocity deficit compared to the Chapman-Jouguet velocity of 9 % is observed. Significant amounts of mixture seem to be consumed by turbulent deflagration behind the leading detonation. Wall pressure measurements show high local pressure peaks due to strong transverse waves caused by the concentration gradients. Higher average H_2 concentrations or weaker gradients allow for multi-headed detonation propagation.

  13. Fabrication of Ni-Al/diamond composite based on layered and gradient structures of SHS system

    Directory of Open Access Journals (Sweden)

    Lu Jiafeng

    2017-01-01

    Full Text Available In this paper layered and gradient structures of Ni-Al SHS system were adopted to manufacture Ni-Al/diamond composites. The effect of the layered and the diamond mesh gradient structures of Ni-Al/diamond on the SHS process and the microstructure of the composites were investigated. It is found that with the increasing of the number of layers, the combustion wave velocity is decreased. The combustion wave velocity for diamond mesh size gradient structure of Ni-Al SHS is faster than that for the layered structure. A well bonding can be formed between diamond and the matrix in layered and gradient structure Ni-Al/diamond composites due to the melt of Ni-Cr brazing alloy.

  14. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, John William

    1997-01-01

    A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

  15. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  16. The dependence of sheet erosion velocity on slope angle

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2014-09-01

    Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.

  17. A dissipative random velocity field for fully developed fluid turbulence

    CERN Document Server

    Pereira, Rodrigo M; Chevillard, Laurent

    2015-01-01

    We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter $\\gamma$ that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free...

  18. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  19. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  20. Training methods to improve vertical jump performance.

    Science.gov (United States)

    Perez-Gomez, J; Calbet, J A L

    2013-08-01

    This study aims to review the main methods used to improve vertical jump performance (VJP). Although many training routines have been proposed, these can be grouped into four main categories: plyometric training (PT), weight training (WT), whole body vibration training (VT) and electromyostimulation training (ET). PT enhances muscular force, the rate of force development (RFD), muscular power, muscle contraction velocity, cross-sectional area (CSA), muscle stiffness allowing greater storage and release of elastic energy. WT improve muscular force, velocity, power output, and RFD during jumping on a force plate, muscle hypertrophy and neural adaptations. One of the most effective methods to improve VJP is the combination of PT with WT, which takes advantage of the enhancement of maximal dynamic force through WT and the positive effects of PT on speed and force of muscle contraction through its specific effect on type II fibers. Some authors have found an increase in VJP with the use of VT while other did not see such an effect. However, it remains unknown by which mechanisms VT could enhance VJP. ET has been shown to elicit muscle hypertrophy. The VJP may be improved when ET is applied concomitantly with PT or practice of sports. In summary, scientific evidence suggests that the best way to improve VJP is through the combination of PT with WT. Further research is needed to establish if better results are possible by more complex strategies.

  1. Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion

    KAUST Repository

    Wu, Zedong

    2015-09-02

    The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the

  2. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  3. Integral analysis of boundary layer flows with pressure gradient

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan; Klewicki, Joseph

    2017-09-01

    This Rapid Communication investigates boundary layer flows with a pressure gradient using a similarity/integral analysis of the continuity equation and momentum equation in the streamwise direction. The analysis yields useful analytical relations for Ve, the mean wall-normal velocity at the edge of the boundary layer, and for the skin friction coefficient Cf in terms of the boundary layer parameters and in particular βRC, the Rotta-Clauser pressure gradient parameter. The analytical results are compared with experimental and numerical data and are found to be valid. One of the main findings is that for large positive βRC (an important effect of an adverse pressure gradient), the friction coefficient is closely related to βRC as Cf∝1 /βRC , because δ /δ1,δ1/δ2=H , and d δ /d x become approximately constant. Here, δ is the boundary layer thickness, δ1 is the displacement thickness, δ2 is the momentum thickness, and H is the shape factor. Another finding is that the mean wall-normal velocity at the edge of the boundary layer is related to other flow variables as UeVe/uτ2=H +(1 +δ /δ1+H ) βRC , where Ue is the streamwise velocity at the edge of the boundary layer. At zero pressure gradient, this relation reduces to U∞V∞/uτ2=H , as recently derived by Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016), 10.1103/PhysRevFluids.1.082401].

  4. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  5. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  6. Research of the boundary layer with an adverse pressure gradient by the Smoke Image Velocimetry method

    Science.gov (United States)

    Mikheev, N. I.; Saushin, I. I.; Goltsman, A. E.

    2017-09-01

    The results of an experimental evaluation of velocity profiles, turbulent pulsations, generation and dissipation of turbulent energy in a nonequilibrium boundary layer under the adverse pressure gradient are presented. The profiles of characteristics are estimated by means of the field dynamics of the two-component instantaneous velocity vectors measured by the optical method Smoke Image Velocimetry. The opportunities of using the field measurement method SIV to study the spatial evolution of small-scale characteristics in a boundary layer with a pressure gradient have been showed.

  7. Kaleidoscopic motion and velocity illusions

    NARCIS (Netherlands)

    Helm, P.A. van der

    2007-01-01

    A novel class of vivid motion and velocity illusions for contrast-defined shapes is presented and discussed. The illusions concern a starlike wheel that, physically, rotates with constant velocity between stationary starlike inner and outer shapes but that, perceptually, shows pulsations, jolts

  8. Velocity Structure and Spatio-temporal Evolution in the Head Turbidity Currents based on Ultrasound Doppler Velocity Profiling

    Science.gov (United States)

    Nomura, Shun; Cesare Giovanni, De; Takeda, Yasushi; Yoshida, Taiki; Tasaka, Yuji; Sakaguchi, Hide

    2017-04-01

    Particle laden flow or turbidity current along the sea floor are important as a sediment conveyer and a formation factor of the submarine topography in the geological field. Especially, in the head of the flow, the kinematic energy is frequently exchanged through the boundary of the ambient water and the seabed floor, and it dominants the substantial dynamics of turbidity currents. An understanding of its turbulence structure helps to predict the sediment transport and layer development processes. To comprehend its dynamics precisely, flume test were conducted with continuously fed fluid quartz flour mixture supply. The flow velocities were measured at two different angles by the ultrasound Doppler velocity profiler UVP and both velocity components, in flow direction and on the vertical axis, were extracted. The fundamental velocity structure corresponds to the theories found in literature. Its spatio-temporal evolution was examined from the velocity distribution profiles along the downstream directions. Additionally, developing processes of head structures were also discussed through hydraulic statistic values such as mean velocity, Reynolds stress, and turbulent kinematic energy.

  9. Investigation of the aerodynamics of an innovative vertical-axis wind turbine

    Science.gov (United States)

    Kludzinska, K.; Tesch, K.; Doerffer, P.

