WorldWideScience

Sample records for vertical root fracture

  1. Medico-legal aspects of vertical root fractures in root filled teeth

    DEFF Research Database (Denmark)

    Rosen, E; Tsesis, I; Tamse, A

    2012-01-01

    To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT).......To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT)....

  2. HEMISECTION: A TREATMENT OPTION FOR AN ENDODONTICALLY TREATED MOLAR WITH VERTICAL ROOT FRACTURE

    Directory of Open Access Journals (Sweden)

    Anitha

    2015-05-01

    Full Text Available Vertical root fractures in endodontically treated teeth have long been reported and pose diagnostic difficulties. A h emisection/Root resection procedure which removes the fractured fragments completely, and retains a portion of the compromised tooth offers a predictable treatment option. The key to this rests in ideal case selection invol ving balancing all indications and contraindications. The success of the treatment depends on careful case selection based on a firm set of guidelines. This article presents a case with vertical root fracture in an endodontic treated molar. This article de scribes the case of a 60 - year - old man with a vertical root fracture on the mesial root and a healthy periodontium supporting the distal root making it ideal for retention as well as restoration and support of the final prosthesis. Also, the patient was mot ivated to try and save as much of the tooth as possible. Post - operatively no untoward complication was reported making it an alternative treatment option in patients with vertical root fracture in a molar, willing to retain the remaining tooth portion. Wit h all other factors balanced, it allows for retaining the remaining intact portion of the tooth structure.

  3. [Distortion and vertical fracture of the root: effect produced by condenser design].

    Science.gov (United States)

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  4. Treatment of a Vertical Root Fracture Using Dual-Curing Resin Cement: A Case Report

    Directory of Open Access Journals (Sweden)

    Nima Moradi Majd

    2012-01-01

    Full Text Available Introduction. Vertical root fracture (VRF is one of the most frustrating complications of root canal treatment. The prognosis of the root with VRF is poor therefore tooth extraction and root amputation are usually the only treatment options. However, bonding of the fracture line with adhesive resin cement during the intentional replantation procedure was recently suggested as an alternative to tooth extraction. Methods. A vertically fractured left maxillary incisor was carefully extracted, fracture line was treated with adhesive resin cement, a retrograde cavity was produced and filled with calcium-enriched mixture (CEM cement, and tooth was replanted. Results. After 12 months the tooth was asymptomatic. The size of periapical radiolucency was noticeably reduced and there was no clinical sign of ankylosis. Conclusion. Using adhesive resin cement to bond the fracture lines extraorally in roots with VRF and intentional replantation of the reconstructed teeth could be considered as an alternative to tooth extraction, especially for anterior teeth.

  5. Vertical Root Fracture: Preservation of the Alveolar Ridge Using Immediate Implants

    Directory of Open Access Journals (Sweden)

    Edmar de Oliveira Oya

    2014-01-01

    Full Text Available Teeth with vertical root fracture (VRF have complete or incomplete fractures that begin in the root and extend toward the occlusal surface. The most frequent causes of VRF originate from physical trauma, occlusal prematurity, inadequate endodontic treatment, and iatrogenic causes. Diagnose is difficult and delay can cause stomatognathic system problem. The purpose of this case report was to evaluate immediate implant placement after extraction of teeth with vertical root fracture. For the 1st case, the VRF in 1st left lower molar was confirmed during surgical flap and at the same time, the tooth was removed and immediate implant was placed. For the 2nd case, the VRF 1st left lower molar was confirmed during endodontic access and at the same appointment, the tooth was removed and the immediate implant is placed. Several studies have shown that immediate implants have similar success rates when compared with late implants. Consider that this approach is a safe procedure with favorable prognosis. In cases of VRF, the main factor to be considered is the presence of adequate bone support and immediate implants can preserve the vertical bone height, adding the fact that good patient compliance reduces the number of surgical interventions and promotes the functionality of stomatognathic system.

  6. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.

    Science.gov (United States)

    Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan

    2013-04-01

    To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.

  7. Diagnosis and Managment of Maxillary Incisor with Vertical Root Fracture: A Clinical Report with Three-Year Follow-Up

    OpenAIRE

    Kallel, Ines; Moussaoui, Eya; Chtioui, Fadwa; Douki, Nabiha

    2018-01-01

    According to the American Association of Endodontists, “a ‘true’ vertical root fracture is defined as a complete or incomplete fracture initiated from the root at any level, usually directed buccolingually.” Vertical root fracture (VRF) usually starts from an internal dentinal crack and develops over time, due to masticatory forces and occlusal loads. When they occur in teeth, those types of fractures can present difficulties in diagnosis, and there are however many clinic and radiographical ...

  8. Digital radiography with computerized conventional monitors compared to medical monitors in vertical root fracture diagnosis.

    Science.gov (United States)

    Tofangchiha, Maryam; Adel, Mamak; Bakhshi, Mahin; Esfehani, Mahsa; Nazeman, Pantea; Ghorbani Elizeyi, Mojgan; Javadi, Amir

    2013-01-01

    Vertical root fracture (VRF) is a complication which is chiefly diagnosed radiographically. Recently, film-based radiography has been substituted with digital radiography. At the moment, there is a wide range of monitors available in the market for viewing digital images. The present study aims to compare the diagnostic accuracy, sensitivity and specificity of medical and conventional monitors in detection of vertical root fractures. In this in vitro study 228 extracted single-rooted human teeth were endodontically treated. Vertical root fractures were induced in 114 samples. The teeth were imaged by a digital charge-coupled device radiography using parallel technique. The images were evaluated by a radiologist and an endodontist on two medical and conventional liquid-crystal display (LCD) monitors twice. Z-test was used to analyze the sensitivity, accuracy and specificity of each monitor. Significance level was set at 0.05. Inter and intra observer agreements were calculated by Cohen's kappa. Accuracy, specificity and sensitivity for conventional monitor were calculated as 67.5%, 72%, 62.5% respectively; and data for medical grade monitor were 67.5%, 66.5% and 68% respectively. Statistical analysis showed no significant differences in detecting VRF between the two techniques. Inter-observer agreement for conventional and medical monitor was 0.47 and 0.55 respectively (moderate). Intra-observer agreement was 0.78 for medical monitor and 0.87 for conventional one (substantial). The type of monitor does not influence diagnosis of vertical root fractures.

  9. Diagnosis and Managment of Maxillary Incisor with Vertical Root Fracture: A Clinical Report with Three-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Ines Kallel

    2018-01-01

    Full Text Available According to the American Association of Endodontists, “a ‘true’ vertical root fracture is defined as a complete or incomplete fracture initiated from the root at any level, usually directed buccolingually.” Vertical root fracture (VRF usually starts from an internal dentinal crack and develops over time, due to masticatory forces and occlusal loads. When they occur in teeth, those types of fractures can present difficulties in diagnosis, and there are however many clinic and radiographical signs which can guide clinicians to the existence of the fracture. Prognosis, most often, is hopeless, and differential diagnosis from other etiologies may be difficult sometimes. In this paper, we present a case of VRF diagnosed after surgical exploration; the enlarged fracture line was filled with a fluid resin. A 36-month clinical and radiological follow-up showed an asymptomatic tooth, reduction of the periodontal probing depth from 7 mm prior to treatment to 4 mm with no signs of ankylosis. In this work, the diagnosis and treatment alternatives of vertical root fracture were discussed through the presented clinical case.

  10. Diagnosis and Managment of Maxillary Incisor with Vertical Root Fracture: A Clinical Report with Three-Year Follow-Up.

    Science.gov (United States)

    Kallel, Ines; Moussaoui, Eya; Chtioui, Fadwa; Douki, Nabiha

    2018-01-01

    According to the American Association of Endodontists, "a 'true' vertical root fracture is defined as a complete or incomplete fracture initiated from the root at any level, usually directed buccolingually." Vertical root fracture (VRF) usually starts from an internal dentinal crack and develops over time, due to masticatory forces and occlusal loads. When they occur in teeth, those types of fractures can present difficulties in diagnosis, and there are however many clinic and radiographical signs which can guide clinicians to the existence of the fracture. Prognosis, most often, is hopeless, and differential diagnosis from other etiologies may be difficult sometimes. In this paper, we present a case of VRF diagnosed after surgical exploration; the enlarged fracture line was filled with a fluid resin. A 36-month clinical and radiological follow-up showed an asymptomatic tooth, reduction of the periodontal probing depth from 7 mm prior to treatment to 4 mm with no signs of ankylosis. In this work, the diagnosis and treatment alternatives of vertical root fracture were discussed through the presented clinical case.

  11. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan

    NARCIS (Netherlands)

    Hassan, B.; Metska, M.E.; Özok, A.R.; van der Stelt, P.; Wesselink, P.R.

    2009-01-01

    Our aim was to compare the accuracy of cone beam computed tomography (CBCT) scans and periapical radiographs (PRs) in detecting vertical root fractures (VRFs) and to assess the influence of root canal filling (RCF) on fracture visibility. Eighty teeth were endodontically prepared and divided into

  12. [Vertical fractures: apropos of 2 clinical cases].

    Science.gov (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  13. A demographic analysis of vertical root fractures.

