WorldWideScience

Sample records for vertical velocity algorithm

  1. Multiservice Vertical Handoff Decision Algorithms

    Directory of Open Access Journals (Sweden)

    Zhu Fang

    2006-01-01

    Full Text Available Future wireless networks must be able to coordinate services within a diverse-network environment. One of the challenging problems for coordination is vertical handoff, which is the decision for a mobile node to handoff between different types of networks. While traditional handoff is based on received signal strength comparisons, vertical handoff must evaluate additional factors, such as monetary cost, offered services, network conditions, and user preferences. In this paper, several optimizations are proposed for the execution of vertical handoff decision algorithms, with the goal of maximizing the quality of service experienced by each user. First, the concept of policy-based handoffs is discussed. Then, a multiservice vertical handoff decision algorithm (MUSE-VDA and cost function are introduced to judge target networks based on a variety of user- and network-valued metrics. Finally, a performance analysis demonstrates that significant gains in the ability to satisfy user requests for multiple simultaneous services and a more efficient use of resources can be achieved from the MUSE-VDA optimizations.

  2. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  3. On the measurement of vertical velocity by MST radar

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview is presented of the measurement of atmospheric vertical motion utilizing the MST radar technique. Vertical motion in the atmosphere is briefly discussed as a function of scale. Vertical velocity measurement by MST radars is then considered from within the context of the expected magnitudes to be observed. Examples are drawn from published vertical velocity observations.

  4. Using Borehole Vertical Array Data to Determine Local Attenuation and Velocity Structure: A Combined Global-Local Optimization Algorithm for Plane Wave Seismogram Inversion

    Science.gov (United States)

    Assimaki, D.; Tsuda, K.; Oakes, J.; Steidl, J.

    2004-12-01

    A seismic waveform inversion algorithm is demonstrated for the estimation of elastic soil properties from one-dimensional downhole array recordings. For a given bedrock motion, scarcity of near-surface geotechnical information, error propagation and limited resolution of the continuum usually result in predictions of surface ground motion that poorly compare with low amplitude observations. This discrepancy is further aggravated for strong ground motion, associated with hysteretic, nonlinear, and potentially irreversible material deformations. Seismogram inversion is a nonlinear multi-parameter optimization problem. Traditional search techniques that use characteristics of the problem to determine the next sampling point (e.g. gradients, Hessians, linearity and continuity) are computationally efficient, yet limited to convex regular functions. As a result, they fail to identify the best fit solution in seismogram inversion problems, when the starting model is too far from the global optimal solution. On the other hand, stochastic search techniques (e.g. genetic algorithms, simulated annealing) have been shown to efficiently identify promising regions in the search space, but perform very poorly in a localized search. The proposed inversion technique is a two-step process, namely a genetic algorithm in the wavelet domain in series with a nonlinear least-square fit in the frequency domain; we thus improve the computational efficiency of the former, while avoiding the pitfalls of using local linearization techniques such as the latter for the optimization of multi-modal, discontinuous and non-differentiable functions. The parameters to be estimated are stepwise variations of the shear modulus, attenuation and density with depth, for horizontally layered media with refined near-surface discretization. Equality constrains are imposed on the vector of unknowns to bound the search space, based on the available soil investigation. For the genetic algorithm, the objective

  5. Parachute landing fall characteristics at three realistic vertical descent velocities.

    Science.gov (United States)

    Whitting, John W; Steele, Julie R; Jaffrey, Mark A; Munro, Bridget J

    2007-12-01

    Although parachute landing injuries are thought to be due in part to a lack of exposure of trainees to realistic descent velocities during parachute landing fall (PLF) training, no research has systematically investigated whether PLF technique is affected by different vertical descent conditions, with standardized and realistic conditions of horizontal drift. This study was designed to determine the effects of variations in vertical descent velocity on PLF technique. Kinematic, ground reaction force, and electromyographic data were collected and analyzed for 20 paratroopers while they performed parachute landings, using a custom-designed monorail apparatus, with a constant horizontal drift velocity (2.3 m x s(-1)) and at three realistic vertical descent velocities: slow (2.1 m x s(-1)), medium (3.3 m x s(-1)), and fast (4.6 m x s(-1)). Most biomechanical variables characterizing PLF technique were significantly affected by descent velocity. For example, at the fast velocity, the subjects impacted the ground with 123 degrees of plantar flexion and generated ground reaction forces averaging 13.7 times body weight, compared to 106 degrees and 6.1 body weight, respectively, at the slow velocity. Furthermore, the subjects activated their antigravity extensor muscles earlier during the fast velocity condition to eccentrically control the impact absorption. As vertical descent rates increased, the paratroopers displayed a significantly different strategy when performing the PLF. It is therefore recommended that PLF training programs include ground training activities with realistic vertical descent velocities to better prepare trainees to withstand the impact forces associated with initial aerial descents onto the Drop Zone and, ultimately, minimize the potential for injury.

  6. Some numerical calculations of the vertical velocity field in hurricanes

    OpenAIRE

    Krishnamurti, T. N.

    2011-01-01

    The commonly observed crescent-shaped geometry of the tangential wind field in hurricanes is imposed on the primitive equations of atmospheric motion, and solutions for the vertical velocity field are obtained. It is shown that the numerically computed vertical motion field exhibits a spiral form, very similar to what is observed in radar pictures in individual hurricanes. Aircraft flight data from the National Hurricane Research Project are utilized to carry out the numerical calculations i...

  7. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps

  8. Wind Velocity Vertical Extrapolation by Extended Power Law

    Directory of Open Access Journals (Sweden)

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  9. Orthogonal Vertical Velocity Dispersion Distributions Produced by Bars

    Science.gov (United States)

    Du, Min; Shen, Juntai; Debattista, Victor P.; de Lorenzo-Cáceres, Adriana

    2017-02-01

    In barred galaxies, the contours of stellar velocity dispersions (σ) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct σ peaks on the minor axis of the inner bar, which we termed “σ-humps,” while two local σ minima are present close to the ends of inner bars, I.e., “σ-hollows.” Analysis of numerical simulations shows that {σ }z-humps or hollows should play an important role in generating the observed σ-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of {σ }z in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower {σ }z along the bar and enhance it perpendicular to the bar, thus generating {σ }z-humps+hollows. Such a result suggests that {σ }z-humps+hollows can be generated by the purely dynamical response of stars in the presence of a sufficiently massive, vertically thin bar, even without an outer bar. Using self-consistent N-body simulations, we verify the existence of vertically thin bars in the nuclear-barred and S2B models that generate prominent σ-humps+hollows. Thus, the ubiquitous presence of σ-humps+hollows in S2Bs implies that inner bars are vertically thin. The addition of a bulge makes the {σ }z-humps more ambiguous and thus tends to somewhat hide the {σ }z-humps+hollows. We show that {σ }z may be used as a kinematic diagnostic of stellar components that have different thicknesses, providing a direct perspective on the morphology and thickness of nearly face-on bars and bulges with integral field unit spectroscopy.

  10. Terminal velocity of a shuttlecock in vertical fall

    Science.gov (United States)

    Peastrel, Mark; Lynch, Rosemary; Armenti, Angelo

    1980-07-01

    We have performed a straightforward vertical fall experiment for a case where the effects of air resistance are important and directly measurable. Using a commonly available badminton shuttlecock, a tape measure, and a millisecond timer, the times required for the shuttlecock to fall given distances (up to almost ten meters) were accurately measured. The experiment was performed in an open stairwell. The experimental data was compared to the predictions of several models. The best fit was obtained with the model which assumes a resistive force quadratic in the instantaneous speed of the falling object. This model was fitted to the experimental data enabling us to predict the terminal velocity of the shuttlecock (6.80 m/sec). The results indicate that, starting from rest, the vertically falling shuttlecock achieves 99% of its terminal velocity in 1.84 sec, after falling 9.2 m. The relative ease in collecting the data, as well as the excellent agreement with theory, make this an ideal experiment for use in physics courses at a variety of levels.

  11. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...

  12. Bernstein Algorithm for Vertical Normalization to 3NF Using Synthesis

    OpenAIRE

    Matija Varga

    2013-01-01

    This paper demonstrates the use of Bernstein algorithm for vertical normalization to 3NF using synthesis. The aim of the paper is to provide an algorithm for database normalization and present a set of steps which minimize redundancy in order to increase the database management efficiency, and specify tests and algorithms for testing and proving the reversibility (i.e., proving that the normalization did not cause loss of information). Using Bernstein algorithm steps, the paper gives examples...

  13. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were

  14. Particle swarm inspired optimization algorithm without velocity equation

    Directory of Open Access Journals (Sweden)

    Mahmoud Mostafa El-Sherbiny

    2011-03-01

    Full Text Available This paper introduces Particle Swarm Without Velocity equation optimization algorithm (PSWV that significantly reduces the number of iterations required to reach good solutions for optimization problems. PSWV algorithm uses a set of particles as in particle swarm optimization algorithm but a different mechanism for finding the next position for each particle is used in order to reach a good solution in a minimum number of iterations. In PSWV algorithm, the new position of each particle is determined directly from the result of linear combination between its own best position and the swarm best position without using velocity equation. The results of PSWV algorithm and the results of different variations of particle swarm optimizer are experimentally compared. The performance of PSWV algorithm and the solution quality prove that PSWV is highly competitive and can be considered as a viable alternative to solve optimization problems.

  15. Bernstein Algorithm for Vertical Normalization to 3NF Using Synthesis

    Directory of Open Access Journals (Sweden)

    Matija Varga

    2013-07-01

    Full Text Available This paper demonstrates the use of Bernstein algorithm for vertical normalization to 3NF using synthesis. The aim of the paper is to provide an algorithm for database normalization and present a set of steps which minimize redundancy in order to increase the database management efficiency, and specify tests and algorithms for testing and proving the reversibility (i.e., proving that the normalization did not cause loss of information. Using Bernstein algorithm steps, the paper gives examples of vertical normalization to 3NF through synthesis and proposes a test and an algorithm to demonstrate decomposition reversibility. This paper also sets out to explain that the reasons for generating normal forms are to facilitate data search, eliminate data redundancy as well as delete, insert and update anomalies and explain how anomalies develop using examples-

  16. A fast algorithm for 3D azimuthally anisotropic velocity scan

    KAUST Repository

    Hu, Jingwei

    2014-11-11

    © 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.

  17. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  18. Spacecraft Angular Velocity Estimation Algorithm Based on Orientation Quaternion Measurements

    Directory of Open Access Journals (Sweden)

    M. V. Li

    2016-01-01

    Full Text Available The spacecraft (SC mission involves providing the appropriate orientation and stabilization of the associated axes in space. One of the main sources of information for the attitude control system is the angular rate sensor blocks. One way to improve a reliability of the system is to provide a back up of the control algorithms in case of failure of these blocks. To solve the problem of estimation of SP angular velocity vector in the inertial system of coordinates with a lack of information from the angular rate sensors is supposed the use of orientation data from the star sensors; in this case at each clock of the onboard digital computer. The equations in quaternions are used to describe the kinematics of rotary motion. Their approximate solution is used to estimate the angular velocity vector. Methods of modal control and multi-dimensional decomposition of a control object are used to solve the problem of observation and identification of the angular rates. These methods enabled us to synthesize the SP angular velocity vector estimation algorithm and obtain the equations, which relate the error quaternion with the calculated estimate of the angular velocity. Mathematical modeling was carried out to test the algorithm. Cases of different initial conditions were simulated. Time between orientation quaternion measurements and angular velocity of the model was varied. The algorithm was compared with a more accurate algorithm, built on more complete equations. Graphs of difference in angular velocity estimation depending on the number of iterations are presented. The difference in angular velocity estimation is calculated from results of the synthesized algorithm and the algorithm for more accurate equations. Graphs of error distribution for angular velocity estimation with initial conditions being changed are also presented, and standard deviations of estimation errors are calculated. The synthesized algorithm is inferior in accuracy assessment to

  19. Vertical Velocities in Cumulus Convection: Implications for Climate and Prospects for Realistic Simulation at Cloud Scale

    Science.gov (United States)

    Donner, Leo

    2014-05-01

    Cumulus mass fluxes are essential controls on the interactions between cumulus convection and large-scale flows. Cumulus parameterizations have generally been built around them, and these parameterizations are basic components of climate models. Several important questions in climate science depend also on cumulus vertical velocities. Interactions between aerosols and convection comprise a prominent example, and scale-aware cumulus parameterizations that require explicit information about cumulus areas are another. Basic progress on these problems requires realistic characterization of cumulus vertical velocities from observations and models. Recent deployments of dual-Doppler radars are providing unprecedented observations, which can be compared against cloud-resolving models (CRMs). The CRMs can subsequently be analyzed to develop and evaluate parameterizations of vertical velocities in climate models. Vertical velocities from several cloud models will be compared against observations in this presentation. CRM vertical velocities will be found to depend strongly on model resolution and treatment of sub-grid turbulence and microphysics. Although many current state-of-science CRMs do not simulate vertical velocities well, recent experiments with these models suggest that with appropriate treatments of sub-grid turbulence and microphysics robustly realistic modeling of cumulus vertical velocities is possible.

  20. Velocity of climate change algorithms for guiding conservation and management.

    Science.gov (United States)

    Hamann, Andreas; Roberts, David R; Barber, Quinn E; Carroll, Carlos; Nielsen, Scott E

    2015-02-01

    The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities). © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Diagnosis of hydrometeor profiles from area-mean vertical-velocity data

    Science.gov (United States)

    Braun, Scott A.; Houze, Robert A., Jr.

    1995-01-01

    A simple one-dimensional microphysical retrieval model is developed for estimating vertical profiles of liquid and frozen hydrometeor mixing ratios from observed vertical profiles of area-mean vertical velocity in regions of convective and/or stratiform precipitation. The mean vertical-velocity profiles can be obtained from Doppler radar (single and dual) or other means. The one-dimensional results are shown to be in good agreement with two-dimensional microphysical fields from a previous study. Sensitivity tests are performed.

  2. Diagnosing ocean vertical velocities off New Caledonia from a SPRAY glider

    Science.gov (United States)

    Fuda, Jean-Luc; Marin, Frédéric; Durand, Fabien; Terre, Thierry

    2013-04-01

    A SPRAY glider has been operated in the Coral Sea (South-Western tropical Pacific ocean) since 2011, with the primary goal of monitoring the boundary currents and jets. In this presentation, we will describe how oceanic vertical velocities can be estimated from SPRAY glider measurements, with application to the observation of internal waves off New Caledonia in May-June 2012. Pressure measurements by the glider allow estimating the vertical velocities of the glider (relative to ocean bottom) at each time. These vertical velocities are the sum of the vertical velocities of the glider relative to the water body (governed by the laws of motion of the glider) and of the oceanic vertical velocities (due to ocean internal dynamics). If we solve the laws of motion of the glider (via an adequate flight model), we can thus retrieve oceanic vertical velocities. On account of their small magnitude, the retrieval of ocean vertical velocities would be tricky - if not impossible - through other conventional instruments such as ADCPs. Following a couple of similar previous studies on the SLOCUM and SEAGLIDER gliders, we describe a simplified flight model for the SPRAY glider. This model has three parameters that only depend on the characteristics of the glider: the compressibility and thermal expansion coefficients (that are constant) and the drag coefficient (that is allowed to change dive after dive, because of potential fouling of the hull). We estimate these parameters under the assumption that the absolute vertical water velocity average to zero over a long enough spatio-temporal window (typically: a profile or a group of profiles). Unlike previous studies, our flight model takes into account the vehicle roll to assess its impact on the flight model and oceanic vertical velocity retrieval. We apply this approach to a 40-day/250 dives/800km mission performed in May-June 2012 along 167°E south of New Caledonia. Dramatic water vertical velocities variations (up to 3-4 cm

  3. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  4. AN INTELLIGENT VERTICAL HANDOVER DECISION ALGORITHM FOR WIRELESS HETEROGENEOUS NETWORKS

    OpenAIRE

    V. Anantha Narayanan; Rajeswari, A; Sureshkumar, V.

    2014-01-01

    The Next Generation Wireless Networks (NGWN) should be compatible with other communication technologies to offer the best connectivity to the mobile terminal which can access any IP based services at any time from any network without the knowledge of its user. It requires an intelligent vertical handover decision making algorithm to migrate between technologies that enable seamless mobility, always best connection and minimal terminal power consumption. Currently existing decision engines are...

  5. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    for African-Asian-Australian Monsoon Analysis and Prediction, in October-November 2006. Using an array of four subsurface moored acoustic Doppler current profilers, we estimated vertical velocity by applying the continuity equation. Results indicated...

  6. Estimates of vertical velocities and eddy coefficients in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Vertical velocities and eddy coefficients in the intermediate depths of the Bay of Bengal are calculated from mean hydrographic data for 300 miles-squares. The linear current density (sigma- O) versus log-depth plots show steady balance between...

  7. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  8. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl

    2010-07-01

    One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.

  9. The Vertical Variation of HI Velocity Dispersion in Disk Galaxies

    NARCIS (Netherlands)

    Peters, Stephan Pieter Cornelis; Freeman, Ken; van der Kruit, Pieter C.

    2010-01-01

    One of the key assumptions in dynamical applications of the HI velocity dispersion in disk galaxies (e.g. to the flattening of the dark halo) has always been the isothermal nature of the HI distribution. There is no physical reason for this assumption: it is made because until now it has not been

  10. Cloud base vertical velocity statistics: a comparison between an atmospheric mesoscale model and remote sensing observations

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2011-09-01

    Full Text Available The statistics of cloud base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that AROME significantly underestimates the variability of vertical velocity at cloud base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4–8 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km explains 70–80 % of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 10 km in the presented case. Adding a TKE-term on the resolved grid-point vertical velocity can compensate for the underestimation, but only for altitudes below approximately the boundary layer top height. The results illustrate the need for a careful consideration of the scales the model is able to accurately resolve, as well as for a special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.

  11. New Search Space Reduction Algorithm for Vertical Reference Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2016-06-01

    Full Text Available Burning the fuel required to sustain a given flight releases pollution such as carbon dioxide and nitrogen oxides, and the amount of fuel consumed is also a significant expense for airlines. It is desirable to reduce fuel consumption to reduce both pollution and flight costs. To increase fuel savings in a given flight, one option is to compute the most economical vertical reference trajectory (or flight plan. A deterministic algorithm was developed using a numerical aircraft performance model to determine the most economical vertical flight profile considering take-off weight, flight distance, step climb and weather conditions. This algorithm is based on linear interpolations of the performance model using the Lagrange interpolation method. The algorithm downloads the latest available forecast from Environment Canada according to the departure date and flight coordinates, and calculates the optimal trajectory taking into account the effects of wind and temperature. Techniques to avoid unnecessary calculations are implemented to reduce the computation time. The costs of the reference trajectories proposed by the algorithm are compared with the costs of the reference trajectories proposed by a commercial flight management system using the fuel consumption estimated by the FlightSim® simulator made by Presagis®.

  12. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    Science.gov (United States)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  13. The elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems

    Science.gov (United States)

    Bu, Q. T.; Hu, G. W.; Ye, Y. G.; Liu, C. L.; Li, C. F.; Best, A. I.; Wang, J. S.

    2017-06-01

    Knowledge of the elastic wave velocities of hydrate-bearing sediments is important for geophysical exploration and resource evaluation. Methane gas migration processes play an important role in geological hydrate accumulation systems, whether on the seafloor or in terrestrial permafrost regions, and their impact on elastic wave velocities in sediments needs further study. Hence, a high-pressure laboratory apparatus was developed to simulate natural continuous vertical migration of methane gas through sediments. Hydrate saturation (S h) and ultrasonic P- and S-wave velocities (V p and V s) were measured synchronously by time domain reflectometry (TDR) and by ultrasonic transmission methods respectively during gas hydrate formation in sediments. The results were compared to previously published laboratory data obtained in a static closed system. This indicated that the velocities of hydrate-bearing sediments in vertical gas migration systems are slightly lower than those in closed systems during hydrate formation. While velocities increase at a constant rate with hydrate saturation in the closed system, P-wave velocities show a fast-slow-fast variation with increasing hydrate saturation in the vertical gas migration system. The observed velocities are well described by an effective-medium velocity model, from which changing hydrate morphology was inferred to cause the fast-slow-fast velocity response in the gas migration system. Hydrate forms firstly at the grain contacts as cement, then grows within the pore space (floating), then finally grows into contact with the pore walls again. We conclude that hydrate morphology is the key factor that influences the elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems.

  14. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Rodríguez-Lorenzo Lois

    2016-12-01

    Full Text Available Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ; a countermovement jump without (CMJ and with the arm swing (CMJA and a reactive jump (RJ. Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001. Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking.

  15. Using smartphones' pressure sensors to measure vertical velocities in elevators, stairways and drones

    CERN Document Server

    Monteiro, Martin

    2016-01-01

    By means of smartphones' pressure sensors we measure vertical velocities of elevators, pedestrians climbing stairways and flying unmanned aerial vehicles (or \\textit{drones}). The barometric pressure obtained with the smartphone is related, thanks to the hydrostatic approximation, to the altitude of the device. From the altitude values, the vertical velocity is accordingly derived. The approximation considered is valid in the first hundreds meters of the inner layers of the atmosphere. Simultaneously to the pressure, the acceleration values, reported by the buit-in accelerometers, are also recorded. Integrating numerically the acceleration, vertical velocity and altitude are also obtained. We show that data obtained with the pressure sensor is considerable less noisy than that obtained with the accelerometer in the experiments proposed here. Accumulatioin of errors are also evident in the numerical integration of the acceleration values. The comparison with reference values taken from the architectural plans ...

  16. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  17. Seismic noise: inversion of velocity profile using a non linear algorithm

    Science.gov (United States)

    Wathelet, M.; Jongmans, D.

    2003-04-01

    For site effect assessment a good knowledge of the shear wave velocity profile is of prime importance. It can be deduced from the dispersive property of the surface waves present in the noise wave-field or artificially generated. This inversion is not straightforward as different ground models have the same phase velocity curve in the observed frequency range. Moreover the uncertainties on the phase velocity obtained by available processing techniques drastically increase the non unicity of the problem. Widely used iterative linear algorithms initiated by a starting model lead to only one optimal solution that could be a local minimum of the misfit function. In order to investigate the parameter space we implement a direct search algorithm (Neighborhood, M. Sambridge,1999) to inverse the velocity profile. However, in spite of their performance, the direct search algorithms partially reproduce the ensemble of possible good solutions. Different possibilities to help the inversion process are considered. We introduce a priori on the compressional wave velocities in the misfit computations, which could be acquired from refraction tests. Also, adding the inversion of the Rayleigh ellipticity leads to a better constrain of the layer's depth (Scherbaum et al., in press). At low frequency join inversion of both Rayleigh and Love modes could significantly improve the resolution which is usually poor when considering the vertical component alone. This method has been successfully tested on various synthetics in order to estimate its ability to reproduce the original models. Several sites selected in Belgium for the availability of geological and geotechnical data were deeply investigated with ambient vibration measurements (Lennartz 5 seconds and geophones), refraction tomography and surface wave inversion from hammer and explosive shots, and the coherency of the proposed approach has been validated. Study developed within the SESAME European Project.

  18. A Zero Velocity Detection Algorithm Using Inertial Sensors for Pedestrian Navigation Systems

    Directory of Open Access Journals (Sweden)

    Young Soo Suh

    2010-10-01

    Full Text Available In pedestrian navigation systems, the position of a pedestrian is computed using an inertial navigation algorithm. In the algorithm, the zero velocity updating plays an important role, where zero velocity intervals are detected and the velocity error is reset. To use the zero velocity updating, it is necessary to detect zero velocity intervals reliably. A new zero detection algorithm is proposed in the paper, where only one gyroscope value is used. A Markov model is constructed using segmentation of gyroscope outputs instead of using gyroscope outputs directly, which makes the zero velocity detection more reliable.

  19. Preliminary results of algorithms to determine horizontal and vertical underwater visibilities of coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Joshi, Shreya; Talaulikar, M.; Desa, E.J.

    Algorithms developed for underwater horizontal and vertical visibilities are presented. The algorithms have been developed to derive the underwater visibilities based on the contrast theory using the in-situ and Hydrolight derived optical parameters...

  20. Velocity measurements in the wake of laboratory-scale vertical axis turbines and rotating circular cylinders

    Science.gov (United States)

    Araya, Daniel; Dabiri, John

    2014-11-01

    We present experimental data to compare the wake characteristics of a laboratory-scale vertical-axis turbine with that of a rotating circular cylinder. The cylinder is constructed to have the same diameter and height as the turbine in order to provide a comparison that is independent of the tunnel boundary conditions. Both the turbine and cylinder are motor-driven to tip-speed ratios based on previous experiments. An analysis of the effect of the motor-driven flow is also presented. These measurements are relevant for exploring the complex structure of the vertical axis turbine wake relative to the canonical wake of a circular cylinder. 2D particle image velocimetry is used to measure the velocity field in a two-dimensional plane normal to the axis of rotation. This velocity field is then used to compare time-averaged streamwise velocity, phase-averaged vorticity, and the velocity power spectrum in the wake of the two configurations. The results give insight into the extent to which solid cylinders could be used as a simplified model of the flow around vertical axis turbines in computational simulations, especially for turbine array optimization.

  1. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  2. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  3. Vertical velocity distribution in open-channel flow with rigid vegetation.

    Science.gov (United States)

    Zhu, Changjun; Hao, Wenlong; Chang, Xiangping

    2014-01-01

    In order to experimentally investigate the effects of rigid vegetation on the characteristics of flow, the vegetations were modeled by rigid cylindrical rod. Flow field is measured under the conditions of submerged rigid rod in flume with single layer and double layer vegetations. Experiments were performed for various spacings of the rigid rods. The vegetation models were aligned with the approaching flow in a rectangular channel. Vertical distributions of time-averaged velocity at various streamwise distances were evaluated using an acoustic Doppler velocimeter (ADV). The results indicate that, in submerged conditions, it is difficult to described velocity distribution along the entire depth using unified function. The characteristic of vertical distribution of longitudinal velocity is the presence of inflection. Under the inflection, the line is convex and groove above inflection. The interaction of high and low momentum fluids causes the flow to fold and creates strong vortices within each mixing layer. Understanding the flow phenomena in the area surrounding the tall vegetation, especially in the downstream region, is very important when modeling or studying the riparian environment. ADV measures of rigid vegetation distribution of the flow velocity field can give people a new understanding.

  4. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (˜T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (˜ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  5. Estimation of vertical migration velocity of (137)Cs in the Mount IDA/Kazdagi, Turkey.

    Science.gov (United States)

    Karadeniz, Özlem; Çakır, Rukiye; Karakurt, Hidayet

    2015-08-01

    This paper presents the results obtained from a radioecological study carried out in the forest sites of Mount IDA (Kazdagi)/Edremit, Turkey. For 118 soil profiles, the depth distribution of (137)Cs activity was established by fitting the experimental points to an exponential, a gaussian or a log-normal function. The relaxation lengths were in the range of 1.09-16.7 cm with a mean of 5.73 cm, showing a slow transport and a strong retention capacity of (137)Cs even after the 26-y period of Chernobyl accident. From the data for the vertical distribution of (137)Cs in soil profiles, the mean annual migration velocity of (137)Cs was in the range of 0.11-0.62 cm year(-1) with a mean of 0.30 cm year(-1). Statistically significant correlations between the thickness of the humus layer and the mean annual velocity of (137)Cs were found for both coniferous and mixed forest sites. The mean annual velocity of (137)Cs in the forests sites with Pinus nigra var pallasiana was significantly higher than sites with Pinus brutia. External dose-rates from the (137)Cs in forest soils were estimated using a conversion factor used in many studies and comprised with the external dose-rates determined according to the vertical distribution of (137)Cs within the soil depth profiles. It is clearly seen that both levels and spatial distribution patterns of the external dose-rates from (137)Cs were influenced considerably with the vertical migration rate and the vertical distribution of (137)Cs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influence of running velocity on vertical, leg and joint stiffness : modelling and recommendations for future research.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John

    2008-01-01

    Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.

  7. Finding people, papers, and posts: Vertical search algorithms and evaluation

    NARCIS (Netherlands)

    Berendsen, R.W.

    2015-01-01

    There is a growing diversity of information access applications. While general web search has been dominant in the past few decades, a wide variety of so-called vertical search tasks and applications have come to the fore. Vertical search is an often used term for search that targets specific

  8. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  9. Vertical Jump Height Estimation Algorithm based on Vertical Acceleration Profile Characteristics via Foot-Worn Inertial Sensing.

    Science.gov (United States)

    Wang, Jianren; Xu, Junkai; Shull, Peter B

    2017-12-13

    Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC_(2,1)=0.98) and heel (ICC_(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23 cm) were detected in inertial sensing at the heel. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.

  10. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  11. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  12. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...... of atmospheric boundary layer modeling. The measurements are from the Danish wind turbine test sites at Høvsøre. With theWindCube lidar we are able to reach heights of 250 meters and hence capture the entire atmospheric surface layer both in terms of wind speed and the direction of the mean stress vector....

  13. Decision Support Systems in Health Care - Velocity of Apriori Algorithm.

    Science.gov (United States)

    Somek, Mario; Hercigonja-Szekeres, Mira

    2017-01-01

    The amount of stored data in health information systems can reach tera- and petabytes and application of specific algorithms in the field of data mining makes finding useful information suitable for making quality business decisions. A frequently used method for determining the rules of the relationship between attributes is the Association rule by applying Apriori algorithm. Lack of basic Apriori algorithm is derived from the slow work due to multiple scanned data sets. By examining the speed of generating the basic rules in relation to the improved Apriori algorithm by using software RapidMiner confirmed that the time required to generate rules for Improved algorithm is shorter, the rules are quickly generated particularly for large data sets, which is an advantage for making decisions.

  14. The large low velocity province and the vertical flow beneath the Pacific

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Tsuchiya, T.

    2010-12-01

    Since tomographic studies found the large low velocity province (LLVP) (degree-2 pattern) in the lowermost mantle in 1980's, it has been controversial whether it is due to thermal effects, chemical heterogeneity, or both. Geodynamical studies have suggested that both effects can explain the LLVP but that the large thermo-chemical pile model is preferred (e.g., Bull et al. 2009). Our seismological group has developed waveform inversion techniques and applied them to data from recently deployed broad-band seismic arrays such as US-Array. We found that there are notable S-velocity decreases beneath the D" discontinuity as the CMB is approached within the high average velocity regions such as the lowermost mantle beneath Central America, the Arctic, and Siberia (Kawai et al. 2007a,b, 2009). We also found "S-shaped" velocity models in the lowermost mantle in regions with low average S-velocity such as beneath the western Pacific and the Pacific (Konishi et al. 2009; Kawai & Geller 2010a). We performed analyses based on ab-initio mineral physics (Kawai & Tsuchiya 2009), which showed that these velocity profiles can be explained by a simple thermal boundary layer (TBL) model with a CMB temperature of about 3800 K. The TBL model can also explain most of the important seismological properties in the lowermost mantle such as the LLVP, so that the large thermo-chemical pile model appears to be inappropriate. On the other hand, the S-velocity model beneath Hawaii requires the existence of localized chemical heterogeneity (Kawai & Geller 2010b), which could be due to an accumulated Fe-rich dense pile (Kawai & Tsuchiya in prep.). To better constrain the nature of the LLVP, we inverted the horizontal components of observed radial and transverse waveforms of S and ScS phases to determine the radial profile of TI shear wave velocity at the northeastern edge of the LLVP in the lowermost mantle beneath the Pacific (Kawai & Geller 2010c). We find that the radial (SV) component is 3

  15. Seamless Vertical Handoff using Invasive Weed Optimization (IWO algorithm for heterogeneous wireless networks

    Directory of Open Access Journals (Sweden)

    T. Velmurugan

    2016-03-01

    Full Text Available Heterogeneous wireless networks are an integration of two different networks. For better performance, connections are to be exchanged among the different networks using seamless Vertical Handoff. The evolutionary algorithm of invasive weed optimization algorithm popularly known as the IWO has been used in this paper, to solve the Vertical Handoff (VHO and Horizontal Handoff (HHO problems. This integer coded algorithm is based on the colonizing behavior of weed plants and has been developed to optimize the system load and reduce the battery power consumption of the Mobile Node (MN. Constraints such as Receiver Signal Strength (RSS, battery lifetime, mobility, load and so on are taken into account. Individual as well as a combination of a number of factors are considered during decision process to make it more effective. This paper brings out the novel method of IWO algorithm for decision making during Vertical Handoff. Therefore the proposed VHO decision making algorithm is compared with the existing SSF and OPTG methods.