    2014-08-01

    This paper presents a preliminary three dimensional analysis of the transient aerodynamic phenomena occurring in the innovative modification of classic Savonius wind turbine. An attempt to explain the increased efficiency of the innovative design in comparison with the traditional solution is undertaken. Several vorticity measures such as enstrophy, absolute helicity and the integral of the velocity gradient tensor second invariant are proposed in order to evaluate and compare designs. Discussed criteria are related to the vortex structures and energy dissipation. These structures are generated by the rotor and may affect the efficiency. There are also different vorticity measure taking advantage of eigenvalues of the velocity gradient tensor.

  10. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is

  11. Spatial and temporal dynamics of disturbance interactions along an ecological gradient

    Science.gov (United States)

    Christopher D. O' Connor

    2013-01-01

    Interactions among site conditions, disturbance events, and climate determine the patterns of forest species recruitment and mortality across landscapes. Forests of the American Southwest have undergone significant changes over a century of altered disturbance regimes, human land uses, and changing environmental conditions. Along steep vertical gradients such as those...

  12. An inter-comparison of model-simulated east–west climate gradients ...

    African Journals Online (AJOL)

    2010-04-11

    Apr 11, 2010 ... tropospheric humidity and circulation, and surface latent heat flux in the satellite era 1980-2001. Inter-comparisons of ... the zonal gradient in vertical atmospheric structure and the annual cycle of rainfall. A wet bias is found in .... used to plan field campaigns and improve operational climate predictions for ...

  13. Plant acclimation to the light gradient in canopies; functional significance and regulation by cytokinin

    NARCIS (Netherlands)

    Boonman, Alex

    2006-01-01

    Plants growing in dense leaf canopies are exposed to a vertical light gradient due to mutual shading of the leaves. Theoretical models have predicted an optimal leaf area index (LAI) and leaf nitrogen distribution at which whole-plant daily carbon gain is maximized. In this thesis, these model

  14. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all......We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final-good...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  15. Horizontal and Vertical Line Designs.

    Science.gov (United States)

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  16. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  17. Effects of Foam Rolling on Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Andrew Jones

    2015-07-01

    Full Text Available Background: Foam rolling is a popular activity utilized by strength and conditioning coaches as it is believed to increase muscle length and break up fibrous adhesions located in connective tissue. However, there is little research investigating the effects of foam rolling on athletic performance. Objective: The purpose of this study was to investigate the effects of lower body foam rolling on vertical jump performance. Methods: Twenty males (age 24.05 ± 2.02 years; height 177.43 ± 6.31 cm; mass 81.41 ± 8.76 kg volunteered to participate. Subjects completed three days of testing, separated by at least twenty-four hours. Day one consisted of baseline vertical jumps on a force plate, followed by familiarization with foam rolling and control protocols. Subjects returned on days two and three and performed 30-second bouts of lower body foam rolling or mimicked foam rolling movements on a skateboard followed by vertical jumps on a force plate. The highest jump from each day was used for statistical analyses. Results: Repeated measures ANOVAs revealed no significant differences in Jump height, impulse, relative ground reaction force, or take-off velocity between conditions. Conclusion: 30-second bouts of lower body foam rolling do not improve vertical jump performance. Keywords: Dynamic Warm-Up, Foam Rolling, Vertical Jump

  18. An ultimate storage ring lattice with vertical emittance generated by damping wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)

    2015-01-06

    We discuss the approach of generating round beams for ultimate storage rings using vertical damping wigglers (with horizontal magnetic field). The vertical damping wigglers provide damping and excite vertical emittance. This eliminates the need to generate large linear coupling that is impractical with traditional off-axis injection. We use a PEP-X compatible lattice to demonstrate the approach. This lattice uses separate quadrupole and sextupole magnets with realistic gradient strengths. Intrabeam scattering effects are calculated. As a result, the horizontal and vertical emittances are 22.3 pm and 10.3 pm, respectively, for a 200 mA, 4.5 GeV beam, with a vertical damping wiggler of a total length of 90 m, a peak field of 1.5 T and a wiggler period of 100 mm.

  19. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  20. Evaluating Interpolation Methods for Velocity and Strain Rate in the Western United States

    Science.gov (United States)

    Rand, D. S.; McCaffrey, R.; Rudolph, M. L.; King, R. W.

    2016-12-01

    We calculate horizontal strain rates in the Western United States using a geodetic Global Positioning System network of 1,742 stations. Three dimensional velocity vectors in the North American reference frame for GPS stations are based on data beginning in 1993 and reveal, among other features, large-scale clockwise rotation. We explore multiple interpolation techniques (linear, polynomial, and spline methods) to estimate velocity gradients along the Earth's surface. Using these interpolation techniques, we calculate strain rates from the velocity gradients and make a detailed comparison of the strengths and limitations of each method. We analyze the calculated velocity and strain rate fields with detailed attention to ongoing post-seismic deformation related to the 1872 North Cascades earthquake and strain in the fore arc across the Puget Sound area based on GPS observations made there by us in 2016.

  1. Asymmetric metallicity patterns in the stellar velocity space with RAVE

    Science.gov (United States)

    Antoja, T.; Kordopatis, G.; Helmi, A.; Monari, G.; Famaey, B.; Wyse, R. F. G.; Grebel, E. K.; Steinmetz, M.; Bland-Hawthorn, J.; Gibson, B. K.; Bienaymé, O.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G.; Siebert, A.; Siviero, A.; Zwitter, T.

    2017-05-01

    Context. The chemical abundances of stars encode information on their place and time of origin. Stars formed together in e.g. a cluster, should present chemical homogeneity. Also disk stars influenced by the effects of the bar and the spiral arms might have distinct chemical signatures depending on the type of orbit that they follow, e.g. from the inner versus outer regions of the Milky Way. Aims: We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood. Methods: We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey. We compare the metallicity distribution of regions in the velocity plane (vR,vφ) with that of their symmetric counterparts (-vR,vφ). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g. a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the bar and the spiral arms are weak. Results: We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric vR regions. The typical differences in the median metallicity are of 0.05 dex with statistical significant of at least 95% confidence, and with values up to 0.6 dex. For stars with low azimuthal velocity vφ, the ones moving outwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher vφ, the stars moving inwards have higher metallicity than those moving outwards. We have also discovered a positive gradient in vφ with respect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks. Conclusions: The most likely interpretation of the metallicity asymmetry is that it is mainly due to the orbital effects of

  2. Formation and texture of Bi-2223 phase during sintering in a temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.Y.; Nagata, A.; Watanabe, K.; Nojima, T.; Sugawara, K.; Hanada, S.; Kamada, S

    2004-10-01

    The formation and texture of Bi-2223 phase during sintering in a temperature gradient were investigated. Co-precipitated powders with the composition of Bi:Pb:Sr:Ca:Cu=1.85:0.35:1.90:2.05:3.05 were used. Samples set on a silver holder were sintered at 850 deg. C for 120 h in a vertical tube furnace with a temperature gradient of 15 deg. C/cm installed in a solenoid-type superconducting magnet. A vertical magnetic field can be applied parallel to the long axis of the furnace. It has been found that the Bi-2223 grains with their c-axis parallel to the axial direction of the vertical tube furnace are formed not only on the surface, but also in the center of the sample sintered at 850 deg. C for 120 h in 15 deg. C/cm temperature gradient without magnetic field. Moreover, the sample sintered in the temperature gradient and in a 10 T magnetic field have a stronger c-axis alignment of Bi-2223 phase. It is suggested that both the temperature gradient and magnetic field during sintering are favorable for the c-axis alignment of Bi-2223 phase.