    Science.gov (United States)

    Cohen, Stephen; Berman, Louis H; Blanco, Lucia; Bakland, Leif; Kim, Jay S

    2006-12-01

    Teeth with vertical root fractures (VRFs) have complete or incomplete fractures that extends through the enamel, dentin and pulp, down the long axis of the tooth. Several different variables were investigated and statistically evaluated as to their correlation with the presence of VRFs. Specifically analyzed were gender, tooth location, age, radiographic and clinical findings, bruxism, and pulpal status. The data were collected from three different endodontists, from three different geographic locations, comprising a total of 227 teeth. Although VRFs may occur in conjunction with any of the parameters investigated, only certain factors were found to occur in a significant number of cases. The results indicate that VRFs are statistically more prevalent in mandibular molars and maxillary premolars. They are associated with periradicular bone loss, pain to percussion, extensive restorations, and seem to occur more often in females and older patients. However, VRFs are not necessarily related to periapical bone loss, a widening of the periodontal ligament space, associated periodontal pockets, a sinus tract, particular pulpal status, or bruxism.

  14. Comparison of five cone beam computed tomography systems for the detection of vertical root fractures

    NARCIS (Netherlands)

    Hassan, B.; Metska, M.E.; Ozok, A.R.; van der Stelt, P.; Wesselink, P.R.

    2010-01-01

    Introduction This study compared the accuracy of cone beam computed tomography (CBCT) scans made by five different systems in detecting vertical root fractures (VRFs). It also assessed the influence of the presence of root canal filling (RCF), CBCT slice orientation selection, and the type of tooth

  15. Diagnostic accuracy of artificially induced vertical root fractures: a comparison of direct digital periapical images with conventional periapical images

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kwon, Ki Jeong; Koh, Kwang Joon

    2004-01-01

    To compare the diagnostic accuracy for the detection of root fractures in CMOS-based digital periapical images with conventional film-based periapical images. Sixty extracted single-root human teeth with closed apices were prepared endodontically and divided into two groups; artificially induced vertical root fracture group and control group. All radiographs were obtained using the paralleling technique. The radiographs were examined by 4 observers three times within a 4 week interval. Receiver operating characteristic (ROC) analysis was carried out using data obtained from four observers. Intra- and inter-examiner agreements were computed using kappa analysis. The area under the ROC curve (Az) was used as an indicator of the diagnostic accuracy of the imaging system. Az values were as follows: direct-digital images; 0.93, film-based images; 0.92, and inverted digital images; 0.91. There was no significant difference between imaging modalities(P<0.05). The kappa value of inter-observer agreement was 0.42(range:0.28-0.60) and intra-observer agreement was 0.57(range:0.44-0.75). There is no statistical difference in diagnostic accuracy for the detection of vertical root fractures between digital periapical images and conventional periapical images. The results indicate that the CMOS sensor is a good image detector for the evaluation of vertical root fractures.

  16. An overview of management of root fractures.

    Science.gov (United States)

    Prithviraj, D R; Bhalla, H K; Vashisht, R; Regish, K M; Suresh, P

    2014-01-01

    Crown or root fractures are the most commonly encountered emergencies in the dental clinic. Root fractures occur in fewer than eight percent of the traumatic injuries to permanent teeth. They are broadly classified as horizontal and vertical root fractures. Correct diagnosis of root fractures is essential to ensure a proper treatment plan and hence, the best possible prognosis. Indication of the type of treatment to be used depends primarily on the level of the fracture line. Therefore, a clinician must also have a thorough knowledge of the various treatment approaches to devise a treatment plan accordingly. Various treatment strategies have been proposed, each with their own advantages and disadvantages. Hence, this literature review presents an overview of the various types of root fractures and their management.

  17. Assessment of vertical fracture using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moudi, Ehsan; Madani, Zahrasadat; Alhavaz, Abdolhamid; Bijani, Ali [Dental Material Research Center, Dental School, Babol University of Medical Sciences, Babol, (Korea, Republic of); Bagheri, Mohammad [Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol (Korea, Republic of)

    2014-03-15

    The aim of this study was to investigate the accuracy of cone-beam computed tomography (CBCT) in the diagnosis of vertical root fractures in a tooth with gutta-percha and prefabricated posts. This study selected 96 extracted molar and premolar teeth of the mandible. These teeth were divided into six groups as follows: Groups A, B, and C consisted of teeth with vertical root fractures, and groups D, E, and F had teeth without vertical root fractures; groups A and D had teeth with gutta-percha and prefabricated posts; groups B and E had teeth with gutta-percha but without prefabricated posts, and groups C and F had teeth without gutta-percha or prefabricated posts. Then, the CBCT scans were obtained and examined by three oral and maxillofacial radiologists in order to determine the presence of vertical root fractures. The data were analyzed using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA). The kappa coefficient was 0.875 ± 0.049. Groups A and D showed a sensitivity of 81% and a specificity of 100%; groups E and B, a sensitivity of 94% and a specificity of 100%; and groups C and F, a sensitivity of 88% and a specificity of 100%. The CBCT scans revealed a high accuracy in the diagnosis of vertical root fractures; the accuracy did not decrease in the presence of gutta-percha. The presence of prefabricated posts also had little effect on the accuracy of the system, which was, of course, not statistically significant.

  18. Detection of vertical root fractures in vivo in endodontically treated teeth by cone-beam computed tomography scans

    NARCIS (Netherlands)

    Metska, M.E.; Aartman, I.H.A.; Wesselink, P.R.; Özok, A.R.

    2012-01-01

    Introduction The presence of a vertical root fracture (VRF) in an endodontically treated tooth has an immense impact on the treatment’s outcome. Early diagnosis of a VRF is imperative to avoid overtreatment and extensive bone loss. Our study aimed to examine the validity of 2 cone-beam computed

  19. Comparative evaluation of the vertical fracture resistance of endodontically treated roots filled with Gutta-percha and Resilon: a meta-analysis of in vitro studies.

    Science.gov (United States)

    Tan, Minmin; Chai, Zhaowu; Sun, Chengjun; Hu, Bo; Gao, Xiang; Chen, Yunjia; Song, Jinlin

    2018-06-13

    Teeth treated endodontically are more susceptible to vertical root fracture (VRF). Some studies have suggested that obturating the root canals with Gutta-percha or Resilon can reinforce endodontically treated teeth, but a few others have presented conflicting results. These inconsistent results cannot guide clinicians in determining clinical approaches. The objective of this meta-analysis is to evaluate and compare the vertical fracture resistance of endodontically treated root canals obturated with Gutta-percha/AH plus and the Resilon system. Comprehensive literature searches were performed in the PubMed, Cochrane Library, ScienceDirect, Web of Science and Embase databases. The titles and abstracts of all of the retrieved articles were independently assessed by two authors according to predefined selection criteria. Data in the included articles were independently extracted. Statistical analyses were conducted using Review Manager 5.3 and Stata 12.0 software. The pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated for the outcome indicators. The level of statistical significance was set at p < 0.05. The Cochran Q test (I 2 test) was used to test for heterogeneity among studies. Fourteen randomized controlled in vitro trials were included in the meta-analysis. The results demonstrated that the vertical root fracture resistance of unprepared and unfilled roots was significantly higher than that of roots obturated with Gutta-percha/AH plus (SMD = - 0.69, 95% CI = - 1.34 to - 0.04, p = 0.04) or the Resilon system (SMD = - 0.54, 95% CI = - 1.07 to - 0.00, p = 0.05). The differences in fracture resistance between the roots filled with Gutta-percha/AH plus and the prepared unfilled root canals was not significant (SMD = 0.59, 95% CI = - 0.02 to 1.21, p = 0.06). Roots obturated with Resilon had higher fracture resistance than instrumented unfilled roots (SMD = 0.83, 95

  20. Comparative diagnostic yield of cone beam CT reconstruction using various software programs on the detection of vertical root fractures.

    Science.gov (United States)

    Melo, S L S; Haiter-Neto, F; Correa, L R; Scarfe, W C; Farman, A G

    2013-01-01

    To evaluate the effect on diagnostic yield in the detection of experimentally induced vertical root fractures on cone beam CT images using four dental software program. 190 single-rooted extracted human teeth were divided into three groups according to the pulp canal status: unrestored (UR), filled with gutta-percha (GP) and restored with a metallic custom post (Post). One-half of the sample of each group was artificially fractured and the segments repositioned. All teeth were scanned on a cone beam CT device at 0.2 mm nominal voxel resolution (i-CAT Platinum; Imaging Sciences International, Hatfield, PA). The data were exported as digital imaging and communications in medicine files and imported into Dolphin Imaging & Management Solutions, v. 11.5 (Patterson Dental Supply Inc., St Paul, MN), InVivoDental, v. 5.0 (Anatomage Inc., San Jose, CA) and Kodak Dental Imaging Software 3D module, v. 2.1.11 (Carestream Health Inc., Rochester, NY) software. Cross-sectional images in the acquisition (using Xoran CAT™, v. 3.0.34 software; Xoran Technologies, Ann Arbor, MI) and additional software were presented to three calibrated oral radiologists who rated the presence or absence of root fracture on a five-point scale. Receiver operating characteristic analysis was performed, and treatment comparisons compared by analysis of variance and pairwise comparisons were performed using Tukey's test at an a priori value of α < 0.05%. All dental software performed equally at detecting fractures. Fractures were significantly more difficult to detect when posts were present. The diagnosis of root fracture is software-independent. The presence of an intracanal metallic post significantly decreases the detection of artificially created root fractures.