  16. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  17. Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals

    Science.gov (United States)

    Lamer, K.; Tatarevic, A.; Jo, I.; Kollias, P.

    2014-04-01

    The scanning Atmospheric Radiation Measurement (ARM) cloud radars (SACRs) provide continuous atmospheric observations aspiring to capture the 3-D cloud-scale structure. Sampling clouds in 3-D is challenging due to their temporal-spatial scales, the need to sample the sky at high elevations and cloud radar limitations. Thus, a suggested scan strategy is to repetitively slice the atmosphere from horizon to horizon as clouds advect over the radar (Cross-Wind Range-Height Indicator - CW-RHI). Here, the processing and gridding of the SACR CW-RHI scans are presented. First, the SACR sample observations from the ARM Southern Great Plains and Cape Cod sites are post-processed (detection mask, gaseous attenuation correction, insect filtering and velocity de-aliasing). The resulting radial Doppler moment fields are then mapped to Cartesian coordinates with time as one of the dimensions. Next the Cartesian-gridded Doppler velocity fields are decomposed into the horizontal wind velocity contribution and the vertical Doppler velocity component. For validation purposes, all gridded and retrieved fields are compared to collocated zenith-pointing ARM cloud radar measurements. We consider that the SACR sensitivity loss with range, the cloud type observed and the research purpose should be considered in determining the gridded domain size. Our results also demonstrate that the gridded SACR observations resolve the main features of low and high stratiform clouds. It is established that the CW-RHI observations complemented with processing techniques could lead to robust 3-D cloud dynamical representations up to 25-30 degrees off zenith. The proposed gridded products are expected to advance our understanding of 3-D cloud morphology, dynamics and anisotropy and lead to more realistic 3-D radiative transfer calculations.

  18. Clogging of granular material in vertical pipes discharged at constant velocity

    Directory of Open Access Journals (Sweden)

    López-Rodríguez Diego

    2017-01-01

    Full Text Available We report an experimental study on the flow of spherical particles through a vertical pipe discharged at constant velocity by means of a conveyor belt placed at the bottom. For a pipe diameter 3.67 times the diameter of the particles, we observe the development of hanging arches that stop the flow as they are able to support the weight of the particles above them. We find that the distribution of times that it takes until a stable clog develops, decays exponentially. This is compatible with a clogging probability that remains constant during the discharge. We also observe that the probability of clogging along the pipe decreases with the height, i.e. most of the clogs are developed near the bottom. This spatial dependence may be attributed to different pressure values within the pipe which might also be related to a spontaneous development of an helical structure of the grains inside the pipe.

  19. Effects of volume averaging on the line spectra of vertical velocity from multiple-Doppler radar observations

    Science.gov (United States)

    Gal-Chen, T.; Wyngaard, J. C.

    1982-01-01

    Calculations of the ratio of the true one-dimensional spectrum of vertical velocity and that measured with multiple-Doppler radar beams are presented. It was assumed that the effects of pulse volume averaging and objective analysis routines is replacement of a point measurement with a volume integral. A u and v estimate was assumed to be feasible when orthogonal radars are not available. Also, the target fluid was configured as having an infinite vertical dimension, zero vertical velocity at the top and bottom, and having homogeneous and isotropic turbulence with a Kolmogorov energy spectrum. The ratio obtained indicated that equal resolutions among radars yields a monotonically decreasing, wavenumber-dependent response function. A gain of 0.95 was demonstrated in an experimental situation with 40 levels. Possible errors introduced when using unequal resolution radars were discussed. Finally, it was found that, for some flows, the extent of attenuation depends on the number of vertical levels resolvable by the radars.

  20. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  1. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  2. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    Science.gov (United States)

    Debnath, Mithu; Valerio Iungo, G.; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  3. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  4. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Science.gov (United States)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  5. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2014-07-01

    Full Text Available A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU. An Extended Kalman Filter (EKF estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  6. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    Science.gov (United States)

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-07-24

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  7. Comparison of Time Warping Algorithms for Rail Vehicle Velocity Estimation in Low Speed Scenarios

    Directory of Open Access Journals (Sweden)

    Hensel Stefan

    2017-03-01

    Full Text Available Precise measurement of rail vehicle velocities is an essential prerequisite for the implementation of modern train control systems and the improvement of transportation capacity and logistics. Novel eddy current sensor systems make it possible to estimate velocity by using cross-correlation techniques, which show a decline in precision in areas of high accelerations. This is due to signal distortions within the correlation interval. We propose to overcome these problems by employing algorithms from the field of dynamic programming. In this paper we evaluate the application of correlation optimized warping, an enhanced version of dynamic time warping algorithms, and compare it with the classical algorithm for estimating rail vehicle velocities in areas of high accelerations and decelerations.

  8. Anomalous fluctuations of vertical velocity of Earth and their possible implications for earthquakes.

    Science.gov (United States)

    Manshour, Pouya; Ghasemi, Fatemeh; Matsumoto, T; Gómez, J; Sahimi, Muhammad; Peinke, J; Pacheco, A F; Tabar, M Reza Rahimi

    2010-09-01

    High-quality measurements of seismic activities around the world provide a wealth of data and information that are relevant to understanding of when earthquakes may occur. If viewed as complex stochastic time series, such data may be analyzed by methods that provide deeper insights into their nature, hence leading to better understanding of the data and their possible implications for earthquakes. In this paper, we provide further evidence for our recent proposal [P. Mansour, Phys. Rev. Lett. 102, 014101 (2009)10.1103/PhysRevLett.102.014101] for the existence of a transition in the shape of the probability density function (PDF) of the successive detrended increments of the stochastic fluctuations of Earth's vertical velocity V_{z} , collected by broadband stations before moderate and large earthquakes. To demonstrate the transition, we carried out extensive analysis of the data for V_{z} for 12 earthquakes in several regions around the world, including the recent catasrophic one in Haiti. The analysis supports the hypothesis that before and near the time of an earthquake, the shape of the PDF undergoes significant and discernable changes, which can be characterized quantitatively. The typical time over which the PDF undergoes the transition is about 5-10 h prior to a moderate or large earthquake.

  9. The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2014-03-01

    Full Text Available While the formation of equatorial electrojet (EEJ and its temporal variation is believed to be fairly well understood, the longitudinal variability at all local times is still unknown. This paper presents a case and statistical study of the longitudinal variability of dayside EEJ for all local times using ground-based observations. We found EEJ is stronger in the west American sector and decreases from west to east longitudinal sectors. We also confirm the presence of significant longitudinal difference in the dusk sector pre-reversal drift, using the ion velocity meter (IVM instrument onboard the C/NOFS satellite, with stronger pre-reversal drift in the west American sector compared to the African sector. Previous satellite observations have shown that the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This study's results raises the question if the vertical drift, which is believed to be the main cause for the enhancement of Rayleigh–Taylor (RT instability growth rate, is stronger in the American sector and weaker in the African sector – why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?

  10. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Wake Forest Univ., Winston-Salem, MA (United States); Ballard, Grey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mahoney, Michael [Univ. of California, Berkeley, CA (United States)

    2018-01-01

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  11. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-01-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2≈0.95-0.98) with those calculated from sonic anemometer measurements.

  12. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations

    Science.gov (United States)

    Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.

    2017-06-01

    The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.type="synopsis">type="main">Plain Language SummaryEquatorial plasma bubbles are plasma density irregularities in the ionosphere. The radio waves passing through these irregular density structures undergo severe degradation/scintillation that could cause severe disruption of satellite-based communication and augmentation systems such as GPS navigation. These bubbles develop at geomagnetic equator, grow vertically, and elongate along the field lines to latitudes away from the equator. The knowledge on bubble rise velocities and their maximum attainable

  13. On vertical velocity fluctuations and internal tides in an upwelling region off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    of flow and wind and temperature oscillations at a mooring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection... of tem- perature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10-l to lo-* cm s-i, with a mean value of - 2.77 x lo-* cm s-i indicating a net upward movement of water. The com- puted...

  14. A simple algorithm to estimate pressure fields from velocity field measurements

    CERN Document Server

    Dabiri, John O

    2014-01-01

    This note briefly describes and characterizes a method for estimating the pressure field corresponding to instantaneous velocity field measurements. The algorithm is based on median polling of several integration paths through the measurement domain in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during integration of the pressure gradient field and significantly reducing the computational cost of the algorithm relative to previous approaches. The algorithm is validated using a numerically-simulated bluff-body flow to study the effects of spatial resolution, domain size, and signal-to-noise ratio.

  15. An improved vertical handoff algorithm based on multiple attribute decision making

    Directory of Open Access Journals (Sweden)

    TAO Jianhua

    2016-08-01

    Full Text Available In this paper we propose an vertical handoff algorithm based on multiple attributes decision making theory,and simulatie the four types of typical business of heterogeneous wireless network.The proposed algorithm use AHP to design two layers of structure,through the combination of subjective and objective weights in order to solving the problem about weights assigned too subjective.Then the proposed algorithm combines with TOPSIS to solve the problem when making decision only by a single TOPSIS,which may result in networks abnormal rank.The simulation results show that the improved algorithm can be adaptively fit the speed of user terminal.In the premise of guarantee QoS of four types of typical business,at the same time reduce the ping-pang effect.

  16. Measurements of the fluctuating liquid velocity of a bidisperse suspension of bubbles rising in a vertical channel

    Science.gov (United States)

    Serrano, Juan Carlos; Mendez, Santos; Zenit, Roberto

    2009-11-01

    Experiments were performed in a vertical channel to study the behaviour of a bidisperse suspension of bubbles. Bubbles were produced using capillaries of two distinct inner diameters. The capillaries are small enough to generate bubbles in the range of 1 to 6 mm in diameter. Using water and water-glycerin mixtures, the vertical component of the fluctuating liquid velocity was obtained using a flying hot wire anemometer technique. The system is characterized by the dimensionless Reynolds and Weber numbers in the range of 22bubble concentration. We also found that the variance, normalized with the mean bubble velocity squared, Tf% =Uf^^'2/Ub^2, increased as the Reynolds number decreased. Bidisperse flows, in general, show larger values of fluctuation.

  17. Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping

    Science.gov (United States)

    Nikolaidou, Maria Elissavet; Marzilger, Robert; Bohm, Sebastian; Mersmann, Falk

    2017-01-01

    Humans achieve greater jump height during a counter-movement jump (CMJ) than in a squat jump (SJ). However, the crucial difference is the mean mechanical power output during the propulsion phase, which could be determined by intrinsic neuro-muscular mechanisms for power production. We measured M. vastus lateralis (VL) fascicle length changes and activation patterns and assessed the force–length, force–velocity and power–velocity potentials during the jumps. Compared with the SJ, the VL fascicles operated on a more favourable portion of the force–length curve (7% greater force potential, i.e. fraction of VL maximum force according to the force–length relationship) and more disadvantageous portion of the force–velocity curve (11% lower force potential, i.e. fraction of VL maximum force according to the force–velocity relationship) in the CMJ, indicating a reciprocal effect of force–length and force–velocity potentials for force generation. The higher muscle activation (15%) could therefore explain the moderately greater jump height (5%) in the CMJ. The mean fascicle-shortening velocity in the CMJ was closer to the plateau of the power–velocity curve, which resulted in a greater (15%) power–velocity potential (i.e. fraction of VL maximum power according to the power–velocity relationship). Our findings provide evidence for a cumulative effect of three different mechanisms—i.e. greater force–length potential, greater power–velocity potential and greater muscle activity—for an advantaged power production in the CMJ contributing to the marked difference in mean mechanical power (56%) compared with SJ. PMID:28573027

  18. Addition of Vertical Velocity to a One-Dimensional Aerosol and Trace Gas Model

    National Research Council Canada - National Science Library

    Hoppel, William A; Caffrey, Peter; Frick, Glendon M

    2005-01-01

    ... (Coupled Ocean Atmosphere Meteorological Prediction System). The aerosol model is run along an air-mass trajectory generated from the output of COAMPS that includes vertical profiles of meteorological data required by the aerosol model...

  19. BrO vertical distributions from SCIAMACHY limb measurements: comparison of algorithms and retrieval results

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-07-01

    Full Text Available This study presents two scientific and one operational retrieval algorithms used to obtain vertical distributions of bromine monoxide (BrO from observations of the scattered solar light performed by the SCIAMACHY instrument in limb viewing geometry. The study begins with a discussion of the theoretical basis of all algorithms followed by an investigation of the retrieval sensitivity. Simulations with three different radiative transfer models allow us to analyze influence of the forward model implementation upon the retrieval results. By means of synthetic retrievals we analyze major sources of uncertainties in the resulting BrO profiles such as different BrO cross sections, their temperature dependence, and stratospheric aerosols. Finally, the reliability of SCIAMACHY BrO profile retrievals is demonstrated comparing results from different algorithms to each other and to balloon-borne observations.

  1. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  2. Variability of Vertical Velocity Statistics in the Cloud-Free Convective Boundary Layer as Revealed by Doppler Lidar

    Science.gov (United States)

    Berg, L. K.; Newsom, R. K.; Turner, D. D.

    2016-12-01

    The majority of our understanding of the behavior of vertical velocity in the convective boundary layer is based on a small number of short-term observations made using either in situ or with remote sensing techniques over a limited number of sites. Analysis of long-term statistics have been lacking due to the scarcity of appropriate measurements. The US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is addressing this shortcoming through the deployment of a suite of scanning Doppler Lidars at a number of locations, associated with reconfiguration of the ARM Southern Great Plains site and the recent Holistic Interaction of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) field campaign. In this study, we utilize data collected by a Doppler Lidar system that has operated continuously from 2011 to the present at a location in north-central Oklahoma to examine the long-term behavior of the vertical velocity variance, skewness, and kurtosis. The application of standard normalization techniques, such as the mixed-layer depth and Deardorff convective velocity scale, do a good job in collapsing the data onto a single curve during periods in which the boundary layer is well developed, albeit with considerable amounts of scatter. During non-steady conditions, such as those found in the morning, scaling using the Deardorff convective velocity scale is found to work poorly. This behavior is likely due to the eddy turnover time and the growth rate of the boundary-layer depth. Systematic differences in the turbulence statistics are found by season, for non-stationary conditions, or periods with relatively small and large values of the surface friction velocity measured at the surface, amount of static instability, and wind shear across the boundary-layer top.

  3. Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles.

    Science.gov (United States)

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2017-03-21

    The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10-4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10-7. This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.

  4. Differences in vertical jumping and mae-geri kicking velocity between international and national level karateka

    Directory of Open Access Journals (Sweden)

    Carlos Balsalobre-Fernández

    2013-04-01

    Full Text Available Aim: Lower limb explosive strength and mae-geri kicking velocity are fundamental in karate competition; although it is unclear whether these variables could differentiate the high-level athletes. The objective of this research is to analyze the differences in the mae-geri kicking velocity and the counter-movement jump (CMJ between a group of international top level karateka and another group of national-level karateka.Methods: Thirteen international-level karateka and eleven national-level karateka participated in the study. After a standard warm-up, CMJ height (in cm and mae-geri kicking velocity (in m/s was measured using an IR-platform and a high-speed camera, respectively.Results: Proceeding with MANCOVA to analyze the differences between groups controlling the effect of age, the results show that the international-level karateka demonstrated significantly higher levels of CMJ than national-level competitors (+22.1%, F = 9.47, p = 0.006, η2 = 0.311. There were no significant differences between groups in the mae-geri kicking velocity (+5,7%, F=0.80; p=0.38; η2=0.03.Conclusion: Our data shows, first, the importance of CMJ assessment as a tool to detect talent in karate and, second, that to achieve international-level in karate it may be important to increase CMJ levels to values ​​similar to those offered here.

  5. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.

    Science.gov (United States)

    Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H

    2014-02-01

    We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.

  6. Cost-Based Vertical Handover Decision Algorithm for WWAN/WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Kim LaeYoung

    2009-01-01

    Full Text Available Abstract Next generation wireless communications are expected to rely on integrated networks consisting of multiple wireless technologies. Heterogeneous networks based on Wireless Local Area Networks (WLANs and Wireless Wide Area Networks (WWANs can combine their respective advantages on coverage and data rates, offering a high Quality of Service (QoS to mobile users. In such environment, multi-interface terminals should seamlessly switch from one network to another in order to obtain improved performance or at least to maintain a continuous wireless connection. Therefore, network selection algorithm is important in providing better performance to the multi-interface terminals in the integrated networks. In this paper, we propose a cost-based vertical handover decision algorithm that triggers the Vertical Handover (VHO based on a cost function for WWAN/WLAN integrated networks. For the cost function, we focus on developing an analytical model of the expected cost of WLAN for the mobile users that enter the double-coverage area while having a connection in the WWAN. Our simulation results show that the proposed scheme achieves better performance in terms of power consumption and throughput than typical approach where WLANs are always preferred whenever the WLAN access is available.

  7. Cost-Based Vertical Handover Decision Algorithm for WWAN/WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    KunHo Hong

    2009-01-01

    Full Text Available Next generation wireless communications are expected to rely on integrated networks consisting of multiple wireless technologies. Heterogeneous networks based on Wireless Local Area Networks (WLANs and Wireless Wide Area Networks (WWANs can combine their respective advantages on coverage and data rates, offering a high Quality of Service (QoS to mobile users. In such environment, multi-interface terminals should seamlessly switch from one network to another in order to obtain improved performance or at least to maintain a continuous wireless connection. Therefore, network selection algorithm is important in providing better performance to the multi-interface terminals in the integrated networks. In this paper, we propose a cost-based vertical handover decision algorithm that triggers the Vertical Handover (VHO based on a cost function for WWAN/WLAN integrated networks. For the cost function, we focus on developing an analytical model of the expected cost of WLAN for the mobile users that enter the double-coverage area while having a connection in the WWAN. Our simulation results show that the proposed scheme achieves better performance in terms of power consumption and throughput than typical approach where WLANs are always preferred whenever the WLAN access is available.

  8. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  9. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  10. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  11. Evolution of Area-Averaged Vertical Velocity in the Convective Region of a Midlatitude Squall Line

    Science.gov (United States)

    1992-12-01

    Ms. Svetla Veleva, Mr. Rusty Billingsly, and Capt. Kevin Mattison for their help in unfolding the raw Doppler-velocity fields; Mr. Robert Barritt for...and evolution of this important class of mesoscale convective system (MCS) (e.g., Zipser 1969, 1977; Houze 1977; LeMonc and Zipser 1980; Ogura and Liou...1980; Zipser and LeMone 1980; Gamache and ltouze 1982, 1985; Houze and Rappaport 1984; Heymsfield and Schotz 1985; Smull and Houze 1985, 1987a,b

  12. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  13. Comparison of the inversion algorithms applied to the ozone vertical profile retrieval from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2007-09-01

    Full Text Available This paper is devoted to an intercomparison of ozone vertical profiles retrieved from the measurements of scattered solar radiation performed by the SCIAMACHY instrument in the limb viewing geometry. Three different inversion algorithms including the prototype of the operational Level 1 to 2 processor to be operated by the European Space Agency are considered. Unlike usual validation studies, this comparison removes the uncertainties arising when comparing measurements made by different instruments probing slightly different air masses and focuses on the uncertainties specific to the modeling-retrieval problem only. The intercomparison was performed for 5 selected orbits of SCIAMACHY showing a good overall agreement of the results in the middle stratosphere, whereas considerable discrepancies were identified in the lower stratosphere and upper troposphere altitude region. Additionally, comparisons with ground-based lidar measurements are shown for selected profiles demonstrating an overall correctness of the retrievals.

  14. On the effects of vertical air velocity on winter precipitation types

    Directory of Open Access Journals (Sweden)

    J. M. Thériault

    2007-01-01

    Full Text Available The various precipitation types formed within winter storms (such as snow, wet snow and freezing rain often lead to very hazardous weather conditions. These types of precipitation often occur during the passage of a warm front as a warm air mass ascends over a cold air mass. To address this issue further, we used a one-dimensional kinematic cloud model to simulate this gentle ascent (≤10 cm/s of warm air. The initial temperature profile has an above 0°C inversion, a lower subfreezing layer, and precipitation falls from above the temperature inversion. The cloud model is coupled to a double-moment microphysics scheme that simulates the production of various types of winter precipitation. The results are compared with those from a previous study carried out in still air. Based on the temporal evolution of surface precipitation, snow reaches the surface significantly faster than in still air whereas other precipitation types including freezing rain and ice pellets have a shorter duration. Overall, even weak background vertical ascent has an important impact on the precipitation reaching the surface, the time of the elimination of the melting layer, and also the evolution of the lower subfreezing layer.

  15. Analysis of Vertical Velocities and Elevated Instability in the Comma-Head of Continental Winter Cyclones

    Science.gov (United States)

    Rosenow, Andrew

    The vertical motion and physical structure of elevated convection and generating cells within the comma heads of three continental winter cyclones are investigated using the Wyoming W-band Cloud Radar mounted on the NSF/NCAR C-130, supplemented by analyses from the Rapid Update Cycle model and WSR-88D data. The cyclones followed three distinct archetypical tracks and were typical of those producing winter weather in the Midwestern United States. In two of the cyclones, dry air in the middle and upper troposphere behind the Pacific cold front intruded over moist Gulf of Mexico air at lower altitudes within the comma head, separating the comma head into two zones. Elevated convection in the southern zone extended from the cold frontal surface to the tropopause. The stronger convective updrafts ranged from 2 to 7 m s-1 and downdrafts from -2 to -6 m s-1. The horizontal scale of the convective cells was ˜5 km. The poleward zone of the comma head was characterized by deep stratiform clouds topped by cloud top generating cells that reached the tropopause. Updrafts and downdrafts within the generating cells ranged from 1-2 m s-1, with the horizontal scale of the cells ˜1-2 km. Precipitation on the poleward side of the comma head conformed to a seeder-feeder process, the generating cells seeding the stratiform cloud, which was forced by synoptic scale ascent. In one case, shallow clouds behind the cyclone's cold front were also topped by cloud top generating cells, with vertical motions ranging from 1 2 m s-1. The development and distribution of potential instability in the elevated convective region of one of these cyclones is examined using a Weather Research and Forecasting (WRF) model simulation. The strong 8-9 December 2009 cyclone is simulated with a large outer domain and convection-allowing nest to simulate the convective region of the cyclone. The distribution of Most Unstable Convective Available Potential Energy (MUCAPE) is presented, with MUCAPE values up to

  16. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  17. EnKF assimilation of simulated spaceborne Doppler observations of vertical velocity: impact on the simulation of a supercell thunderstorm and implications for model-based retrievals

    Directory of Open Access Journals (Sweden)

    W. E. Lewis

    2006-01-01

    Full Text Available Recently, a number of investigations have been made that point to the robust effectiveness of the Ensemble Kalman Filter (EnKF in convective-scale data assimilation. These studies have focused on the assimilation of ground-based Doppler radar observations (i.e. radial velocity and reflectivity. The present study differs from these investigations in two important ways. First, in anticipation of future satellite technology, the impact of assimilating spaceborne Doppler-retrieved vertical velocity is examined; second, the potential for the EnKF to provide an alternative to instrument-based microphysical retrievals is investigated. It is shown that the RMS errors of the analyzed fields produced by assimilation of vertical velocity alone are in general better than those obtained in previous studies: in most cases assimilation of vertical velocity alone leads to analyses with small errors (e.g. <1 ms-1 for velocity components after only 3 or 4 assimilation cycles. The microphysical fields are notable exceptions, exhibiting lower errors when observations of reflectivity are assimilated together with observations of vertical velocity, likely a result of the closer relationship between reflectivity and the microphysical fields themselves. It is also shown that the spatial distribution of the error estimates improves (i.e. approaches the true errors as more assimilation cycles are carried out, which could be a significant advantage of EnKF model-based retrievals.

  18. SU-F-J-85: Evaluation of the Velocity Deformable Image Registration Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Polan, D; Kamp, J; Lee, JY; Chapman, C; Green, M; Payal, S; Kessler, M; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: To perform validation and commissioning of a commercial deformable image registration (DIR) algorithm (Velocity, Varian Medical Systems) for numerous clinical sites using single and multi-modality images. Methods: In this retrospective study, the DIR algorithm was evaluated for 10 patients in each of the following body sites: head and neck (HN), prostate, liver, and gynecological (GYN). HN DIRs were evaluated from planning (p)CT to re-pCT and pCTs to daily CBCTs using dice similarity coefficients (DSC) of corresponding anatomical structures. Prostate DIRs were evaluated from pCT to CBCTs using DSC and target registration error (TRE) of implanted RF beacons within the prostate. Liver DIRs were evaluated from pMR to pCT using DSC and TRE of vessel bifurcations. GYN DIRs were evaluated between fractionated brachytherapy MRIs using DSC of corresponding anatomical structures. Results: Analysis to date has given average DSCs for HN pCT-to-(re)pCT DIR for the brainstem, cochleas, constrictors, spinal canal, cord, esophagus, larynx, parotids, and submandibular glands as 0.88, 0.65, 0.67, 0.91, 0.77, 0.69, 0.77, 0.87, and 0.71, respectively. Average DSCs for HN pCT-to-CBCT DIR for the constrictors, spinal canal, esophagus, larynx, parotids, and submandibular glands were 0.64, 0.90, 0.62, 0.82, 0.75, and 0.69, respectively. For prostate pCT-to-CBCT DIR the DSC for the bladder, femoral heads, prostate, and rectum were 0.71, 0.82, 0.69, and 0.61, respectively. Average TRE using implanted beacons was 3.35 mm. For liver pCT-to-pMR, the average liver DSC was 0.94 and TRE was 5.26 mm. For GYN MR-to-MR DIR the DSC for the bladder, sigmoid colon, GTV, and rectum were 0.79, 0.58, 0.67, and 0.76, respectively. Conclusion: The Velocity DIR algorithm has been evaluated over a number of anatomical sites. This work functions to document the uncertainties in the DIR in the commissioning process so that these can be accounted for in the development of downstream clinical processes

  19. An experimental study of wave propagation and velocity distributions in a vertically driven time-dependent granular gas

    Science.gov (United States)

    Perez, John Anthony

    Averaged over appropriate space and time scales the dynamics of highly fluidized granular systems are often reminiscent of molecular fluid flows. As a result, theoretical efforts to describe these systems have borrowed heavily from continuum mechanics, particularly hydrodynamics. This has led to various proposed granular hydrodynamic theories which have been used to simulate granular materials in various states of confinement and excitation. These studies suggest that a continuum model for granular gasses can accurately reproduce the mean density, velocity and temperature profiles for an experimental granular gas. This thesis contributes to this body of work by presenting an experimental study of the hydrodynamic fields and velocity distributions within a vertically driven quasi-2D granular gas. We have taken pictures as fast as possible of a time-dependent granular gas using a high-speed CCD camera. We have extracted the positions and velocities of 57-564 particles per frame over 400 GB of raw images collected at 3700 fps. We used this data to compute the density, velocity and temperature fields as functions of time and space to a very high resolution. This approach led to the discovery of novel substructures within the hydrodynamic fields which would have been overlooked had we chosen to average over a drive cycle as earlier studies have done. In particular, the high spatial resolution available from our measurements reveals a serrated substructure in the shock waves which has not been reported before. This substructure is the result of collisional momentum transport . One of the current issues in formulating a granular continuum model is how to incorporate local and non-local dependencies between stress and strain correctly. In this thesis we demonstrate that the collisional transfer of momentum produces a non-local effect in the stress tensor which plays a major role in determining the mean flow. Current models have incorporated only the collisional or

  20. Calculation of the velocity components for continuous GNSS station through applying the algorithm for least squares adjustment.

    Directory of Open Access Journals (Sweden)

    Jorge Moya Zamora

    2014-06-01

    Full Text Available The calculation of the velocity of a continuous GNSS observation station represents a key input in modern surveying. The act of determining the position of the GNSS stations involves daily which can establish the time series of stations, based on which information can be influenced by phenomena affecting the performance thereof. This article is a description of the algorithm of the least squares adapted and applied to the determination of the velocity components of continuous observation stations. Furthermore, this algorithm is applied for calculating the speed of ETCG station belonging to the Geocentric System for the Americas (SIRGAS.

  1. High-resolution Vertical Profiling of Ocean Velocity and Water Properties Under Hurricane Frances in September 2004

    Science.gov (United States)

    Sanford, T. B.; D'Asarp, E. A.; Girton, J. B.; Price, J. F.; Webb, D. C.

    2006-12-01

    In ONR's CBLAST Hurricane research program observations were made of the upper ocean's response to Hurricane Frances. Three EM-APEX floats (velocity sensing versions of Webb Research APEX floats) and two Lagrangian floats were deployed north of Hispaniola from a C-130 aircraft ahead of Hurricane Frances in September 2004. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. The Lagrangian floats measured temperature and salinity while following the three- dimensional boundary layer turbulence in the upper 40 m. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX and two Lagrangian floats went in about 50 km to the right of the track (where the surface winds are strongest) and the third float was about 100 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m, then continued profiling between 35 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean turbulence, momentum, and salt and heat changes in response to the hurricane. The buildup of surface gravity waves in advance of the storm was also observed in the velocity profiles, with significant wave heights of up to 11 m. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s stimulated vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.5 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of

  2. Vertical Handover Algorithm for WBANs in Ubiquitous Healthcare with Quality of Service Guarantees

    Directory of Open Access Journals (Sweden)

    Dong Doan Van

    2017-03-01

    Full Text Available Recently, Wireless Body Area Networks (WBANs have become an emerging technology in healthcare, where patients are equipped withwearable and implantable body sensor nodes to gather sensory information for remote monitoring. The increasing development of coordinator devices on patients enables the internetworking of WBANs in heterogeneous wireless networks to deliver physiological information that is collected at remote terminals in a timely fashion. However, in this type of network, providing a seamless handover with a guaranteed Quality of Service (QoS, especially emergency services, is a challenging task. In this paper, we proposed an effective Multi-Attribute Decision-Making (MADM handover algorithm that guarantees seamless connectivity. A patient’s mobile devices automatically connect to the best network that fulfills the QoS requirements of different types of applications. Additionally, we integrated a Content-Centric Networking (CCN processing module into different wireless networks to reduce packet loss, enhance QoS and avoid unnecessary handovers by leveraging in-network caching to achieve efficient content dissemination for ubiquitous healthcare. Simulation results proved that our proposed approach forthe model with CCN outperforms the model without CCN and Received Signal Strength Vertical Handoff (RSS-VHD in terms of the number of handovers, enhancing QoS, packet loss, and energy efficiency.