  3. Loading effects in GPS vertical displacement time series

    Science.gov (United States)

    Memin, A.; Boy, J. P.; Santamaría-Gómez, A.; Watson, C.; Gravelle, M.; Tregoning, P.

    2015-12-01

    Surface deformations due to loading, with yet no comprehensive representation, account for a significant part of the variability in geodetic time series. We assess effects of loading in GPS vertical displacement time series at several frequency bands. We compare displacement derived from up-to-date loading models to two global sets of positioning time series, and investigate how they are reduced looking at interannual periods (> 2 months), intermediate periods (> 7 days) and the whole spectrum (> 1day). We assess the impact of interannual loading on estimating velocities. We compute atmospheric loading effects using surface pressure fields from the ECMWF. We use the inverted barometer (IB) hypothesis valid for periods exceeding a week to describe the ocean response to the pressure forcing. We used general circulation ocean model (ECCO and GLORYS) to account for wind, heat and fresh water flux. We separately use the Toulouse Unstructured Grid Ocean model (TUGO-m), forced by air pressure and winds, to represent the dynamics of the ocean response at high frequencies. The continental water storage is described using GLDAS/Noah and MERRA-land models. Non-hydrology loading reduces the variability of the observed vertical displacement differently according to the frequency band. The hydrology loading leads to a further reduction mostly at annual periods. ECMWF+TUGO-m better agrees with vertical surface motion than the ECMWF+IB model at all frequencies. The interannual deformation is time-correlated at most of the locations. It is adequately described by a power-law process of spectral index varying from -1.5 to -0.2. Depending on the power-law parameters, the predicted non-linear deformation due to mass loading variations leads to vertical velocity biases up to 0.7 mm/yr when estimated from 5 years of continuous observations. The maximum velocity bias can reach up to 1 mm/yr in regions around the southern Tropical band.

  4. Spatial and vertical distribution of bacteria in the Pearl River estuary ...

    African Journals Online (AJOL)

    In order to investigate the spatial and vertical change of bacteria community structure in the Pearl River estuary sediment, denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analyses were carried out in this study. Results of multidimensional scaling analyses (MDS) were in good agreement with the ...

  5. Backward integration, forward integration, and vertical foreclosure

    OpenAIRE

    Spiegel, Yossi

    2013-01-01

    I show that partial vertical integration may either alleviates or exacerbate the concern for vertical foreclosure relative to full vertical integration and I examine its implications for consumer welfare.

  6. Optimization of structures to satisfy a flutter velocity constraint by use of quadratic equation fitting. M.S. Thesis

    Science.gov (United States)

    Motiwalla, S. K.

    1973-01-01

    Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.

  7. The ion temperature gradient: An intrinsic property of Earth's magnetotail

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.

    2017-08-01

    Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.

  8. Spatial wavefield gradient-based seismic wavefield separation

    Science.gov (United States)

    Van Renterghem, C.; Schmelzbach, C.; Sollberger, D.; Robertsson, J. OA

    2018-03-01

    Measurements of the horizontal and vertical components of particle motion combined with estimates of the spatial gradients of the seismic wavefield enable seismic data to be acquired and processed using single dedicated multicomponent stations (e.g. rotational sensors) and/or small receiver groups instead of large receiver arrays. Here, we present seismic wavefield decomposition techniques that use spatial wavefield gradient data to separate land and ocean bottom data into their upgoing/downgoing and P/S constituents. Our method is based on the elastodynamic representation theorem with the derived filters requiring local measurements of the wavefield and its spatial gradients only. We demonstrate with synthetic data and a land seismic field data example that combining translational measurements with spatial wavefield gradient estimates allows separating seismic data recorded either at the Earth's free-surface or at the sea bottom into upgoing/downgoing and P/S wavefield constituents for typical incidence angle ranges of body waves. A key finding is that the filter application only requires knowledge of the elastic properties exactly at the recording locations and is valid for a wide elastic property range.

  9. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Deng, Guodong; Zhang, Jiasheng; Wu, Wenbing; Shi, Xiong; Meng, Fei

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  10. Explosive movement in the older men: analysis and comparative study of vertical jump.

    Science.gov (United States)

    Argaud, Sébastien; Pairot de Fontenay, Benoit; Blache, Yoann; Monteil, Karine

    2017-10-01

    Loss of power has been demonstrated to have severe functional consequences to perform physical daily living tasks in old age. This study aimed to assess how moment and velocity were affected for each joint of the lower limbs during squat jumping for older men in comparison with young adults. Twenty-one healthy older men (74.5 ± 4.6 years) and 22 young men (21.8 ± 2.8 years) performed maximal squat jumps. Inverse dynamics procedure was used to compute the net joint power, moment and velocity produced at the hip, knee and ankle joints. Vertical jump height of the elderly was 64 % lower than the young adults. The maximal power of the body mass center (P maxbmc ) was 57 % lower in the older population. For the instant at P maxbmc , the vertical ground reaction force and the vertical velocity of the body mass center were 26 % and 35 % less in the older adults than in the young adults, respectively (p vertical ground reaction force; p vertical jump. This smaller power resulted from both a lower moment and angular velocity produced at each joint.

  11. A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates

    Science.gov (United States)

    Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.

    2010-12-01

    Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.