  1. Influence of X-ray beam angulations on the detection of horizontal root fractures

    Directory of Open Access Journals (Sweden)

    Josue Martos

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the variation of vertical angle for detection of fractures. Materials and Methods: Twenty-five (25 single-rooted premolar teeth were divided into two groups, fractured teeth (n = 15 and non-fractured teeth (n = 10. Artificially fractured teeth were classified according to location, number of fragments, and direction of fracture line: Horizontal, oblique, or complex. The tooth fragments were juxtaposed with cyanoacrylate, and the specimens (fractured and non-fractured were placed individually in the dental alveolus of a human jaw with the aid of silicone rubber impression material and submitted to eight periapical radiographs in a digital sensor with a vertical range of 10 degrees (−40, −30, −20, −10, 0, +10, +20, +30. Three examiners evaluated the characteristics of the fractures and their correlation with the radiographic diagnosis (perceived or not by varying the vertical angle. Statistical Analysis: Descriptive analysis was performed through the analytical comparison and Kappa test inter-examiner. Results: Among the three examiners, inter-examiner Kappa value was 0.536. The radiographic identification of root fracture in the 15 prepared samples was 60% (nine at angle 0, and at the angles of +10, −10, and −20, it was less than 50%. Conclusions: Multiple radiographs with variations of vertical angle are fundamental to facilitate the diagnosis of horizontal root fractures in premolars.

  2. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination.

    Science.gov (United States)

    Miguéns-Vila, Ramón; Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-10-01

    One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. 60 human mandibular premolars with curvatures between 30-49° and radii between 2-4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) ( P Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system ( P Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words: Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture.

  3. Oral cutaneous sinus tract, vertical root fracture, and bisphosphonate-related osteonecrosis: a case report.

    Science.gov (United States)

    Wigler, Ronald; Steinbock, Nelly; Berg, Tal

    2013-08-01

    Oral cutaneous sinus tracts (OCSTs) of dental origin are often initially misdiagnosed and inappropriately treated. Accurate diagnosis is especially important in cases of bisphosphonate (BP) therapy because extraction may lead to a risk of osteonecrosis. A case report of misdiagnosis related to a tooth with a vertical root fracture in an oncologic patient treated with BPs is reported here. In 2011, a 75-year-old woman was examined at the oral medicine clinic because of pain and swelling of the left submandibular area. The patient's medical history included oral and intravenous BP therapy because she was diagnosed with metastatic breast cancer and left maxillary stage 1 antiresorptive agent-induced osteonecrosis of the jaw. The lower left odontogenic region showed no signs or symptoms, and no apical pathosis was observed on imaging. Although antibiotics were applied, clinical symptoms worsened and an OCST appeared. Intravenous antibiotic treatment was pursued. Biopsy and direct smear from fistula were not conclusive. A diagnosis of a nonexposed variant of stage 3 antiresorptive agent-induced osteonecrosis of the jaw was established. Symptoms resolved after 2 weeks of antibiotic treatment and reappeared a month later. Endodontic examination revealed that the origin of the OCST was tooth no. 18 caused by a vertical root fracture, and the tooth was extracted. The patient was scheduled for routine checkups because of the fact that osteonecrosis may occur in intravenous BP-treated patients. Early correct diagnosis can prevent unnecessary and ineffective antibiotic therapy and surgical intervention, which is not recommended in intravenous BP cases. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Optimization of Tube Current in Cone-beam Computed Tomography for the Detection of Vertical Root Fractures with Different Intracanal Materials.

    Science.gov (United States)

    Gaêta-Araujo, Hugo; Silva de Souza, Gabriela Queiroz; Freitas, Deborah Queiroz; de Oliveira-Santos, Christiano

    2017-10-01

    There is no consensus about the accuracy of cone-beam computed tomography (CBCT) for detecting vertical root fractures (VRFs), nor is there certainty about the isolated effect of different tube current parameters on the diagnosis of VRF through CBCT scans. This study aimed to evaluate how tube current affects the detection of VRF on CBCT examinations in the absence of intracanal materials and in the presence of gutta-percha (GP) and metal (MP) or fiberglass (FP) intracanal posts. The sample consisted of 320 CBCT scans of tooth roots with and without VRF divided into 8 groups: no fracture/no intracanal material; no fracture + GP; no fracture + MP; no fracture + FP; fracture/no intracanal material; fracture + GP; fracture + MP; fracture + FP. The scans were acquired with an OP300 unit using 4 different milliamperes (4 mA, 8 mA, 10 mA, 13 mA). Five oral radiologists analyzed the images. The area under the receiver operating characteristic curve (Az), sensitivity, specificity, positive and negative predictive values, and interobserver agreement were calculated. Diagnostic performance for the different milliamperes tested was similar for teeth without root filling materials or with FP. Teeth with GP and MP showed the highest Az values for 8 mA and 10 mA, respectively. For teeth with MP, specificity was significantly higher when 10 mA was used. For teeth without root filling materials or with FP, the use of a reduced milliampere does not seem to influence the detection of VRF in a significant manner. For teeth with GP and MP, an increased milliampere may lead to increased diagnostic performance. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  6. Comparing the Effect of Different Voxel Resolutions for Assessment of Vertical Root Fracture of Permanent Teeth

    International Nuclear Information System (INIS)

    Uzun, Ismail; Gunduz, Kaan; Celenk, Peruze; Avsever, Hakan; Orhan, Kaan; Canitezer, Gozde; Ozmen, Bilal; Cicek, Ersan; Egrioglu, Erol

    2015-01-01

    The teeth with undiagnosed vertical root fractures (VRFs) are likely to receive endodontic treatment or retreatment, leading to frustration and inappropriate endodontic therapies. Moreover, many cases of VRFs cannot be diagnosed definitively until the extraction of tooth. This study aimed to assess the use of different voxel resolutions of two different cone beam computerized tomography (CBCT) units in the detection VRFs in vitro. The study material comprised 74 extracted human mandibular single rooted premolar teeth without root fractures that had not undergone any root-canal treatment. Images were obtained by two different CBCT units. Four image sets were obtained as follows: 1) 3D Accuitomo 170, 4 × 4 cm field of view (FOV) (0.080 mm 3 ); 2) 3D Accuitomo 170. 6 × 6 cm FOV (0.125 mm 3 ); 3) NewTom 3G, 6” (0.16 mm 3 ) and 4) NewTom 3G, 9” FOV (0.25 mm 3 ). Kappa coefficients were calculated to assess both intra- and inter-observer agreements for each image set. No significant differences were found among observers or voxel sizes, with high average Z (Az) results being reported for all groups. Both intra- and inter-observer agreement values were relatively better for 3D Accuitomo 170 images than the images from NewTom 3G. The highest Az and kappa values were obtained with 3D Accuitomo 170, 4 × 4 cm FOV (0.080 mm 3 ) images. No significant differences were found among observers or voxel sizes, with high Az results reported for all groups

  7. Effect of Metal Artifacts on Detection of Vertical Root Fractures Using Two Cone Beam Computed Tomography Systems.

    Science.gov (United States)

    Safi, Yaser; Aghdasi, Mohammad Mehdi; Ezoddini-Ardakani, Fatemeh; Beiraghi, Samira; Vasegh, Zahra

    2015-01-01

    Vertical root fracture (VRF) is common in endodontically treated teeth. Conventional and digital radiographies have limitations for detection of VRFs. Cone-beam computed tomography (CBCT) offers greater detection accuracy of VRFs in comparison with conventional radiography. This study compared the effects of metal artifacts on detection of VRFs by using two CBCT systems. Eighty extracted premolars were selected and sectioned at the level of the cemento enamel junction (CEJ). After preparation, root canals were filled with gutta-percha. Subsequently, two thirds of the root fillings were removed for post space preparation and a custom-made post was cemented into each canal. The teeth were randomly divided into two groups (n=40). In the test group, root fracture was created with Instron universal testing machine. The control teeth remained intact. CBCT scans of all teeth were obtained with either New Tom VGI or Soredex Scanora 3D. Three observers analyzed the images for detection of VRF. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for VRF detection and percentage of probable cases were calculated for each imaging system and compared using non-parametric tests considering the non-normal distribution of data. The inter-observer reproducibility was calculated using the weighted kappa coefficient. There were no statistically significant differences in sensitivity, specificity, PPV and NPV between the two CBCT systems. The effect of metal artifacts on VRF detection was not significantly different between the two CBCT systems.