  3. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers

    Science.gov (United States)

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-01

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  4. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers

    Energy Technology Data Exchange (ETDEWEB)

    Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl [Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, Toruń, PL 87-100 (Poland); Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu [Department of Chemistry and Biochemistry and Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States)

    2016-05-07

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  5. Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique

    Science.gov (United States)

    Jha, Madan K.; Kumar, S.; Chowdhury, A.

    2008-09-01

    SummaryGrowing water scarcity in West Midnapore district of West Bengal, India, is threatening sustainable agricultural production as well as sanitation of the inhabitants. Because of its several inherent qualities, groundwater can play an important role in ensuring sustainable water supply in the district. This study was carried out to assess groundwater condition in the Salboni Block of West Midnapore district using surface resistivity method. Vertical electrical sounding (VES) surveys were carried out at 38 sites using the Schlumberger array. The apparent resistivity-depth datasets (henceforth called 'VES data') thus obtained were interpreted by the genetic algorithm (GA) optimization technique. A GA-based stand-alone computer program was developed for optimizing subsurface layer parameters (true resistivity and thickness) from the VES data. The optimal layer parameters were then correlated with the available well logs to identify aquifer and confining layers. Moreover, a groundwater potential map was created by integrating the thematic layers of aquifer resistivity and thickness in a GIS environment. In order to explore the spatial variation of layer resistivity at a particular depth, resistivity contour maps of the study area for different depths were prepared using ArcView software. The GA technique yielded layer parameters with reasonably low values of root mean square error (0.36-9.75 Ω m) for most VES datasets. It was found that shallow aquifers exist at depths ranging from 4 to 19 m and relatively deep aquifers from 24 to 60 m below the ground surface. The study area is classified into 'very good', 'good', 'moderate' and 'poor' groundwater potential zones, with a majority of the area having good to moderate groundwater prospect. The resistivity contour maps for different depths revealed that deeper aquifers are prevalent in the study area. It is concluded that the GA technique is efficient and reliable for determining subsurface layer parameters from the

  6. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    Science.gov (United States)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  7. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate.

    Science.gov (United States)

    Millasseau, Sandrine C; Stewart, Andrew D; Patel, Sundip J; Redwood, Simon R; Chowienczyk, Philip J

    2005-02-01

    Carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, is determined from the time taken for the arterial pulse to propagate from the carotid to the femoral artery. Propagation time is measured variously from the foot of the waveform or point of maximum upslope. We investigated whether these methods give comparable values of PWV at rest, during beta-adrenergic stimulation, and pacing-induced tachycardia. In subjects at rest (n=43), values obtained using the foot-to-foot method (SphygmoCor system) were 1.7+/-0.75 m/s (mean+/-SD) greater than those obtained using the maximum slope (Complior system) at a mean value of 12 m/s. Isoprotenerol (0.5 to 1.5 microg/min; n=10), and pacing (in subjects with permanent pacemakers; n=11) increased heart rate but had differential effects on systolic blood pressure and pulse pressure. The increase in heart rate produced by isoprotenerol (18+/-3 bpm) and pacing (40 bpm) was associated with an increase in PWV measured using both systems (increases of 0.7+/-0.2 m/s and 0.9+/-0.2 m/s for SphygmoCor and Complior, respectively, during isoprotenerol and increases of 2.1+/-0.5 m/s and 1.1+/-0.2 m/s for SphygmoCor and Complior, respectively, during pacing, each P<0.001). Reanalysis of waveforms recorded from the Complior system using the foot-to-foot method produced similar values of PWV to those obtained with the SphygmoCor, confirming that the difference between these systems was attributable to the timing algorithm rather than other aspects of signal acquisition. Carotid-femoral PWV is critically dependent on the method used to determine propagation time, but this does not account for variation of PWV with heart rate.

  8. Estimations of Vertical Velocities Using the Omega Equation in Different Flow Regimes in Preparation for the High Resolution Observations of the SWOT Altimetry Mission

    Science.gov (United States)

    Pietri, A.; Capet, X.; d'Ovidio, F.; Le Sommer, J.; Molines, J. M.; Doglioli, A. M.

    2016-02-01

    Vertical velocities (w) associated with meso and submesoscale processes play an essential role in ocean dynamics and physical-biological coupling due to their impact on the upper ocean vertical exchanges. However, their small intensity (O 1 cm/s) compared to horizontal motions and their important variability in space and time makes them very difficult to measure. Estimations of these velocities are thus usually inferred using a generalized approach based on frontogenesis theories. These estimations are often obtained by solving the diagnostic omega equation. This equation can be expressed in different forms from a simple quasi geostrophic formulation to more complex ones that take into account the ageostrophic advection and the turbulent fluxes. The choice of the method used generally depends on the data available and on the dominant processes in the region of study. Here we aim to provide a statistically robust evaluation of the scales at which the vertical velocity can be resolved with confidence depending on the formulation of the equation and the dynamics of the flow. A high resolution simulation (dx=1-1.5 km) of the North Atlantic was used to compare the calculations of w based on the omega equation to the modelled vertical velocity. The simulation encompasses regions with different atmospheric forcings, mesoscale activity, seasonality and energetic flows, allowing us to explore several different dynamical contexts. In a few years the SWOT mission will provide bi-dimensional images of sea level elevation at a significantly higher resolution than available today. This work helps assess the possible contribution of the SWOT data to the understanding of the submesoscale circulation and the associated vertical fluxes in the upper ocean.

  9. A Method for Retrieving Vertical Air Velocities in Convective Clouds over the Tibetan Plateau from TIPEX-III Cloud Radar Doppler Spectra

    Directory of Open Access Journals (Sweden)

    Jiafeng Zheng

    2017-09-01

    Full Text Available In the summertime, convective cells occur frequently over the Tibetan Plateau (TP because of the large dynamic and thermal effects of the landmass. Measurements of vertical air velocity in convective cloud are useful for advancing our understanding of the dynamic and microphysical mechanisms of clouds and can be used to improve the parameterization of current numerical models. This paper presents a technique for retrieving high-resolution vertical air velocities in convective clouds over the TP through the use of Doppler spectra from vertically pointing Ka-band cloud radar. The method was based on the development of a “small-particle-traced” idea and its associated data processing, and it used three modes of radar. Spectral broadening corrections, uncertainty estimations, and results merging were used to ensure accurate results. Qualitative analysis of two typical convective cases showed that the retrievals were reliable and agreed with the expected results inferred from other radar measurements. A quantitative retrieval of vertical air motion from a ground-based optical disdrometer was used to compare with the radar-derived result. This comparison illustrated that, while the data trends from the two methods of retrieval were in agreement while identifying the updrafts and downdrafts, the cloud radar had a much higher resolution and was able to reveal the small-scale variations in vertical air motion.

  10. Performance Analysis of Genetic Zone Routing Protocol Combined With Vertical Handover Algorithm for 3G-WiFi Offload

    Directory of Open Access Journals (Sweden)

    Setiyo Budiyanto

    2014-11-01

    Full Text Available In the deployment scenario of multiple base stations there is usually a deficiency in the routing protocols for load balancing in the wireless network. In this study, we propose a routing algorithm that can be implemented inMobile Adhoc Networks (MANETs as well as third-generation (3G–Wireless Fidelity (WiFi offload networks. We combined the Genetic Zone Routing Protocol (GZRP with the Vertical Handover (VHO algorithm in a 3G–WiFioffload network with multiple base stations. Simulationresults show thatthe proposed algorithm yields improvement in the received signal strength(which is increased up to 25 dBm, user throughput (which is approximately 1 Mbps-2.5 Mbps, and data rate (which is increased up to 2.5 Mbps.

  11. Prediction of Fluid Velocity in Highly Heterogeneous Conductivity Fields Using a Genetic Algorithm-Designed Artificial Neural Network

    Science.gov (United States)

    Shirley, C.

    2003-12-01

    A genetic algorithm (GA) is used to select the operational parameters of artificial neural networks (ANN) which are trained to predict fluid velocity. Populations of three-layer, feedforward backpropagation ANN's with varying numbers of hidden nodes, types and slopes of activation functions, alpha and beta learning rates and initial distributions of weights for both the input and hidden layers are created by the GA. The GA- defined ANN's are trained with inputs-output pairs of hydraulic conductivity neighborhoods and resulting fluid velocities at certain points in the simulation domain. The hydraulic conductivity fields are highly heterogeneous with an ensemble log conductivity variance of 1.0. Results of the GA are defined and selected ANN velocity predictions are presented.

  12. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    Science.gov (United States)

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  13. Escape Velocity

    Directory of Open Access Journals (Sweden)

    Nikola Vlacic

    2010-01-01

    Full Text Available In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.

  14. A Strapdown Interial Navigation System/Beidou/Doppler Velocity Log Integrated Navigation Algorithm Based on a Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available The integrated navigation system with strapdown inertial navigation system (SINS, Beidou (BD receiver and Doppler velocity log (DVL can be used in marine applications owing to the fact that the redundant and complementary information from different sensors can markedly improve the system accuracy. However, the existence of multisensor asynchrony will introduce errors into the system. In order to deal with the problem, conventionally the sampling interval is subdivided, which increases the computational complexity. In this paper, an innovative integrated navigation algorithm based on a Cubature Kalman filter (CKF is proposed correspondingly. A nonlinear system model and observation model for the SINS/BD/DVL integrated system are established to more accurately describe the system. By taking multi-sensor asynchronization into account, a new sampling principle is proposed to make the best use of each sensor’s information. Further, CKF is introduced in this new algorithm to enable the improvement of the filtering accuracy. The performance of this new algorithm has been examined through numerical simulations. The results have shown that the positional error can be effectively reduced with the new integrated navigation algorithm. Compared with the traditional algorithm based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is improved, making the proposed nonlinear integrated navigation algorithm feasible and efficient.

  15. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    OpenAIRE

    Angelo Maria Sabatini; Vincenzo Genovese

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally,...

  16. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    Science.gov (United States)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  17. Acute Effect of Biomechanical Muscle Stimulation on the Counter-Movement Vertical Jump Power and Velocity in Division I Football Players.

    Science.gov (United States)

    Jacobson, Bert H; Monaghan, Taylor P; Sellers, John H; Conchola, Eric C; Pope, Zach K; Glass, Rob G

    2017-05-01

    Jacobson, BH, Monaghan, TP, Sellers, JH, Conchola, EC, Pope, ZK, and Glass, RG. Acute effect of biomechanical muscle stimulation on the counter-movement vertical jump power and velocity in division I football players. J Strength Cond Res 31(5): 1259-1264, 2017-Research regarding whole body vibration (WBV) largely supports such training augmentation in attempts to increase muscle strength and power. However, localized biomechanical vibration has not received the same attention. The purpose of this study was to assess peak and average power before and after acute vibration of selected lower-body sites in division I athletes. Twenty-one subjects were randomly assigned to 1 of 2 conditions using a cross-over design. Pretest consisted of a counter-movement vertical jump (VJ) followed by either localized vibration (30 Hz) to 4 selected lower-body areas or 4 minutes of moderately low-resistance stationary cycling (70 rpm). Vibration consisted of 1 minute bouts at each lower-leg site for a total of 4 minutes followed by an immediate post-test VJ. Repeated measures analysis of variance yielded no significant differences (p > 0.05) in either peak power or peak velocity. Similarly, no significant differences were found for average power and velocity between conditions. It should be noted that, while not significant, the vibration condition demonstrated an increase in peak power and velocity while the bike condition registered slight decreases. Comparing each of the post-VJ repetitions (1, 2, and 3) the vibration condition experienced significantly greater peak power and velocity from VJ 1 to VJ 3 compared with the bike condition which demonstrated no significant differences among the post-test VJs. These results yielded similar, although not statistically significant outcomes to previous studies using WBV. However, the novelty of selected site biomechanical vibration merits further investigation with respect to frequency, magnitude, and duration of vibration.

  18. Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test.

    Science.gov (United States)

    Driss, T; Vandewalle, H; Monod, H

    1998-12-01

    The aim of this study was to propose a test battery adjusted to volleyball players and to study the links between dynamic (vertical jump, force-velocity relationships and maximal anaerobic power in cranking and cycling) and static (maximal voluntary force and rate of force development in isometric conditions) performances. The relationships between braking force (F) and peak velocity (V) have been determined for cycling and cranking exercises in 18 male volleyball players of a district league. According to previous studies, these F-V relationships were assumed to be linear and were expressed as follows: V = V0(1-F/F0), where V0 should be an estimate of the maximal velocity at zero braking force whereas F0 is assumed to be a braking force corresponding to zero velocity. Maximal anaerobic power in cycling (Pmax leg) and cranking (Pmax arm) were calculated as equal to 0.25 V0F0. The same subjects performed a vertical jump test (VJ) and a strength test on an isometric leg press with the measurement of the unilateral isometric maximal voluntary force (MVF) and indices of rate of isometric force development (RFD): maximal rate of force development (MRFD) and the time from 25% to 50% of MVF (T25-50). Pmax leg (15.8 +/- 1.4 W.kg-1) and V0 arm (259.6 +/- 13.1 rpm) were high but similar to the results of elite athletes, previously collected with the same protocols and the same devices. VJ was significantly with F0 leg, Pmax leg and Pmax arm related to body mass. The performances of the dynamic tests were significantly correlated and especially the parameters (V0, F0, Pmax) of the force velocity tests in cycling were significantly correlated with the same parameters in cranking. The results of the isometric tests (MVF, MRFD) were not correlated with VJ, except T25-50 of the left leg. A vertical jump test and a force velocity test with the arms are proposed for a test battery in volleyball players.

  19. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  20. Location Assisted Vertical Handover Algorithm for QoS Optimization in End-to-End Connections

    DEFF Research Database (Denmark)

    Dam, Martin S.; Christensen, Steffen R.; Mikkelsen, Lars M.

    2012-01-01

    in this paper focus on 1) peer-to-peer in a WLAN setting, 2) p2p behind NAT and 3) what we call a server bounce mechanism. The algorithm is supported by a User-specific Virtual Network to obtain required network state information. Experimental tests are conducted, using both simulations and actual...

  1. Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid

    Science.gov (United States)

    Kardri, M. A.; Bachok, N.; Arifin, N. M.; Ali, F. M.

    2017-09-01

    The steady axisymmetric stagnation point flow with second-order velocity slip due to a stretching vertical plate with the existence of copper-water nanofluid was investigated. Similarity transformation has been applied to reduce the governing partial differential equations to ordinary differential equations. Then the self-similar equations are solved numerically using solver bvp4c available in Matlab with Prandtl number, Pr = 6.2. It is found that the dual solutions exist for the certain range of mixed convection parameter. The effects of the governing parameters on the velocity and temperature profile, skin friction coefficient and the local Nusselt number are observed. The results show that the inclusion of nanoparticle copper, will increase the shear stress on the stretching sheet and decrease the heat transfer rate for the slip parameters.

  2. Possible relationship between the equatorial electrojet (EEJ) and daytime vertical E × B drift velocities in F region from ROCSAT observations

    Science.gov (United States)

    Kumar, Sandeep; Veenadhari, B.; Tulasi Ram, S.; Su, S.-Y.; Kikuchi, T.

    2016-10-01

    The vertical E × B drift is very important parameter as its day to day variability has great influence on the variability in the low latitude F-region ion and electron density distributions. The measurements of vertical ion velocity from the first Republic of China Satellite (ROCSAT-1) provide a unique data base for the development of possible relationship between vertical E × B drifts and ground based magnetometer observation. An attempt has been made to derive quantitative relationship between F-region vertical E × B drifts measured by ROCSAT-1 (600 km) and ground measured equatorial electrojet for the solar maximum period 2001-2003 for Indian and Japanese sectors. The results consistently indicate existence of linear relationship between the measured vertical E × B drifts at topside F-region and EEJ for both the sectors, with a moderate to high correlation coefficients. The linear relationship between ROCSAT-1 measured E × B drifts and EEJ for Indian and Japanese sectors has been compared with a similar relationship with Jicamarca Unattended Long-term Ionosphere Atmosphere Radar (JULIA) measured E × B drifts (150 km echos) and EEJ strength from Peruvian sector during 2003. It has been found that ROCSAT-1 measured E × B drifts shows linear relationship with EEJ, however, exhibits a larger scatter unlike JULIA radar observed E × B drifts. This may be attributed to the large height difference as ROCSAT-1 measures E × B drifts at 600 km altitude and the EEJ is E-region (110 km) phenomenon.

  3. A PSO-Optimized Reciprocal Velocity Obstacles Algorithm for Navigation of Multiple Mobile Robots

    Directory of Open Access Journals (Sweden)

    Ziyad Allawi

    2015-03-01

    Full Text Available In this paper, a new optimization method for the Reciprocal Velocity Obstacles (RVO is proposed. It uses the well-known Particle Swarm Optimization (PSO for navigation control of multiple mobile robots with kinematic constraints. The RVO is used for collision avoidance between the robots, while PSO is used to choose the best path for the robot maneuver to avoid colliding with other robots and to get to its goal faster. This method was applied on 24 mobile robots facing each other. Simulation results have shown that this method outperforms the ordinary RVO when the path is heuristically chosen.

  4. Determining Effects of Wagon Mass and Vehicle Velocity on Vertical Vibrations of a Rail Vehicle Moving with a Constant Acceleration on a Bridge Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    C. Mızrak

    2015-01-01

    Full Text Available Vibrations are vital for derailment safety and passenger comfort which may occur on rail vehicles due to the truck and nearby conditions. In particular, while traversing a bridge, dynamic interaction forces due to moving loads increase the vibrations even further. In this study, the vertical vibrations of a rail vehicle at the midpoint of a bridge, where the amount of deflection is expected to be maximum, were determined by means of a 1 : 5 scaled roller rig and Newmark-β numerical method. Simulations for different wagon masses and vehicle velocities were performed using both techniques. The results obtained from the numerical and experimental methods were compared and it was demonstrated that the former was accurate with an 8.9% error margin. Numerical simulations were performed by identifying different test combinations with Taguchi experiment design. After evaluating the obtained results by means of an ANOVA analysis, it was determined that the wagon mass had a decreasing effect on the vertical vibrations of the rail vehicle by 2.087%, while rail vehicle velocity had an increasing effect on the vibrations by 96.384%.

  5. Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding

    Directory of Open Access Journals (Sweden)

    L. F. Millán

    2016-09-01

    Full Text Available This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS, the HALogen Occultation Experiment (HALOE and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery than coarse nonuniform sampling such as that of solar occultation instruments.

  6. Vertical E × B drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data

    Directory of Open Access Journals (Sweden)

    I. Horvath

    2003-04-01

    Full Text Available With a well-selected data set, the various events of the vertical E × B drift velocity variations at magnetic-equator-latitudes, the resultant ionospheric features at low-and mid-latitudes, and the practical consequences of these E × B events on the equatorial radio signal propagation are demonstrated. On a global scale, the development of a equatorial anomaly is illustrated with a series of 1995 global TOPEX TEC (total electron content maps. Locally, in the Australian longitude region, some field-aligned TOPEX TEC cross sections are combined with the matching Guam (144.86° E; 13.59° N, geographic GPS (Global Positioning System TEC data, covering the northern crest of the equatorial anomaly. Together, the 1998 TOPEX and GPS TEC data are utilized to show the three main events of vertical E × B drift velocity variations: (1 the pre-reversal enhancement, (2 the reversal and (3 the downward maximum. Their effects on the dual-frequency GPS recordings are documented with the raw Guam GPS TEC data and with the filtered Guam GPS dTEC/min or 1-min GPS TEC data after Aarons et al. (1997. During these E × B drift velocity events, the Port Moresby (147.10° E; - 9.40° N, geographic virtual height or h'F ionosonde data (km, which cover the southern crest of the equatorial anomaly in the Australian longitude region, show the effects of plasma drift on the equatorial ionosphere. With the net (D horizontal (H magnetic field intensity parameter, introduced and called DH or Hequator-Hnon-equator (nT by Chandra and Rastogi (1974, the daily E × B drift velocity variations are illustrated at 121° E (geographic in the Australian longitude region. The results obtained with the various data show very clearly that the development of mid-latitude night-time TEC increases is triggered by the westward electric field as the appearance of such night-time TEC increases coincides with the E × B drift velocity reversal. An explanation is offered with the F

  7. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  8. Key aspects in the implementation of algorithms for digital processors in velocity and size measurements

    Science.gov (United States)

    Troolin, Dan; Evenstad, Jim; Lai, Wing; Fluid Mechanics research instruments Team

    2017-11-01

    Digital signal processing techniques are used to extract accurate flow and size information in complex and difficult measuring situations. Some of the key aspects that are vital to the performance of signal processors are discussed. Limitations of theoretical approach in evaluating the processing techniques are outlined. Simulations have been carried out to examine the influence of some of the parameters not covered by the analytical approach. The robustness of the auto-correlation technique with quadrature mixing is demonstrated through simulations. The advantage of adapting advantage of adapting a processing technique to be well suited to the nature of the signal, as well as the importance of pre-processing or conditioning the input to be properly positioned for the algorithm are pointed out. Finally the benefits of the auto-correlation technique are proven through experimental measurements.

  9. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  10. An Overview of Vertical Handoff Decision Algorithms in NGWNs and a new Scheme for Providing Optimized Performance in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ionut BOSOANCA

    2011-01-01

    Full Text Available Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs, refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.

  11. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Yuzhu Guo

    2017-09-01

    Full Text Available Measurement of the ground reaction forces (GRF during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0% using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra. Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  12. Algorithms

    Indian Academy of Sciences (India)

    positive numbers. The word 'algorithm' was most often associated with this algorithm till 1950. It may however be pOinted out that several non-trivial algorithms such as synthetic (polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used.

  13. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    Science.gov (United States)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p

  14. An ML-Based Radial Velocity Estimation Algorithm for Moving Targets in Spaceborne High-Resolution and Wide-Swath SAR Systems

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2017-04-01

    Full Text Available Multichannel synthetic aperture radar (SAR is a significant breakthrough to the inherent limitation between high-resolution and wide-swath (HRWS compared with conventional SAR. Moving target indication (MTI is an important application of spaceborne HRWS SAR systems. In contrast to previous studies of SAR MTI, the HRWS SAR mainly faces the problem of under-sampled data of each channel, causing single-channel imaging and processing to be infeasible. In this study, the estimation of velocity is equivalent to the estimation of the cone angle according to their relationship. The maximum likelihood (ML based algorithm is proposed to estimate the radial velocity in the existence of Doppler ambiguities. After that, the signal reconstruction and compensation for the phase offset caused by radial velocity are processed for a moving target. Finally, the traditional imaging algorithm is applied to obtain a focused moving target image. Experiments are conducted to evaluate the accuracy and effectiveness of the estimator under different signal-to-noise ratios (SNR. Furthermore, the performance is analyzed with respect to the motion ship that experiences interference due to different distributions of sea clutter. The results verify that the proposed algorithm is accurate and efficient with low computational complexity. This paper aims at providing a solution to the velocity estimation problem in the future HRWS SAR systems with multiple receive channels.

  15. Vertical electric sounding inversion using genetic algorithms combined with linearized inversion; Inversao de sondagem eletrica vertical utilizando algoritmos geneticos combinado com inversao linearizada

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Nirardo Roberto; Porsani, Milton Jose [Bahia Univ., Salvador, BA (Brazil)

    1997-07-01

    Inversion of DC resistivity sounding is a nonlinear problem. Local or global optimization methods are commonly used to solve it. Local methods are fast but require that the start method be close to the true solution and may be trapped in local minimum. Global methods are robust, but computationally expensive since the space is usually very large. Here we combine the genetic algorithm (AG) with the linearized inversion method, Gauss-Newton, to overcome their limitations and explore the advantages of the two methods. The algorithm was tested with a 1-D Schlumberger resistivity sounding data and its performance was compared with pure AG. The joint operation improves the convergence even when using a reduced population of methods. (author)

  16. Algorithms

    Indian Academy of Sciences (India)

    In the description of algorithms and programming languages, what is the role of control abstraction? • What are the inherent limitations of the algorithmic processes? In future articles in this series, we will show that these constructs are powerful and can be used to encode any algorithm. In the next article, we will discuss ...

  17. Algorithms

    Indian Academy of Sciences (India)

    , i is referred to as the loop-index, 'stat-body' is any sequence of ... while i ~ N do stat-body; i: = i+ 1; endwhile. The algorithm for sorting the numbers is described in Table 1 and the algorithmic steps on a list of 4 numbers shown in. Figure 1.

  18. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2012-07-01

    In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.

  19. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    NARCIS (Netherlands)

    Belikov, D.A.; Maksyutov, S.; Krol, M.C.; Fraser, A.; Rigby, M.; Bian, H.; Agusti-Panareda, A.; Bergmann, D.; Bousquet, P.; Cameron-Smith, P.; Chipperfield, M.P.; Fortems-Cheiney, A.; Gloor, E.; Haynes, K.; Hess, P.; Houweling, S.; Kawa, S.R.; Law, R.M.; Loh, Z.; Meng, L.; Palmer, P.I.; Patra, P.K.; Prinn, R.G.; Saito, R.; Wilson, C.

    2013-01-01

    A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical

  20. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  1. Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system.

    Science.gov (United States)

    Veilleux, Louis-Nicolas; Raison, Maxime; Rauch, Frank; Robert, Maxime; Ballaz, Laurent

    2016-01-01

    A ground reaction force decomposition algorithm based on large force platform measurements has recently been developed to analyze ground reaction forces under each foot during the double support phase of gait. However, its accuracy for the measurement of the spatiotemporal gait parameters remains to be established. The aim of the present study was to establish the agreement between the spatiotemporal gait parameters obtained using (1) a walkway (composed of six large force platforms) and the newly developed algorithm, and (2) an optoelectronic motion capture system. Twenty healthy children and adolescents (age range: 6-17 years) and 19 healthy adults (age range: 19-51 years) participated in this study. They were asked to walk at their preferred speed and at a speed that was faster than the preferred one. Each participant performed three blocks of three trials in each of the two walking speed conditions. The spatiotemporal gait parameters measured with the algorithm did not differ by more than 2.5% from those obtained with the motion capture system. The limits of agreement represented between 3% and 8% of the average spatiotemporal gait parameters. Repeatability of the algorithm was slightly higher than that of the motion capture system as the coefficient of variations ranged from 2.5% to 6%, and from 1.5% to 3.5% for the algorithm and the motion capture system, respectively. The proposed algorithm provides valid and repeatable spatiotemporal gait parameter measurements and offers a promising tool for clinical gait analysis. Further studies are warranted to test the algorithm in people with impaired gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Algorithms

    Indian Academy of Sciences (India)

    Algorithms. 3. Procedures and Recursion. R K Shyamasundar. In this article we introduce procedural abstraction and illustrate its uses. Further, we illustrate the notion of recursion which is one of the most useful features of procedural abstraction. Procedures. Let us consider a variation of the pro blem of summing the first M.

  3. Algorithms

    Indian Academy of Sciences (India)

    number of elements. We shall illustrate the widely used matrix multiplication algorithm using the two dimensional arrays in the following. Consider two matrices A and B of integer type with di- mensions m x nand n x p respectively. Then, multiplication of. A by B denoted, A x B , is defined by matrix C of dimension m xp where.

  4. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    Directory of Open Access Journals (Sweden)

    D. A. Belikov

    2013-02-01

    Full Text Available A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.

  5. Screening algorithm for aortoiliac occlusive disease using duplex ultrasonography-acquired velocity spectra from the distal external iliac artery.

    Science.gov (United States)

    Fontcuberta, Juan; Flores, Angel; Langsfeld, Mark; Orgaz, Antonio; Cuena, Rafael; Criado, Enrique; Doblas, Manuel

    2005-01-01

    Aortoiliac duplex scanning can be difficult to perform owing to the deep location of these vessels. We propose a new method to indirectly screen for aortoiliac disease by performing duplex examination of the distal external iliac artery (DEIA). After performing a preliminary study on 21 patients, the parameters of the Doppler waveform that best distinguish normal from diseased arteries were the presence or absence of reverse flow, peak systolic velocity, and resistance index. These values were used in a derived equation, with the value Y > or = 0.78 predicting normal proximal inflow. We then studied 118 aortoiliac segments in 81 consecutive patients with arteriography and DEIA duplex ultrasonography. To predict moderate to severe stenosis, duplex ultrasonography had a sensitivity of 95.7%, a specificity of 84.1%, a positive predictive value of 80%, and a negative predictive value of 96.8%. Our formula thus predicted significant disease in 55 of the 118 aortoiliac segments (47%), with these segments needing further arteriographic evaluation. The other 63 limbs can be safely considered as having normal aortoiliac inflow. Our method accurately screens for aortoiliac disease and is excellent for predicting normal inflow. This information can be used to better plan the intraoperative diagnostic study and intervention.

  6. Influence of the artefact reduction algorithm of Picasso Trio CBCT system on the diagnosis of vertical root fractures in teeth with metal posts.

    Science.gov (United States)

    Bezerra, I S Q; Neves, F S; Vasconcelos, T V; Ambrosano, G M B; Freitas, D Q

    2015-01-01

    To assess the influence of the artefact reduction algorithm (AR) available on the Picasso Trio 3D(®) imaging system (Vatech, Hwaseong, Republic of Korea) on image quality [greyscale values, contrast-to-noise ratio (CNR) and artefact formation] and diagnosis of vertical root fractures (VRFs) in the teeth with intracanal metal posts. 30 uniradicular teeth had their crowns removed and their roots endodontically treated to receive intracanal metal posts. In 20 teeth, both complete (n = 10) and incomplete (n = 10) VRFs were created. Each tooth was scanned twice, with and without AR activation. The mean and variation of greyscale values, as well as CNR, were calculated for all images. Subsequently, an evaluator compared the amount of artefact (cupping, white streaks and dark bands) in all images. Five evaluators rated for VRF presence using a five-point scale. Mean greyscale values and CNR were significantly decreased in images acquired with the AR. The usage of the algorithm promoted an overall reduction of image artefacts. Regarding the diagnosis of complete and incomplete VRFs, the use of the AR had an overall negative impact on specificity and accuracy. While indeed reducing artefact formation, the use of the AR, instead of improving the impact on the diagnosis of VRFs in teeth with intracanal metal posts, had a negative impact on the diagnosis.

  7. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary

    OpenAIRE

    Serpelloni, Enrico; Faccenna, Claudio; Spada, Giorgio; DONG Danan; Williams, Simon D.P.

    2013-01-01

    We use 2.5 to 14 years long position time series from >800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ −0.7, we adopt a power l...