  12. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  13. Advanced compositional gradient and compartmentalization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Canas, Jesus A.; Petti, Daniela; Mullins, Oliver [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Acquisition of hydrocarbons samples from the reservoir prior to oil or gas production is essential in order to design production strategies and production facilities. In addition, reservoir compartmentalization and hydrocarbon compositional grading magnify the necessity to map fluid properties vertically and laterally in the reservoir prior to production. Formation testers supply a wealth of information to observe and predict the state of fluids in hydrocarbon reservoirs, through detailed pressure and fluid analysis measurements. With the correct understanding of the state of fluids in the reservoirs, reserve calculations and adequate development plans can be prepared. Additionally, flow barriers may then be revealed. This paper describes a new Downhole Fluid Analysis technology (DFA) for improved reservoir management. DFA is a unique process that combines new fluid identification sensors, which allow real time monitoring of a wide range of parameters as GOR, fluid density, viscosity, fluorescence and composition (CH{sub 4}, C2- C5, C6 +, CO{sub 2}), free gas and liquid phases detection, saturation pressure, as well WBM and OBM filtrate differentiation and pH. This process is not limited to light fluid evaluation and we extended to heavy oil (HO) reservoirs analysis successfully. The combination of DFA Fluid Profiling with pressure measurements has shown to be very effective for compartmentalization characterization. The ability of thin barriers to hold off large depletion pressures has been established, as the gradual variation of hydrocarbon quality in biodegraded oils. In addition, heavy oils can show large compositional variation due to variations in source rock charging but without fluid mixing. Our findings indicates that steep gradients are common in gas condensates or volatile oils, and that biodegradation is more common in HO than in other hydrocarbons, which generate fluid gradients and heavy ends tars near the OWC, limiting the aquifer activity and

  14. Vertically propagating acoustic waves launched by seismic waves visualized in ionograms

    Science.gov (United States)

    Maruyama, Takashi; Shinagawa, Hiroyuki

    2013-04-01

    After the magnitude 9.0 earthquake off the Pacific coast of Tohoku (near the east coast of Honshu, Japan), which occurred on 11 March 2011, an unusual multiple-cusp signature (MCS) was observed in ionograms at three ionosonde stations across Japan. Similar MCSs in ionograms were identified in 8 of 43 earthquakes with a seismic magnitude of 8.0 or greater for the period from 1957 to 2011. The appearance of MCSs at different epicentral distances exhibited traveling characteristics at a velocity of ~4.0 km/s, which is in the range of Rayleigh waves. There was a ~7 min offset in delay time at each epicentral distance in the travel-time diagram. This offset is consistent with the propagation time of acoustic waves from the ground to the ionosphere. We analyzed vertical structure of electron density perturbation that caused MCSs. The ionosonde technique is essentially radar-based measurement of a reflection at a height where the plasma frequency is equal to the sounding radio frequency and it is possible to obtain an electron density profile by sweeping the frequency. However, this measured height is not a true height because radio waves do not propagate at the speed of light in the ionosphere. The group velocity of radio waves decreases just below the reflection height where the sounding frequency approaches the plasma frequency. The amount of delay is larger when this region is thicker. The vertically propagating acoustic waves modulate the electron density. The radio wave speed greatly delays and a cusp signature appears in the echo trace at a phase of the periodic perturbation of electron density where the density gradient is most gradual. Simulations were conducted how large amplitude of density perturbation produces cusp signatures as observed. First, the real height density profile was obtained by converting the ionogram trace just before the arrival of coseismic disturbances. The electron density profile was then modified by adding a periodic perturbation and the

  15. Beam test results of a drift velocity monitoring system for silicon drift detectors

    CERN Document Server

    Nouais, D; Bonvicini, V; Cerello, P; Giubellino, P; Hernández-Montoya, R; Kolojvari, A; Mazza, G; Nissinen, J; Rashevsky, A; Rivetti, A; Tosello, F; Vacchi, A

    2002-01-01

    We report results on drift velocity monitoring using MOS charge injectors in silicon drift detectors obtained in beam test conditions. The correction of velocity variations as small as 0.03% caused by temperature variations of the order of 0.04 K allowed to get an average space resolution along all the drift path of 28 mu m. Preliminary result demonstrating the possibility to correct for temperature gradients along the anode axis are also presented.

  16. New GNSS velocity field and preliminary velocity model for Ecuador

    Science.gov (United States)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  17. Offshore coastal wind speed gradients: Issues for the design and development of large offshore windfarms

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Badger, Jake; Pryor, S.C.

    2007-01-01

    Simulations, from mesoscale numerical models, and analyses of in-situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical gradients of wind speeds in the coastal zone. Results suggest that the distance from the coastline over which wind...... and 70 km. The width of the coastal zone, and the wind's vertical (shear) and horizontal gradients within the coastal zone, depend on atmospheric stability. Although vertical wind speed profiles above 50 m are likely responding to additional factors such as the height of the boundary-layer, using...... a stability correction improves predictions of wind speed compared with the logarithmic profile. Modelling indicates that within the coastal zone, wind speeds at typical turbine hub-heights can change by 2 m/s over the horizontal extent of a large wind farm, depending on stability. However, if the fetch...

  18. Method of design for vertical oil shale retorting vessels and retorting therewith

    Science.gov (United States)

    Reeves, Adam A.

    1978-01-03

    A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.

  19. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Naomi, E-mail: naomi.wise@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kindom (United Kingdom); Grob, Tim [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kindom (United Kingdom); Morten, Karl [Nuffield Department of Obstetrics and Gynaecology, University of Oxford, The Women Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU (United Kingdom); Thompson, Ian; Sheard, Steve [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kindom (United Kingdom)

    2015-06-15

    A study into the magnetically induced mobility of four types of superparamagnetic particles (SMPs) was conducted using a video camera, an inverted light microscope and ImageJ tracking software. The objective is to improve the understanding of how SMP-capture assays perform by measuring mobilities of SMPs, when aggregated together or attached to non-magnetic beads (NMB). The magnetically induced velocities of self-assembled SMP chains were measured and found to meet the proposed models. A study into the zeta potential of the SMPs was completed to determine a scenario for maximal electrostatic interactions and efficient capture of the SMPs to a target. SMPs were bound to biotinylated NMBs, representing attachment to a disease biomarker. The drift velocity of SMP chains and SMP–NMB complexes in a gradient magnetic field was compared. It is expected that the observable changes to the magnetophoretic mobility of SMPs attached to a disease biomarker will lead to new biosensor technology. - Highlights: • Analysis of the magnetically induced drift velocity of superparamagnetic particles. • Zeta potential of superparamagnetic particles and non-magnetic particles found. • Drift velocity of single particles, chains and complexes determined experimentally. • Magnetic drift velocities of chains and complexes predicted by simple models.

  20. Effect of stone content on water flow velocity over Loess slope: Frozen soil

    Science.gov (United States)

    Ban, Yunyun; Lei, Tingwu; Feng, Ren; Qian, Dengfeng

    2017-11-01

    Soils in high-altitude or -latitude regions are commonly rich in stone fragments, which are frequently frozen. The hydrodynamics of water flow over frozen, stony slopes must be investigated to understand soil erosion and sediment transportation. The objective of this laboratory experiments was to measure water flow velocity over frozen slopes with different stone contents by using electrolyte trace method. The experiments were performed under slope gradients of 5°, 10°, 15°, and 20°; flow discharge rates of 1, 2, 4, and 8 L/min; and stone contents of 0%, 10%, 20%, and 50% on mass basis. Nine equidistant sensors were used to measure flow velocity along flume from the top of the slope. Results indicated that stone content significantly affected flow velocity under increasing slope gradient. The increase in stone content rapidly reduced the flow velocity. The flow velocities over frozen slopes were 1.21 to 1.30 times of those over non-frozen slopes under different slope gradients and flow rates. When the stone content increased from 0% to 20%, proportions gradually decreased from 52% to 25% and 13%. Additionally, flow velocities over frozen and non-frozen soil slopes became gradually similar with increasing stone content. This study will help elucidate the hydrodynamics, soil erosion, and sediment transport behaviors of frozen or partially unfrozen hillslopes with different stone contents.