  8. Diagnosis of alveolar and root fractures: an in vitro study comparing CBCT imaging with periapical radiographs

    Directory of Open Access Journals (Sweden)

    Solange KOBAYASHI-VELASCO

    Full Text Available Abstract Objective To compare periapical radiograph (PR and cone-beam computed tomography (CBCT in the diagnosis of alveolar and root fractures. Material and Methods Sixty incisor teeth (20 higid and 40 with root fracture from dogs were inserted in 60 anterior alveolar sockets (40 higid and 20 with alveolar fracture of 15 macerated canine maxillae. Each fractured socket had a root fractured tooth inserted in it. Afterwards, each maxilla was submitted to PR in two different vertical angulation incidences, and to CBCT imaging with a small field of view (FOV and high-definition protocol. Images were randomized and posteriorly analyzed by two oral and maxillofacial radiologists two times, with a two-week interval between observations. Results Sensitivity and specificity values were good for root fractures for PR and CBCT. For alveolar fractures, sensitivity ranged from 0.10 to 0.90 for PR and from 0.50 to 0.65 for CBCT. Specificity for alveolar fractures showed lower results than for root fractures for PR and CBCT. Areas under the ROC curve showed good results for both PR and CBCT for root fractures. However, results were fair for both PR and CBCT for alveolar fractures. When submitted to repeated measures ANOVA tests, there was a statistically significant difference between PR and CBCT for root fractures. Root fracture intraobserver agreement ranged from 0.90 to 0.93, and alveolar fracture intraobserver agreement ranged from 0.30 to 0.57. Interobserver agreement results were substantial for root fractures and poor/fair for alveolar fractures (0.11 for PR and 0.30 for CBCT. Conclusion Periapical radiograph with two different vertical angulations may be considered an accurate method to detect root fractures. However, PR showed poorer results than CBCT for the diagnosis of alveolar fractures. When no fractures are diagnosed in PR and the patient describes pain symptoms, the subsequent exam of choice is CBCT.

  9. Prevalence of vertical root fracture as the reason for tooth extraction in dental clinics.

    Science.gov (United States)

    Yoshino, Koichi; Ito, Koji; Kuroda, Masahiko; Sugihara, Naoki

    2015-07-01

    The aim of this study was to investigate the prevalence, by gender, of vertical root fracture (VRF) as the main reason for the extraction of permanent teeth in dental clinics in Tokyo. Participating dentists were requested to provide information about extractions of permanent teeth they had performed from 1 January 2013 to 30 June 2013. The main reasons for extraction were categorized as follows: VRF, caries (horizontal root fracture included), periodontal disease and others. At a total of 24 clinics, 736 teeth were extracted from 626 patients during the 6-month period. A total of 233 teeth were extracted by VRF (31.7%), and 93.6% of these were endodontically treated teeth. Among non-vital extracted teeth, 82.1% (179/218) had cast posts or screw posts. The percentage of extraction due to VRF was 29.4% in males and 34.7% in females. In females, the percentage of extractions due to VRF (34.7%) was higher than for periodontal disease (28.1%). In males, the percentage of extractions due to VRF increased with age (p < 0.05). The tooth types with the highest percentage of extractions due to VRF were the upper canine (46.7%), lower second premolar (48.0%) and lower first molar (50.0%) in males and the upper first premolar (43.3%), upper second premolar (44.4%), lower second premolar (53.8%) and lower first molar (54.5%) in females. These results indicate that we need to pay more attention to maintaining vital teeth while being aware of the particular tooth types in which VRF most frequently occurs.

  10. Comparison of the Effect of Canal Preparation by Step Back Technique Using Hand Instruments and Gates Glidden Drills with ProTaper Universal Rotary System on the Root Resistance to Vertical Fracture

    Directory of Open Access Journals (Sweden)

    A Abbaszadegan

    2013-06-01

    Full Text Available Introduction: Cleaning and shaping of the root canal system with an efficient and safe technique are the major goals of root canal treatment. The aim of this study was to compare the conventional root canal preparation technique by hand instruments and Gates Glidden drills with ProTaper Universal Rotary system on the root susceptibility to vertical fracture. Methods: Thirty extracted human mandibular premolars were randomly assigned to two groups. In group I, apical preparation was performed with k-files up to #40 utilizing step back technique and coronal flaring was done with Gates Glidden drills. In group II, ProTaper Universal Rotary instruments were used up to the file F4. All teeth were obturated with lateral compaction technique using gutta-percha and AH26 sealer. A simulated periodontal ligament was fabricated, and the teeth were mounted. A stainless steel finger spreader #35 was mounted in an Instron testing machine and the necessary load to cause a root fracture was inserted and recorded. The obtained data were analyzed statistically using T-test. Results: The force required to fracture was significantly lower for the roots prepared by ProTaper instruments in comparison with the specimens prepared by hand instruments and Gates Glidden drills (P< 0.001. Conclusion: Canal preparation with ProTaper rotary instruments can make the roots more susceptible to vertical fracture than traditional instrumentation with k-files and Gates Glidden drills.

  11. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  12. Comparative evaluation of rotary ProTaper, Profile, and conventional stepback technique on reduction in Enterococcus faecalis colony-forming units and vertical root fracture resistance of root canals.

    Science.gov (United States)

    Singla, Mamta; Aggarwal, Vivek; Logani, Ajay; Shah, Naseem

    2010-03-01

    The purpose of this in vitro study was to evaluate the effect of various root canal instrumentation techniques with different instrument tapers on cleaning efficacy and resultant vertical root fracture (VRF) strength of the roots. Fifty human mandibular first premolar roots were enlarged to ISO size 20, inoculated with Enterococcus faecalis [ATCC2912] for 72 hours and divided into 5 groups: group I: prepared with .02 taper hand instruments ISO size 40; group II: Profile .04 taper size 40; group III: Profile .06 taper size 40; group IV: ProTaper size F4; and group V (control group) further divided into: Va: with bacterial inoculation and no mechanical instrumentation; and Group Vb: neither bacterial inoculation nor mechanical instrumentation. Cleaning efficacy was evaluated in terms of reduction of colony forming units (CFUs). The VRF strength was evaluated using D11 spreader as wedge in an Instron testing machine. Root canals instrumented with ProTaper and 6% Profile instruments showed maximum reduction in CFUs, with statistically insignificant difference between them. The VRF resistance decreased in all instrumented groups. The difference of VRF between 2% and 4% taper Profile groups was statistically insignificant (P = .195). One-way analysis of variance showed that canals instrumented with ProTaper F4 showed maximum reduction in VRF resistance compared with control uninstrumented group. Profile 6% taper instruments offer the advantage of maximum debridement without significant reduction in root fracture resistance. Copyright 2010 Mosby, Inc. All rights reserved.

  13. Effect of titanium and stainless steel posts in detection of vertical root fractures using NEWTOM VG cone beam computed tomography system

    International Nuclear Information System (INIS)

    Mohammadpour, Mahdis; Bakhshalian, Neema; Shahab, Shahriar; Sadeghi, Shaya; Ataee, Mona; Sarikhani, Soodeh

    2014-01-01

    Vertical root fracture (VRF) is a common complication in endodontically treated teeth. Considering the poor prognosis of VRF, a reliable and valid detection method is necessary. Cone beam computed tomography (CBCT) has been reported to be a reliable tool for the detection of VRF; however, the presence of metallic intracanal posts can decrease the diagnostic values of CBCT systems. This study evaluated and compared the effects of intracanal stainless steel or titanium posts on the sensitivity, specificity, and accuracy of VRF detection using a NewTom VG CBCT system. Eighty extracted single-rooted teeth were selected and sectioned at the cemento-enamel junction. The roots were divided into two groups of 40. Root fracture was induced in the test group by using an Instron machine, while the control group was kept intact. Roots were randomly embedded in acrylic blocks and radiographed with the NewTom VG, both with titanium and stainless steel posts and also without posts. Sensitivity, specificity, and accuracy values were calculated as compared to the gold standard. The sensitivity, specificity, and accuracy of VRF diagnosis were significantly lower in teeth with stainless steel and titanium posts than in those without posts. Interobserver agreement was the highest in teeth without posts, followed by stainless steel posts, and then titanium posts. Intracanal posts significantly decreased the VRF diagnostic values of CBCT. The stainless steel posts decreased the diagnostic values more than the titanium posts.

  14. Effect of titanium and stainless steel posts in detection of vertical root fractures using NEWTOM VG cone beam computed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpour, Mahdis [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Qazvin University of Medical Sciences, Qazvin (Iran, Islamic Republic of); Bakhshalian, Neema [Dept. of Advanced Periodontology, Ostrow School of Dentistry, University of Southern California, Los Angeles (United States); Shahab, Shahriar [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Shahed University, Tehran (Iran, Islamic Republic of); Sadeghi, Shaya; Ataee, Mona [Radmehr Oral and Maxillofacial Radiology Clinic, Ghazvin (Iran, Islamic Republic of); Sarikhani, Soodeh [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, University of Golestan, Gorgan (Iran, Islamic Republic of)

    2014-06-15

    Vertical root fracture (VRF) is a common complication in endodontically treated teeth. Considering the poor prognosis of VRF, a reliable and valid detection method is necessary. Cone beam computed tomography (CBCT) has been reported to be a reliable tool for the detection of VRF; however, the presence of metallic intracanal posts can decrease the diagnostic values of CBCT systems. This study evaluated and compared the effects of intracanal stainless steel or titanium posts on the sensitivity, specificity, and accuracy of VRF detection using a NewTom VG CBCT system. Eighty extracted single-rooted teeth were selected and sectioned at the cemento-enamel junction. The roots were divided into two groups of 40. Root fracture was induced in the test group by using an Instron machine, while the control group was kept intact. Roots were randomly embedded in acrylic blocks and radiographed with the NewTom VG, both with titanium and stainless steel posts and also without posts. Sensitivity, specificity, and accuracy values were calculated as compared to the gold standard. The sensitivity, specificity, and accuracy of VRF diagnosis were significantly lower in teeth with stainless steel and titanium posts than in those without posts. Interobserver agreement was the highest in teeth without posts, followed by stainless steel posts, and then titanium posts. Intracanal posts significantly decreased the VRF diagnostic values of CBCT. The stainless steel posts decreased the diagnostic values more than the titanium posts.