  8. Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tutuka Ariadji

    2012-07-01

    Full Text Available Comparing the quality of basic reservoir rock properties is a common practice to locate new infills or development wells for optimizing an oil field development using a reservoir simulation. The conventional technique employs a manual trial and error process to find new well locations, which proves to be time-consuming, especially, for a large field. Concerning this practical matter, an alternative in the form of a robust technique was introduced in order that time and efforts could be reduced in finding best new well locations capable of producing the highest oil recovery. The objective of the research was to apply Genetic Algorithm (GA in determining wells locations using reservoir simulation to avoid the manual conventional trial and error method. GA involved the basic rock properties, i.e., porosity, permeability, and oil saturation, of each grid block obtained from a reservoir simulation model, which was applied into a newly generated fitness function formulated through translating the common engineering practice in the reservoir simulation into a mathematical equation and then into a computer program. The maximum of the fitness value indicated a final searching of the best grid location for a new well location. In order to evaluate the performance of the generated GA program, two fields that had different production profile characteristics, namely the X and Y fields, were applied to validate the proposed method. The proposed GA method proved to be a robust and accurate method to find the best new well locations for field development. The key success of this proposed GA method is in the formulation of the objective function.

  9. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players.

    Science.gov (United States)

    Rodríguez-Rosell, David; Torres-Torrelo, Julio; Franco-Márquez, Felipe; González-Suárez, José Manuel; González-Badillo, Juan José

    2017-07-01

    The purpose of this study was to compare the effects of combined light-load maximal lifting velocity weight training (WT) and plyometric training (PT) with WT alone on strength, jump and sprint performance in semiprofessional soccer players. Experimental, pre-post tests measures. Thirty adult soccer players were randomly assigned into three groups: WT alone (FSG, n=10), WT combined to jump and sprint exercises (COM, n=10) and control group (CG, n=10). WT consisted of full squat with low load (∼45-60% 1RM) and low volume (4-6 repetitions). Training program was performed twice a week for 6 weeks of competitive season in addition to 4 soccer sessions a week. Sprint time in 10 and 20m, jump height (CMJ), estimated one-repetition maximum (1RM est ) and velocity developed against different absolute loads in full squat were measured before and after training period. Both experimental groups showed significant improvements in 1RM est (17.4-13.4%; p<0.001), CMJ (7.1-5.2%; p<0.001), sprint time (3.6-0.7%; p<0.05-0.001) and force-velocity relationships (16.9-6.1%; p<0.05-0.001), whereas no significant gains were found in CG. No significant differences were found between FSG and COM. Despite FSG resulted of greater increases in strength variables than COM, this may not translate into superior improvements in the sport-related performance. In fact, COM showed higher efficacy of transfer of strength gains to sprint ability. Therefore, these findings suggest that a combined WT and PT program could represent a more efficient method for improving activities which involve acceleration, deceleration and jumps compared to WT alone. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  11. Analysis of altimeter data jointly with seafloor electric data (vertically integrated velocity) and VCTD-yoyo data (detailed profiles of VCTD)

    Science.gov (United States)

    Tarits, Pascal D.; Menvielle, M.; Provost, C.; Filloux, J. H.

    1991-01-01

    We propose simultaneous analyses of the TOPEX/POSEIDON altimetry data, in situ data--mainly permanent seafloor electric recordings--and velocity, conductivity, temperature, density (VCTD)-yoyo data at several stations in areas of scientific interest. We are planning experiments in various areas of low and high energy levels. Several complementary and redundant methods will be used to characterize the ocean circulation and its short- and long-term variability. We shall emphasize long-term measurement using permanent stations. Our major initial objectives with the TOPEX/POSEIDON mission are the Confluence area in the Argentine Basin and the Circumpolar Antarctic Current. An early experiment was carried out in the Confluence zone in 1988 and 1990 (Confluence Principal Investigators, 1990) to prepare for an intensive phase later one. This intensive phase will include new types of instrumentation. Preliminary experiments will be carried out in the Mediterranean Sea (in 1991) and in the North Atlantic Ocean (in 1992, north of the Canary Islands) to test the new instrumentation.

  12. A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity

    Energy Technology Data Exchange (ETDEWEB)

    Wyant, Matthew C.; Bretherton, Christopher S. [University of Washington, Department of Atmospheric Sciences, Box 351640, Seattle, WA (United States); Bacmeister, Julio T. [Goddard Spaceflight Center, NASA Global Modeling and Assimilation Office, Greenbelt, MD (United States); Kiehl, Jeffrey T. [National Center for Atmospheric Research, Boulder, CO (United States); Held, Isaac M.; Zhao, Ming [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Klein, Stephen A. [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Lawrence Livermore National Laboratory, The Atmospheric Science Division, Livermore, CA (United States); Soden, Brian J. [NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); University of Miami, Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, Miami, FL (United States)

    2006-08-15

    Low-latitude cloud distributions and cloud responses to climate perturbations are compared in near-current versions of three leading U.S. AGCMs, the NCAR CAM 3.0, the GFDL AM2.12b, and the NASA GMAO NSIPP-2 model. The analysis technique of Bony et al. (Clim Dyn 22:71-86, 2004) is used to sort cloud variables by dynamical regime using the monthly mean pressure velocity {omega} at 500 hPa from 30S to 30N. All models simulate the climatological monthly mean top-of-atmosphere longwave and shortwave cloud radiative forcing (CRF) adequately in all {omega}-regimes. However, they disagree with each other and with ISCCP satellite observations in regime-sorted cloud fraction, condensate amount, and cloud-top height. All models have too little cloud with tops in the middle troposphere and too much thin cirrus in ascent regimes. In subsidence regimes one model simulates cloud condensate to be too near the surface, while another generates condensate over an excessively deep layer of the lower troposphere. Standardized climate perturbation experiments of the three models are also compared, including uniform SST increase, patterned SST increase, and doubled CO{sub 2} over a mixed layer ocean. The regime-sorted cloud and CRF perturbations are very different between models, and show lesser, but still significant, differences between the same model simulating different types of imposed climate perturbation. There is a negative correlation across all general circulation models (GCMs) and climate perturbations between changes in tropical low cloud cover and changes in net CRF, suggesting a dominant role for boundary layer cloud in these changes. For some of the cases presented, upper-level clouds in deep convection regimes are also important, and changes in such regimes can either reinforce or partially cancel the net CRF response from the boundary layer cloud in subsidence regimes. This study highlights the continuing uncertainty in both low and high cloud feedbacks simulated by GCMs

  13. A dynamic ultrasound simulation of a pulsating three-layered CCA for validation of two-dimensional wall motion and blood velocity estimation algorithms.

    Science.gov (United States)

    Hu, Xiao; Zhang, Yufeng; Cai, Guanghui; Zhang, Kexin; Deng, Li; Gao, Lian; Han, Suya; Chen, Jianhua

    2017-11-17

    A dynamic ultrasound simulation model for the common carotid artery (CCA) with three arterial layers for validation of two-dimensional wall motion and blood velocity estimation algorithms is proposed in the present study. This model describes layers with not only characteristics of echo distributions conforming to clinical ones but also varying thicknesses, axial, and radial displacements with pulsatile blood pressure during a cardiac cycle. The modeling process is as follows: first, a geometrical model according with the clinical structure size of a CCA is built based on the preset layer thicknesses and the diameter of lumen. Second, a three-dimensional scatterer model is constructed by a mapping with a Hilbert space-filling curve from the one-dimensional scatterer distribution with the position and amplitude following Gamma and Gaussian distributions, respectively. The characteristics of three layers and blood are depicted by smoothly adjusting the scatterer density, the scale, and shape parameters of the Gamma distribution as well as the mean and standard deviation of the Gaussian distribution. To obtain the values of parameters of scatterer distributions, including the shape parameter, density, and intensity, for arterial layers and blood, the envelope signals simulated from different configurations of scatterer distribution are compared with those from different kinds of tissue of CCAs in vivo through a statistic analysis. Finally, the dynamic scatterer model is realized based on the blood pressure, elasticity modulus of intima-media (IM) and adventitia, varying IM thickness, axial displacement of IM as well as blood flow velocity at central axis during a cardiac cycle. Then, the corresponding radiofrequency (RF) signals, envelope signals, and B-mode images of the pulsatile CCA are generated in a dynamic scanning mode using Field II platform. The three arterial layers, blood, and surrounding tissue in simulated B-mode ultrasound images are clearly legible. The

  14. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  15. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Directory of Open Access Journals (Sweden)

    S. Tang

    2016-11-01

    Full Text Available This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1 and apparent moisture sink (Q2 profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs that were conducted from 15 February to 26 March 2014 (wet season and from 1 September to 10 October 2014 (dry season near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5 experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  16. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; Zhang, Minghua; Schumacher, Courtney; Upton, Hannah; Jensen, Michael P.; Johnson, Karen L.; Wang, Meng; Ahlgrimm, Maike; Feng, Zhe; Minnis, Patrick; Thieman, Mandana

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  17. Vertical shaft windmill

    Science.gov (United States)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  18. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 _ 0.9 and 1.6 _ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 _ 0.6 and -0.1 _ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  19. A comparison of accuracy and precision of 5 gait-event detection algorithms from motion capture in horses during over ground walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Boye, Jenny Katrine; Pfau, Thilo

    2012-01-01

    Motion capture is frequently used over ground in equine locomotion science to study kinematics. Determination of gait events (hoof-on/off and stance) without force plates is essential to cut the data into strides. The lack of comparative evidence emphasise the need to compare existing algorithms...... surrounded by a 12-camera infrared motion capture system. The algorithms were based on horizontal or vertical velocity displacement and velocity of the hoof relative to the centre of mass movement or fetlock angle and velocity or displacement of the hoof. Horizontal hoof velocity relative to the centre...

  20. Description of a Normal-Force In-Situ Turbulence Algorithm for Airplanes

    Science.gov (United States)

    Stewart, Eric C.

    2003-01-01

    A normal-force in-situ turbulence algorithm for potential use on commercial airliners is described. The algorithm can produce information that can be used to predict hazardous accelerations of airplanes or to aid meteorologists in forecasting weather patterns. The algorithm uses normal acceleration and other measures of the airplane state to approximate the vertical gust velocity. That is, the fundamental, yet simple, relationship between normal acceleration and the change in normal force coefficient is exploited to produce an estimate of the vertical gust velocity. This simple approach is robust and produces a time history of the vertical gust velocity that would be intuitively useful to pilots. With proper processing, the time history can be transformed into the eddy dissipation rate that would be useful to meteorologists. Flight data for a simplified research implementation of the algorithm are presented for a severe turbulence encounter of the NASA ARIES Boeing 757 research airplane. The results indicate that the algorithm has potential for producing accurate in-situ turbulence measurements. However, more extensive tests and analysis are needed with an operational implementation of the algorithm to make comparisons with other algorithms or methods.

  1. Numerical calculation of gas and liquid velocities along a vertical flat plate immersed in turbulent tow-phase bubbly flow. Kihoryuchu ni okareta suichoku heiban mawari no ranryu kieki 2 soryu ni kansuru suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, A.; Nakamura, H. (Daido Inst. of Technology, Nagoya (Japan)); Hiraoka, S.; Tada, Y.; Kato, Y. (Nagoya Inst. of Tech. (Japan))

    1993-11-10

    A numerical calculation was made on the bubbly flow using the Prandtl's mixing length theory. The calculation results agreed well with the experimental results in the turbulent flow rather than in the laminar flow. The necessity of discussion on the turbulent flow analysis was clarified. It was elucidated that the experimental results could be explained sufficiently even by the simplest mixing model. The liquid phase velocity vector was aligned on the same direction when the bubbly flow length exceeded 1 cm, and little change took place in the velocity distribution shape. In the analysis of laminar flow, the velocity boundary layer was developed together with tie bubbly flow length, while in the analysis of turbulent flow, such change did not take place. The liquid phase velocity in the vicinity of the inlet had a velocity component which directed to the outside of the wall at the wall side. It was quite different from the analytical result of the laminar flow. The gas phase velocity vector behaved in the similar way to the liquid phase. The velocity direction at the periphery of the velocity distribution in the vicinity of tie inlet was toward the wall surface, and the inlet velocity was rapidly accelerated. 12 refs., 4 figs.

  2. VELOCITY ANISOTROPY IN THE NIGER VDELTTXFSEDIMENTS ...

    African Journals Online (AJOL)

    Keywords: Intrinsic velocity anisotropy, Niger Delta, Thomsen's parameters, vertical i transverse isotropy (VT!) Introduction. In seismology, a layer is anisotropic if seismic waves propagate through it at different velocities in different directions. Sedimentary rocks possess some degree of intrinsic velocity anisotropy (Jones and.

  3. Efficient Algorithm for a k-out-of-N System Reliability Modeling-Case Study: Pitot Sensors System for Aircraft Velocity

    Directory of Open Access Journals (Sweden)

    Wajih Ezzeddine

    2017-08-01

    Full Text Available The k-out-of-N system is widely applied in several industrial systems. This structure is a part of fault-tolerant systems for which both parallel and series systems are special cases. Because of the importance of industrial systems reliability determination for production and maintenance management purposes, a number of techniques and methods are incorporated to formulate and estimate its analytic expression. In this paper, an algorithm is put forward for a k-out-of-N system with identical components under information about the influence factors that affect the system efficiency. The developed approach is applied in the case of the Pitot sensors system. However, the algorithm application could be generalized for any device which during a mission is subject to environmental and operational factors that affect its degradation process.

  4. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  5. Waves, circulation and vertical dependence

    Science.gov (United States)

    Mellor, George

    2013-04-01

    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  6. Pulse Wave Velocity as Marker of Preclinical Arterial Disease: Reference Levels in a Uruguayan Population Considering Wave Detection Algorithms, Path Lengths, Aging, and Blood Pressure

    Directory of Open Access Journals (Sweden)

    Ignacio Farro

    2012-01-01

    Full Text Available Carotid-femoral pulse wave velocity (PWV has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender; asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n=429 were categorized according to the age decade and the blood pressure levels (at study time. All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes.

  7. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    Science.gov (United States)

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; Giangrande, Scott E.; Collis, Scott M.; Potvin, Corey K.

    2017-08-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with those from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s-1, respectively, and time-height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s-1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. The results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.

  8. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  9. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 ¡_ 0.9 and 1.6 ¡_ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 ¡_ 0.6 and -0.1 ¡_ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  10. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  11. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  12. Vertical saccades in dyslexic children.

    Science.gov (United States)

    Tiadi, Aimé; Seassau, Magali; Bui-Quoc, Emmanuel; Gerard, Christophe-Loïc; Bucci, Maria Pia

    2014-11-01

    Vertical saccades have never been studied in dyslexic children. We examined vertical visually guided saccades in fifty-six dyslexic children (mean age: 10.5±2.56 years old) and fifty-six age matched non dyslexic children (mean age: 10.3±1.74 years old). Binocular eye movements were recorded using an infrared video-oculography system (mobileEBT®, e(ye)BRAIN). Dyslexic children showed significantly longer latency than the non dyslexic group, also the occurrence of anticipatory and express saccades was more important in dyslexic than in non dyslexic children. The gain and the mean velocity values were significantly smaller in dyslexic than in non dyslexic children. Finally, the up-down asymmetry reported in normal population for the gain and the velocity of vertical saccades was observed in dyslexic children and interestingly, dyslexic children also reported an up-down asymmetry for the mean latency. Taken together all these findings suggested impairment in cortical areas responsible of vertical saccades performance and also at peripheral level of the extra-ocular oblique muscles; moreover, a visuo-attentionnal bias could explain the up-down asymmetry reported for the vertical saccade triggering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Velocity anisotropy in the Niger Delta sediments derived from ...

    African Journals Online (AJOL)

    Seismic velocities decrease and increase laterally and vertically, respectively, towards the coast. These variations are attributable to the lateral and vertical changes in the degrees of compaction coastward and reduction in porosity with depth. Three zones of steep, moderate and slow velocity gradients, respectively, have ...

  14. Algorithms and Algorithmic Languages.

    Science.gov (United States)

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  15. Moveout analysis of wide-azimuth data in the presence of lateral velocity variation

    KAUST Repository

    Takanashi, Mamoru

    2012-05-01

    Moveout analysis of wide-azimuth reflection data seldom takes into account lateral velocity variations on the scale of spreadlength. However, velocity lenses (such as channels and reefs) in the overburden can cause significant, laterally varying errors in the moveout parameters and distortions in data interpretation. Here, we present an analytic expression for the normal-moveout (NMO) ellipse in stratified media with lateral velocity variation. The contribution of lateral heterogeneity (LH) is controlled by the second derivatives of the interval vertical traveltime with respect to the horizontal coordinates, along with the depth and thickness of the LH layer. This equation provides a quick estimate of the influence of velocity lenses and can be used to substantially mitigate the lens-induced distortions in the effective and interval NMO ellipses. To account for velocity lenses in nonhyperbolic moveout inversion of wide-azimuth data, we propose a prestack correction algorithm that involves computation of the lens-induced traveltime distortion for each recorded trace. The overburden is assumed to be composed of horizontal layers (one of which contains the lens), but the target interval can be laterally heterogeneous with dipping or curved interfaces. Synthetic tests for horizontally layered models confirm that our algorithm accurately removes lens-related azimuthally varying traveltime shifts and errors in the moveout parameters. The developed methods should increase the robustness of seismic processing of wide-azimuth surveys, especially those acquired for fracture-characterization purposes. © 2012 Society of Exploration Geophysicists.

  16. Autodriver algorithm

    Directory of Open Access Journals (Sweden)

    Anna Bourmistrova

    2011-02-01

    Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.

  17. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    Science.gov (United States)

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements.

  18. Analytic solutions for seismic travel time and ray path geometry through simple velocity models.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Sanford

    2007-12-01

    The geometry of ray paths through realistic Earth models can be extremely complex due to the vertical and lateral heterogeneity of the velocity distribution within the models. Calculation of high fidelity ray paths and travel times through these models generally involves sophisticated algorithms that require significant assumptions and approximations. To test such algorithms it is desirable to have available analytic solutions for the geometry and travel time of rays through simpler velocity distributions against which the more complex algorithms can be compared. Also, in situations where computational performance requirements prohibit implementation of full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in order to compute solutions that satisfy those requirements. Analytic solutions are described for the geometry and travel time of infinite frequency rays through radially symmetric 1D Earth models characterized by an inner sphere where the velocity distribution is given by the function V (r) = A-Br{sup 2}, optionally surrounded by some number of spherical shells of constant velocity. The mathematical basis of the calculations is described, sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. (1999). These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators and in situations where performance requirements preclude the use of more computationally intensive calculators. It should be noted that most of the solutions presented are only quasi-analytic. Exact, closed form equations are derived but computation of solutions to specific problems generally require application of numerical integration or root finding techniques, which, while approximations, can be calculated to very high accuracy. Tolerances are set in the numerical algorithms such that computed travel time accuracies are better than 1 microsecond.

  19. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Kim Jang-Sub

    2008-01-01

    Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

  20. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Khalid Qaraqe

    2008-10-01

    Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

  1. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  2. Secondary Vertex Finder Algorithm

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    If a jet originates from a b-quark, a b-hadron is formed during the fragmentation process. In its dominant decay modes, the b-hadron decays into a c-hadron via the electroweak interaction. Both b- and c-hadrons have lifetimes long enough, to travel a few millimetres before decaying. Thus displaced vertices from b- and subsequent c-hadron decays provide a strong signature for a b-jet. Reconstructing these secondary vertices (SV) and their properties is the aim of this algorithm. The performance of this algorithm is studied with tt̄ events, requiring at least one lepton, simulated at 13 TeV.

  3. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  4. Postprocessing of velocity distributions in real-time ultrasonic color velocity imaging.

    Science.gov (United States)

    Collaris, R J; Hoeks, A P

    1994-10-01

    A robust processing scheme is proposed that improves the presentation of 2-dimensional velocity distributions in real-time ultrasonic color velocity images. Essentially, the algorithm is a modification of a first order recursive filter, processing each velocity signal in the spatial distribution separately from the others. It restores the sudden holes and notches in the velocity profiles that occur whenever the observed blood velocity is incidentally close to zero. At the same time, unlike conventional persistence filters, it does not influence any of the true velocity information that is measured. The result is a consistent sequence of color velocity images with smooth transitions between the borders of the consecutive velocity profiles and with an improved definition of the regions containing blood.

  5. Algorithming the Algorithm

    DEFF Research Database (Denmark)

    Mahnke, Martina; Uprichard, Emma

    2014-01-01

    changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...... would like to emphasize another side to the algorithmic everyday life. We argue that algorithms can instigate and facilitate imagination, creativity, and frivolity, while saying something that is simultaneously old and new, always almost repeating what was before but never quite returning. We show...... this by threading together stimulating quotes and screenshots from Google’s autocomplete algorithms. In doing so, we invite the reader to re-explore Google’s autocomplete algorithms in a creative, playful, and reflexive way, thereby rendering more visible some of the excitement and frivolity that comes from being...

  6. Vertical saccades in children: a developmental study.

    Science.gov (United States)

    Bucci, Maria Pia; Seassau, Magali

    2014-03-01

    There are no studies exploring the development of vertical saccades in large populations of children. In this study, we examined the development of vertical saccades in sixty-nine children. Binocular eye movements were recorded using an infrared video oculography system [Mobile EBT(®), e(ye)BRAIN], and movements from both eyes had been analyzed. The gain and the peak velocity of vertical saccades show an up-down asymmetry. Latency value decreases with the age of children, and it does not depend on the direction of the saccades; in contrast, the gain and the peak velocity values of vertical saccades are stable during childhood. We suggest that the up-down asymmetry is developed early, or is innate, in humans. Latencies of vertical saccades develop with the age of children, in relationship with the development of the cortical network responsible for the saccade preparation. In contrast, the precision and the peak velocity are not age-dependent as they are controlled by the cerebellum and brainstem structures.

  7. Efficient graph algorithms

    Indian Academy of Sciences (India)

    Outline of the talk. Introduction. Computing connectivities between all pairs of vertices. All pairs shortest paths/distances. Optimal bipartite matching . – p.2/30 .... Efficient Algorithm. The time taken for this computation on any input should be bounded by a small polynomial in the input size. . – p.6/30 ...

  8. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system is often in the order of a couple kilometers long. Based on CFD analyses (computational fluid dynamics......Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  9. Acquired vertical accommodative vergence.

    Science.gov (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A

    2008-03-08

    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  10. Algorithms Introduction to Algorithms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Algorithms Introduction to Algorithms. R K Shyamasundar. Series Article Volume 1 Issue 1 January 1996 pp 20-27. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/01/0020-0027 ...

  11. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    Science.gov (United States)

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  12. Effects of Isometric Scaling on Vertical Jumping Performance

    NARCIS (Netherlands)

    Bobbert, M.F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does

  13. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    Science.gov (United States)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  14. Investigating particle phase velocity in a 3D spouted bed by a novel fiber high speed photography method

    Science.gov (United States)

    Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng

    2013-07-01

    A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.

  15. Free Convective Flow of a Reacting Fluid between Vertical Porous ...

    African Journals Online (AJOL)

    This study investigates free convective flow between vertical porous plates. The energy and momentum equations which arise from the definitions of temperature and velocity are written in dimensionless forms. The resulting second order equations are solved to obtain expressions for the velocity, temperature, mass transfer ...

  16. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  17. Optimisation of the mean boat velocity in rowing.

    Science.gov (United States)

    Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P

    2012-01-01

    In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement.

  18. On the axis ratio of the stellar velocity ellipsoid in disks of spiral galaxies

    NARCIS (Netherlands)

    van der Kruit, PC; de Grijs, R

    1999-01-01

    The spatial distribution of stars in a disk of a galaxy can be described by a radial scale length and a vertical scale height. The ratio of these two scale parameters contains information on the axis ratio of the velocity ellipsoid, i.e. the ratio of the vertical to radial stellar velocity

  19. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  20. Probability distribution of vertical longitudinal shear fluctuations.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    This paper discusses some recent measurements of third and fourth moments of vertical differences (shears) of longitudinal velocity fluctuations obtained in unstable air at the NASA 150 m meteorological tower site at Cape Kennedy, Fla. Each set of measurements consisted of longitudinal velocity fluctuation time histories obtained at the 18, 30, 60, 90, 120 and 150 m levels, so that 15 wind-shear time histories were obtained from each set of measurements. It appears that the distribution function of the longitudinal wind fluctuations at two levels is not bivariate Gaussian. The implications of the results relative to the design and operation of aerospace vehicles are discussed.-

  1. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging...... of RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....

  2. APPLICATION OF A HEURISTIC METHOD FOR THE ESTIMATION OF S-WAVE VELOCITY STRUCTURE

    Directory of Open Access Journals (Sweden)

    Alfaro Castillo Andrés José

    2006-08-01

    Full Text Available The assessment of local site effects is one of the most important subjects in Engineering Seismology. In order to perform an assessment, it is necessary to determine the S-wave velocity structure of the site. Additionally, in some basins, it is very important to know the deep sedimentary structure, due to the amplification phenomena of low frequency waves. There are several techniques to achieve this purpose; probably the most inexpensive technique is using the vertical component of microtremors measured with an array of seismographs. The phase velocity of Rayleigh waves is inverted to an S-wave velocity (Vs profile  using optimization techniques. Most of the time, least square methods have been applied in the inversion.Recently, heuristic methods have also been used for the estimation of the S-wave velocity structure from microtremor.In this study seven arrays of microtremors in the city of Tsukuba city were performed, located to the NE edge of Kanto Basin, in order to estimate the deep S-wave velocity structure. The spatial autocorrelationmethod SPAC was used to determine phase velocity dispersion curves in the frequency range from 0.3-2.5 Hz. The determination of Vs profiles reached a depth of 750 m. Two methods were used to estimate the Swavevelocity structure: Inversion method and a heuristic method via the combination of Downhill Simplex Algorithm with a Very Fast Simulated Annealing Method. Comparisons with Vs from the existent resultsfrom PS-logging tests at the center of the array showed the reliability of the heuristic method.

  3. Seismic velocity estimation from time migration

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Maria Kourkina [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  4. Vertical partitioning of relational OLTP databases using integer programming

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen

    2010-01-01

    for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs......A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...

  5. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Directory of Open Access Journals (Sweden)

    Milana Damjenić

    2016-07-01

    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  6. Algorithm design

    CERN Document Server

    Kleinberg, Jon

    2006-01-01

    Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.

  7. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  8. Residuals-Based Subgraph Detection with Cue Vertices

    Science.gov (United States)

    2015-11-30

    Programming), and two local random walk algorithms (Approximate Person- alized PageRank and Threat propagation). We compare their empirical performance to the...Approximate Personalized PageRank (APP) Within the class of random walk partitioning algorithms, the personalized PageRank algorithm [8] has been used...to rank the importance of vertices relative to an input seed vertex s. The solution to the personalized PageRank problem is expressed as follows: r

  9. Path following mobile robot in the presence of velocity constraints

    DEFF Research Database (Denmark)

    Bak, Martin; Poulsen, Niels Kjølstad; Ravn, Ole

    2001-01-01

    This paper focuses on path following algorithms for mobile robots with velocity constraints on the wheels. The path considered consists of straight lines intersected with given angles. We present a fast real-time receding horizon controller which anticipates the intersections and smoothly controls...... the robot through the turnings while fulfilling the velocity constraints....

  10. High-Velocity Clouds

    NARCIS (Netherlands)

    Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard

    2013-01-01

    The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes

  11. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    Science.gov (United States)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  12. Vertical atlantoaxial dislocation

    OpenAIRE

    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.

    1999-01-01

    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  13. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  14. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  15. Composition of vertical gardens

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  16. Eccentricity samples: Implications on the potential and the velocity distribution

    Directory of Open Access Journals (Sweden)

    Cubarsi R.

    2017-01-01

    Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  17. Eccentricity Samples: Implications on the Potential and the Velocity Distribution

    Science.gov (United States)

    Cubarsi, R.; Stojanović, M.; Ninković, S.

    2017-06-01

    Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples.

  18. Momentum limiting velocity controls for robotic manipulators

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.; Bryan, Tom

    1990-01-01

    Robotic tasks in space require manipulating massive objects capable of attaining large momentum. The momentum can pose hazardous conditions and introduce destabilizing effects on a space platform. Consequently, a technique for limiting the momentum applied to objects under manipulation subject to arbitrary velocity input commands is proposed. The algorithm does not require mass position or inertia information about the object, and it takes actuator limitations into account in forming the momentum limits. To evaluate the probability that a velocity trajectory will fall within the momentum bounds, reliability theory is employed. This enables autonomously generated trajectories to be validated for compliance with momentum limits.

  19. Analyses of Current And Wave Forces on Velocity Caps

    OpenAIRE

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.; Jensen, Bjarne

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system...

  20. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  1. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  2. Coding of Velocity Storage in the Vestibular Nuclei

    Science.gov (United States)

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO

  3. Wind tunnel investigation of a 14 foot vertical axis windmill

    Science.gov (United States)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  4. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  5. Algorithms for k-Colouring and Finding Maximal Independent Sets

    DEFF Research Database (Denmark)

    Byskov, Jesper Makholm

    2003-01-01

    In this extended abstract, we construct algorithms that decide for a graph with n vertices whether there exists a 4-, 5- or 6-colouring of the vertices running in time O(1.7504n), O(2.1592 n) and O(2.3289n), respectively, using polynomial space. For 6- or 7-colouring we construct algorithms running...

  6. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  7. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  8. Key Concepts in Informatics: Algorithm

    Science.gov (United States)

    Szlávi, Péter; Zsakó, László

    2014-01-01

    "The system of key concepts contains the most important key concepts related to the development tasks of knowledge areas and their vertical hierarchy as well as the links of basic key concepts of different knowledge areas." (Vass 2011) One of the most important of these concepts is the algorithm. In everyday life, when learning or…

  9. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  10. Transverse spectral velocity estimation.

    Science.gov (United States)

    Jensen, Jørgen

    2014-11-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile flow using the Womersly-Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer. A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected for angles from 0° to 70° to give fully quantitative velocity spectra without operator intervention.

  11. Vertical jump coordination: fatigue effects.

    Science.gov (United States)

    Rodacki, André Luiz Felix; Fowler, Neil E; Bennett, Simon J

    2002-01-01

    The aim of this study was to investigate the segmental coordination of vertical jumps under fatigue of the knee extensor and flexor muscles. Eleven healthy and active subjects performed maximal vertical jumps with and without fatigue, which was imposed by requesting the subjects to extend/flex their knees continuously in a weight machine, until they could not lift a load corresponding to approximately 50% of their body weight. Knee extensor and flexor isokinetic peak torques were also measured before and after fatigue. Video, ground reaction forces, and electromyographic data were collected simultaneously and used to provide several variables of the jumps. Fatiguing the knee flexor muscles did not reduce the height of the jumps or induce changes in the kinematic, kinetic, and electromyographic profiles. Knee extensor fatigue caused the subjects to adjust several variables of the movement, in which the peak joint angular velocity, peak joint net moment, and power around the knee were reduced and occurred earlier in comparison with the nonfatigued jumps. The electromyographic data analyses indicated that the countermovement jumps were performed similarly, i.e., a single strategy was used, irrespective of which muscle group (extensor or flexors) or the changes imposed on the muscle force-generating characteristics (fatigue or nonfatigue). The subjects executed the movements as if they scaled a robust template motor program, which guided the movement execution in all jump conditions. It was speculated that training programs designed to improve jump height performance should avoid severe fatigue levels, which may cause the subjects to learn and adopt a nonoptimal and nonspecific coordination solution. It was suggested that the neural input used in the fatigued condition did not constitute an optimal solution and may have played a role in decreasing maximal jump height achievement.