  1. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...... direction and the correct velocity magnitude for any orientation of the vessels. At complex geometries like bifurcations, branching and for valves the approach reveals how the velocity changes magnitude and direction over the cardiac cycle. Vector velocity reveals a wealth of new information that now...... is accessible to the ultrasound community. The displaying and studying of this information is challenging as complex flow changes rapidly over the cardiac cycle....

  2. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  3. Mass transfer coefficients determination from linear gradient elution experiments.

    Science.gov (United States)

    Pfister, David; Morbidelli, Massimo

    2015-01-02

    A procedure to estimate mass transfer coefficients in linear gradient elution chromatography is presented and validated by comparison with experimental data. Mass transfer coefficients are traditionally estimated experimentally through the van Deemter plot, which represents the HETP as a function of the fluid velocity. Up to now, the HETP was obtained under isocratic elution conditions. Unfortunately, isocratic elution experiments are often not suitable for large biomolecules which suffer from severe mass transfer hindrances. Yamamoto et al. were the first to propose a semi-empirical equation to relate HETPs measured from linear gradient elution experiments to those obtained under isocratic conditions [7]. Based on his pioneering work, the approach presented in this work aims at providing an experimental procedure supported by simple equations to estimate reliable mass transfer parameters from linear gradient elution chromatographic experiments. From the resolution of the transport model, we derived a rigorous analytical expression for the HETP in linear gradient elution chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    Science.gov (United States)

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle.

  5. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-01-02

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Intrinsic parallel rotation drive by electromagnetic ion temperature gradient turbulence

    CERN Document Server

    Peng, Shuitao; Pan, Yuan

    2016-01-01

    The quasilinear intrinsic parallel flow drive including parallel residual stress, kinetic stress, cross Maxwell stress and parallel turbulent acceleration by electromagnetic ion temperature gradient (ITG) turbulence is calculated analytically using electromagnetic gyrokinetic theory. Both the kinetic stress and cross Maxwell stress also enter the mean parallel flow velocity equation via their divergence, as for the usual residual stress. The turbulent acceleration driven by ion pressure gradient along the total magnetic field (including equilibrium magnetic field and fluctuating radial magnetic field) cannot be written as a divergence of stress, and so should be treated as a local source/sink. All these terms can provide intrinsic parallel rotation drive. Electromagnetic effects reduce the non-resonant electrostatic stress force and even reverse it, but enhance the resonant stress force. Both the non-resonant and resonant turbulent acceleration terms are also enhanced by electromagnetic effects. The possible ...

  7. Application of Conjugate Gradient methods to tidal simulation

    Science.gov (United States)

    Barragy, E.; Carey, G.F.; Walters, R.A.

    1993-01-01

    A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.

  8. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  9. Predicting Escherichia coli's chemotactic drift under exponential gradient

    Science.gov (United States)

    Samanta, Sibendu; Layek, Ritwik; Kar, Shantimoy; Raj, M. Kiran; Mukhopadhyay, Sudipta; Chakraborty, Suman

    2017-09-01

    Bacterial species are known to show chemotaxis, i.e., the directed motions in the presence of certain chemicals, whereas the motion is random in the absence of those chemicals. The bacteria modulate their run time to induce chemotactic drift towards the attractant chemicals and away from the repellent chemicals. However, the existing theoretical knowledge does not exhibit a proper match with experimental validation, and hence there is a need for developing alternate models and validating experimentally. In this paper a more robust theoretical model is proposed to investigate chemotactic drift of peritrichous Escherichia coli under an exponential nutrient gradient. An exponential gradient is used to understand the steady state behavior of drift because of the logarithmic functionality of the chemosensory receptors. Our theoretical estimations are validated through the experimentation and simulation results. Thus, the developed model successfully delineates the run time, run trajectory, and drift velocity as measured from the experiments.

  10. Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers

    Science.gov (United States)

    Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut

    2017-04-01

    Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the

  11. Effect of flow distributors on uniformity of velocity profile in a baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Jen Chen; Man-Ting Cheng [Tajen Institute of Technology, Ping-Tung Hsien (Taiwan). Department of Environmental Engineering and Science

    2005-07-01

    In recent years, baghouses have been used as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance. 11 refs., 10 figs.

  12. Effect of flow distributors on uniformity of velocity profile in a baghouse.

    Science.gov (United States)

    Chen, Chi-Jen; Cheng, Man-Ting

    2005-07-01

    In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.

  13. A theory of gradient analysis

    NARCIS (Netherlands)

    Braak, ter C.J.F.

    1988-01-01

    The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into

  14. Orderings for conjugate gradient preconditionings

    Science.gov (United States)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  15. Compositional gradients in Gramineae genes

    DEFF Research Database (Denmark)

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin

    2002-01-01

    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  16. Ecoulements intermittents de gaz et de liquide en conduite verticale Intermittent Gas and Liquid Flows in a Vertical Pipe.

    Directory of Open Access Journals (Sweden)

    Line A.

    2006-11-01

    Full Text Available Le modèle présenté ici permet la pré-détermination du gradient de pression, du taux global de gaz, et de grandeurs caractéristiques de l'intermittence, dans un écoulement à poches et bouchons en conduite verticale. L'écriture des lois de conservation en moyenne phasique conditionnelle conduit à la définition d'une cellule moyenne équivalente. La fermeture du modèle est assurée par des lois de contrainte de cisaillement film-paroi, film-poche, bouchon-paroi, par une loi d'arrachage du gaz au culot de la poche, une loi de glissement du gaz dans les bouchons et par une loi de la vitesse moyenne de propagation des fronts de poches. Le calibrage et la qualification du modèle s'appuient sur deux banques de données, dont l'une a été obtenue avec des fluides pétroliers dans des conditions proches des situations industrielles (boucle diphasique de Boussens. The model described here can be used to predetermine the pressure gradient, the overall gas rate and the characteristic intermittence magnitudes in pocket and slug flow in a vertical pipe. The way governing equations in the conditional phase average are written defines an equivalent average cell. The model is closed by film/wall, film/pocket and slug/wall shear-stress laws, by a pulloff law for the gas at the bottom of the pocket, a slippage law for the gas in the slugs, and a mean propagation velocity law for the pocket fronts. The calibration and qualification of the model are based on two data banks, one of which contains data on petroleum fluids under conditions close to industrial situations (two-phase loop at Boussens.