  15. Comparison of the Effect of Canal Preparation by Step Back Technique Using Hand Instruments and Gates Glidden Drills with ProTaper Universal Rotary System on the Root Resistance to Vertical Fracture

    OpenAIRE

    A Abbaszadegan; Z Sadat Aleyasin; M Sedigh Shamsi; Sh Shahriari

    2013-01-01

    Introduction: Cleaning and shaping of the root canal system with an efficient and safe technique are the major goals of root canal treatment. The aim of this study was to compare the conventional root canal preparation technique by hand instruments and Gates Glidden drills with ProTaper Universal Rotary system on the root susceptibility to vertical fracture. Methods: Thirty extracted human mandibular premolars were randomly assigned to two groups. In group I, apical preparation was performed ...

  16. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  17. Conservative management of displaced horizontal root fracture

    Directory of Open Access Journals (Sweden)

    Sanjeev Kunhappan

    2011-01-01

    Full Text Available Traumatic injuries of teeth are the main cause of emergency treatment in dental practice. Radicular fractures in permanent teeth are uncommon, being only 0.5-7% of the cases. Horizontal root fractures are more frequently observed in the maxillary anterior region of young male patients and vary in severity from enamel fractures to avulsions. Fracture occurs often in the middle-third of the root followed by apical and coronal third. The present case report describes a clinical case of a horizontal root fracture located at the middle third of a maxillary left-central incisor treated endodontically after approximating fracture segment with the help of orthodontic appliance. After 6 months follow-up, the tooth was asymptomatic with normal periodontal health.

  18. Nonsurgical management of horizontal root fracture associated external root resorption and internal root resorption

    Directory of Open Access Journals (Sweden)

    Shiraz Pasha

    2016-01-01

    Full Text Available Horizontal root fractures, which frequently affect the upper incisors, usually result from a frontal impact. As a result, combined injuries occur in dental tissues such as the pulp, dentin, cementum, periodontal ligament, and alveolar bone. Internal root canal inflammatory resorption involves a progressive loss of intraradicular dentin without adjunctive deposition of hard tissues adjacent to the resorptive sites. It is frequently associated with chronic pulpal inflammation, and bacteria might be identified from the granulation tissues when the lesion is progressive to the extent that it is identifiable with routine radiographs. With the advancement in technology, it is imperative to use modern diagnostic tools such as cone beam computed tomography and radiovisuography to diagnose and confirm the presence and extent of resorptions and fractures and their exact location. This case report presents a rare case having internal root resorption and horizontal root fracture with external inflammatory root resorption both which were treated successfully following guidelines by International Association of Dental Traumatology by nonsurgical treatment with 1 year follow-up.

  19. Treatment of root fracture with accompanying resorption using cermet cement.

    Science.gov (United States)

    Lui, J L

    1992-02-01

    A method of treating an apical root fracture with accompanying resorption at the junction of the fracture fragments using glass-cermet cement is described. Endodontically, the material had previously been used for repair of lateral resorptive root defects and retrograde root fillings. Complete bone regeneration was observed three years post-operatively following treatment of the root fracture in the conventional manner. The various advantages of glass-cermet cement as a root filling material used in the technique described are discussed.

  20. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    Science.gov (United States)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  1. Fracture resistance of endodontically treated roots filled with resilon and guttapercha - A comparative in-vitro study

    Directory of Open Access Journals (Sweden)

    Rajesh R Shetty

    2009-01-01

    Full Text Available Aims and objectives: The purpose of this study was to evaluate and compare in vitro the fracture resistance of endodontically treated roots filled with Resilon and Gutta-percha. Methodology: Eighty extracted single canal teeth were selected and randomly assigned to five groups of sixteen teeth each. Teeth were sectioned using a diamond disc so as to obtain a root length of 14±1 mm. Roots were instrumented using .04 taper Profile rotary system to an apical size of 40 and obturated using .04 taper single cone (size 40 as follows: Group 1: Resilon .04 taper cone and Epiphany Self etching sealer, Group 2: .04 taper gutta-percha cone and AH Plus sealer ,Group 3: .04 taper gutta-percha cone and Roeko Seal Automix sealer, Group 4: .04 taper gutta-percha cone and Zinc oxide Eugenol sealer , Group 5: .04 taper gutta-percha cone without the use of a sealer. Following obturation, teeth were mounted in Poly Vinyl Chloride jigs using self cure acrylic resin such that 9mm of the root remained exposed. Fracture resistance testing was done using Instron testing machine using a vertical load applied perpendicular to the root surface. Statistical analysis was done using ANOVA, Tukey HSD and Student′s ′t′ test. Results: Very highly significant difference was observed between the groups (P=.001. Resilon with Epiphany group demonstrated highest mean fracture resistance value and gutta-percha without sealer displayed the least, comparative results were highly significant. Resilon compared to gutta-percha with Roeko Seal Automix (P=.037 and Zinc Oxide Eugenolsealers (P=.029 showed statistically significant difference. AH plus group showed significantly higher value compared to gutta-percha without sealer. Conclusions: Filling the root canals with Resilon increased the in vitro fracture resistance of endodontically treated roots compared to standard gutta-percha techniques. Adhesive sealers are more beneficial in increasing the fracture resistance of

  2. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  3. Effect of time lapse on the diagnostic accuracy of cone beam computed tomography for detection of vertical root fractures

    Energy Technology Data Exchange (ETDEWEB)

    Eskandarloo, Amir; Shokri, Abbas, E-mail: Dr.a.shokri@gmail.com [Dental Research Center, Department of Oral and Maxillofacial Radiology, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Asl, Amin Mahdavi [Department of Oral and Maxillofacial Radiology, Golestan University of Medical Sciences, Gorgan (Iran, Islamic Republic of); Jalalzadeh, Mohsen [Department of Endodontics, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Tayari, Maryam [Department of Pedodontics, Golestan University of Medical Sciences, Gorgan (Iran, Islamic Republic of); Hosseinipanah, Mohammad [Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Fardmal, Javad [Research Center for Health Sciences and Department of Epidemiology and Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)

    2016-01-15

    Accurate and early diagnosis of vertical root fractures (VRFs) is imperative to prevent extensive bone loss and unnecessary endodontic and prosthodontic treatments. The aim of this study was to assess the effect of time lapse on the diagnostic accuracy of cone beam computed tomography (CBCT) for VRFs in endodontically treated dog’s teeth. Forty eight incisors and premolars of three adult male dogs underwent root canal therapy. The teeth were assigned to two groups: VRFs were artificially induced in the first group (n=24) while the teeth in the second group remained intact (n=24). The CBCT scans were obtained by NewTom 3G unit immediately after inducing VRFs and after one, two, three, four, eight, 12 and 16 weeks. Three oral and maxillofacial radiologists blinded to the date of radiographs assessed the presence/absence of VRFs on CBCT scans. The sensitivity, specificity and accuracy values were calculated and data were analyzed using SPSS v.16 software and ANOVA. The total accuracy of detection of VRFs immediately after surgery, one, two, three, four, eight, 12 and 16 weeks was 67.3%, 68.7%, 66.6%, 64.6%, 64.5%, 69.4%, 68.7%, 68% respectively. The effect of time lapse on detection of VRFs was not significant (p>0.05). Overall sensitivity, specificity and accuracy of CBCT for detection of VRFs were 74.3%, 62.2%, 67.2% respectively. Cone beam computed tomography is a valuable tool for detection of VRFs. Time lapse (four months) had no effect on detection of VRFs on CBCT scans. (author)

  4. Effect of time lapse on the diagnostic accuracy of cone beam computed tomography for detection of vertical root fractures

    International Nuclear Information System (INIS)

    Eskandarloo, Amir; Shokri, Abbas; Asl, Amin Mahdavi; Jalalzadeh, Mohsen; Tayari, Maryam; Hosseinipanah, Mohammad; Fardmal, Javad

    2016-01-01

    Accurate and early diagnosis of vertical root fractures (VRFs) is imperative to prevent extensive bone loss and unnecessary endodontic and prosthodontic treatments. The aim of this study was to assess the effect of time lapse on the diagnostic accuracy of cone beam computed tomography (CBCT) for VRFs in endodontically treated dog’s teeth. Forty eight incisors and premolars of three adult male dogs underwent root canal therapy. The teeth were assigned to two groups: VRFs were artificially induced in the first group (n=24) while the teeth in the second group remained intact (n=24). The CBCT scans were obtained by NewTom 3G unit immediately after inducing VRFs and after one, two, three, four, eight, 12 and 16 weeks. Three oral and maxillofacial radiologists blinded to the date of radiographs assessed the presence/absence of VRFs on CBCT scans. The sensitivity, specificity and accuracy values were calculated and data were analyzed using SPSS v.16 software and ANOVA. The total accuracy of detection of VRFs immediately after surgery, one, two, three, four, eight, 12 and 16 weeks was 67.3%, 68.7%, 66.6%, 64.6%, 64.5%, 69.4%, 68.7%, 68% respectively. The effect of time lapse on detection of VRFs was not significant (p>0.05). Overall sensitivity, specificity and accuracy of CBCT for detection of VRFs were 74.3%, 62.2%, 67.2% respectively. Cone beam computed tomography is a valuable tool for detection of VRFs. Time lapse (four months) had no effect on detection of VRFs on CBCT scans. (author)