  12. Efficient GPS Position Determination Algorithms

    Science.gov (United States)

    2007-06-01

    Algorithm Let the reference receiver, m, have a known position represented as (xm, ym, zm) and the reported ith satellite position (via ephemeris data) be...vr is given as the velocity difference uvv &−=r (1-22) where v is the (known) velocity of the satellite and u& is the velocity of the user to be...this research and in our previous work reported in [15] and [16], an over-determined system is treated, making use of all-in-view (n ≥ 5) satellites as

  13. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

    Science.gov (United States)

    Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A.

    2017-10-01

    In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest's and Tzou's algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.

  14. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    Directory of Open Access Journals (Sweden)

    Xinhui Zhu

    2016-02-01

    Full Text Available Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF. The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System and VLBI (very long baseline interferometry velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  15. Using remotely sensed data to estimate river characteristics including water-surface velocity and discharge

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; Legleiter, Carl; McDonald, Richard R.; Overstreet, Brandon; Conaway, Jeff

    2017-01-01

    This paper describes a project combining field studies and analyses directed at providing an assessment of the accuracy of remotely sensed methods for determining river characteristics such as velocity and discharge. In particular, we describe a remote sensing method for surface velocities using mid-wave thermal camera videography combined with image analysis. One of the critical problems in this work is determining a method for relating remotely measured water-surface velocities to vertically averaged velocities through a velocity index. We explore three similarity profiles that allow a relationship between surface and vertically averaged velocity to be found either using empirical results or simple roughness-to-depth ratios. To test the approaches we compare them in a situation where vertical structure is known over most of the flow depth through ADCP measurements. By determining best-fit profiles through the ADCP profiles, average values of the velocity index are found for the cross-sections where measurement were made. By comparing these to the predicted velocity indices from the three similarity profiles, we find that, although the differences between the various similarity profiles are substantial, they are smaller than differences associated with local nonuniformity and nonhydrostatic flow. Nevertheless, the velocity indices are accurate to about +/-5%, meaning that remotely sensed vertically averaged velocities can be computed to well within the current accuracy standard for such values when used for river gaging.

  16. High-velocity penetrators

    Science.gov (United States)

    Lundgren, Ronald G.

    This paper summarizes the results of studies, coupled with a series of tests, that investigated rigid-body projectiles (penetrators) at high (up to 5500 ft/sec) velocities. Before these studies, it had been hypothesized that a velocity limit would be reached at which increasing the velocity would not commensurately increase depth of penetration into a target. It was further inferred that a given velocity/ penetration depth curve would avalanche into the hydrodynamic regime; that is, increasing the velocity past a certain point would decrease penetration performance. The test series utilized 1/2-in., 3-in., and 5 1/2-in. diameter, ogive-nose steel projectiles and grout and concrete targets. The tests confirmed that penetration depth increased as striking velocity increased to 4000 ft/sec. However, beyond striking velocities of 4000 ft/sec, asymmetric erosion and indentation of the projectile nose from the aggregate caused the projectile trajectories to deviate severely from the target centerline. These trajectory deviations caused the projectile to exit the side of the target, severely bend, break, or exhibit decreased penetration performance, confirming the hypothesis. Clearly, these results were dependent on the specific material and geometric parameters. The projectiles had 3.0 and 4.25 CRH (Caliber-Radius-Head) nose shapes and were heat-treated to R(sub c) 38-40. The grout targets had a maximum aggregate diameter of 3/16 in. and a nominal unconfined compressive strength of 2.5 ksi. The concrete targets had a maximum aggregate diameter of 3/4 in. and unconfined compressive strength of 5.5 ksi.

  17. Experimental study of ``laminar'' bubbly flows in a vertical pipe

    Science.gov (United States)

    Kashinsky, O. N.; Timkin, L. S.; Cartellier, A.

    1993-09-01

    Measurement of bubbly two-phase flow parameters in a vertical pipe were performed. To keep the pipe Reynolds number below that for single-phase turbulent transition, a water-glycerin solution was used as the test liquid. Local void fraction and liquid velocity profiles along with the wall shear stress were measured by an electrochemical method. Experiments were made with bubbles of two different sizes. As the gas flow rate was increased, a gradual development of the liquid velocity profile from the parabolic Poiseuille flow to a flattened two-phase profile was observed. The evolution of the wall shear stress and of the velocity fluctuations were also quantified.

  18. Diel vertical migrat..

    African Journals Online (AJOL)

    2002-01-24

    Jan 24, 2002 ... crustacean zooplankton but also in a Wide array of different marine zooplankton groups. (Russell 1927, McLaren 1963). Thus there is no doubt that ..... cooperation during field work and for their fruitful discussion on the draft manuscript. REFERENCES. Bayly lAE 1986 Aspects of diel vertical migration in ...

  19. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  20. Hunting Voronoi vertices

    NARCIS (Netherlands)

    Ferrucci, V.; Overmars, Mark; Rao, A.; Vleugels, J.

    1994-01-01

    Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously from each. In this paper, we consider the problem of computing Voronoi vertices for planar objects of xed but possibly unknown shape; we only require the ability to query the closest point on an object

  1. Vertical deformation at western part of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  2. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  3. Minimising Computational Complexity of the RRT Algorithm

    DEFF Research Database (Denmark)

    Svenstrup, Mikael; Bak, Thomas; Andersen, Hans Jørgen

    2011-01-01

    method is Rapidly-exploring Random Trees (RRT's). One problem with this method is the nearest neighbour search time, which grows significantly when adding a large number of vertices. We propose an algorithm which decreases the computation time, such that more vertices can be added in the same amount...... is an algorithm that can provide better trajectories within a given time period, or alternatively compute trajectories faster. In simulation the algorithm is verified for a simple RRT implementation and in a more specific case where a robot has to plan a path through a human inhabited environment....

  4. Similarity solution for rarefied flow over a vertical stretched surface

    Science.gov (United States)

    Al-Kouz, W.; Kiwan, S.; Sari, M.; Alkhalidi, A.

    2017-07-01

    Similarity technique is used to solve for the laminar natural convection heat transfer for rarefied flows over a linearly vertical stretched surface. Such flows have significant importance in many engineering and manufacturing applications. It is found that the flow is affected by flow parameters, namely, velocity slip (K1), temperature jump (K2), and the Prandtl number (Pr).

  5. Comparison of Vertical Ionospheric Drifts Obtained by Different Techniques

    Science.gov (United States)

    Kouba, D.

    2016-12-01

    Since 2004 the ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde. In addition to classical ionograms the drift velocities in both E and F region using DDA method are measured routinely. However, vertical component of the drift velocity vector can be estimated by several different methods which can be found in the literature; for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper the direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. The ionospheric observatory in Pruhonice is midlatitudinal station and typicaly provides measurements in 15 minutes cadence. Due to the fact that the most papers use different indirect methods use equatorial data, we also focuse on results of equatorial stations and other stations that carry out measurements with higher cadence (5 minutes). Our comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisondes.

  6. Vertical gastroplasty: evolution of vertical banded gastroplasty.

    Science.gov (United States)

    Mason, E E; Doherty, C; Cullen, J J; Scott, D; Rodriguez, E M; Maher, J W

    1998-09-01

    The objective of this paper is to summarize the goals, technical requirements, advantages, and potential risks of gastroplasty for treatment of severe obesity. Gastroplasty is preferred to more complex operations, as it preserves normal digestion and absorption and avoids complications that are peculiar to exclusion operations. The medical literature and a 30-year experience at the University of Iowa Hospitals and Clinics (UIHC) provides an overview of vertical banded gastroplasty (VBG) evolution. Preliminary 10-year results with the VBG technique currently used at UIHC are included. At UIHC the VBG is preferred to other gastroplasties because it provides weight control that extends for at least 10 years and the required objective, intraoperative quality control required for a low rate of reoperation. It is recommended that modifications of the operative technique not be attempted until a surgeon has had experience with the standardized operation--and then only under a carefully designed protocol. Realistic goals for surgery and criteria of success influence the choice of operation and the optimum, lifelong risk/benefit ratio. In conclusion, VBG is a safe, long-term effective operation for severe obesity with advantages over complex operations and more restrictive simple operations.

  7. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng

    2017-06-25

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the one from LOCO (Linear Optics from Closed Orbits) response matrix correction.

  9. Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2016-12-01

    Full Text Available A novel approach for estimating the instantaneous velocity of the pelvis during walking was developed based on Inertial Measurement Units (IMUs. The instantaneous velocity was modeled by the sum of a cyclical component, decomposed in the Medio-Lateral (ML, VerTical (VT and Antero-Posterior (AP directions, and the Average Progression Velocity (APV over each gait cycle. The proposed method required the availability of two IMUs, attached to the pelvis and one shank. Gait cycles were identified from the shank angular velocity; for each cycle, the Fourier series coefficients of the pelvis and shank acceleration signals were computed. The cyclical component was estimated by Fourier-based time-integration of the pelvis acceleration. A Bayesian Linear Regression (BLR with Automatic Relevance Determination (ARD predicted the APV from the stride time, the stance duration, and the Fourier series coefficients of the shank acceleration. Healthy subjects performed tasks of Treadmill Walking (TW and Overground Walking (OW, and an optical motion capture system (OMCS was used as reference for algorithm performance assessment. The widths of the limits of agreements (±1.96 standard deviation were computed between the proposed method and the reference OMCS, yielding, for the cyclical component in the different directions: ML: ±0.07 m/s (±0.10 m/s; VT: ±0.03 m/s (±0.05 m/s; AP: ±0.06 m/s (±0.10 m/s, in TW (OW conditions. The ARD-BLR achieved an APV root mean square error of 0.06 m/s (0.07 m/s in the same conditions.

  10. Density - Velocity Relationships in Explosive Volcanic Plumes

    Science.gov (United States)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2015-12-01

    Positively buoyant volcanic plumes rise until the bulk density of the plume is equal to the density of the ambient atmosphere. As ambient air mixes with the plume, it lowers the plume bulk density; thus, the plume is diluted enough to reach neutral density in a naturally stratified atmospheric environment. We produced scaled plumes in analogue laboratory experiments by injecting a saline solution with a tracer dye into distilled water, using a high-pressure injection system. We recorded each eruption with a CASIO HD digital camera and used ImageJ's FeatureJ Edge toolbox to identify individual eddies. We used an optical flow software based off the ImageJ toolbox FlowJ to determine the velocities along the edge of each eddy. Eddy densities were calculated by mapping the dye concentration to the RGB digital color value. We overlaid the eddy velocities over the densities in order to track the behavioral relationship between the two variables with regard to plume motion. As an eddy's bulk density decreases, the vertical velocity decreases; this is a result of decreased mass, and therefore momentum, in the eddy. Furthermore as the density rate of change increases, the eddy deceleration increases. Eddies are most dense at their top and least dense at their bottom. The less dense sections of the eddies have lower vertical velocities than the sections of the eddies with the higher densities, relating to the expanding radial size of an eddy as it rises and the preferential ingestion of ambient air at the base of eddies. Thus the mixing rate in volcanic plumes fluctuates not only as a function of height as described by the classic 1D entrainment hypothesis, but also as a function of position in an eddy itself.

  11. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  12. Seismic Velocity Gradients Across the Transition Zone

    Science.gov (United States)

    Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.

    2006-12-01

    One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be

  13. The soil moisture velocity equation

    Science.gov (United States)

    Ogden, Fred L.; Allen, Myron B.; Lai, Wencong; Zhu, Jianting; Seo, Mookwon; Douglas, Craig C.; Talbot, Cary A.

    2017-06-01

    Numerical solution of the one-dimensional Richards' equation is the recommended method for coupling groundwater to the atmosphere through the vadose zone in hyperresolution Earth system models, but requires fine spatial discretization, is computationally expensive, and may not converge due to mathematical degeneracy or when sharp wetting fronts occur. We transformed the one-dimensional Richards' equation into a new equation that describes the velocity of moisture content values in an unsaturated soil under the actions of capillarity and gravity. We call this new equation the Soil Moisture Velocity Equation (SMVE). The SMVE consists of two terms: an advection-like term that accounts for gravity and the integrated capillary drive of the wetting front, and a diffusion-like term that describes the flux due to the shape of the wetting front capillarity profile divided by the vertical gradient of the capillary pressure head. The SMVE advection-like term can be converted to a relatively easy to solve ordinary differential equation (ODE) using the method of lines and solved using a finite moisture-content discretization. Comparing against analytical solutions of Richards' equation shows that the SMVE advection-like term is >99% accurate for calculating infiltration fluxes neglecting the diffusion-like term. The ODE solution of the SMVE advection-like term is accurate, computationally efficient and reliable for calculating one-dimensional vadose zone fluxes in Earth system and large-scale coupled models of land-atmosphere interaction. It is also well suited for use in inverse problems such as when repeat remote sensing observations are used to infer soil hydraulic properties or soil moisture.Plain Language SummarySince its original publication in 1922, the so-called Richards' equation has been the only rigorous way to couple groundwater to the land surface through the unsaturated zone that lies between the water table and land surface. The soil moisture distribution and

  14. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  15. Analysis of an Optimized MLOS Tomographic Reconstruction Algorithm and Comparison to the MART Reconstruction Algorithm

    Science.gov (United States)

    La Foy, Roderick; Vlachos, Pavlos

    2011-11-01

    An optimally designed MLOS tomographic reconstruction algorithm for use in 3D PIV and PTV applications is analyzed. Using a set of optimized reconstruction parameters, the reconstructions produced by the MLOS algorithm are shown to be comparable to reconstructions produced by the MART algorithm for a range of camera geometries, camera numbers, and particle seeding densities. The resultant velocity field error calculated using PIV and PTV algorithms is further minimized by applying both pre and post processing to the reconstructed data sets.

  16. Rotating optical tubes for vertical transport of atoms

    Science.gov (United States)

    Al Rsheed, Anwar; Lyras, Andreas; Aldossary, Omar M.; Lembessis, Vassilis E.

    2016-12-01

    The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The rotation of the HOT induces a vertical motion for an atom initially at rest. The motion is a result of the action of two inertial forces, namely, the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom's global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported along the axis of the HOT. In this case, the rotating HOT operates as an optical Archimedes' screw for atoms.

  17. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  18. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  19. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  20. A new algorithm for on-line coloring bipartite graphs

    NARCIS (Netherlands)

    Broersma, Haitze J.; Capponi, A.; Paulusma, Daniël

    We first show that for any bipartite graph $H$ with at most five vertices there exists an on-line competitive algorithm for the class of $H$-free bipartite graphs. We then analyze the performance of an on-line algorithm for coloring bipartite graphs on various subfamilies. The algorithm yields new

  1. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...

  2. Top or Bottom-Heavy? Observational Constraints on the Vertical Structure of the Eastern Pacific ITCZ

    Science.gov (United States)

    Takahashi, K.; Huaman, L.

    2015-12-01

    The Intertropical Convergence Zone (ITCZ) is a key component of the eastern Pacific ocean-atmosphere system and its variability on seasonal to inter-annual and longer time scales. This feature is generally misrepresented in climate models, which show an excessively strong branch south of the equator. On the other hand, there is debate on what is the structure of the ITCZ in nature, particularly whether the latent heating and vertical velocity profiles are top or bottom-heavy. This knowledge is probably key to validate and improve the models. Most methods for estimating the vertical structure of the rate of latent heating
rely on profiles from field campaigns in other regions, combined with convective/stratiform fractions from the TRMM satellite.
In this study we use the precipitation profiles from the TRMM Precipitation Radar (PR), with approximations to the moisture conservation equation and the first law of thermodynamic, to directly estimate the vertical profiles of latent heating and vertical air velocity, respectively, in the ITCZ for the period 1998-2010. Due to limitations in the PR sensitivity and the inability to quantify solid precipitation, our results are restricted to the layer between the altitudes of 2 and 2.75 km. Nevertheless, we show that our results provide a strong constraint on the profiles and help determine which of the other estimates are more realistic. Our preliminary results for the northern hemisphere ITCZ in austral winter/spring are closer to the top-heavy estimations using TRMM-based algorithms (CSH, SLH and PRH) than to the bottom-heavy atmospheric reanalysis (ERA Interim and NCEP-NCAR), providing indirect evidence for a top-heavy profile. However, using the meridional wind measurements during the EPIC field campaign we find evidence that shallow ascent does exist below 2 km, consistent with the previously reported shallow meridional circulation but not as strong as the Reanalysis products indicate. Thus, our results support the

  3. High-Velocity Clouds

    CERN Document Server

    Woerden, Hugo; Schwarz, Ulrich J; Boer, Klaas S

    2005-01-01

    This book contains 17 chapters reviewing our knowledge of the high-velocity clouds (HVCs) as of 2004, bringing this together in one place for the first time. Each of the many different aspects of HVC research is addressed by one of the experts in that subfield. These include a historical overview of HVC research and analyses of the structure and kinematics of HVCs. Separate chapters address the intermediate-velocity clouds, the Magellanic Stream, and neutral hydrogen HVCs discovered in external galaxies. Reviews are presented of the Ha emission and of optical and UV absorption-line studies, followed by discussions of the hot Galactic Halo and of the interactions between HVCs and their surroundings. Four chapters summarize the ideas about the origin of the high-velocity gas, with detailed discussions of connections between HVCs and the Galactic Fountain, tidally-stripped material, and remnants of the Milky Way's formation. A chapter outlining what we do not know completes the book. The book comes at a time whe...

  4. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  5. Mixed convection of micropolar fluid in a vertical double-passage ...

    African Journals Online (AJOL)

    The effect of the presence of a thin perfectly conductive baffle on the fully developed laminar mixed convection in a vertical channel containing micropolar fluid is analyzed. The channel has different constant wall temperatures. Analytical expressions for velocity and microrotation velocity are obtained. The solutions are ...

  6. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    de Jong, B.

    1994-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate

  7. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    Principles used when constructing models for velocity spectra are reviewed. Based upon data from the Kansas and Minnesota experiments, simple spectral models are set up for all velocity components in stable air at low heights, and for the vertical spectrum in unstable air through a larger part of...

  8. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  9. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics.

    Science.gov (United States)

    Chaudhri, Anuj; Lukes, Jennifer R

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  10. Remarks on the Definition and Estimation of Friction Velocity

    Science.gov (United States)

    Weber, Rudolf O.

    One of the mainscaling parameters in similarity theory of the atmospheric boundary layer is friction velocity. Unfortunately, several definitions of friction velocity exist in the literature. Some authors use the component of the horizontal Reynolds stress vector in the direction of the mean wind vector to define friction velocity. Others define the friction velocity by means of the absolute value of the horizontal Reynolds stress vector. The two definitions coincide only if the direction of the mean wind vector is parallel to the horizontal Reynolds stress vector. In general, the second definition gives larger values for the friction velocity. Over complex terrain the situation is further complicated by the fact that the terrain following flow is not necessarily horizontal. Thus, several authors have proposed to use terrain following coordinate systems for the definition of friction velocity. By means of a large dataset of fast-response wind measurements with an ultrasonic anemometer the friction velocities resulting from the different definitions are compared. Furthermore, it is shown that friction velocity can be well estimated from horizontal wind speed, and even better from simple horizontal or vertical turbulence parameters.

  11. A non-hydrostatic global spectral dynamical core using a height-based vertical coordinate

    Directory of Open Access Journals (Sweden)

    Juan Simarro

    2013-06-01

    Full Text Available Most of the dynamical cores of operational global models can be broadly classified according to the spatial discretisation into two categories: spectral models with mass-based vertical coordinate and grid point models with height-based vertical coordinate. This article describes a new non-hydrostatic dynamical core for a global model that uses the spectral transform method for the horizontal directions and a height-based vertical coordinate. Velocity is expressed in the contravariant basis (instead of the geographical orthonormal basis pointing to the East, North and Zenith directions so that the expressions of the boundary conditions and the divergence of the velocity are simpler. Prognostic variables in our model are the contravariant components of the velocity, the logarithm of pressure and the logarithm of temperature. Covariant tensor analysis is used to derive the differential operators of the prognostic equations, such as the curl, gradient, divergence and covariant derivative of the contravariant velocity. A Lorenz type grid is used in the vertical direction, with the vertical contravariant velocity staggered with respect to the other prognostic variables. High-order vertical operators are constructed following the finite difference technique. Time stepping is semi-implicit because it allows for long time steps that compensates the cost of the spectral transformations. A set of experiments reported in the literature is implemented so as to confirm the accuracy and efficiency of the new dynamical core.

  12. Interferometric measurement of the angular velocity of moving humans

    Science.gov (United States)

    Nanzer, Jeffrey A.

    2012-06-01

    This paper presents an analysis of the measurement of the angular velocity of walking humans using a millimeter-wave correlation interferometer. Measurement of the angular velocity of moving objects is a desirable function in remote sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques, however the process involves either continuous tracking with narrow beamwidth or angle-of-arrival estimation algorithms. A new method of measuring the angular velocity of moving objects using interferometry has recently been developed which measures the angular velocity of an object without tracking or complex processing. The frequency of the interferometer signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. In this paper, the theory of the interferometric measurement of angular velocity is covered and simulations of the response of a walking human are presented. Simulations are produced using a model of a walking human to show the significant features associated with the interferometer response, which may be used in classification algorithms.

  13. Predicting Vertical Motion within Convective Storms

    Science.gov (United States)

    van den Heever, S. C.

    2016-12-01

    Convective storms are both beneficial in the fresh water they supply and destructive in the life-threatening extreme weather they produce. They are found throughout the tropics and midlatitudes, vary in structure from isolated to highly organized systems, and are the sole source of precipitation in many regions of Earth. Convective updrafts and downdrafts plays a crucial role in cloud and precipitation formation, latent heating, water vapor transport, storm organization, and large-scale atmospheric circulations such as the Hadley and Walker cells. These processes, in turn, impact the strength and longevity of updrafts and downdrafts through complex, non-linear feedbacks. In spite of the significant influence of convective updrafts and downdrafts on the weather and climate system, accurately predicting vertical motion using numerical models remains challenging. In high-resolution cloud-resolving models where vertical motion is normally resolved, significant biases exist in the predicted profiles of updraft and downdraft velocities, at least for the limited cases where observational data have been available for model evaluation. It has been suggested that feedbacks between the vertical motion and microphysical processes may be one cause of these discrepancies, however, our understanding of these feedbacks remains limited. In this talk, the results of a small field campaign conducted over northeastern Colorado designed to observe storm vertical motion and cold pool characteristics within isolated and organized deep convective storms will be described. High frequency radiosonde, radar and drone measurements of a developing through mature supercell storm updraft and cold pool will be presented and compared with RAMS simulations of the same supercell storm. An analysis of the feedbacks between the storm dynamical and microphysical processes will be presented, and implications for regional and global modeling of severe storms will be discussed.

  14. Comparison of primary productivity algorithms for Korean waters

    Science.gov (United States)

    Yoon, Joo-Eun; Park, Jisoo; Yoo, Sinjae

    2012-12-01

    This study compares five primary productivity algorithms for Korean waters. Five algorithms are in the form of vertical generalized production models: One algorithm is for gross primary production and four are for net primary production. The five algorithms were evaluated using 117 in situ primary production datasets observed by 20 cruises from 1994 to 2011 in Korean waters (East Sea, Yellow Sea, East China Sea, and Yeosu Bay). The results show that the regionally-tuned variants give better results than the original formulation. We recommend, among the tested algorithms, YSVGPM (Yellow Sea Vertically Generalized Productivity Model) for gross primary productivity algorithm and Kameda-Ishizaka algorithm for net primary productivity algorithm for estimating primary production in Korean waters.

  15. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  16. Algorithm for Autonomous Landing

    Science.gov (United States)

    Kuwata, Yoshiaki

    2011-01-01

    Because of their small size, high maneuverability, and easy deployment, micro aerial vehicles (MAVs) are used for a wide variety of both civilian and military missions. One of their current drawbacks is the vast array of sensors (such as GPS, altimeter, radar, and the like) required to make a landing. Due to the MAV s small payload size, this is a major concern. Replacing the imaging sensors with a single monocular camera is sufficient to land a MAV. By applying optical flow algorithms to images obtained from the camera, time-to-collision can be measured. This is a measurement of position and velocity (but not of absolute distance), and can avoid obstacles as well as facilitate a landing on a flat surface given a set of initial conditions. The key to this approach is to calculate time-to-collision based on some image on the ground. By holding the angular velocity constant, horizontal speed decreases linearly with the height, resulting in a smooth landing. Mathematical proofs show that even with actuator saturation or modeling/ measurement uncertainties, MAVs can land safely. Landings of this nature may have a higher velocity than is desirable, but this can be compensated for by a cushioning or dampening system, or by using a system of legs to grab onto a surface. Such a monocular camera system can increase vehicle payload size (or correspondingly reduce vehicle size), increase speed of descent, and guarantee a safe landing by directly correlating speed to height from the ground.

  17. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    composition, and it is truly commonplace in today’s communication with the diversity of VPNs and secure browser sessions. In fact, it is normal that we have several layers of secure channels: For instance, on top of a VPN-connection, a browser may establish another secure channel (possibly with a different...... end point). Even using the same protocol several times in such a stack of channels is not unusual: An application may very well establish another TLS channel over an established one. We call this selfcomposition. In fact, there is nothing that tells us that all these compositions are sound, i.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  18. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index......, an index of refraction of the second low-index layer or air being less than 2; and a thickness of the cap layer and a thickness of the grating layer, and a pitch and a duty cycle of the grating structure are selected to obtain a resonance having a free-space resonance wavelength in the interval 300 nm to 3...... microns, the cap layer comprises an active region configured to generate or absorb photons at the free-space resonance wavelength by stimulated emission or absorption when a sufficient forward or reverse bias voltage is applied across the active region, a thickness of the first low-index layer is less...

  19. Tomographic Inversion for Shear Velocity Beneath the North American Plate

    Science.gov (United States)

    Grand, Stephen P.

    1987-12-01

    A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.

  20. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  1. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  2. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2016-09-22

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate the iPhone app, My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4 ± 1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the mobile application My Jump. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC = 1.000, P Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  3. Characteristics of slug flow in narrow rectangular channels under vertical condition

    Science.gov (United States)

    Wang, Yang; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Yan, Chaoxing; Tian, Daogui

    2013-07-01

    Gas-liquid slug flow is widely encountered in many practical industrial applications. A detailed understanding of the hydrodynamics of gas slug has important significance for modeling of the slug flow. Non-intrusive flow visualization using a high speed video camera system is applied to study characteristics of slug flow in a vertical narrow rectangular channel (3.25×40 mm2). Ideal Taylor bubbles are hardly observed, and most of the gas slugs are deformed, much more seriously at high liquid superficial velocity. The liquid film thicknesses of left and right narrow sides surrounding gas slug are divergent and wavy, but it has weak effect on liquid film velocity. The gas and liquid velocity as well as the length of gas slug have significant effect on the separating liquid film thickness. The separating liquid film velocity is decreased with the increase of gas superficial velocity at low liquid velocity, and increased with the increase of liquid superficial velocity. The film stops descending and the gas superficial velocity has no significant effect on liquid film separating velocity at high liquid velocity (jL≥1.204 m/s), and it is mainly determined by the liquid flow rate. The shape of slug nose has a significant effect on its velocity, while the effect of its length is very weak. The Ishii&Jones-Zuber drift flux correlation could predict slug velocity well, except at low liquid superficial velocity by reason of that the calculated drift velocity is less than experimental values.

  4. Spatio-velocity CSF as a function of retinal velocity using unstabilized stimuli

    Science.gov (United States)

    Laird, Justin; Rosen, Mitchell; Pelz, Jeff; Montag, Ethan; Daly, Scott

    2006-02-01

    LCD televisions have LC response times and hold-type data cycles that contribute to the appearance of blur when objects are in motion on the screen. New algorithms based on studies of the human visual system's sensitivity to motion are being developed to compensate for these artifacts. This paper describes a series of experiments that incorporate eyetracking in the psychophysical determination of spatio-velocity contrast sensitivity in order to build on the 2D spatiovelocity contrast sensitivity function (CSF) model first described by Kelly and later refined by Daly. We explore whether the velocity of the eye has an additional effect on sensitivity and whether the model can be used to predict sensitivity to more complex stimuli. There were a total of five experiments performed in this research. The first four experiments utilized Gabor patterns with three different spatial and temporal frequencies and were used to investigate and/or populate the 2D spatio-velocity CSF. The fifth experiment utilized a disembodied edge and was used to validate the model. All experiments used a two interval forced choice (2IFC) method of constant stimuli guided by a QUEST routine to determine thresholds. The results showed that sensitivity to motion was determined by the retinal velocity produced by the Gabor patterns regardless of the type of motion of the eye. Based on the results of these experiments the parameters for the spatio-velocity CSF model were optimized to our experimental conditions.

  5. Combinatorial algorithms

    CERN Document Server

    Hu, T C

    2002-01-01

    Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9

  6. Vertical and Interfacial Transport in Wetlands (Invited)

    Science.gov (United States)

    Variano, E. A.

    2010-12-01

    The objective of this work is to understand the fluxes connecting the water column, substrate, and atmosphere in wetland environments. To do this, analytical, numerical, and laboratory models have been used to quantify the hydrodynamic contributions to vertical fluxes. A key question is whether the hydrodynamic transport can be modeled as a diffusivity, and, if so, what the vertical structure of this diffusivity is. This question will be addressed in a number of flow types and for a number of fluxes. The fluxes of interest are heat, sediment, dissolved gases (such as methane and oxygen) and other dissolved solutes (such as nutrients and pollutants). The flows of interest include: unidirectional current, reversing flow (under waves, seiches, and tides), wind-sheared surface flows, and thermal convection. Rain and bioturbation can be important, but are not considered in the modeling work discussed herein. Specifically, we will present results on gas transport at wind-sheared free surface, sediment transport in unidirectional flow, and heat transfer in an oscillating flow cause by a seiche. All three of these will be used to consider the question of appropriate analytical models for vertical transport. The analytic models considered here are all 1D models that assume homogeneity in the horizontal plane. The numerical models use finite element methods and resolve the flow around individual vegetation stems in an idealized geometry. Laboratory models discussed herein also use an idealized geometry. Vegetation is represented by an array of cylinders, whose geometry is modeled after Scirpus spp. wetlands in Northern California. The laboratory model is constructed in a way that allows optical access to the flow, even in dense vegetation and far from boundaries. This is accomplished by using fluoropolymer plastics to construct vegetation models. The optical access allows us to employ particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) to measure

  7. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  8. Vertical allometry: fact or fiction?

    Science.gov (United States)

    Mahmood, Iftekhar; Boxenbaum, Harold

    2014-04-01

    In pharmacokinetics, vertical allometry is referred to the clearance of a drug when the predicted human clearance is substantially higher than the observed human clearance. Vertical allometry was initially reported for diazepam based on a 33-fold higher human predicted clearance than the observed human clearance. In recent years, it has been found that many other drugs besides diazepam, can be classified as drugs which exhibit vertical allometry. Over the years, many questions regarding vertical allometry have been raised. For example, (1) How to define and identify the vertical allometry? (2) How much difference should be between predicted and observed human clearance values before a drug could be declared 'a drug which follows vertical allometry'? (3) If somehow one can identify vertical allometry from animal data, how this information can be used for reasonably accurate prediction of clearance in humans? This report attempts to answer the aforementioned questions. The concept of vertical allometry at this time remains complex and obscure but with more extensive works one can have better understanding of 'vertical allometry'. Published by Elsevier Inc.