  17. Vertical barriers with increased sorption capacities

    Energy Technology Data Exchange (ETDEWEB)

    Bradl, H.B. [Bilfinger + Berger Bauaktiengesellschaft, Mannheim (Germany)

    1997-12-31

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed {open_quotes}tailor-made{close_quotes} depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents.

  18. Magnetic depth profile in GaMnAs layers with vertically graded Mn concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Leiner, J., E-mail: leinerjc@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kirby, B.J. [Center for Neutron Research, NIST, Gaithersburg, MD 20899 (United States); Fitzsimmons, M.R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tivakornsasithorn, K. [Department of Physics, Faculty of Science, Mahidol Univeristy, Bangkok 10400 (Thailand); Liu, X.; Furdyna, J.K.; Dobrowolska, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-01-15

    Controlled vertical grading of magnetization of the ferromagnetic semiconductor GaMnAs represents a significant step toward optimizing its magnetic properties for device applications. Quantitative control of such grading is difficult due to various competing effects, such as Mn diffusion, self-annealing, and diffusion of charge carriers. Furthermore, there are also several surface effects that can influence the magnetization profile, which should be considered in designing and fabricating graded GaMnAs specimens. However, we show that vertical magnetization gradients in GaMnAs layers can be readily achieved by appropriate growth strategies. In this paper we describe the preparation, magnetization measurements, and polarized neutron reflectometry studies of vertically graded GaMnAs layers, which provide direct evidence that vertical grading of Mn concentration has been successfully achieved in our GaMnAs samples. Our measurements also indicate that these graded samples exhibit magnetic “hardening” near the surface. - Highlights: • Controlled vertical grading of the magnetization ferromagnetic semiconductors represents a significant step toward optimizing its magnetic properties for device applications. • Quantitative control of such grading is difficult due to various competing effects, such as Mn diffusion, self-annealing, and diffusion of charge carriers. • We show (via SQUID and Polarized Neutron Scattering) that vertical magnetization gradients in GaMnAs layers can be readily achieved by appropriate MBE growth strategies. • Our measurements also indicate that these graded samples exhibit magnetic “hardening” near the surface.

  19. Photographic guidance for selecting flow resistance coefficients in high-gradient channels

    Science.gov (United States)

    Steven E. Yochum; Francesco Comiti; Ellen Wohl; Gabrielle C. L. David; Luca Mao

    2014-01-01

    Photographic guidance is presented to assist with the estimation of Manning’s n and Darcy-Weisbach f in high-gradient plane-bed, step-pool, and cascade channels. Reaches both with and without instream wood are included. These coefficients are necessary for the estimation of reachaverage velocity, energy loss, and...

  20. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  1. Quantifying vertical and horizontal stand structure using terrestrial LiDAR in Pacific Northwest forests

    Science.gov (United States)

    Kazakova, Alexandra N.

    Stand level spatial distribution is a fundamental part of forest structure that influences many ecological processes and ecosystem functions. Vertical and horizontal spatial structure provides key information for forest management. Although horizontal stand complexity can be measured through stem mapping and spatial analysis, vertical complexity within the stand remains a mostly visual and highly subjective process. Tools and techniques in remote sensing, specifically LiDAR, provide three dimensional datasets that can help get at three dimensional forest stand structure. Although aerial LiDAR (ALS) is the most widespread form of remote sensing for measuring forest structure, it has a high omission rate in dense and structurally complex forests. In this study we used terrestrial LiDAR (TLS) to obtain high resolution three dimensional point clouds of plots from stands that vary by density and composition in the second-growth Pacific Northwest forest ecosystem. We used point cloud slicing techniques and object-based image analysis (OBIA) to produce canopy profiles at multiple points of vertical gradient. At each height point we produced segments that represented canopies or parts of canopies for each tree within the dataset. The resulting canopy segments were further analyzed using landscape metrics to quantify vertical canopy complexity within a single stand. Based on the developed method, we have successfully created a tool that utilizes three dimensional spatial information to accurately quantify the vertical structure of forest stands. Results show significant differences in the number and the total area of the canopy segments and gap fraction between each vertical slice within and between individual forest management plots. We found a significant relationship between the stand density and composition and the vertical canopy complexity. The methods described in this research make it possible to create horizontal stand profiles at any point along the vertical

  2. Seasonal Mass Balance and Balance Gradients from Airborne Laser Altimetry, Columbia River Basin, Canada.

    Science.gov (United States)

    Pelto, B. M.; Menounos, B.

    2016-12-01

    Reliable estimates of glacier mass balance allow insight into the meteorological drivers of glacier change, but financial and logistical limitations restrict field-based measurements to only a small number of the world's glaciers. In southwestern Canada, frequent cloud cover and small glacier size also preclude the measurement of seasonal mass change from space. Here, we describe our ongoing research program employing airborne laser altimetry to estimate surface mass balance for six alpine glaciers in the Columbia Basin. Our surveyed glaciers define a north-south transect through the basin and collectively represent 188 km2 of glaciated terrain (about 10% of the basin's glacierized area). Our LiDAR surveys acquire altimetry with a typical sampling density of 2-3 returns per m2 and with a vertical accuracy of 0.15-0.20 m. Since 2014, we have aligned these airborne surveys to coincide with our field-based, mass balance program that collects measurements at the end of the accumulation and ablation seasons. Geodetic and field-based estimates of seasonal to annual mass balance show remarkable agreement, to within 0.1-0.2 m water equivalent (< 10%). The agreement is greatest for glaciers where we have the densest field-based measurements, implying that our traditional mass balance program could be error prone since it may not capture the spatial variability of surface accumulation and melt at a suitably high sampling density. Our repeated LiDAR surveys, in conjunction with measurements of surface ice velocity and thickness, have also allowed us develop a method to estimate surface mass balance gradients. This method can improve regional estimates of mass change and, ultimately, lead to superior forecasts of glacier loss for the twenty-first century.

  3. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Concrete wave dispersion interpretation through Mindlin's strain gradient elastic theory.

    Science.gov (United States)

    Iliopoulos, Sokratis N; Malm, Fabian; Grosse, Christian U; Aggelis, Dimitrios G; Polyzos, Demosthenes

    2017-07-01

    Classical elastic wave features like pulse velocity and attenuation have been used for decades for concrete condition characterization. Relatively recently the effect of frequency has been studied showing no doubt over the dispersive behavior of the material. Despite the experimental evidence, there is no unified theory to model the material and explain this phase velocity change at frequencies below 200 kHz. Herein, the Mindlin's strain gradient elastic theory including the additional micro-stiffness and micro-inertia parameters is considered as an alternative of multiple scattering theory. Experimental results are produced from material with dictated microstructure using a specific diameter of glass beads in cement paste. Results show that Mindlin's theory provides conclusions on the microstructure of the material and is suitable for describing the observed dispersion in different length scales (from millimeters in the case of mortar to several centimeters in the case of concrete).