  5. Intraradicular Splinting with Endodontic Instrument of Horizontal Root Fracture

    Directory of Open Access Journals (Sweden)

    Ersan Çiçek

    2015-01-01

    Full Text Available Introduction. Root fractures, defined as fractures involving dentine, cementum, and pulpal and supportive tissues, constitute only 0.5–7% of all dental injuries. Horizontal root fractures are commonly observed in the maxillary anterior region and 75% of these fractures occur in the maxillary central incisors. Methods. A 14-year-old female patient was referred to our clinic three days after a traffic accident. In radiographic examination, the right maxillary central incisor was fractured horizontally in apical thirds. Initially, following local infiltrative anesthetics, the coronal fragment was repositioned and this was radiographically confirmed. Then the stabilization splint was applied and remained for three months. After three weeks, according to the results of the vitality tests, the right and left central incisors were nonvital. For the right central incisor, both the coronal and apical fragments were involved in the endodontic preparation. Results. For the right central tooth, both the coronal and apical root fragments were endodontically treated and obturated at a single visit with white mineral trioxide aggregate whilst the fragments were stabilized internally by insertion of a size 40 Hedstrom stainless-steel endodontic file into the canal. Conclusion. Four-year follow-up examination revealed satisfactory clinical and radiographic findings with hard tissue repair of the fracture line.

  6. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    Science.gov (United States)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  7. Root fracture in immature anterior teeth followed for 15 years.

    Science.gov (United States)

    Itoh, T; Kojima, Y; Nishioka, T; Maki, K; Kimura, M

    2005-08-01

    We report a case of injury to an immature tooth, observed over a period of 15 years. In 1987, a 9-year-old boy fell down in a schoolyard. The right central incisor demonstrated palato-version and radiographic observations revealed that the roots of both central incisors were incomplete. Further, a root fracture in the apical region of the central incisors was observed. During the first treatment visit, the right central incisor was repositioned and both teeth splinted. After confirming that the line of fracture was aligned, the fixation was continued for 2 months. The teeth were examined periodically for the next 15 years. Both teeth had favorable outcomes with continued root development of both the apical and coronal segments with good apposition of the fracture lines.

  8. Accuracy of Single Periapical Radiography in Diagnosis of Horizontal Root Fracture

    Directory of Open Access Journals (Sweden)

    Fazlolah Soleymani Najafabadi

    2012-02-01

    Full Text Available Background and Aims: Radiographic examination is a necessary step in diagnosis of horizontal root fracture. The purpose of this study was to determine the sensitivity and specificity of single radiograph for detection of horizontal root fracture. Materials and Methods: In this analytical-descriptive study, 30 human freshly extracted teeth were used. Using a hammer and clamp, the teeth were divided into two sections accidentally and then sections were attached together by cyanoacrylate glue. Two radiographs were taken; with and without a piece of human mandibular bone. Afterward, radiographs were analyzed by three expert dentists using a slide show device. Results: The diagnostic sensitivity and specificity of single radiograph for detection of horizontal root fracture without bone was 100%, but in radiographs of teeth with bone was 82.7% and 100%, respectively. Conclusion: Based on the results of this study, in most cases, the horizontal root fractures can be detected by a single periapical radiograph.

  9. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    Science.gov (United States)

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  10. Effect of reinforcement with resin composite on fracture strength of structurally compromised roots.

    Science.gov (United States)

    Fukui, Yuji; Komada, Wataru; Yoshida, Keiichi; Otake, Shiho; Okada, Daizo; Miura, Hiroyuki

    2009-09-01

    This study was aimed at evaluating the fracture resistance of structurally compromised roots restored with four different post and core systems. Thirty-two bovine roots were uniformly shaped to simulate human mandibular premolar roots. The roots were divided into four groups based on the type of restoration: cemented cast post and core (Group MC), resin composite build-up (Group CR), resin composite and prefabricated glass fiber post build-up (Group FRC), and thick-layer dual-cured resin composite-reinforced small-diameter tapered cast post and core (Group CRM). After a static loading test, the failure mode and fracture resistance were recorded. Group CRM (719.38+/-196.73 N) exhibited a significantly high fracture resistance compared with the other groups (Group MC: 429.56+/-82.43 N; Group CR: 349.56+/-66.21 N; Group FRC: 398.94+/-112.71 N; pCRM exhibited better mechanical properties for structurally compromised roots with no ferrules, although all types of restorations showed non-restorable fracture modes.

  11. [Treatment of a fractured endodontical instrument in the root canal].

    Science.gov (United States)

    Schipper, M; Peters, L B

    2015-12-01

    A 53-year-old woman with continuing pain coming from a lower first molar was diagnosed with apical periodontitis, with a retained fractured instrument in the root canal. There are a variety of treatment options for dealing with a corpus alienum in a root canal. In this case it was decided to treat the tooth endodontically, and leave the fractured instrument fragment in situ. The selection of this treatment option was made on the basis of knowledge of the original diagnosis and the success rates of the various treatment options as described in the relevant literature, weighed against the possible risks and their effects on the prognosis. This suggested that the use of a dental operating microscope has a positive impact on the success rates of endodontic treatment The prognosis for endodontic treatment when a fractured instrument fragment is left within the root canal, as in this case, is not significantly reduced. The presence of preoperative periapical pathology, however, is a more clinically significant prognostic indicator.

  12. Healing of Horizontal Intra-alveolar Root Fractures after Endodontic Treatment with Mineral Trioxide Aggregate.

    Science.gov (United States)

    Kim, Dohyun; Yue, Wonyoung; Yoon, Tai-Cheol; Park, Sung-Ho; Kim, Euiseong

    2016-02-01

    The purpose of this retrospective study was to evaluate the healing type and assess the outcome of horizontal intra-alveolar root fractures after endodontic treatment with mineral trioxide aggregate (MTA) as filling material. The clinical database of the Department of Conservative Dentistry at Yonsei University Dental Hospital, Seoul, Korea, was searched for patients with histories of intra-alveolar root fractures and endodontic treatments with MTA between October 2005 and September 2014. Radiographic healing at the fracture line was evaluated independently by 2 examiners and was classified into 4 types according to Andreasen and Hjørting-Hansen. Of the 22 root-fractured teeth that received endodontic treatment with MTA, 19 cases participated in the follow-up after a period of at least 3 months. Seventeen of the 19 teeth (89.5%) exhibited healing of the root fractures. For each healing type, 7 teeth (36.8%) showed healing with calcified tissue, 8 teeth (42.1%) showed interposition of connective tissue, 2 teeth (10.5%) showed interposition of connective tissue and bone, and 2 teeth (10.5%) showed interposition of granulation tissue without healing. Within the limitations of this study, intra-alveolar root fractures showed satisfactory healing outcomes after endodontic treatment with MTA. MTA could be considered to be suitable filling material for the endodontic treatment of horizontal intra-alveolar root fractures. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Tooth mobility changes subsequent to root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth mobility changes in root-fractured permanent teeth and relate this to type of interfragment healing (hard tissue healing (HT), interfragment healing with periodontal ligament (PDL) and nonhealing with interposition of granulation tissue (GT) because...

  14. Ipsilateral femoral shaft and vertical patella fracture: a case report

    Science.gov (United States)

    Ozkan, Korhan; Eceviz, Engin; Sahin, Adem; Ugutmen, Ender

    2009-01-01

    Introduction A femoral shaft fracture with an ipsilateral patella fracture has been, to our knowledge, given only cursory attention in English-speaking literature. Case presentation A 15 year old male patient had hitten by a car to his motorcycle came to emergency room and he had been operated for his femoral shaft freacture and vertical patellar fracture which was iniatally missed. Conclusion To us it is vital to obtain CT scan of the patient’s knee if there is an ipsilateral femoral fracture with an ipsilateral knee effusion and a punction which reveals hematoma even in the absence of a fracture line seen in AP and lateral projections. PMID:19829933

  15. Tibial avulsion fracture of the posterior root of the medial meniscus in children

    DEFF Research Database (Denmark)

    Iversen, Jonas Vestergård; Krogsgaard, Michael Rindom

    2012-01-01

    of displaced avulsion fractures of the posterior root of the medial meniscus in children are presented along with a concise report of the literature regarding avulsion fractures of the posterior root of the medial meniscus. Both avulsions were reattached arthroscopically by trans-tibial pull-out sutures...

  16. Implementation of a flaw model to the fracturing around a vertical shaft

    CSIR Research Space (South Africa)

    Van de Steen, B

    2003-04-01

    Full Text Available -scale excavations. The simulated fracture pattern around a vertical shaft is compared to the fracturing around a shaft at a depth of 3400 m. The simulations suggest that wedge-shaped zones, called dog-ears, a reformed by a progressive splitting-like failure...