  9. A Faster Algorithm for Computing Straight Skeletons

    KAUST Repository

    Cheng, Siu-Wing

    2014-09-01

    We present a new algorithm for computing the straight skeleton of a polygon. For a polygon with n vertices, among which r are reflex vertices, we give a deterministic algorithm that reduces the straight skeleton computation to a motorcycle graph computation in O(n (logn)logr) time. It improves on the previously best known algorithm for this reduction, which is randomized, and runs in expected O(n√h+1log2n) time for a polygon with h holes. Using known motorcycle graph algorithms, our result yields improved time bounds for computing straight skeletons. In particular, we can compute the straight skeleton of a non-degenerate polygon in O(n (logn) logr + r 4/3 + ε ) time for any ε > 0. On degenerate input, our time bound increases to O(n (logn) logr + r 17/11 + ε ).

  10. A Faster Algorithm for Computing Straight Skeletons

    KAUST Repository

    Mencel, Liam A.

    2014-05-06

    We present a new algorithm for computing the straight skeleton of a polygon. For a polygon with n vertices, among which r are reflex vertices, we give a deterministic algorithm that reduces the straight skeleton computation to a motorcycle graph computation in O(n (log n) log r) time. It improves on the previously best known algorithm for this reduction, which is randomised, and runs in expected O(n √(h+1) log² n) time for a polygon with h holes. Using known motorcycle graph algorithms, our result yields improved time bounds for computing straight skeletons. In particular, we can compute the straight skeleton of a non-degenerate polygon in O(n (log n) log r + r^(4/3 + ε)) time for any ε > 0. On degenerate input, our time bound increases to O(n (log n) log r + r^(17/11 + ε))

  11. Near-Surface Seismic Velocity Data: A Computer Program For ...

    African Journals Online (AJOL)

    A computer program (NESURVELANA) has been developed in Visual Basic Computer programming language to carry out a near surface velocity analysis. The method of analysis used includes: Algorithms design and Visual Basic codes generation for plotting arrival time (ms) against geophone depth (m) employing the ...

  12. Algorithm 865

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Reid, John K.; Wasniewski, Jerzy

    2007-01-01

    variables, and the speed is usually better than that of the LAPACK algorithm that uses full storage (n2 variables). Included are subroutines for rearranging a matrix whose upper or lower-triangular part is packed by columns to this format and for the inverse rearrangement. Also included is a kernel...

  13. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  14. Transverse vertical dispersion in groundwater and the capillary fringe.

    Science.gov (United States)

    Klenk, I D; Grathwohl, P

    2002-09-01

    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  15. Algorithms for the ATLAS High Level Trigger

    CERN Document Server

    Armstrong, S R; Bee, C P; Biglietti, M; Bogaerts, A; Boisvert, V; Bosman, M; Brandt, S; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Corso-Radu, A; Di Mattia, A; Gomez, M D; Dos Anjos, A; Drohan, J; Ellis, Nick; Elsing, M; Epp, B; Etienne, F; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kaczmarska, A; Karr, K; Khomich, A; Konstantinidis, N P; Krasny, W; Li, W; Lowe, A; Luminari, L; Meessen, C; Mello, A G; Merino, G; Morettini, P; Moyse, E; Nairz, A; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Parodi, F; Pérez-Réale, V; Pinfold, J L; Pinto, P; Polesello, G; Qian, Z; Resconi, S; Rosati, S; Scannicchio, D A; Schiavi, C; Schörner-Sadenius, T; Segura, E; Seixas, J M; Shears, T G; Sivoklokov, S Yu; Smizanska, M; Soluk, R A; Stanescu, C; Tapprogge, Stefan; Touchard, F; Vercesi, V; Watson, A T; Wengler, T; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, H

    2004-01-01

    Following rigorous software design and analysis methods, an object-based architecture has been developed to derive the second- and third-level trigger decisions for the future ATLAS detector at the LHC. The functional components within this system responsible for generating elements of the trigger decisions are algorithms running within the software architecture. Relevant aspects of the architecture are reviewed along with concrete examples of specific algorithms and their performance in "vertical" slices of various physics selection strategies.

  16. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    Science.gov (United States)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  17. A control algorithm for attaining stationary statistics in LES of thermally stratified wind-turbine array boundary layers

    Science.gov (United States)

    Sescu, A.; Meneveau, C. V.

    2012-12-01

    Recent LES studies of the interaction between neutral atmospheric boundary layer (ABL) and infinitely large arrays of wind turbines have led to derivations of new similarity relations within the surface layer. A similar analysis in non-neutral conditions is not trivial, since achieving statistically stationary conditions in LES is challenging. For example, the heat flux at the ground forces vertical profiles of mean temperature to vary significantly over time. The focus of this work is on using an artificial heat source or sink, in a region located above ABL, that maintains the overall temperature field inside the ABL stationary. This goal is achieved by using a PI control algorithm, designed to keep constant the initial horizontally averaged temperature at a specified height and above. Another controller is used to drive the flow within the ABL, causing the mean velocity to achieve a prescribed direction at a specified height. This is done by controlling a source term in the momentum equations. This term is deactivated once the flow becomes statistically stationary and the geostrophic wind aligns with the desired direction at a given height. A suite of simulations at various resolutions, with and without wind turbines, and with different levels of thermal stratification are presented to test the effectiveness of the control algorithm. Streamwise velocity contours in unstable ABL interacting with 24 wind turbines. Streamwise velocity contours in stable ABL interacting with 24 wind turbines.

  18. Performance of the ATLAS primary vertex reconstruction algorithms

    CERN Document Server

    Zhang, Matt

    2017-01-01

    The reconstruction of primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. Such advances in vertex seeding include methods taken from medical imagining, which allow for reconstruction of very nearby vertices will be highlighted. The performance of the current vertexing algorithms using early Run-2 data will be presented and compared to results from simulation.

  19. Pulsejet engine dynamics in vertical motion using momentum conservation

    OpenAIRE

    Cheche, Tiberius O.

    2017-01-01

    The momentum conservation law is applied to analyse the dynamics of pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts existence of a terminal speed given frequency of the short pulses. The conditions that the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitationa...

  20. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  1. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  2. Optimization of the Vertical Bridgman Method and the Vertical Gradient Method for CdZnTe Single Crystal Production

    Directory of Open Access Journals (Sweden)

    A. Kalbáč

    2000-01-01

    Full Text Available In designing optimum parameters of advanced crystal growth techniques, computer modeling has become an important tool owing to the fact that computer simulation is much cheaper than many experimental techniques based on the trial and error method. In this paper, the application of computational modeling in the optimization of experimental setups for the production of CdZnTe single crystals from the melt is demonstrated on two characteristic examples, namely on the vertical Bridgman and vertical gradient method. The influence of adjustable parameters on the temperature, concentration and velocity fields, and on the positions and velocities of the moving interface is studied. Finally, the effect of uncertainty in material parameters on computed results is analyzed.

  3. Protected Vertices in Motzkin trees

    OpenAIRE

    Van Duzer, Anthony

    2017-01-01

    In this paper we find recurrence relations for the asymptotic probability a vertex is $k$ protected in all Motzkin trees. We use a similar technique to calculate the probabilities for balanced vertices of rank $k$. From this we calculate upper and lower bounds for the probability a vertex is balanced and upper and lower bounds for the expected rank of balanced vertices.

  4. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  5. A neural circuit for angular velocity computation.

    Science.gov (United States)

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  6. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  7. Algorithmic Self

    DEFF Research Database (Denmark)

    Markham, Annette

    layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also......This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....

  8. A finite difference approach to despiking in-stationary velocity data - tested on a triple-lidar

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels

    2016-01-01

    A novel despiking method is presented for in-stationary wind lidar velocity measurements. A finite difference approach yields the upper and lower bounds for a valid velocity reading. The sole input to the algorithm is the velocity series and optionally a far- field reference to the temporal...

  9. Vertical motion of particles in vibration-induced granular capillarity

    Directory of Open Access Journals (Sweden)

    Fan Fengxian

    2017-01-01

    Full Text Available When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon – which we term granular capillarity – we numerically investigate the system using the Discrete Element Method (DEM. We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  10. Vertical variations of coral reef drag forces

    Science.gov (United States)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration

    2017-11-01

    Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.

  11. The dependence of sheet erosion velocity on slope angle

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2014-09-01

    Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.

  12. A Comparison between Horizontal and Vertical Interchannel Decorrelation

    Directory of Open Access Journals (Sweden)

    Christopher Gribben

    2017-11-01

    Full Text Available The perceptual effects of interchannel decorrelation on perceived image spread have been investigated subjectively in both horizontal and vertical stereophonic reproductions, looking specifically at the frequency dependency of decorrelation. Fourteen and thirteen subjects graded the horizontal and vertical image spreads of a pink noise sample, respectively. The pink noise signal had been decorrelated by a complementary comb-filter decorrelation algorithm, varying the frequency-band, time-delay and decorrelation factor for each sample. Results generally indicated that interchannel decorrelation had a significant effect on auditory image spread both horizontally and vertically, with spread increasing as correlation decreases. However, it was found that the effect of vertical decorrelation was less effective than that of horizontal decorrelation. The results also suggest that the decorrelation effect was frequency-dependent; changes in horizontal image spread were more apparent in the high frequency band, whereas those in vertical image spread were in the low band. Furthermore, objective analysis suggests that the perception of vertical image spread for the low and middle frequency bands could be associated with a floor reflection; whereas for the high band, the results appear to be related to spectral notches in the ear input signals.

  13. Fast Parallel Algorithms for Graphs and Networks

    Science.gov (United States)

    1987-12-01

    loosing the nth game of badminton to him. Valerie King and .Joel Friedman showed me the wonders of cross-country skiing in Yosemite. Steven Rudich was...2), both W(u) and L(v) have no more than 7s/8 vertices. Let x be some ver- tex. We can describe the history of x throughout the algorithm by a zero

  14. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  15. Training methods to improve vertical jump performance.

    Science.gov (United States)

    Perez-Gomez, J; Calbet, J A L

    2013-08-01

    This study aims to review the main methods used to improve vertical jump performance (VJP). Although many training routines have been proposed, these can be grouped into four main categories: plyometric training (PT), weight training (WT), whole body vibration training (VT) and electromyostimulation training (ET). PT enhances muscular force, the rate of force development (RFD), muscular power, muscle contraction velocity, cross-sectional area (CSA), muscle stiffness allowing greater storage and release of elastic energy. WT improve muscular force, velocity, power output, and RFD during jumping on a force plate, muscle hypertrophy and neural adaptations. One of the most effective methods to improve VJP is the combination of PT with WT, which takes advantage of the enhancement of maximal dynamic force through WT and the positive effects of PT on speed and force of muscle contraction through its specific effect on type II fibers. Some authors have found an increase in VJP with the use of VT while other did not see such an effect. However, it remains unknown by which mechanisms VT could enhance VJP. ET has been shown to elicit muscle hypertrophy. The VJP may be improved when ET is applied concomitantly with PT or practice of sports. In summary, scientific evidence suggests that the best way to improve VJP is through the combination of PT with WT. Further research is needed to establish if better results are possible by more complex strategies.

  16. Buoyancy induced Couette-Poiseuille flow in a vertical microchannel

    Science.gov (United States)

    Narahari, M.

    2017-10-01

    The fully developed buoyancy-induced (natural convective) Couette-Poiseuille flow in a vertical microchannel is investigated with the velocity slip and temperature jump boundary conditions. Closed form analytical solutions for the velocity and temperature fields are obtained. The effects of the fluid-wall interaction parameter, wall-ambient temperature difference ratio, Knudsen number, mixed convection parameter, and the dimensionless pressure gradient on the velocity, temperature, volume flow rate, heat flux between the plates and the Nusselt number have been discussed in detail through graphs. The outcomes of the investigation indicate that the volume flow rate increases with increasing values of mixed convection parameter, wall-ambient temperature difference ratio, and Knudsen number.

  17. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  18. Graph Extremities Defined by Search Algorithms

    Directory of Open Access Journals (Sweden)

    Jean-Paul Bordat

    2010-03-01

    Full Text Available Graph search algorithms have exploited graph extremities, such as the leaves of a tree and the simplicial vertices of a chordal graph. Recently, several well-known graph search algorithms have been collectively expressed as two generic algorithms called MLS and MLSM. In this paper, we investigate the properties of the vertex that is numbered 1 by MLS on a chordal graph and by MLSM on an arbitrary graph. We explain how this vertex is an extremity of the graph. Moreover, we show the remarkable property that the minimal separators included in the neighborhood of this vertex are totally ordered by inclusion.

  19. Sizing algorithm with continuous customizable clipping

    Science.gov (United States)

    Morales, Domingo; Baytelman, Felipe; Araya, Hugo

    2008-10-01

    Polygon sizing is required during Mask Data Preparation in order to generate derived layers and as process bias to account for edge effects of etching. Two main features are required for polygon sizing algorithms to be useful in Mask Data Preparation software: correctness to avoid data corruption and clipping of the projection of acute angle vertices to limit connectivity modifications. However, current available solutions are either based on heuristics, producing corrupted results for certain input, or based on algorithms which may fail to maintain original design's connectivity for certain input. A novel algorithm including customizable clipping is presented.

  20. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  1. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  2. Parallel algorithms

    CERN Document Server

    Casanova, Henri; Robert, Yves

    2008-01-01

    ""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi

  3. 1D layered velocity models and microseismic event locations: synthetic examples for a case with a single linear receiver array

    Science.gov (United States)

    Akram, Jubran; Eaton, David W.

    2017-10-01

    We discuss various aspects of 1D velocity-model building for application to microseismic data analysis. We generate simple synthetic example data using a widely used single linear array geometry. The synthetic data contain 30 sources with known locations for a reference model based on previous studies of the Barnett shale. We investigate several key factors that should be considered, including selection of the calibration technique, inclusion of a priori information such as lateral heterogeneity and parameter ranges, and choice of algorithm for travel time computations. For the source-receiver geometry considered here, hypocenter location errors (±6 m in X and ±12 m in Z) can result from differently calibrated models only and without including the errors in picked arrival times and polarization estimates. We find that the errors in hypocenter locations are reduced (±3 m in X and ±6 m in Z) when a model calibrated with multiple shots simultaneously is used. Using four different models (vertical fault, dipping layers, channels, and these effects combined), we demonstrate that systematic errors in hypocenter locations can result when a 1D layered model is used in lieu of a laterally heterogeneous subsurface. Finally, we show that event locations from a velocity model calibrated using direct-arrival times are more stable than from a model calibrated with first-arrival times.

  4. Kaleidoscopic motion and velocity illusions

    NARCIS (Netherlands)

    Helm, P.A. van der

    2007-01-01

    A novel class of vivid motion and velocity illusions for contrast-defined shapes is presented and discussed. The illusions concern a starlike wheel that, physically, rotates with constant velocity between stationary starlike inner and outer shapes but that, perceptually, shows pulsations, jolts

  5. Velocity Structure and Spatio-temporal Evolution in the Head Turbidity Currents based on Ultrasound Doppler Velocity Profiling

    Science.gov (United States)

    Nomura, Shun; Cesare Giovanni, De; Takeda, Yasushi; Yoshida, Taiki; Tasaka, Yuji; Sakaguchi, Hide

    2017-04-01

    Particle laden flow or turbidity current along the sea floor are important as a sediment conveyer and a formation factor of the submarine topography in the geological field. Especially, in the head of the flow, the kinematic energy is frequently exchanged through the boundary of the ambient water and the seabed floor, and it dominants the substantial dynamics of turbidity currents. An understanding of its turbulence structure helps to predict the sediment transport and layer development processes. To comprehend its dynamics precisely, flume test were conducted with continuously fed fluid quartz flour mixture supply. The flow velocities were measured at two different angles by the ultrasound Doppler velocity profiler UVP and both velocity components, in flow direction and on the vertical axis, were extracted. The fundamental velocity structure corresponds to the theories found in literature. Its spatio-temporal evolution was examined from the velocity distribution profiles along the downstream directions. Additionally, developing processes of head structures were also discussed through hydraulic statistic values such as mean velocity, Reynolds stress, and turbulent kinematic energy.

  6. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all......We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final-good...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  7. Horizontal and Vertical Line Designs.

    Science.gov (United States)

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  8. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  9. Effects of Foam Rolling on Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Andrew Jones

    2015-07-01

    Full Text Available Background: Foam rolling is a popular activity utilized by strength and conditioning coaches as it is believed to increase muscle length and break up fibrous adhesions located in connective tissue. However, there is little research investigating the effects of foam rolling on athletic performance. Objective: The purpose of this study was to investigate the effects of lower body foam rolling on vertical jump performance. Methods: Twenty males (age 24.05 ± 2.02 years; height 177.43 ± 6.31 cm; mass 81.41 ± 8.76 kg volunteered to participate. Subjects completed three days of testing, separated by at least twenty-four hours. Day one consisted of baseline vertical jumps on a force plate, followed by familiarization with foam rolling and control protocols. Subjects returned on days two and three and performed 30-second bouts of lower body foam rolling or mimicked foam rolling movements on a skateboard followed by vertical jumps on a force plate. The highest jump from each day was used for statistical analyses. Results: Repeated measures ANOVAs revealed no significant differences in Jump height, impulse, relative ground reaction force, or take-off velocity between conditions. Conclusion: 30-second bouts of lower body foam rolling do not improve vertical jump performance. Keywords: Dynamic Warm-Up, Foam Rolling, Vertical Jump

  10. Tracking of Bubble Trajectories in Vertical Pipes in Bubbly Flow Regime by Coupling Lagrangian, Eulerian and 3D Random Walks Models: Validation with Experimental Data

    Directory of Open Access Journals (Sweden)

    José L. Muñoz-Cobo

    2012-09-01

    Full Text Available A set of air-water experiments has been performed under isothermal upward concurrent flow conditions, in a vertical column. The interfacial velocity, the bubble interfacial area and the void fraction distributions have been measured. Numerical simulation of these experiments were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. In the Eulerian solver the velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS. The turbulent kinetic energy k, and the dissipation rate transport equations were simultaneously solved by using the k, epsilon model in a (r,z grid by the finite volume method and the SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in parallel and an iterative self-consistent method was developed. The turbulence induced by the bubbles is an important issue considered in this paper, in order to obtain good predictions of the void fraction distribution and the interfacial velocity at different gas and liquid flow conditions. The Eulerian Code was upgraded from an axisymmetric 2D code to a 3D code in order to improve the turbulence solution. The results of the 3D CFD code have been tested and show a good agreement with the experimental results. In this paper special attention is given to the coupling between the different models.

  11. Loading effects in GPS vertical displacement time series

    Science.gov (United States)

    Memin, A.; Boy, J. P.; Santamaría-Gómez, A.; Watson, C.; Gravelle, M.; Tregoning, P.

    2015-12-01

    Surface deformations due to loading, with yet no comprehensive representation, account for a significant part of the variability in geodetic time series. We assess effects of loading in GPS vertical displacement time series at several frequency bands. We compare displacement derived from up-to-date loading models to two global sets of positioning time series, and investigate how they are reduced looking at interannual periods (> 2 months), intermediate periods (> 7 days) and the whole spectrum (> 1day). We assess the impact of interannual loading on estimating velocities. We compute atmospheric loading effects using surface pressure fields from the ECMWF. We use the inverted barometer (IB) hypothesis valid for periods exceeding a week to describe the ocean response to the pressure forcing. We used general circulation ocean model (ECCO and GLORYS) to account for wind, heat and fresh water flux. We separately use the Toulouse Unstructured Grid Ocean model (TUGO-m), forced by air pressure and winds, to represent the dynamics of the ocean response at high frequencies. The continental water storage is described using GLDAS/Noah and MERRA-land models. Non-hydrology loading reduces the variability of the observed vertical displacement differently according to the frequency band. The hydrology loading leads to a further reduction mostly at annual periods. ECMWF+TUGO-m better agrees with vertical surface motion than the ECMWF+IB model at all frequencies. The interannual deformation is time-correlated at most of the locations. It is adequately described by a power-law process of spectral index varying from -1.5 to -0.2. Depending on the power-law parameters, the predicted non-linear deformation due to mass loading variations leads to vertical velocity biases up to 0.7 mm/yr when estimated from 5 years of continuous observations. The maximum velocity bias can reach up to 1 mm/yr in regions around the southern Tropical band.

  12. Efficient Extraction of High Centrality Vertices in Distributed Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhare, Alok [Univ. of Southern California, Los Angeles, CA (United States); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Raghavendra, Cauligi S. [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-09-09

    Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contribute the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.

  13. Backward integration, forward integration, and vertical foreclosure

    OpenAIRE

    Spiegel, Yossi

    2013-01-01

    I show that partial vertical integration may either alleviates or exacerbate the concern for vertical foreclosure relative to full vertical integration and I examine its implications for consumer welfare.

  14. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Deng, Guodong; Zhang, Jiasheng; Wu, Wenbing; Shi, Xiong; Meng, Fei

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  15. Collision rates and impact velocities in the Main Asteroid Belt

    Science.gov (United States)

    Farinella, Paolo; Davis, Donald R.

    1992-01-01

    Wetherill's (1967) algorithm is presently used to compute the mutual collision probabilities and impact velocities of a set of 682 asteroids with large-than-50-km radius representative of a bias-free sample of asteroid orbits. While collision probabilities are nearly independent of eccentricities, a significant decrease is associated with larger inclinations. Collisional velocities grow steeply with orbital eccentricity and inclination, but with curiously small variation across the asteroid belt. Family asteroids are noted to undergo collisions with other family members 2-3 times more often than with nonmembers.

  16. An improved velocity determination method based on GOCE kinematic orbit

    Directory of Open Access Journals (Sweden)

    Jiang Nan

    2013-05-01

    Full Text Available A new velocity determination algorithm with combination of remove and restore method, outliers detection method and Chebyshev fitting method with redundant observations is proposed. An optimal selection of number of sampling points is given. The result shows that, when the number of sampling points is 19, the three-dimension (3D interpolation precision of velocity is superior to 0.1 mm/s, which is above 3 times better than that of Chebyshev fitting method with redundant observations and far better than those of the conventional interpolation methods.

  17. Explosive movement in the older men: analysis and comparative study of vertical jump.

    Science.gov (United States)

    Argaud, Sébastien; Pairot de Fontenay, Benoit; Blache, Yoann; Monteil, Karine

    2017-10-01

    Loss of power has been demonstrated to have severe functional consequences to perform physical daily living tasks in old age. This study aimed to assess how moment and velocity were affected for each joint of the lower limbs during squat jumping for older men in comparison with young adults. Twenty-one healthy older men (74.5 ± 4.6 years) and 22 young men (21.8 ± 2.8 years) performed maximal squat jumps. Inverse dynamics procedure was used to compute the net joint power, moment and velocity produced at the hip, knee and ankle joints. Vertical jump height of the elderly was 64 % lower than the young adults. The maximal power of the body mass center (P maxbmc ) was 57 % lower in the older population. For the instant at P maxbmc , the vertical ground reaction force and the vertical velocity of the body mass center were 26 % and 35 % less in the older adults than in the young adults, respectively (p vertical ground reaction force; p vertical jump. This smaller power resulted from both a lower moment and angular velocity produced at each joint.

  18. A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates

    Science.gov (United States)

    Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.

    2010-12-01

    Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.

  19. New GNSS velocity field and preliminary velocity model for Ecuador

    Science.gov (United States)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  20. Method of design for vertical oil shale retorting vessels and retorting therewith

    Science.gov (United States)

    Reeves, Adam A.

    1978-01-03

    A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.

  1. The secondary vertex finding algorithm with the ATLAS detector

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    A high performance identification of jets, produced via fragmentation of bottom quarks, is crucial for the ATLAS physics program. These jets can be identified by exploiting the presence of cascade decay vertices from bottom hadrons. A general vertex-finding algorithm is introduced and its ap- plication to the search for secondary vertices inside jets is described. Kinematic properties of the reconstructed vertices are used to construct several b-jet identification algorithms. The features and performance of the secondary vertex finding algorithm in a jet, as well as the performance of the jet tagging algorithms, are studied using simulated $pp$ -> $t\\bar{t}$ events at a centre-of-mass energy of 13 TeV.

  2. Vertical compact torus injection into the STOR-M tokamak

    Science.gov (United States)

    Liu, Dazhi

    experiments have been performed in STOR-M by using the USCTI device (University of Saskatchewan Compact Torus Injector). To perform vertical injection, the original USCTI has been modified by attaching a segment of 90° curved tube to deflect CT injection from horizontal to vertical direction. Therefore, a CT formed and accelerated by USCTI in horizontal direction will change its trajectory to vertical and be injected into STOR-M through a vertical port. The main findings of this thesis are: (1) The horizontally injected CT could be deflected to the vertical direction with a velocity ˜ 130 kms-1 and penetrated into the STOR-M plasma by the curved drift tube. A significant increase in the CT velocity after passing the curved tube, from 130 kms-1 to 270 kms-1, has been achieved by further attaching a copper inner electrode. (2) Vertical compact torus injection for fuelling a tokamak has been successfully demonstrated for the first time. Disruption-free discharges of STOR-M have been obtained with vertical CT injection. Prompt increases both in line-averaged density and in the soft X-ray emission level have been observed. The typical density increase is about 20% within 600 mus. Some signatures of confinement improvement of the STOR-M plasma induced by vertical CT injection have also been observed.

  3. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  4. Seismicity and Improved Velocity Structure in Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Gok, R M; Rodgers, A J; Al-Enezi, A

    2006-01-26

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and

  5. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...... direction and the correct velocity magnitude for any orientation of the vessels. At complex geometries like bifurcations, branching and for valves the approach reveals how the velocity changes magnitude and direction over the cardiac cycle. Vector velocity reveals a wealth of new information that now...... is accessible to the ultrasound community. The displaying and studying of this information is challenging as complex flow changes rapidly over the cardiac cycle....

  6. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  7. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    Science.gov (United States)

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle.

  8. Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network.

    Science.gov (United States)

    Abdullah, Radhwan Mohamed; Zukarnain, Zuriati Ahmad

    2017-07-14

    Transferring a huge amount of data between different network locations over the network links depends on the network's traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model.

  9. Advanced Ice Velocity Mapping Using Landsat 8

    Science.gov (United States)

    Klinger, M. J.; Scambos, T. A.; Fahnestock, M. A.; Haran, T. M.

    2014-12-01

    Improved image-to-image cross correlation software is applied to pairs of sequential Landsat 8 satellite imagery to accurately measure ice surface velocity over ice sheets and glaciers (±0.1 pixel displacement, 15 meter pixels). The high radiometric fidelity of Landsat 8's panchromatic band (12-bit), and exceptional geolocation accuracy (typically ±5 m) supports the generation of ice velocity fields over very short time intervals (e.g., 16-, 32-, or 48-day repeat images of the same scene location). The high radiometry supports velocity mapping in areas with very subtle topographic detail, including un-crevassed sastrugi regions on ice dome flanks or the ice sheet interior. New Python-based software presently under development (named PyCorr), takes two sequential Landsat 8 OLI scenes (or suitably processed ETM+ or TM scenes) and matches small sub-scenes ('chips') between the images based on similarity in their gray-scale value patterns, using an image correlation algorithm. Peak fitting in the region of maximum correlation for a chip pair yields sub-pixel fits to the feature offset vector. Vector editing after the image correlation runs seeks to eliminate spurious and cloud-impacted vectors, and correct residual geo-location error. This processing is based on plausible values of ice strain rates and known areas of near-zero ice flow (rock outcrops, ice dome areas, etc.). In preliminary processing, we have examined ~800 Landsat 8 image pairs having <20% cloud cover spanning the near-coastal Antarctic ice sheet during the 2013-14 summer season.

  10. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-01-02

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers

    Science.gov (United States)

    Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut

    2017-04-01

    Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the

  12. Effect of flow distributors on uniformity of velocity profile in a baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Jen Chen; Man-Ting Cheng [Tajen Institute of Technology, Ping-Tung Hsien (Taiwan). Department of Environmental Engineering and Science

    2005-07-01

    In recent years, baghouses have been used as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance. 11 refs., 10 figs.

  13. Effect of flow distributors on uniformity of velocity profile in a baghouse.

    Science.gov (United States)

    Chen, Chi-Jen; Cheng, Man-Ting

    2005-07-01

    In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.

  14. Algorithmic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  15. A Velocity-Based Impedance Control System for a Low Impact Docking Mechanism (LIDM

    Directory of Open Access Journals (Sweden)

    Chuanzhi Chen

    2014-12-01

    Full Text Available In this paper, an impedance control algorithm based on velocity for capturing two low impact docking mechanisms (LIDMs is presented. The main idea of this algorithm is to track desired forces when the position errors of two LIDMs are random by designing the relationship between the velocity and contact forces measured by a load sensing ring to achieve low impact docking. In this paper, the governing equation of an impedance controller between the deviation of forces and velocity is derived, and simulations are designed to verify how impedance parameters affect the control characteristics. The performance of the presented control algorithm is validated by using the MATLAB and ADAMS software for capturing simulations. The results of capturing simulations demonstrate that the impedance control algorithm can respond fast and has excellent robustness when the environmental errors are random, and the contact forces and torques satisfy the low impact requirements.

  16. A numerical method for predicting Rayleigh surface wave velocity in anisotropic crystals

    Science.gov (United States)

    Cherry, Matthew R.; Sathish, Shamachary; Grandhi, Ramana

    2017-12-01

    A numerical method was developed for calculating the Rayleigh Surface Wave (RSW) velocity in arbitrarily oriented single crystals in 360 degrees of propagation. This method relies on the results from modern analysis of RSW behavior with the Stroh formalism to restrict the domain in which to search for velocities by first calculating the limiting velocity. This extension of existing numerical methods also leads to a natural way of determining both the existence of the RSW as well as the possibility of encountering a pseudo-surface wave. Furthermore, the algorithm is applied to the calculation of elastic properties from measurement of the surface wave velocity in multiple different directions on a single crystal sample. The algorithm was tested with crystal symmetries and single crystal elastic moduli from literature. It was found to be very robust and efficient in calculating RSW velocity curves in all cases.

  17. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Joint probability discrimination between stationary tissue and blood velocity signals

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2001-01-01

    before and after echo-canceling, and (b) the amplitude variations between samples in consecutive RF-signals before and after echo-canceling. The statistical discriminator was obtained by computing the probability density functions (PDFs) for each feature through histogram analysis of data......In CFM-mode the blood velocity estimates are overlaid onto the B-mode image. The velocity estimation gives non-zero velocity estimates in both the surrounding tissue and the vessels. A discrimination algorithm is needed to determine, which estimates represent blood flow and should be displayed....... This study presents a new statistical discriminator. Investigation of the RF-signals reveals that features can be derived that distinguish the segments of the signal, which do an do not carry information on the blood flow. In this study 4 features, have been determined: (a) the energy content in the segments...

  19. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  20. Dense velocity reconstruction from tomographic PTV with material derivatives

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  1. From Surface Flow Velocity Measurements to Discharge Assessment by the Entropy Theory

    Directory of Open Access Journals (Sweden)

    Tommaso Moramarco

    2017-02-01

    Full Text Available A new methodology for estimating the discharge starting from the monitoring of surface flow velocity, usurf, is proposed. The approach, based on the entropy theory, involves the actual location of maximum flow velocity, umax, which may occur below the water surface (dip phenomena, affecting the shape of velocity profile. The method identifies the two-dimensional velocity distribution in the cross-sectional flow area, just sampling usurf and applying an iterative procedure to estimate both the dip and umax. Five gage sites, for which a large velocity dataset is available, are used as a case study. Results show that the method is accurate in simulating the depth-averaged velocities along the verticals and the mean flow velocity with an error, on average, lower than 12% and 6%, respectively. The comparison with the velocity index method for the estimation of the mean flow velocity using the measured usurf, demonstrates that the method proposed here is more accurate mainly for rivers with a lower aspect ratio where secondary currents are expected. Moreover, the dip assessment is found more representative of the actual location of maximum flow velocity with respect to the one estimated by a different entropy approach. In terms of discharge, the errors do not exceed 3% for high floods, showing the good potentiality of the method to be used for the monitoring of these events.