  5. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 ¡_ 0.9 and 1.6 ¡_ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 ¡_ 0.6 and -0.1 ¡_ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  6. Measuring sea ice permeability as a function of the attenuation and phase velocity shift of an acoustic wave

    Science.gov (United States)

    Hudier, E. J.; Bahoura, M.

    2012-12-01

    Sea ice is a two-phase porous medium consisting of a solid matrix of pure ice and a salty liquid phase. At spring when ice permeability increases, it has been observed that pressure gradients induced at the ice-water interface upstream and downstream of pressure ridge keels can cause sea water and brine to be forced through the ice water boundary. It suggests that salt and heat fluxes through the bottom ice layers may be a major factor controlling the decay of an ice sheet. Knowing how water flows through the ice matrix is fundamental to a modeling of ocean-ice heat exchanges integrating the advective import/export of latent heat that result from melting/freezing within the ice. Permeability is the measurement of the ease with which fluids flow through a porous medium, however one of the most tricky to measure without altering the porosity of the sampled medium. To further complicate the challenge, horizontal and vertical permeability of the ice, referred as ice anisotropy, is significant. Acoustic wave propagation through porous media have been theorized to relate the acoustic velocity and attenuation to the physical properties of the tested material. It is a non-invasive technique, and as such could provide more reliable measurements of sea ice permeability than anything presently used. Simulations combining the Biot's and squirt flow mechanisms are performed to investigate the effect of permeability on the attenuation and phase velocity as a function of frequency. We first present the attenuation dispersion curves for an isotropic sea ice, then low-frequency and high-frequency limits are determined. Optimal frequency range and resolution requirements are evaluated for testing.

  7. The shoulder gradient in patients with unilateral shoulder impingement syndrome.

    Science.gov (United States)

    Kim, Hee-Sang; Lee, Jong Ha; Yun, Dong Hwan; Yun, Jee-Sang; Shin, Yong Won; Chon, Jinmann; Hwang, Dae Gyu

    2011-10-01

    To investigate the relationship between the shoulder gradient and acromiohumeral interval of both shoulders in patients with unilateral shoulder impingement syndrome. Using the angulometer, we measured the shoulder gradient in patients with unilateral shoulder impingement syndrome in a standing position. Using the radiography, we measured the acromiohumeral interval and the angle between a vertical line and a line connecting a superior angle with an inferior angle of the scapula. In patients with unilateral shoulder impingement syndrome, the frequency of shoulder impingement syndrome was 76.2% (16 of 21) on the side of the relatively lower shoulder. The mean acromiohumeral interval on the side of the lower shoulder was 10.03±1.28 mm, compared with 10.46±1.50 mm for the higher shoulder. The angle between a vertical line and a line connecting a superior angle with an inferior angle of the scapular of the side of the lower shoulder was -0.31±3.73 degrees, compared with 3.85±4.42 degrees for the higher shoulder. The frequency of shoulder impingement syndrome was significantly higher on the side of the relatively lower shoulder, and there is no significant difference in the acromiohumeral interval between the side of the lower shoulder and that of the higher shoulder. In patients with unilateral shoulder impingement syndrome, the scapular on the side of lower shoulder was more rotated downward than on the side of the higher shoulder.

  8. Photoelectric and passivation properties of atomic layer deposited gradient AZO thin film

    Science.gov (United States)

    Zhao, Bin; Tang, Li-dan; Wang, Bing; Jia, Yi; Feng, Jia-heng

    2017-02-01

    Gradient Al-doped ZnO (AZO) thin films were deposited at 150 °C by atomic layer deposition (ALD) with different Al concentration gradient, and their photoelectric and passivation properties were investigated. With increasing Al concentration gradient from 0.09 to 1.21%/nm, Hall-effect showed that the resistivity of gradient AZO thin films deteriorates. The minimal resistivity (2.81 × 10-3 Ω cm), the maximum mobility (9.03 cm2/Vs) and the maximum carrier concentration (2.46 × 1020 cm-3) were obtained at 0.09%/nm Al concentration gradient. The average transmittance of all the gradient AZO films can be more than 85% in the visible region. In addition, gradient AZO thin films demonstrated excellent passivation properties. The maximum minority carrier lifetime (120.6 μs) and the minimal surface recombination velocity (≤208.3 cm/s) were obtained at 0.71%/nm Al concentration gradient.

  9. Validation of simulated flow direction and hydraulic gradients with hydraulic head observations using open source GIS

    Science.gov (United States)

    Vandersteen, Katrijn; Rogiers, Bart; Gedeon, Matej

    2015-04-01

    It is recommended to check hydraulic gradients and flow directions predicted by a groundwater flow model that is calibrated solely with hydraulic head observations. It has been demonstrated in literature that substantial errors can be made when the model is not calibrated on these state variables. Therefore, in this work, we perform a validation of a steady-state groundwater flow model, representing part of the Neogene aquifer (60 km2) in Belgium. This model was developed and calibrated solely on groundwater head measurements, in the framework of the environmental impact assessment of the near surface repository for low- and intermediate-level short-lived waste, realized by ONDRAF/NIRAS at Dessel, Belgium. Horizontal flow directions, horizontal and vertical gradients for the entire area of the groundwater model were estimated from measurements at shallow monitoring wells within the groundwater flow model domain, and compared to the flow directions and vertical gradients predicted by the model. For obtaining horizontal flow directions and gradients, triangulation of groundwater levels was performed for combinations of three neighboring hydraulic head observations in the same hydrogeological layer within the model. The simulated equivalents at the same monitoring wells were used to repeat the same methodology, and calculate flow direction components. This analysis was performed in SAGA GIS and was visualized through QGIS. Comparison of the flow directions and flow gradients obtained from measurements and simulations gives an indication on the model performance. The calculations were performed for three sandy hydrogeological units used in the model. A similar procedure was performed for the vertical hydraulic head gradients, where any combination of two hydraulic head observations at the same location but at different levels within the aquifer were used to validate the vertical gradients predicted by the model. Besides model validation on average hydraulic heads, the

  10. From Surface Flow Velocity Measurements to Discharge Assessment by the Entropy Theory

    Directory of Open Access Journals (Sweden)

    Tommaso Moramarco

    2017-02-01

    Full Text Available A new methodology for estimating the discharge starting from the monitoring of surface flow velocity, usurf, is proposed. The approach, based on the entropy theory, involves the actual location of maximum flow velocity, umax, which may occur below the water surface (dip phenomena, affecting the shape of velocity profile. The method identifies the two-dimensional velocity distribution in the cross-sectional flow area, just sampling usurf and applying an iterative procedure to estimate both the dip and umax. Five gage sites, for which a large velocity dataset is available, are used as a case study. Results show that the method is accurate in simulating the depth-averaged velocities along the verticals and the mean flow velocity with an error, on average, lower than 12% and 6%, respectively. The comparison with the velocity index method for the estimation of the mean flow velocity using the measured usurf, demonstrates that the method proposed here is more accurate mainly for rivers with a lower aspect ratio where secondary currents are expected. Moreover, the dip assessment is found more representative of the actual location of maximum flow velocity with respect to the one estimated by a different entropy approach. In terms of discharge, the errors do not exceed 3% for high floods, showing the good potentiality of the method to be used for the monitoring of these events.