  17. Management of Horizontal Root Fracture in the Middle Third via Intraradicular Splinting Using a Fiber Post

    Directory of Open Access Journals (Sweden)

    Ishani Karhade

    2016-01-01

    Full Text Available Radicular fractures in permanent teeth are uncommon injuries and account for only 0.5–7% of dental traumas. These fractures commonly result from a horizontal impact and are transverse to oblique in direction. Their incidence is more in the middle third of the root than at the apical and cervical thirds. This paper describes a case of complicated crown fracture of maxillary incisors along with horizontal root fracture at the middle third of maxillary right central and lateral incisor. The fractured root fragments of the upper right central and lateral incisor were united with the help of a glass fiber post after receiving an endodontic treatment. The other two incisors were treated endodontically followed by post endodontic restorations. Eventually the four incisors were restored with porcelain fused to metal crowns. A one-year follow-up revealed a well stabilized assembly of the root fragments and the post.

  18. Multidisciplinary Management of Complicated Crown-Root Fracture of an Anterior Tooth Undergoing Apexification

    Directory of Open Access Journals (Sweden)

    Merve Mese

    2015-01-01

    Full Text Available The purpose of this case report was to present the multidisciplinary management of a subgingival crown-root fracture of a patient undergoing apexification treatment. A 12-year-old male patient was referred to the pediatric dentistry clinic with an extensive tooth fracture of the right permanent maxillary lateral incisor. Clinical and radiographic examinations revealed the presence of a complicated crown-root fracture, which had elongated to the buccal subgingival area. The dental history disclosed that the apexification procedure had been started to be performed after his first trauma experience and he had neglected his appointment. The coronal fragment was gently extracted; endodontic treatment was performed; flap surgery was performed to make the fracture line visible. The coronal fragment was reattached to the root fragment with a dual-cure luting composite. A fiber post was stabilized and the access cavity of the tooth was restored with composite resin. At the end of the 24th month, the tooth was asymptomatic, functionally, esthetically acceptable and had no periapical pathology. It is important for the patients undergoing apexification treatment to keep their appointments because of the fracture risk. Restoration of the fractured tooth by preparing retention grooves and a bonding fiber-reinforced post are effective and necessary approaches for successful management.

  19. Comparative evaluation of fracture and defect in reciproc and rotary files in severe curved root canals

    Directory of Open Access Journals (Sweden)

    Mahdis Bagherian

    2015-03-01

    Full Text Available Introduction: Root canal instrumentation is an important phase in root canal therapy. Since success in endodontic treatment depends on file defect and fracture, the aim of this study was to compare the evaluation of defect and fracture in rotary and reciproc files in severe curved root canals. Materials & Methods: In this experimental study, 60 mesial canals of human closed apex molars with more than 30° canal curvature were randomly divided into two groups. In first group M-two rotary files number# 15, 20, and 25 and in second group R25 reciproc file were used for filing, respectively. A ×8 magnifier was applied to evaluate the defect or fracture presence in each side and if it were observed, a new file would be replaced. Therefore, the number of prepared canals with each file and fractured or defective files and the place of fracture in root canal were recorded. Kaplan Meier curve and log rank test were done by using SPSS v.22. Results: In rotary group, seven and two files were fractured and defected, respectively and four files were fractured and no defect was observed in reciproc group. Although the mean of the number of prepared canals until fracture or defect in rotary and reciproc groups was 3.3 and 7.06, respectively, there were no significant differences between two systems. All file’s fractures occurred in apical regions . Conclusion: The results showed that there was no significant difference in defects or fractures of rotary and reciproc systems. Reciproc instruments can be more effective than rotary ones because the root canal preparation in rotary instruments is longer than in reciproc system.

  20. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  1. The force required to fracture endodontically roots restored with ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice ... Objective: To evaluate the effect of various materials as intra‑orifice barriers on the force required fracture roots. ... prepared, but not filled), filling using glass ionomer cement, nano‑hybrid composite resin, ...

  2. Management of complicated crown-root fracture in central incisors using intentional replantation with 180° rotation: A case report

    Directory of Open Access Journals (Sweden)

    Reyhaneh Faghihian

    2017-01-01

    Full Text Available Introduction: Complicated crown-root fractures are rare and their treatment is complex. Numerous methods such as crown lengthening and orthodontic or surgical extrusion have been described for the treatment of crown-root fracture. The aim of this study was to report managing complicated crown-root fracture using intentional replantation with 180° rotation. Case report: This case report demonstrates successful management of complicated crown-root fracture in central incisor of a 10-year-old boy using intentional replantation with 180° rotation. Discussion: At 18-month follow-up, the replanted tooth revealed normal function with no obvious resorption.

  3. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  4. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  5. Multidisciplinary management of subgingival crown-root fracture of an immature permanent maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Samir Zahedpasha

    2012-01-01

    Full Text Available This case report describes the multidisciplinary management of subgingival horizontal crown-root fracture of an immature permanent maxillary central incisor in a 10-year-old boy. After removal of the fractured fragment, pulpotomy was performed within 48 h from the injury to promote apexogenesis. The tooth was orthodontically extruded until the fracture line was located above the alveolar bone level. Frenectomy, supracrestal fiberotomy, and crown lengthening were performed after adequate stabilization of the extruded tooth for 5 months. Finally, the tooth was restored with composite resin by using the acid etch technique. This report highlights that a multidisciplinary treatment approach with strict cooperation among specialists to manage a complicated crown-root fracture can save and restore a traumatized immature permanent tooth.

  6. Separate Vertical Wirings for the Extra-articular Fractures of the Distal Pole of the Patella

    OpenAIRE

    Kim, Young Mo; Yang, Jun Young; Kim, Kyung Cheon; Kang, Chan; Joo, Yong Bum; Lee, Woo Yong; Hwang, Jung Mo

    2011-01-01

    Purpose To evaluate the usefulness of separate vertical wirings for extra-articular fracture of distal pole of patella. Materials and Methods We have analyzed the clinical results of 18 cases that underwent separate vertical wirings for extra-articular fracture of distal pole of the patella from March 2005 to March 2010, by using the range of motion and Bostman score. Occurrence of complication was also evaluated. Additionally, by taking simple radiographs, the correlation between the postope...

  7. Root growth of perennials in vertical growing media for use in green walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The vertical orientation of green walls causes a risk of uneven water distribution within the growing medium, and thereby stress on the plant roots. Therefore it was studied how the root and top growth of different species were affected by the water holding characteristics of the growing media....... Five species of hardy perennials (Campanula poscharskyana ‘Stella’, Fragaria vesca ‘Småland’, Geranium sanguineum ‘Max Frei’, Sesleria heufleriana and Veronica officinalis ‘Allgrün’) were grown in 3 types of growing media (coir and 2 of rockwool) in vertical boxes under greenhouse conditions. Root...... distribution was registered over 52 days and the activity of individual root systems was studied via 15N uptake and plant parameters were measured. The water holding characteristics of the growing media was determined on a sandbox. From day 21 and throughout the experiment, the plants growing in the coir...

  8. Fracture strength of flared bovine roots restored with different intraradicular posts

    Directory of Open Access Journals (Sweden)

    Victor Grover Rene Clavijo

    2009-12-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the fracture strength and failure mode of flared bovine roots restored with different intraradicular posts. MATERIAL AND METHODS: Fifty bovine incisors with similar dimensions were selected and their roots were flared until 1.0 mm of dentin wall remained. Next, the roots were allocated into five groups (n=10: GI- cast metal post-and-core; GII- fiber posts plus accessory fiber posts; GIII- direct anatomic post; GIV- indirect anatomic post and GV- control (specimens without intraradicular post. A polyether impression material was used to simulate the periodontal ligament. After periodontal ligament simulation, the specimens were subjected to a compressive load at a crosshead speed of 0.5 mm/min in a servo-hydraulic testing machine (MTS 810 applied at 135º to the long axis of the tooth until failure. The data (N were subjected to ANOVA and Tukey's post-hoc test (α=0.05. RESULTS: GI and GIV presented higher fracture strength (p0.05 from GI, GII and GIV. Control specimens (GV produced the lowest fracture strength mean values (p<0.05. Despite obtaining the highest mean value, GI presented 100% of unfavorable failures. GII presented 20% of unfavorable failures. GIII, GIV and GV presented only favorable failures. CONCLUSIONS: Although further in vitro and in vivo studies are necessary, the results of this study showed that the use of direct and indirect anatomic posts in flared roots could be an alternative to cast metal post-and-core.

  9. Endodontic and Prosthetic Management of a Mid-Root and Crown Fracture of a Maxillary Central Incisor

    Directory of Open Access Journals (Sweden)

    Koidou Vasiliki P.

    2014-11-01

    Full Text Available Root fractures are relatively uncommon among other dental traumas and mostly affect the anterior dentition. This case report presents the endodontic and prosthodontic management of a maxillary central incisor with a combined fracture in the middle third of the root and the crown, as well as the 7-year follow up of the case. The healing potential of a horizontal root fracture in the middle third of the root is highlighted when appropriate treatment is applied. MTA used for obturation of the coronal fragment, induced hard tissue formation apically and promoted healing in the area, while the 2mm MTA left as apical barrier at the second stage of re-treatment and obturation with gutta-percha prevented its extrusion. The multidisciplinary approach in the management of such cases ensures a long term survival.