  2. Global carbon monoxide vertical distributions from spaceborne high-resolution FTIR nadir measurements

    OpenAIRE

    B. Barret; Turquety, S.; Hurtmans, D; Clerbaux, C.; Hadji-Lazaro, J.; I. Bey; Auvray, M.; P.-F. Coheur

    2005-01-01

    This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG) which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM) and are characterized in terms of vertical sensitivity...

  3. Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    S. Das

    2016-03-01

    Full Text Available The transient natural convection in a vertical channel filled with nanofluids has been studied when thermal radiation is taken into consideration. The equations governing the flow are solved by employing the Laplace transform technique. Exact solutions for the velocity and temperature of nanofluid are obtained in cases of both prescribed surface temperature (PST and prescribed heat flux (PHF. The numerical results for the velocity and temperature of nanofluid are presented graphically for the pertinent parameters and discussed in detail. The fluid velocity is greater in the case of PST than that of PHF.

  4. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  5. Physics and the Vertical Jump

    Science.gov (United States)

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  6. Advanced high performance vertical hybrid synthetic jet actuator

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  7. ISAL experiment documentation of vertical tail and OMS pods

    Science.gov (United States)

    1983-01-01

    Investigation of Space Transportation System (STS) Atmospheric Luminosities (ISAL) experiment documentation includes vertical tail and orbital maneuvering system (OMS) pods with surface glow against the blackness of space. This glowing scene was provided by a long duration exposure with a 35mm camera aimed toward the tail of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. OV-099 was maneuvered to a 120-nautical-mile altitude and flown with open payload bay (PLB) in the velocity vector for the conducting of a test titled, 'Evaluation of Oxygen Interaction with Materials (EOIM)'. Atomic oxygen within the low orbital environment is known to be extremely reactive when in contact with solid surfaces. In the darkened area between the camera and the glowing OMS pods and vertical stabilizer are two trays of test materials.

  8. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  9. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  10. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance......Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...

  11. Galactic subsystems on the basis of cumulative distribution of space velocities

    Directory of Open Access Journals (Sweden)

    Vidojević S.

    2008-01-01

    Full Text Available A sample containing 4 614 stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92%, thick disc 6% and halo 2%. These results are verified by analyzing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  12. Adaptive clustering algorithm for community detection in complex networks

    Science.gov (United States)

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality.

  13. An Improved Fireworks Algorithm Based on Grouping Strategy of the Shuffled Frog Leaping Algorithm to Solve Function Optimization Problems

    Directory of Open Access Journals (Sweden)

    Yu-Feng Sun

    2016-04-01

    Full Text Available The fireworks algorithm (FA is a new parallel diffuse optimization algorithm to simulate the fireworks explosion phenomenon, which realizes the balance between global exploration and local searching by means of adjusting the explosion mode of fireworks bombs. By introducing the grouping strategy of the shuffled frog leaping algorithm (SFLA, an improved FA-SFLA hybrid algorithm is put forward, which can effectively make the FA jump out of the local optimum and accelerate the global search ability. The simulation results show that the hybrid algorithm greatly improves the accuracy and convergence velocity for solving the function optimization problems.

  14. Multi-Joint Coordination of Vertical Arm Movement

    Directory of Open Access Journals (Sweden)

    Ajay Seth

    2003-01-01

    Full Text Available A model of the human arm was developed to study coordination of multi-joint movement in the vertical plane. The arm was represented as a two-segment, two-degree of freedom dynamic system with net muscle torques acting at the shoulder and elbow. Kinematic data were collected from a subject who performed unrestrained vertical movements with only the initial and final hand elevations prescribed. Movements were performed with and without a hand-held load. The method of computed torques was implemented to obtain net muscle torques, which enables position and velocity feedback to be used to estimate joint angular accelerations that produce a more stable simulation of arm movement. The model simulation was then used to calculate the contributions of the net muscle torques, gravitational torques and velocity-interaction torques to the angular accelerations of the shoulder and elbow and also to the vertical acceleration of the hand. The net muscle torques and gravity were the prime movers of the arm. The velocity-dependent effects contributed little to the dynamics of arm movement and were, in fact, insignificant when the hand was loaded. The muscles of the shoulder and elbow acted synergistically to elevate the arm in the sagittal plane. The hand was accelerated upward by the elbow first, until the point of maximum elbow flexion, after which the shoulder became the prime mover. Gravity acted consistently to accelerate the hand downward. Coordination was notably invariant to changes in external load. Some compensation for load was observed in the control, and these differences were attributed mainly to an increase in system inertia.

  15. Signal velocity in oscillator arrays

    Science.gov (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  16. Finite Difference Study of MHD Stokes Problem for a Vertical Infinite ...

    African Journals Online (AJOL)

    The explicit finite difference method is employed to study the effects of both the Hall and ionslip currents on a free convective flow of a viscous heat generating rotating fluid past an impulsively started infinite vertical plate, to which a strong magnetic field is applied perpendicularly. The velocity (both primary and secondary) ...

  17. Noninvasive monitoring of vocal fold vertical vibration using the acoustic Doppler effect.

    Science.gov (United States)

    Tao, Chao; Jiang, Jack J; Wu, Dan; Liu, Xiaojun; Chodara, Ann

    2012-11-01

    To validate a proposed method of noninvasively monitoring vocal fold vertical vibration through utilization of the acoustic Doppler effect and the waveguide property of the vocal tract. Validation case-control study. In this device, an ultrasound beam is generated and directed into the mouth. The vocal tract, acting as a natural waveguide, guides the ultrasound beam toward the vibrating vocal folds. The vertical velocity of vocal fold vibration is then recovered from the Doppler frequency of the reflected ultrasound. One subject (age 32, male) was studied and measurements were taken under three modes of vocal fold vibration: breathing (no vibration), whispering (irregular vibration), and normal phonation (regular vibration). The peak-to-peak amplitude of the measured velocity of vocal fold vertical vibration was about 0.16 m/s, and the fundamental frequency was 172 Hz; the extracted velocity information showed a reasonable waveform and value in comparison with the previous studies. In all three modes of phonation, the Doppler frequencies derived from the reflected ultrasound corresponded with the vertical velocity of vocal fold vibration as expected. The proposed method can accurately represent the characteristics of different phonation modes such as no phonation, whisper and normal phonation. The proposed device could be used in daily monitoring and assessment of vocal function and vocal fold vibration. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  18. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  19. High-reliability vertical-axis wind turbine

    Science.gov (United States)

    Noll, R. B.; Zvara, J.

    A review of the design and development of a 1-kW high-reliability vertical-axis small wind energy conversion system (SWECS) is presented. The SWECS is a straight-bladed version of the Darrieus design. It incorporates high-reliability components in order to obtain a design value of mean time between failures of ten years based on one maintenance day a year. Design features are described, automatic control of the turbine is discussed, and typical results from controlled velocity testing are presented.

  20. Vertical Heat Flux in the Ocean: Estimates from Observations, and Comparisons with a Coupled General Circulation Model

    Science.gov (United States)

    Cummins, P. F.; Masson, D.; Saenko, O.

    2016-02-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of the absolute geostrophic flow. Results are compared with a non-eddy resolving, coupled atmosphere-ocean general circulation model. This shows reasonable agreement in the latitudinal distribution of the heat flux, along with net integrated vertical heat flux below about 300 meters depth. The mean vertical heat flux is shown to be dominated by the downward contribution from the southern hemisphere and, in particular, the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward vertical transport of seawater that is cold relative to the lateral average at a given depth. The correspondence with the coupled model breaks down at depths shallower than 300 m due to the dominant contribution of equatorial regions which have been excluded from the calculation. It appears that the vertical transport of heat by the large-scale mean circulation is consistent with simple linear vorticity dynamics over much of the ocean.

  1. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    Science.gov (United States)

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  2. Velocity potential formulations of highly accurate Boussinesq-type models

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Madsen, Per A.; Fuhrman, David R.

    2009-01-01

    processes on the weather side of reflective structures. Coast. Eng. 53, 929-945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position z=(z) over cap. For practical implementation however, the solution is expanded based on a slow...... variation of (z) over cap and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators...

  3. Maximum height and minimum time vertical jumping.

    Science.gov (United States)

    Domire, Zachary J; Challis, John H

    2015-08-20

    The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Relationship between vertical and horizontal jump variables and muscular performance in athletes.

    Science.gov (United States)

    Dobbs, Caleb W; Gill, Nicholas D; Smart, Daniel J; McGuigan, Michael R

    2015-03-01

    This study investigated the relationship between vertical and horizontal measures in bilateral and unilateral countermovement jump, drop jump and squat jump (SJ), and sprinting speed and muscle architecture of both the vastus lateralis and gastrocnemius. Subjects (n = 17) completed a 30-m sprint test, muscle stiffness test; ultrasound measures, and a jump testing session. Measures of horizontal peak and mean force, in both bilateral and unilateral jumps, tended to have greater relationships to sprint speeds (R = 0.132-0.576) than peak and mean force in the vertical plane (R = 0.008-0.504). Vertical velocity variables also showed some large and very large correlations to sprint speed (R = 0.062-0.635). Unilateral measures of velocity tended to have larger correlations to sprint performance than their bilateral counterparts across all jump types and peak and mean velocity in SJ showed large and very large correlations to sprint speed (bilateral R = 0.227-0.635; unilateral 0.393-0.574). Few large correlations were shown between muscle stiffness measures of muscle architecture and kinetic and kinematic variables in either vertical or horizontal jumps. The present findings suggest that sport scientists and strength and conditioning practitioners concerned with the prognostic value of kinetic variables to functional movements such as sprint speed should also use horizontal jumps in addition to vertical jumps in testing and training.

  5. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  6. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  7. Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider

    Science.gov (United States)

    2014-09-30

    as well as notes on the spurious stalls incurred due to the mechanical braking system. The second generation UWW was delivered by MacArtney in May...power system was developed for the UWW to limit back electromotive force (back- EMF ) induced by current surges from the UWW’s motor. Majority of the

  8. Real-Time Vertical Temperature, and Velocity Profiles from a Wave Glider

    Science.gov (United States)

    2012-09-30

    Liquid Robotics navigated a Wave Glider from San Diego to Hawaii on a 82 day-long voyage that covered approximately 2500 nautical miles (http...Gawarkiewicz, G., et al. (2011), Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome ., Oceanography, 24(4), 110...121. Lee, D.-K., and P. Niiler (2010), Influence of warm SST anomalies formed in the eastern Pacific subduction zone on recent El Nino events, J Mar Res, 68(3-4), 459-477.

  9. Horizontal and Vertical Structure of Velocity, Potential Vorticity and Energy in the Gulf Stream.

    Science.gov (United States)

    1985-02-01

    Number OCE-8208 746; and by the Office of Naval Research under contract Number NOOG 14-82-C -0019, NR 083-004. Reproduction in whole or in part is...The first term on the RHiS can be written 1 (p(0)+ :1)( ufO )+eufl)) 1 (0+P 1 *l 1O)CUI) 0 0 -H 1 HI () (-) pi O / V.1 (pa) +ft w 01 0j~ EoPO o1 1

  10. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Science.gov (United States)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  11. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  12. The Risk of Airborne Cross-Infection in a Room with Vertical Low-Velocity Ventilation

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de

    2013-01-01

    Downward flow ventilation systems are one of the most recommended ventilation strategies when contaminants in rooms must be removed and people must be protected from the risk of airborne cross-infection. This study is based on experimental tests carried out in a room with downward flow ventilation....... Two breathing thermal manikins are placed in a room face to face. One manikin’s breathing is considered to be the contaminated source to simulate a risky situation with airborne cross-infection. The position of the manikins in relation to the diffuser and the location of diffuser in the room as well...

  13. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    Science.gov (United States)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  14. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  15. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  16. Analysis and enumeration algorithms for biological graphs

    CERN Document Server

    Marino, Andrea

    2015-01-01

    In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions...

  17. Algorithm Theory - SWAT 2006

    DEFF Research Database (Denmark)

    issues of theoretical algorithmics and applications in various fields including graph algorithms, computational geometry, scheduling, approximation algorithms, network algorithms, data storage and manipulation, combinatorics, sorting, searching, online algorithms, optimization, etc.......This book constitutes the refereed proceedings of the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, held in Riga, Latvia, in July 2006. The 36 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 154 submissions. The papers address all...

  18. Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sencan Sahin, Arzu [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey)

    2012-11-15

    Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector. (orig.)

  19. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  20. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.

    Science.gov (United States)

    Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  1. Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation

    Science.gov (United States)

    Backman, John; Wood, Curtis R.; Auvinen, Mikko; Kangas, Leena; Hannuniemi, Hanna; Karppinen, Ari; Kukkonen, Jaakko

    2017-10-01

    The meteorological input parameters for urban- and local-scale dispersion models can be evaluated by preprocessing meteorological observations, using a boundary-layer parameterisation model. This study presents a sensitivity analysis of a meteorological preprocessor model (MPP-FMI) that utilises readily available meteorological data as input. The sensitivity of the preprocessor to meteorological input was analysed using algorithmic differentiation (AD). The AD tool used was TAPENADE. The AD method numerically evaluates the partial derivatives of functions that are implemented in a computer program. In this study, we focus on the evaluation of vertical fluxes in the atmosphere and in particular on the sensitivity of the predicted inverse Obukhov length and friction velocity on the model input parameters. The study shows that the estimated inverse Obukhov length and friction velocity are most sensitive to wind speed and second most sensitive to solar irradiation. The dependency on wind speed is most pronounced at low wind speeds. The presented results have implications for improving the meteorological preprocessing models. AD is shown to be an efficient tool for studying the ranges of sensitivities of the predicted parameters on the model input values quantitatively. A wider use of such advanced sensitivity analysis methods could potentially be very useful in analysing and improving the models used in atmospheric sciences.

  2. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos

    2003-01-01

    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  3. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mattione, Paul [Rice Univ., Houston, TX (United States)

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  4. Vertical distribution of Arctic methane

    Science.gov (United States)

    Tukiainen, Simo; Karppinen, Tomi; Hakkarainen, Janne; Kivi, Rigel; Heikkinen, Pauli; Tamminen, Johanna

    2017-04-01

    In this study we show the vertical distribution of atmospheric methane (CH4) measured in Sodankylä, Northern Finland. The CH4 profiles are retrieved from the direct Sun FTS measurements using the dimension reduction retrieval method. In the retrieval method, we have a few degrees of freedom about the profile shape. The data set covers years 2010-2016 (from February to November) and altitudes 0-40 km. The retrieved FTS profiles are validated against ACE satellite measurements and AirCore balloon measurements. The total columns derived from the FTS profiles are compared to the official TCCON XCH4 data. A vertically resolved methane data set can be used, e.g., to study stratospheric methane during the polar vortex.

  5. INTERNATIONAL SPECIALIZATION AND VERTICAL DIFFERENTIATION

    Directory of Open Access Journals (Sweden)

    Furia Donatella

    2010-07-01

    Full Text Available During the last decades, market segmentation and intra-industry trade have become increasingly relevant. The underlying hypothesis of our work is that distinct articles have heterogeneous potential for vertical differentiation, implying that different patterns of international specialization should be identifiable. We carry out an analysis on revealed comparative advantage (through the Lafay Index in specific sectors of interest. Then we highlight the emergence of diverse degrees of product quality differentiation among sectors (through the Relative Quality Index. Results confirm our hypothesis. Indeed it appears that only certain goods, for which the pace of either creative or technological innovation (or both is particularly fast, present a high degree of vertical differentiation and market segmentation. This allows countries to specialize in a particular product variety and gain market power position for that variety. These findings should be taken in due consideration when designing trade policies.

  6. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    -orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.

  7. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field

    Science.gov (United States)

    Chen, Jui-Sheng; Jang, Cheng-Shin; Cheng, Chung-Ting; Liu, Chen-Wuing

    2010-09-01

    SummaryThis study presents a novel mathematical model for describing the transport of the remedial reagent in a vertical circulation flow field in an anisotropic aquifer. To develop the mathematical model, the radial and vertical components of the pore water velocity are calculated first by using an analytical solution for steady-state drawdown distribution near a vertical circulation well. Next, the obtained radial and vertical components of the pore water velocity are then incorporated into a three-dimensional axisymmetrical advection-dispersion equation in cylindrical coordinates from which to build the reagent transport equation. The Laplace transform finite difference technique is applied to solve the three-dimensional axisymmetrical advection-dispersion equation with spatial variable-dependent coefficients. The developed mathematical model is used to investigate the effects of various parameters such as hydraulic conductivity anisotropy, longitudinal and transverse dispersivities, the placement of the extraction and injection screened intervals of the vertical circulation well and the injection modes on the transport regime of the remedial reagent. Results show that those parameters have different degrees of impacts on the distribution of the remedial reagent. The mathematical model provides an effective tool for designing and operating an enhanced groundwater remediation in an anisotropic aquifer using the vertical circulation well technology.

  8. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid

    Directory of Open Access Journals (Sweden)

    X. Ren

    2011-10-01

    Full Text Available A relaxed eddy accumulation (REA system combined with a nitrous acid (HONO analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1 a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2 a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3 a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009 at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.

  9. Poligonación Vertical

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La poligonación vertical es un método de medición de diferencias de altura que aprovecha las posibilidades de las estaciones totales. Se presta fundamentalmente para líneas de nivelación entre nodos formando red. El nombre se debe a que las visuales sucesivas se proyectan sobre aristas verticales en lugar de un plano horizontal, como ocurre en la poligonación convencional.

  10. Vertical Launch System Loadout Planner

    Science.gov (United States)

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...mathematically complex and require training to operate the software. A Visual Basic for Applications ( VBA ) Excel (Microsoft Corporation, 2015...lockheed/data/ms2/documents/laun chers/MK41 VLS factsheet.pdf Microsoft Excel version 14.4.3, VBA computer software. (2011). Redmond, WA: Microsoft

  11. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-economy property rights theory of the firm using firm-level data. Finally, we notice that our model's sorting pattern is in line with recent evidence when the wage difference across countries is not too big....

  12. Prophylaxis of vertical HBV infection.

    Science.gov (United States)

    Pawlowska, Malgorzata; Pniewska, Anna; Pilarczyk, Malgorzata; Kozielewicz, Dorota; Domagalski, Krzysztof

    2016-10-01

    An appropriate management of HBV infection is the best strategy to finally reduce the total burden of HBV infection. Mother-to-child transmission (MTCT) is responsible for more than one third of chronic HBV infections worldwide. Because HBV infection in infancy or early childhood often leads to chronic infection, appropriate prophylaxis and management of HBV in pregnancy is crucial to prevent MTCT. The prevention of HBV vertical transmission is a complex task and includes: universal HBV screening of pregnant women, administration of antivirals in the third trimester of pregnancy in women with high viral load and passive-active HBV immunoprophylaxis with hepatitis B vaccine and hepatitis B immune globulin in newborns of all HBV infected women. Universal screening of pregnant women for HBV infection, early identification of HBV DNA level in HBV-infected mothers, maternal treatment with class B according to FDA antivirals and passive/active anti-HBV immunoprophylaxis to newborns of HBV-positive mothers are crucial strategies for reducing vertical HBV transmission rates. Consideration of caesarean section in order to reduce the risk of vertical HBV transmission should be recommend in HBV infected pregnant women with high viral load despite antiviral therapy or when the therapy in the third trimester of pregnancy is not available.

  13. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    Science.gov (United States)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  14. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    Science.gov (United States)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  15. PREDICTING THE INTRA-CYCLIC VARIATION OF THE VELOCITY OF THE CENTRE OF MASS FROM SEGMENTAL VELOCITIES IN BUTTERFLY STROKE: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Joao P. Vilas-Boas

    2008-06-01

    end of the underwater path, should increase the vertical velocity during the downbeats and decrease the velocity during the hand's entry.

  16. An exponential time 2-approximation algorithm for bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Kasiviswanathan, Shiva [Los Alamos National Laboratory; Furer, Martin [PENNSYLVANIA STATE U; Gaspers, Serge [U OF MONTPELLIER, FRANCE

    2009-01-01

    The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case {Omicron}(1.9797{sup n}) = {Omicron}(3{sup 0.6217n}) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have an {Omicron}*(3{sup n}) and {Omicron}*(2{sup n}) worst-case time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to achieve this improved time bound.

  17. An algorithmic Friedman-Pippenger theorem on tree embeddings and applications

    OpenAIRE

    Dellamonica Jr., Domingos; Kohayakawa, Yoshiharu

    2008-01-01

    An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar = (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time ...

  18. [Vertical fractures: apropos of 2 clinical cases].

    Science.gov (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  19. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  20. Simulation-Based Optimization of a Vector Showerhead System for the Control of Flow Field Profile in a Vertical Reactor Chamber

    Directory of Open Access Journals (Sweden)

    Huanxiong Xia

    2014-03-01

    Full Text Available Optimization of a vector showerhead in a vertical reactor involves thousands of holes on the showerhead face plate and the spatial distribution of physical fields, so parameterizing the geometry configuration of the holes in high resolution is very difficult, which makes the conventional optimization methods hard to deal with. To solve this problem, a profile error feedback (PEF optimization solution was proposed to optimize a vector showerhead gas delivery system for the control of mass transport. The gas velocity profile in the reactor and the continuous-feature impedance distribution profile on the showerhead face plate are defined as design objective and variables, respectively. A cyclic iterative approximation idea was implemented in this solution. The algorithm was started from a guessed initial design model and then cyclically adjusted the design variables by the constructed PEF iterative formula to generate a better model and to make the gas velocity profile in the critical domain of the new model continually approximate to the expected profile, until it could be accepted. Finally, the optimized impedance profile was mapped to the holes geometry configuration through the established equivalent impedance model for the showerhead face plate.

  1. Numerical Simulation of Williamson Combined Natural and Forced Convective Fluid Flow between Parallel Vertical Walls with Slip Effects and Radiative Heat Transfer in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-04-01

    Full Text Available Numerical study of the slip effects and radiative heat transfer on a steady state fully developed Williamson flow of an incompressible Newtonian fluid; between parallel vertical walls of a microchannel with isothermal walls in a porous medium is performed. The slip effects are considered at both boundary conditions. Radiative highly absorbing medium is modeled by the Rosseland approximation. The non-dimensional governing Navier–Stokes and energy coupled partial differential equations formed a boundary problem are solved numerically using the fourth order Runge–Kutta algorithm by means of a shooting method. Numerical outcomes for the skin friction coefficient, the rate of heat transfer represented by the local Nusselt number were presented even as the velocity and temperature profiles illustrated graphically and analyzed. The effects of the temperature number, Grashof number, thermal radiation parameter, Reynolds number, velocity slip length, Darcy number, and temperature jump, on the flow field and temperature field and their effects on the boundaries are presented and discussed.

  2. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  3. The algorithm design manual

    CERN Document Server

    Skiena, Steven S

    2008-01-01

    Explaining designing algorithms, and analyzing their efficacy and efficiency, this book covers combinatorial algorithms technology, stressing design over analysis. It presents instruction on methods for designing and analyzing computer algorithms. It contains the catalog of algorithmic resources, implementations and a bibliography

  4. Stationary algorithmic probability

    National Research Council Canada - National Science Library

    Müller, Markus

    2010-01-01

    ...,sincetheiractualvaluesdependonthechoiceoftheuniversal referencecomputer.Inthispaper,weanalyzeanaturalapproachtoeliminatethismachine- dependence. Our method is to assign algorithmic probabilities to the different...

  5. The Algorithmic Imaginary

    DEFF Research Database (Denmark)

    Bucher, Taina

    2017-01-01

    This article reflects the kinds of situations and spaces where people and algorithms meet. In what situations do people become aware of algorithms? How do they experience and make sense of these algorithms, given their often hidden and invisible nature? To what extent does an awareness....... Examining how algorithms make people feel, then, seems crucial if we want to understand their social power....

  6. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  7. Critical velocity experiments in space

    Science.gov (United States)

    Torbert, R. B.

    1988-01-01

    Published data from active space experiments designed to demonstrate the Alfven critical-velocity effect are compiled in graphs and compared with the predictions of numerical simulations. It is found that the discrepancies in the ionization yields obtained in shaped-charge releases of alkali metals are related to the macroscopic limits of time and energy in such releases. It is argued that the total ionization yield is an inadequate measure of the critical-velocity effect, and a new criterion based on eta, the efficiency of energy transfer from the recently ionized neutrals to a heated electron population, is proposed: the effect would be verified if eta values of 10 percent or greater were observed.

  8. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  9. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  10. Numerical study on small scale vertical axis wind turbine

    Science.gov (United States)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  11. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  12. Development of Vertical Cable Seismic System (3)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of

  13. The BR eigenvalue algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Geist, G.A. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.; Howell, G.W. [Florida Inst. of Tech., Melbourne, FL (United States). Dept. of Applied Mathematics; Watkins, D.S. [Washington State Univ., Pullman, WA (United States). Dept. of Pure and Applied Mathematics

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  14. An Efficient Algorithm for the Maximum Distance Problem

    Directory of Open Access Journals (Sweden)

    Gabrielle Assunta Grün

    2001-12-01

    Full Text Available Efficient algorithms for temporal reasoning are essential in knowledge-based systems. This is central in many areas of Artificial Intelligence including scheduling, planning, plan recognition, and natural language understanding. As such, scalability is a crucial consideration in temporal reasoning. While reasoning in the interval algebra is NP-complete, reasoning in the less expressive point algebra is tractable. In this paper, we explore an extension to the work of Gerevini and Schubert which is based on the point algebra. In their seminal framework, temporal relations are expressed as a directed acyclic graph partitioned into chains and supported by a metagraph data structure, where time points or events are represented by vertices, and directed edges are labelled with < or ≤. They are interested in fast algorithms for determining the strongest relation between two events. They begin by developing fast algorithms for the case where all points lie on a chain. In this paper, we are interested in a generalization of this, namely we consider the problem of finding the maximum ``distance'' between two vertices in a chain ; this problem arises in real world applications such as in process control and crew scheduling. We describe an O(n time preprocessing algorithm for the maximum distance problem on chains. It allows queries for the maximum number of < edges between two vertices to be answered in O(1 time. This matches the performance of the algorithm of Gerevini and Schubert for determining the strongest relation holding between two vertices in a chain.

  15. Evolution of semilocal string networks. II. Velocity estimators

    Science.gov (United States)

    Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-07-01

    We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.

  16. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating

  17. Algorithmically specialized parallel computers

    CERN Document Server

    Snyder, Lawrence; Gannon, Dennis B

    1985-01-01

    Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster

  18. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    Science.gov (United States)

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  19. Improved local linearization algorithm for solving the quaternion equations

    Science.gov (United States)

    Yen, K.; Cook, G.

    1980-01-01

    The objective of this paper is to develop a new and more accurate local linearization algorithm for numerically solving sets of linear time-varying differential equations. Of special interest is the application of this algorithm to the quaternion rate equations. The results are compared, both analytically and experimentally, with previous results using local linearization methods. The new algorithm requires approximately one-third more calculations per step than the previously developed local linearization algorithm; however, this disadvantage could be reduced by using parallel implementation. For some cases the new algorithm yields significant improvement in accuracy, even with an enlarged sampling interval. The reverse is true in other cases. The errors depend on the values of angular velocity, angular acceleration, and integration step size. One important result is that for the worst case the new algorithm can guarantee eigenvalues nearer the region of stability than can the previously developed algorithm.

  20. Coastal Vertical Land motion in the German Bight

    Science.gov (United States)

    Becker, Matthias; Fenoglio, Luciana; Reckeweg, Florian

    2017-04-01

    In the framework of the ESA Sea Level Climate Change Initiative (CCI) we analyse a set of GNSS equipped tide gauges at the German Bight. Main goals are the determination of tropospheric zenith delay corrections for altimetric observations, precise coordinates in ITRF2008 and vertical land motion (VLM) rates of the tide gauge stations. These are to be used for georeferencing the tide gauges and the correction of tide gauge observations for VLM. The set of stations includes 38 GNSS stations. 19 stations are in the German Bight, where 15 of them belong to the Bundesanstalt für Gewässerkunde, 3 to EUREF and 1 to GREF. These stations are collocated with tide gauges (TGs). The other 19 GNSS stations in the network belong to EUREF, IGS and GREF. We analyse data in the time span from 2008 till the end of 2016 with the Bernese PPP processing approach. Data are partly rather noisy and disturbed by offsets and data gaps at the coastal TG sites. Special effort is therefore put into a proper estimation of the VLM. We use FODITS (Ostini2012), HECTOR (Bos et al, 2013), CATS (Williams, 2003) and the MIDAS approach of Blewitt (2016) to robustly derive rates and realistic error estimates. The results are compared to those published by the European Permanent Network (EPN), ITRF and the Système d'Observation du Niveau des Eaux Littorales (SONEL) for common stations. Vertical motion is small in general, at the -1 to -2 mm/yr level for most coastal stations. A comparison of the standard deviations of the velocity differences to EPN with the mean values of the estimated velocity standard deviations for our solution shows a very good agreement of the estimated velocities and their standard deviations with the reference solution from EPN. In the comparison with results by SONEL the standard deviation of the differences is slightly higher. The discrepancies may arise from differences in the time span analyzed and gaps, offsets and data preprocessing. The combined estimation of functional

  1. ?Vertical Sextants give Good Sights?

    Science.gov (United States)

    Richey, Michael

    Mark Dixon suggests (Forum, Vol. 50, 137) that nobody thus far has attempted to quantify the errors from tilt that arise while observing with the marine sextant. The issue in fact, with the related problem of what exactly is the axis about which the sextant is rotated whilst being (to define the vertical), was the subject of a lively controversy in the first two volumes of this Journal some fifty years ago. Since the consensus of opinion seems to have been that the maximum error does not necessarily occur at 45 degrees, whereas Dixon's table suggests that it does, some reiteration of the arguments may be in order.

  2. BATCH SETTLING IN VERTICAL SETTLERS

    OpenAIRE

    Lama Ramirez, R.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú; Condorhuamán Ccorimanya, C.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú

    2014-01-01

    lt has been studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulphate and lead oxide , in vertical thickeners of rectangular and circular cross sectional area. Suspensions vary in concentration between 19.4 and 617.9 g/I and the rate of sedimentation obtained between 0.008 and 7.70 cm/min. The effect of the specific gravity of the solid on the rate of sedimentation is the same for all the suspensions, that is, the greater the value of the specif...