  11. Blood flow analysis with considering nanofluid effects in vertical channel

    Science.gov (United States)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  12. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection

    Science.gov (United States)

    Zhang, Yang; Huang, Yong-Xiang; Jiang, Nan; Liu, Yu-Lu; Lu, Zhi-Ming; Qiu, Xiang; Zhou, Quan

    2017-08-01

    We investigate fluctuations of the velocity and temperature fields in two-dimensional (2D) Rayleigh-Bénard (RB) convection by means of direct numerical simulations (DNS) over the Rayleigh number range 106≤Ra≤1010 and for a fixed Prandtl number Pr=5.3 and aspect ratio Γ =1 . Our results show that there exists a counter-gradient turbulent transport of energy from fluctuations to the mean flow both locally and globally, implying that the Reynolds stress is one of the driving mechanisms of the large-scale circulation in 2D turbulent RB convection besides the buoyancy of thermal plumes. We also find that the viscous boundary layer (BL) thicknesses near the horizontal conducting plates and near the vertical sidewalls, δu and δv, are almost the same for a given Ra, and they scale with the Rayleigh and Reynolds numbers as ˜Ra-0.26±0.03 and ˜Re-0.43±0.04 . Furthermore, the thermal BL thickness δθ defined based on the root-mean-square (rms) temperature profiles is found to agree with Prandtl-Blasius predictions from the scaling point of view. In addition, the probability density functions of turbulent energy ɛu' and thermal ɛθ' dissipation rates, calculated, respectively, within the viscous and thermal BLs, are found to be always non-log-normal and obey approximately a Bramwell-Holdsworth-Pinton distribution first introduced to characterize rare fluctuations in a confined turbulent flow and critical phenomena.

  13. First storm-time plasma velocity estimates from high-resolution ionospheric data assimilation

    Science.gov (United States)

    Datta-Barua, Seebany; Bust, Gary S.; Crowley, Geoff

    2013-11-01

    This paper uses data assimilation to estimate ionospheric state during storm time at subdegree resolution. We use Ionospheric Data Assimilation Four-Dimensional (IDA4D) to resolve the three-dimensional time-varying electron density gradients of the storm-enhanced density poleward plume. By Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE), we infer the three-dimensional plasma velocity from the densities. EMPIRE estimates of ExB drift are made by correcting the Weimer 2000 electric potential model. This is the first time electron densities derived from GPS total electron content (TEC) data are being used to estimate field-aligned and field-perpendicular drifts at such high resolution, without reference to direct drift measurements. The time-varying estimated electron densities are used to construct the ionospheric spatial decorrelation in vertical total electron content (TEC) on horizontal scales of less than 100 km. We compare slant TEC (STEC) estimates to actual STEC GPS observations, including independent unassimilated data. The IDA4D density model of the extreme ionospheric storm on 20 November 2003 shows STEC delays of up to 210 TEC units, comparable to the STEC of the GPS ground stations. Horizontal drifts from EMPIRE are predicted to be northwestward within the storm-enhanced density plume and its boundary, turning northeast at high latitudes. These estimates compare favorably to independent Assimilative Mapping of Ionospheric Electrodynamics-assimilated high-latitude ExB drift estimates. Estimated and measured Defense Meteorological Satellite Program in situ drifts differ by a factor of 2-3 and in some cases have incorrect direction. This indicates that significant density rates of change and more accurate accounting for production and loss may be needed when other processes are not dominant.

  14. Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    S. Das

    2016-03-01

    Full Text Available The transient natural convection in a vertical channel filled with nanofluids has been studied when thermal radiation is taken into consideration. The equations governing the flow are solved by employing the Laplace transform technique. Exact solutions for the velocity and temperature of nanofluid are obtained in cases of both prescribed surface temperature (PST and prescribed heat flux (PHF. The numerical results for the velocity and temperature of nanofluid are presented graphically for the pertinent parameters and discussed in detail. The fluid velocity is greater in the case of PST than that of PHF.

  15. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  16. Physics and the Vertical Jump

    Science.gov (United States)

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  17. Multiservice Vertical Handoff Decision Algorithms

    Directory of Open Access Journals (Sweden)

    Zhu Fang

    2006-01-01

    Full Text Available Future wireless networks must be able to coordinate services within a diverse-network environment. One of the challenging problems for coordination is vertical handoff, which is the decision for a mobile node to handoff between different types of networks. While traditional handoff is based on received signal strength comparisons, vertical handoff must evaluate additional factors, such as monetary cost, offered services, network conditions, and user preferences. In this paper, several optimizations are proposed for the execution of vertical handoff decision algorithms, with the goal of maximizing the quality of service experienced by each user. First, the concept of policy-based handoffs is discussed. Then, a multiservice vertical handoff decision algorithm (MUSE-VDA and cost function are introduced to judge target networks based on a variety of user- and network-valued metrics. Finally, a performance analysis demonstrates that significant gains in the ability to satisfy user requests for multiple simultaneous services and a more efficient use of resources can be achieved from the MUSE-VDA optimizations.

  18. Advanced high performance vertical hybrid synthetic jet actuator

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  19. ISAL experiment documentation of vertical tail and OMS pods

    Science.gov (United States)

    1983-01-01

    Investigation of Space Transportation System (STS) Atmospheric Luminosities (ISAL) experiment documentation includes vertical tail and orbital maneuvering system (OMS) pods with surface glow against the blackness of space. This glowing scene was provided by a long duration exposure with a 35mm camera aimed toward the tail of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. OV-099 was maneuvered to a 120-nautical-mile altitude and flown with open payload bay (PLB) in the velocity vector for the conducting of a test titled, 'Evaluation of Oxygen Interaction with Materials (EOIM)'. Atomic oxygen within the low orbital environment is known to be extremely reactive when in contact with solid surfaces. In the darkened area between the camera and the glowing OMS pods and vertical stabilizer are two trays of test materials.

  20. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.