  3. Binocular responses and vertical strabismus

    Directory of Open Access Journals (Sweden)

    Risović Dušica

    2007-01-01

    Full Text Available Background/Aim. Elevation in adduction is the most common pattern of vertical strabismus, and it is mostly treated with surgery. The results of weaking of inferior oblique muscle are very changeable. The aim of this study was to evaluate binocular vision using sensory tests before and one and six months after the surgery. Methods. A total of 79 children were divided in two groups: the first, with inferior oblique muscle of overaction (n = 52, and the second with dissociated vertical deviation (DVD, and primary inferior oblique muscle overaction (n = 27. We tested them by polaroid mirror test (PMT, Worth test at distance and near, fusion amplitudes on sinoptofore, Lang I stereo test and Wirt-Titmus stereo test. We examined our patients before and two times after the surgery for vertical strabismus. Results. Foveal suppression in the group I was found in 60.5% of the patients before, and in 56.4% after the surgery. In group II Foveal suppression was detected in 64.7% of the patients before, but in 55.6% 6 months after the surgery with PMT. Worth test revealed suppression in 23.5% of the patients before, and in 40.7% after the vertical muscle surgery. Parafoveal fussion persisted in about 1/3 of the patients before the surgery, and their amplitudes were a little larger after the surgery in the group I patients. Lang I stereo test was negative in 53.9% before and 51.9% after the surgery in the group I, and in 48.2% of the patients before and after the surgery in the group II patients. Wirt-Titmus stereo test was negative in 74.5% of the patients before and in 72.9% after the surgery in the group I, but in the group II it was negative in 70.8% before and in 68.0% of the patients 6 months after the surgery. Conclusion. Binocular responses were found after surgery in 65.7% of the patients the group I and in 55.6% patients the group II. There was no significant difference between these two groups, but binocular responses were more often in the patients

  4. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  5. Movement velocity vs. strength training

    Directory of Open Access Journals (Sweden)

    Mário C. Marques

    2017-06-01

    practice in strength training, but increasing evidence (Sanborn et al., 2000; Folland et al., 2002; Izquierdo et al., 2006; Drinkwater et al., 2007 shows that training to repetition failure does not necessarily produce better strength gains and that may even be counterproductive by inducing excessive fatigue, mechanical and metabolic strain (Fry, 2004. In fact, fatigue associated with training to failure not only significantly reduces the force that a muscle can generate, but also the nervous system’s ability to voluntarily activate the muscles (Häkkinen, 1993. Consequently, this approach, besides being very tiring and having shown no advantage over other lower effort types of training, it is unrealistic because it is practically impossible to know exactly how many repetitions can be done with a given absolute load without any initial reference. In addition, if in the first set the subject has completed the maximum number of repetitions, it will be very difficult or even impossible to perform properly the same number of reps in the following sets. Movement velocity is another variable which could be of great interest for monitoring exercise intensity, but surprisingly it has been vaguely mentioned in most studies to date. The importance that monitoring movement velocity for strength training programming have already been noticed in 1991 (González-Badillo, 1991. More recently, González-Badillo and Sánchez-Medina (2010, 2011 studied this hypothesis and confirmed that movement velocity provides as a determinant of the level of effort during resistance training as well as an indicator of the degree of fatigue. Unfortunately, the lack of use of this variable is likely because until recently it was not possible to accurately measure velocity in isoinertial strength training exercises/movements.  Indeed, most research that has addressed movement velocity in strength training was basically conducted using isokinetic apparatus which, unfortunately, is not an ideal or common

  6. Gestation and the evolution of vertical stance bipedal humans

    Directory of Open Access Journals (Sweden)

    D.S. Robertson

    2011-12-01

    Full Text Available During mammalian gestation a change in maternal stance alters the velocities of maternal blood flows and results in a changed rate of delivery and distribution of nutrients required to form the bone and tissue in various parts of a developing foetus. The latter in turn results in change in the extent and position of tissue and bone formation in the foetus. It is shown that such changes would, over many generations, alter the physical characteristics of the ancestor offspring under conditions where the pregnant maternal ancestor normally exhibiting horizontal stance was constrained to adopt a vertical stance for all or most of the gestation period. This behaviour produced the physical characteristics seen in humans and other Hominidae primates, including the vertical stance and bipedalism of the former accompanied by increase in skull and brain size. The manner in which difficulties of giving birth as the change from horizontal stance to vertical stance proceeded from generation to generation, limited survival is discussed andreasons for the adoption of this behaviour are proposed. The induction of evolutionary change and the operation of natural selection through alterations in the characteristics of embryo/foetus of an animal, induced by physical, chemical, mechanical or behavioural means, is shown to be feasible. The changes are not related to the Lamarckian principle of inheritance of acquired characteristics as the changes described occurred before birth and are not related to any physical or mental characteristics already present in or acquired during the lifetime of the breeding pair.

  7. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  8. Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction

    OpenAIRE

    Srinivasacharya D.; Kaladhar K.

    2013-01-01

    The Soret and Dufour effects in the presence of chemical reaction on natural convection heat and mass transfer of a couple stress fluid in a vertical channel formed by two vertical parallel plates is presented. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using Homotopy Analysis Method (HAM). Profiles of dimensionless velocity, temperature...

  9. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10 m a(-1...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  10. Spatial resolution and velocity field improvement of 4D-flow MRI.

    Science.gov (United States)

    Callaghan, Fraser M; Grieve, Stuart M

    2017-11-01

    4D-flow MRI obtains a time-dependent 3D velocity field; however, its use for the calculation of higher-order parameters is limited by noise. We present an algorithm for denoising 4D-flow data. By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD. The VFIT algorithm achieved a >100% noise reduction of a corrupted analytical dataset. In addition, 4D-flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (flow measurements). This study presents a method for denoising 4D-flow datasets with improved spatial resolution. Bulk flow dynamics are accurately conserved while velocity and velocity gradient fields are improved; this is important in the calculation of higher-order parameters such as WSS, which are shown to be more comparable to CFD measures. Magn Reson Med 78:1959-1968, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Retrieval of stratospheric O 3 and NO 2 vertical profiles using zenith ...

    Indian Academy of Sciences (India)

    An algorithm has been developed to retrieve vertical profiles of ozone (O3) and nitrogen dioxide (NO2) from ground-based measurements using the Chahine iteration method.This retrieval method has been checked using measured and recalculated slant column densities (SCDs)and they are found to be well matching.

  12. Joint Optimization of Vertical Component Gravity and Seismic P-wave First Arrivals by Simulated Annealing

    Science.gov (United States)

    Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.

    2015-12-01

    Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could

  13. A comparison of two landing styles in a two-foot vertical jump.

    Science.gov (United States)

    Gutiérrez-Davila, Marcos; Campos, José; Navarro, Enrique

    2009-01-01

    In team sports, such as basketball and volleyball, the players use different takeoff styles to make the vertical jump. The two-foot vertical jump styles have been classified according to the landing style and identified as hop style, when both feet touch the ground at the same time, and step-close style, when there is a slight delay between the first and second foot making contact with the ground. The aim of this research is to identify the differences between the two styles. Twenty-three subjects participated in the study, of whom 14 were volleyball players and 9 were basketball players. The jumps were video recorded and synchronized with two force platforms at 250 Hz. Two temporal periods of the takeoff were defined according to the reduction or increase in the radial distance between the center of gravity (CG) and the foot support (T - RDCG and T + RDCG, respectively). The findings produced no specific advantages when both styles were compared with respect to takeoff velocity and, consequently, to jump height, but takeoff time was significantly shorter (p vertical velocity of CG at the beginning of the takeoff is significantly lower. Moreover, the mean vertical force developed during T - RDCG was reduced by -627.7 +/- 251.1 N, thus lessening impact on landing. Horizontal velocity at the end of the takeoff is less when the step-close style is used (p jumps where it is necessary to move horizontally during the flight against an opponent.

  14. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    OpenAIRE

    Altab Hossain; A.K.M.P. Iqbal; Ataur Rahman; M. Arifin; M. Mazian

    2007-01-01

    This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag...

  15. Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using Fast Fourier Transform (FFT) Technique

    Science.gov (United States)

    Wongsaroj, W.; Hamdani, A.; Thong-un, N.; Takahashi, H.; Kikura, H.

    2017-10-01

    In two-phase bubbly flow, measurement of liquid and bubble velocity is a necessity to understand fluid characteristic. The conventional ultrasonic velocity profiler (UVP), which has been known as a nonintrusive measurement technique, can measure velocity profile of liquid and bubble simultaneously by applying a separation technique for both phases (liquid and bubble) and transparent test section is unnecessary. The aim of this study was to develop a new technique for separating liquid and bubble velocity data in UVP method to measure liquid and bubble velocity profiles separately. The technique employs only single resonant frequency transducer and a simple UVP system. An extra equipment is not required. Fast Fourier Transform (FFT) based frequency estimator paralleled with other signal processing techniques, which is called as proposed technique, was proposed to measure liquid and bubble velocity separately. The experimental facility of two-phase bubbly flow in the vertical pipe was constructed. Firstly, the Doppler frequency estimation by using the FFT technique was evaluated in single-phase liquid flow. Results showed that FFT technique showed a good agreement with autocorrelation and maximum likelihood estimator. Then, separation of liquid and bubble velocity was demonstrated experimentally in the two-phase bubbly flow. The proposed technique confirmed that liquid and bubble velocity could be measured efficiently.

  16. Throwing velocity and jump height in female water polo players: performance predictors.

    Science.gov (United States)

    McCluskey, Lisa; Lynskey, Sharon; Leung, Chak Kei; Woodhouse, Danielle; Briffa, Kathy; Hopper, Diana

    2010-03-01

    Throwing velocity and vertical jumping ability are essential components for shooting and passing in water polo. The purpose of this study was to determine whether there is a relationship between throwing velocity and water jump height in highly skilled female water polo players. Throwing velocity and head height at ball release were measured in twenty-two female players (age 20.41 years (6.16); weight 68.28 kg (8.87)) with two 50 frames per second cameras while shooting at goal. Water jump height was also measured with a modified Yardstick device. Multiple regression analyses showed that peak lower limb power was the most significant predictor of maximal velocity. Power alone accounted for 62% of the variance in maximum velocity (pheight and anthropometry) made a significant contribution to throwing velocity. After controlling for the effect of power, head height at ball release accounted for an additional significant proportion of the variance in maximal velocity (R(2) change 7%; p=0.049). Lower body power was a significant predictor of higher throwing velocity in highly skilled female water polo players. Players with relatively higher underlying levels of lower limb power who are able to generate greater elevation out of the water are able to throw the ball faster. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10(4) loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  18. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun [Harbin Engineering University, Harbin (China)

    2014-08-15

    Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design.

  19. THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Kordopatis, G.; Gilmore, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Steinmetz, M.; Williams, M. E. K.; Piffl, T.; Enke, H.; Carrillo, I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Boeche, C.; Roeser, S. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Siebert, A. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Binney, J. [Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford, OX1 3NP (United Kingdom); De Laverny, P.; Recio-Blanco, A.; Bijaoui, A. [Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, BP4229, F-06304 Nice (France); Wyse, R. F. G. [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Freeman, K. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Munari, U. [INAF National Institute of Astrophysics, Astronomical Institute of Padova, I-36012 Asiago (VI) (Italy); Anguiano, B., E-mail: gkordo@ast.cam.ac.uk [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); and others

    2013-11-01

    We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.

  20. Electronic cam motion generation with special reference to constrained velocity, acceleration, and jerk.

    Science.gov (United States)

    Liao, Chung-Shu; Jeng, Shyr-Long; Chieng, Wei-Hua

    2004-07-01

    Electronic cam motion involves velocity tracking control of the master motor and trajectory generation of the slave motor. Special concerns such as the limits of the velocity, acceleration, and jerk are beyond the considerations in the conventional electronic cam motion control. This study proposes the curve-fitting of a Lagrange polynomial to the cam profile, based on trajectory optimization by cubic B-spline interpolation. The proposed algorithms may yield a higher tracking precision than the conventional master-slaves control method does, providing an optimization problem is concerned. The optimization problem contains three dynamic constraints including velocity, acceleration, and jerk of the motor system.

  1. Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 3: Deterministic and random vibrations of exemplary system

    National Research Council Canada - National Science Library

    M. Podworna; M. Klasztorny

    2014-01-01

    ...) bridge/track structure/high-speed train system (BTT), developed in Part 2, advanced computer algorithms for the BTT numerical modelling and simulation as well as a computer programme to simulate vertical vibrations of BTT systems are developed...

  2. Cavity Enhanced Velocity Modulation Spectroscopy

    Science.gov (United States)

    Siller, Brian; Mills, Andrew; Porambo, Michael; McCall, Benjamin

    2010-11-01

    Over the past several decades, velocity modulation spectroscopy has been used to study dozens of molecular ions of astronomical importance. This technique has been so productive because it provides the advantage of ion-neutral discrimination, which is critically important when interfering neutral molecules are many orders of magnitude more abundant, and when combined with heterodyne techniques, its sensitivity can approach the shot noise limit. Traditionally, velocity modulation experiments have utilized unidirectional multipass White cells to achieve up to about 8 passes through a positive column discharge cell. But by positioning the cell within an optical cavity, it is possible to obtain an effective path length orders of magnitude longer than was previously possible. We have demonstrated this novel technique using a Ti:Sapp laser in the near-IR to observe rovibronic transitions of N2+. By demodulating at twice the modulation frequency, 2nd derivative-like lineshapes are observed for ions that are velocity-modulated, while Gaussian lineshapes are observed for excited neutral that are concentration-modulated. The signals for N2+ and N2+* have been observed to be 78° out of phase with one another, so ion-neutral discrimination is retained. And due to the laser power enhancement and geometry of the optical cavity, Doppler-free saturation spectroscopy is now possible. Observed Lamb dips have widths of 50 MHz, and when combined with calibration by an optical frequency comb, this allows for determination of line centers to within 1 MHz. In our original demonstration of this technique, our sensitivity was limited by noise in the laser-cavity lock. Since then, we have integrated Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) by adding sidebands to the laser at an exact multiple of the cavity free spectral range, and demodulating at the sideband frequency before sending the signal to a lock-in amplifier for demodulating at twice the

  3. Adaptive cockroach swarm algorithm

    Science.gov (United States)

    Obagbuwa, Ibidun C.; Abidoye, Ademola P.

    2017-07-01

    An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.

  4. Multithreaded Algorithms for Maximum Matching in Bipartite Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Md Ariful; Halappanavar, Mahantesh; Rajamanickam, Siva; Boman, Erik G.; Khan, Arif; Pothen, Alex

    2012-05-31

    Abstract—We design, implement, and evaluate algorithms for computing a matching of maximum cardinality in a bipartite graph on multi-core and massively multithreaded computers. As computers with larger number of slower cores dominate the commodity processor market, the design of multithreaded algorithms to solve large matching problems becomes a necessity. Recent work on serial algorithms based on searching for augmenting paths for this problem have shown that their performance is sensitive to the order in which the vertices are processed for matching. In a multithreaded environment, imposing a serial order in which vertices are considered for matching would lead to loss of concurrency and performance. But this raises the question: Would parallel matching algorithms on multithreaded machines improve performance over a serial algorithm? We answer this question in the affirmative. We report efficient multithreaded implementations of two key algorithms (Hopcroft- Karp based on breadth-first-search, and Pothen-Fan based on depth-first-search) and their variants, combined with the Karp- Sipser initialization algorithm. We report extensive results and insights using three shared-memory platforms (a 48-core AMD Opteron, a 32-core Intel Nehalem, and a 128-processor Cray XMT) on a representative set of real-world and synthetic graphs. To the best of our knowledge, this is the first extensive study of augmentation-based parallel algorithms for bipartite cardinality matching.

  5. Yielding transition of Carbopol gel in a vertical pipe

    Science.gov (United States)

    Liu, Yang; de Bruyn, John R.; John de Bruyn Team

    2016-11-01

    We have investigated the yielding transition of a simple yield-stress fluid (Carbopol 940) in a vertical pipe. The Carbopol gel was displaced by a Newtonian liquid injected at a constant, controlled rate at the bottom of the pipe. Rough- and smooth-walled pipes were used to study the effects of wall boundary conditions. The pressure in the Carbopol was measured by a pressure gauge fixed on the pipe wall, and the velocity profile in the Carbopol was measured by particle-image velocimetry (PIV). When the Newtonian liquid was injected, the rate of pressure increase was initially high, then decreased to a constant slow rate at later times. A time tc was defined by the intersection of straight lines fit to the pressure-time data at early and late times. In the rough pipe, the wall shear stress at tc is equal to the yield stress, suggesting that this time corresponds to yielding of the fluid. The velocity profiles were parabolic before yielding, and nearly a plug-like afterwards. In the smooth pipe, the pressure and velocity profiles appeared to show similar behavior to that in the rough pipe, but the wall shear stress at tc is substantially smaller than the yield stress and fluid motion was due to wall slip. NSERC.

  6. Exact solutions in a model of vertical gas migration

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy B.; Patzek, Tad W.; Benson, Sally M.

    2006-06-27

    This work is motivated by the growing interest in injectingcarbon dioxide into deep geological formations as a means of avoidingatmospheric emissions of carbon dioxide and consequent global warming.One of the key questions regarding the feasibility of this technology isthe potential rate of leakage out of the primary storage formation. Weseek exact solutions in a model of gas flow driven by a combination ofbuoyancy, viscous and capillary forces. Different combinations of theseforces and characteristic length scales of the processes lead todifferent time scaling and different types of solutions. In the case of athin, tight seal, where the impact of gravity is negligible relative tocapillary and viscous forces, a Ryzhik-type solution implies square-rootof time scaling of plume propagation velocity. In the general case, a gasplume has two stable zones, which can be described by travelling-wavesolutions. The theoretical maximum of the velocity of plume migrationprovides a conservative estimate for the time of vertical migration.Although the top of the plume has low gas saturation, it propagates witha velocity close to the theoretical maximum. The bottom of the plumeflows significantly more slowly at a higher gas saturation. Due to localheterogeneities, the plume can break into parts. Individual plumes alsocan coalesce and from larger plumes. The analytical results are appliedto studying carbon dioxide flow caused by leaks from deep geologicalformations used for CO2 storage. The results are also applicable formodeling flow of natural gas leaking from seasonal gas storage, or formodeling of secondary hydrocarbon migration.

  7. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  8. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  9. Motion adaptive vertical handoff in cellular/WLAN heterogeneous wireless network.

    Science.gov (United States)

    Li, Limin; Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms.

  10. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  11. Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network

    Science.gov (United States)

    2015-01-01

    In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221

  12. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  13. Application of burst vibrothermography to characterize planar vertical cracks

    Science.gov (United States)

    Mendioroz, Arantza; Celorrio, Ricardo; Cifuentes, Ángel; Zatón, Lander; Salazar, Agustín.

    2016-05-01

    We present a method to characterize vertical cracks in a fast way using burst vibrothermography. In this technique the sample is excited by ultrasounds and, at the defect, rubbing of the contacting surfaces produces heat that can be detected as a temperature rise at the surface using an infrared camera. In this work, first we present the solution of the direct problem, i.e., the calculation of the surface temperature distribution produced by a vertical heat source representing a crack excited by an ultrasound burst, and we choose the information that will be used to characterize the crack, namely, one thermogram and one timing-graph. Next we address the inverse problem, consisting of finding the heat source distribution that is responsible for the observed surface temperature. This inverse problem is ill-posed, and a naïve inversion process is unstable. We propose to use three penalty terms, based on zero order Tikhonov and Total Variation functionals and the Lasso method, to stabilize the inversion. By inverting synthetic data, we analyze the performance of the algorithm as a function of the depth of the heat source and we study the effect of the burst duration and noise level in the data on the quality of the reconstructions. Finally, we invert experimental data taken in samples containing calibrated heat sources. The results show that it is possible to characterize vertical cracks down to depths of 6 mm in AISI 304 stainless steel.

  14. Software For Genetic Algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  15. Modified Clipped LMS Algorithm

    National Research Council Canada - National Science Library

    Lotfizad, Mojtaba; Yazdi, Hadi Sadoghi

    2005-01-01

    A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization...

  16. Relação dos saltos vertical, horizontal e sêxtuplo com a agilidade e velocidade em crianças Relationship of vertical, horizontal and sextuple jumps with agility and speed in children

    Directory of Open Access Journals (Sweden)

    Diogo Henrique Constantino Coledam

    2013-03-01

    Full Text Available Os objetivos do presente estudo foram: 1 verificar a relação dos saltos vertical, horizontal e sêxtuplo com a agilidade e velocidade de 5, 10 e 25 m; 2 verificar a capacidade desses saltos em predizer o desempenho da agilidade e velocidade de 5, 10 e 25 m em crianças. Vinte e oito meninos (9,47 ± 0,64 anos e 30 meninas (9,69 ± 0,70 anos foram avaliados. Os valores de correlação entre a agilidade, velocidade de 5, 10 e 25 m foram, respectivamente, r = 0,63, 0,51, 0,44 e 0,64 com o salto vertical, r = 0,68, 0,62, 0,28 e 0,62 com o salto sêxtuplo, e r = 0,60, 0,50, 0,26 e 0,57 com o salto horizontal. O salto vertical e o salto sêxtuplo foram capazes de predizer o desempenho da agilidade e da velocidade de 25 m (p The aim of the present study were: 1 To verify the relationship of vertical, horizontal and sextuple jumps with agility and velocity of 5, 10 and 25 m; 2 To verify the capacity of these jumps to predict the agility and 5, 10 and 25 m velocity performance in children. Twenty eight boys (9.47 ± 0.64 years and thirty girls (9.69 ± 0.70 years were evaluated. The correlation values between agility and velocity on 5, 10 and 25 m velocity were, respectively, r = 0.63, 0.51, 0.44 and 0.64 with vertical jump, r = 0.68, 0.62, 0.28 and 0.62 with sextuple jump, and r = 0.60, 0.50, 0.26 and 0.57 with horizontal jump. The vertical and sextuple jumps were able to predict the agility and 25 m velocity performance (p < 0.05. Furthermore, they demonstrated capacity to predict 5 and 10 m velocity, respectively (p < 0.05. The vertical and sextuple jump tests may be used for assessment and control of training with children practicing activities that require agility and velocity, since both jumps predicted the agility and velocity performance, which did not occur with the horizontal jump.

  17. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  18. The Aquarius Salinity Retrieval Algorithm

    Science.gov (United States)

    Meissner, Thomas; Wentz, Frank; Hilburn, Kyle; Lagerloef, Gary; Le Vine, David

    2012-01-01

    The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step.

  19. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  20. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  1. Algorithms for airborne Doppler radar wind shear detection

    Science.gov (United States)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  2. New developments in astrodynamics algorithms for autonomous rendezvous

    Science.gov (United States)

    Klumpp, Allan R.

    1991-01-01

    A the core of any autonomous rendezvous guidance system must be two algorithms for solving Lambert's and Kepler's problems, the two fundamental problems in classical astrodynamics. Lambert's problem is to determine the trajectory connecting specified initial and terminal position vectors in a specified transfer time. The solution is the initial and terminal velocity vectors. Kepler's problem is to determine the trajectory that stems from a given initial state (position and velocity). The solution is the state of an earlier or later specified time. To be suitable for flight software, astrodynamics algorithms must be totally reliable, compact, and fast. Although solving Lambert's and Kepler's problems has challenged some of the world's finest minds for over two centuries, only in the last year have algorithms appeared that satisfy all three requirements just stated. This paper presents an evaluation of the most highly regarded Lambert and Kepler algorithms.

  3. Graph Colouring Algorithms

    DEFF Research Database (Denmark)

    Husfeldt, Thore

    2015-01-01

    This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...... techniques and is organized by algorithmic paradigm....

  4. Optimal Mixing Evolutionary Algorithms

    NARCIS (Netherlands)

    D. Thierens (Dirk); P.A.N. Bosman (Peter); N. Krasnogor

    2011-01-01

    htmlabstractA key search mechanism in Evolutionary Algorithms is the mixing or juxtaposing of partial solutions present in the parent solutions. In this paper we look at the efficiency of mixing in genetic algorithms (GAs) and estimation-of-distribution algorithms (EDAs). We compute the mixing

  5. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  6. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  7. Velocity and Drag Evolution From the Leading Edge of a Model Mangrove Forest

    Science.gov (United States)

    Maza, Maria; Adler, Katherine; Ramos, Diogo; Garcia, Adrian Mikhail; Nepf, Heidi

    2017-11-01

    An experimental study of unidirectional flow through a model mangrove forest measured both velocity and forces on individual trees. The individual trees were 1/12th scale models of mature Rhizophora, including 24 prop roots distributed in a three-dimensional layout. Thirty-two model trees were distributed in a staggered array producing a 2.5 m long forest. The velocity evolved from a boundary layer profile at the forest leading edge to a vertical profile determined by the vertical distribution of frontal area, with significantly higher velocity above the prop roots. Fully developed conditions were reached at the fifth tree row from the leading edge. Within the root zone the velocity was reduced by up to 50% and the TKE was increased by as much as fivefold, relative to the upstream conditions. TKE in the root zone was mainly produced by root and trunk wakes, and it agreed in magnitude with the estimation obtained using the Tanino and Nepf (2008) formulation. Maximum TKE occurred at the top of the roots, where a strong shear region was associated with the change in frontal area. The drag measured on individual trees decreased from the leading edge and reached a constant value at the fifth row and beyond, i.e., in the fully developed region. The drag exhibited a quadratic dependence on velocity, which justified the definition of a quadratic drag coefficient. Once the correct drag length-scale was defined, the measured drag coefficients collapsed to a single function of Reynolds number.

  8. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    Science.gov (United States)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  9. A double-gaussian, percentile-based method for estimating maximum blood flow velocity.

    Science.gov (United States)

    Marzban, Caren; Illian, Paul R; Morison, David; Mourad, Pierre D

    2013-11-01

    Transcranial Doppler sonography allows for the estimation of blood flow velocity, whose maximum value, especially at systole, is often of clinical interest. Given that observed values of flow velocity are subject to noise, a useful notion of "maximum" requires a criterion for separating the signal from the noise. All commonly used criteria produce a point estimate (ie, a single value) of maximum flow velocity at any time and therefore convey no information on the distribution or uncertainty of flow velocity. This limitation has clinical consequences especially for patients in vasospasm, whose largest flow velocities can be difficult to measure. Therefore, a method for estimating flow velocity and its uncertainty is desirable. A gaussian mixture model is used to separate the noise from the signal distribution. The time series of a given percentile of the latter, then, provides a flow velocity envelope. This means of estimating the flow velocity envelope naturally allows for displaying several percentiles (e.g., 95th and 99th), thereby conveying uncertainty in the highest flow velocity. Such envelopes were computed for 59 patients and were shown to provide reasonable and useful estimates of the largest flow velocities compared to a standard algorithm. Moreover, we found that the commonly used envelope was generally consistent with the 90th percentile of the signal distribution derived via the gaussian mixture model. Separating the observed distribution of flow velocity into a noise component and a signal component, using a double-gaussian mixture model, allows for the percentiles of the latter to provide meaningful measures of the largest flow velocities and their uncertainty.

  10. Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2018-01-01

    We report velocity measurements in a vertical turbulent convection flow cell that is filled with the eutectic liquid metal alloy gallium-indium-tin by the use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry. We demonstrate the applicability of LLFV for a thermal convection flow and reproduce a linear dependence of the measured force in the range of micronewtons on the local flow velocity magnitude. Furthermore, the presented experiment is used to explore scaling laws of the global turbulent transport of heat and momentum in this low-Prandtl-number convection flow. Our results are found to be consistent with theoretical predictions and recent direct numerical simulations.

  11. Shuttle vertical fin flowfield by the direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T.

    1985-01-01

    The flow properties in a model flowfield, simulating the shuttle vertical fin, determined using the Direct Simulation Monte Carlo method. The case analyzed corresponds to an orbit height of 225 km with the freestream velocity vector orthogonal to the fin surface. Contour plots of the flowfield distributions of density, temperature, velocity and flow angle are presented. The results also include mean molecular collision frequency (which reaches 1/60 sec near the surface), collision frequency density (approaches 7 x 10 to the 18/cu m sec at the surface) and the mean free path (19 m at the surface).

  12. Thermal diffusion effects on free convection and mass transfer flow for an infinite vertical plate

    CERN Document Server

    Abdel-Khalek, M M

    2003-01-01

    A theoretical study is performed to examine the effects of thermal diffusion on free convection and mass transfer flow for an infinite vertical plate. The governing equations for the fluid flow and the heat transfer are solved subject to the relevant boundary conditions. A perturbation technique is used to obtain expressions for the velocity field and skin friction. An analysis of the effects of the parameters on the concentration, velocity and temperature profiles as well as skin friction and the rate of mass and heat transfer is done with the aid of graphs.

  13. Structure of central and southern Mexico from velocity and attenuation tomography

    OpenAIRE

    Chen, Ting; Robert W. Clayton

    2012-01-01

    The 3D V_p, V_p/_Vs, P- and S-wave attenuation structure of the Cocos subduction zone in Mexico is imaged using earthquakes recorded by two temporary seismic arrays and local stations. Direct P wave arrivals on vertical components and direct S wave arrivals on transverse components from local earthquakes are used for velocity imaging. Relative delay times for P and PKP phases from teleseismic events are also used to obtain a deeper velocity structure beneath the southern seismic array. Using ...

  14. Modeling Travel-Time Correlations Based on Sensitivity Kernels and Correlated Velocity Anomalies

    Science.gov (United States)

    2008-09-01

    sensitivity of 1-Hz Pn arrivals are sensitive to the entire velocity profile between the Moho and a maximum depth that reaches 200 km for an arrival at 15...the Earth’s surface, (2) de-correlation of velocity anomalies across interfaces, such as the Moho , and (3) allowing spatial dependence of σ, λ1 and λ2...the Moho down to a depth that increases with distance, with the vertical extent of significant sensitivity (τ ≤ 0.5 s) eventually exceeding our

  15. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    E.A. Belli; G.W. Hammett

    2004-12-17

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.

  16. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...

  17. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  18. Aggregate Settling Velocities in San Francisco Estuary Margins

    Science.gov (United States)

    Allen, R. M.; Stacey, M. T.; Variano, E. A.

    2015-12-01

    One way that humans impact aquatic ecosystems is by adding nutrients and contaminants, which can propagate up the food web and cause blooms and die-offs, respectively. Often, these chemicals are attached to fine sediments, and thus where sediments go, so do these anthropogenic influences. Vertical motion of sediments is important for sinking and burial, and also for indirect effects on horizontal transport. The dynamics of sinking sediment (often in aggregates) are complex, thus we need field data to test and validate existing models. San Francisco Bay is well studied and is often used as a test case for new measurement and model techniques (Barnard et al. 2013). Settling velocities for aggregates vary between 4*10-5 to 1.6*10-2 m/s along the estuary backbone (Manning and Schoellhamer 2013). Model results from South San Francisco Bay shoals suggest two populations of settling particles, one fast (ws of 9 to 5.8*10-4 m/s) and one slow (ws of Brand et al. 2015). While the open waters of San Francisco Bay and other estuaries are well studied and modeled, sediment and contaminants often originate from the margin regions, and the margins remain poorly characterized. We conducted a 24 hour field experiment in a channel slough of South San Francisco Bay, and measured settling velocity, turbulence and flow, and suspended sediment concentration. At this margin location, we found average settling velocities of 4-5*10-5 m/s, and saw settling velocities decrease with decreasing suspended sediment concentration. These results are consistent with, though at the low end of, those seen along the estuary center, and they suggest that the two population model that has been successful along the shoals may also apply in the margins.

  19. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.

    Science.gov (United States)

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2015-02-01

    A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.

  20. Parallel sorting algorithms

    CERN Document Server

    Akl, Selim G

    1985-01-01

    Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the