  10. Treatment of a horizontal root-fractured tooth with decoronation procedure: case report

    Directory of Open Access Journals (Sweden)

    Selen Esin Yoldaş

    2016-05-01

    Full Text Available INTRODUCTION: Early loss of permanent anterior teeth due to trauma can cause esthetic and functional problems for young patients. In such cases, replacement of the missing tooth with traditional approaches is possible; however such approaches will reduce the chance of the patient to receive an esthetic and consistent treatment in the future. CASE REPORT: A 12-year-old male patient referred to our clinic with a history of trauma. Complicated crown fracture in tooth no.11 and horizontal root fracture in tooth no. 21 was detected. Following root canal treatment, tooth no. 11 was restored with a fiber post and a strip crown. To avoid alveolar bone loss due to early tooth extraction, decoronation procedure, an alternative approach, was applied to tooth no. 21. This procedure consisted of leaving the root fragment inside the alveolar socket following the removal of the crown. For the rehabilitation of the missing crown, a partial removable prosthesis was implemented. The patient was recalled in 6., 12. and 18. months. Within the follow-up period, no reduction in the alveolar bone level was seen. No sign of infection was evident. The remaining root fragment kept on resorbing. Tooth no. 11 remained symptom-free as well. The patient is still being followed. CONCLUSION: Decoronation is essentially a treatment choice for preventing alveolar bone loss in ankylosed teeth considered for extraction. In this case report, decoronation was shown to be a suitable alternative also for a fractured, non-ankylosed tooth.

  11. Bouldering: an alternative strategy to long-vertical climbing in root-climbing hortensias.

    Science.gov (United States)

    Granados Mendoza, Carolina; Isnard, Sandrine; Charles-Dominique, Tristan; Van den Bulcke, Jan; Rowe, Nick P; Van Acker, Joris; Goetghebeur, Paul; Samain, Marie-Stéphanie

    2014-10-06

    In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short 'shrub-like' climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Complicated Crown-Root Fracture Treated Using Reattachment Procedure: A Single Visit Technique

    Directory of Open Access Journals (Sweden)

    Akhil Rajput

    2011-01-01

    Full Text Available Complicated crown-root fracture of maxillary central and lateral incisors is common in case of severe trauma or sports-related injury. It happens because of their anterior positioning in oral cavity and protrusive eruptive pattern. On their first dental visit, these patients are in pain and need emergency care. Because of impaired function, esthetics, and phonetics, such patients are quite apprehensive during their emergency visit. Successful pain management with immediate restoration of function, esthetics and phonetics should be the prime objective while handling such cases. This paper describes immediate treatment of oblique crown root fracture of maxillary right lateral incisor with reattachment procedure using light transmitting fiber post. After two and half years, the reattached fragment still has satisfying esthetics and excellent function.

  13. The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra

    Directory of Open Access Journals (Sweden)

    Yusof MI

    2018-03-01

    Full Text Available Introduction: The vertical diameter of the foramen is dependent upon the vertical diameter of the corresponding intervertebral disc. A decrease in disc vertical diameter has direct anatomic consequences to the foraminal diameter and area available for the nerve root passing through it. This study is to establish the relationship amongst the intervertebral disc vertical diameter, lateral foramen diameters and nerve root compression in the lumbar vertebra. Materials and Methods: Measurements of the study parameters were performed using sagittal MRI images. The parameters studied were: intervertebral disc vertical diameter (DVD, foraminal vertical diameter (FVD, foraminal transverse diameter (FTD and nerve root diameter (NRD of both sides. The relationship between the measured parameters were then analyzed. Results: A total of 62 MRI images were available for this study. Statistical analysis showed moderate to strong correlation between DVD and FVD at all the lumbar levels except at left L23 and L5S1 and right L3L4 and L4L5. Correlation between DVD and FTD were not significant at all lumbar levels. Regression analysis showed that a decrease of 1mm of DVD was associated with 1.3, 1.7, 3.3, 3.3 and 1.3mm reduction of FVD at L1L2, L2L3, L3L4, L4L5 and L5S1 respectively. Conclusion: Reduction of DVD was associated with reduction of FVD. However, FVD was relatively wide for the nerve root even with complete loss of DVD. FTD was much narrower than the FVD making it more likely to cause nerve root compression at the exit foramina. These anatomical details should be given consideration in treating patients with lateral canal stenosis.

  14. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems.

    Science.gov (United States)

    Kottoor, Jojo; Velmurugan, Natanasabapathy; Gopikrishna, Velayutham; Krithikadatta, Jogikalmat

    2013-01-01

    The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF) and ProTaper (PT) rotary Ni-Ti file systems, using scanning electron microscope (SEM). Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at × 100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Fresh TF instruments showed no surface wear when compared to PT instruments (P 0.05), while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05). PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. PT instruments showed more resistance to fracture than TF instruments.

  15. Survival of 534 incisors after intra-alveolar root fracture in patients aged 7-17 years

    DEFF Research Database (Denmark)

    Cvek, M.; Tsilingaridis, G.; Andreasen, Jens Ove

    2008-01-01

    The purpose of the study was to evaluate and assess the survival rate of 534 root fractured teeth, including factors that may affect the survival rate but were not included in previous long-term studies. Location of fracture was registered as in the cervical, cervical/middle, middle and apical on...

  16. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2013-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF and ProTaper (PT rotary Ni-Ti file systems, using scanning electron microscope (SEM. Materials and Methods: Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at ×100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Results: Fresh TF instruments showed no surface wear when compared to PT instruments (P 0.05, while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05. PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. Conclusion: PT instruments showed more resistance to fracture than TF instruments.

  17. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    Science.gov (United States)

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  18. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    Directory of Open Access Journals (Sweden)

    Yunpeng Nie

    2017-09-01

    Full Text Available For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a to what extent shallow soil-adapted species rely on exploring rock fractures and (b what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast

  19. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    Directory of Open Access Journals (Sweden)

    Lucas Villaça Zogheib

    2011-12-01

    Full Text Available OBJECTIVE: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. MATERIAL AND METHODS: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10, according to the root reconstruction protocol: Group I (control: non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05. RESULTS: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. CONCLUSION: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

  20. Comparison of high-resolution and standard zoom imaging modes in cone beam computed tomography for detection of longitudinal root fracture: An in vitro study

    International Nuclear Information System (INIS)

    Taramsari, Mehran; Kajan, Zahra Dalili; Bashizadeh, Parinaz; Salamat, Fatemeh

    2013-01-01

    The purpose of this study was to compare the efficacy of two imaging modes in a cone beam computed tomography (CBCT) system in detecting root fracture in endodontically-treated teeth with fiber posts or screw posts by selecting two fields of view. In this study, 78 endodontically-treated single canal premolars were included. A post space was created in all of them. Then the teeth were randomly set in one of 6 artificial dental arches. In 39 of the 78 teeth set in the 6 dental arches, a root fracture was intentionally created. Next, a fiber post and a screw post were cemented into 26 teeth having equal the root fractures. High resolution (HiRes) and standard zoom images were provided by a CBCT device. Upon considering the reconstructed images, two observers in agreement with each other confirmed the presence or absence of root fracture. A McNemar test was used for comparing the results of the two modes. The frequency of making a correct diagnosis using the HiRes zoom imaging mode was 71.8% and in standard zoom was 59%. The overall sensitivity and specificity in diagnosing root fracture in the HiRes mode were 71.79% and 46.15% and in the standard zoom modes were 58.97% and 33.33%, respectively. There were no significant differences between the diagnostic values of the two imaging modes used in the diagnosis of root fracture or in the presence of root canal restorations. In both modes, the most true-positive results were reported in the post space group.

  1. The Effect of Diode Laser Treatment for Root Canal Disinfection on Fracture Resistance and Micro-hardness of the Tooth

    International Nuclear Information System (INIS)

    Elmiligy, H.H; Diab, A.H.; Sabet, N.E.; Saafan, A.M.

    2014-01-01

    This study evaluated the effect of diode laser treatment for root canal disinfection on fracture resistance and micro-hardness of the tooth. Sixty freshly extracted mandibular and maxillary premolars were accessed under coolant then root canals were flared up to apical preparation size 40 MFA coupled with 5.25% NaOCl as an irrigant. Teeth were divided into two groups, control group (group I) and lased group (group II) that was lased by diode laser with average power 2 w through fibrooptic into the canal 2 mm shorter than the apex. Each tooth was embedded in acrylic block, and then subjected to the fracture resistance test. Each root was then sectioned transversely and polished to record dentin Vickers hardness. Data was analysed with student t-test then with linear regression test. The Lased samples presented a significantly higher resistance to fracture than unlased samples. There was no statistically significant differences found between Vickers hardness (HV) of lased and unlased samples and there was no relation between fracture resistance and microhardness. Diode laser (980 nm) treatment had no adverse effect on dentin microhardness, also it increased the fracture resistance of dentin. Diode laser (980 nm) treatment could attain better function ability and maintenance of tooth after endodontic treatment.

  2. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  3. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    Science.gov (United States)

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modeling and analysis of the vertical roots distribution in levees - a case study of the third Rhone correction

    Science.gov (United States)

    Gianetta, Ivan; Schwarz, Massimiliano; Glenz, Christian; Lammeranner, Walter

    2013-04-01

    In recent years the effects of roots on river banks and levees have been the subject of major discussions. The main issue about the presence of woody vegetation on levees is related to the possibility that roots increase internal erosion processes and the superimposed load of large trees compromise the integrity of these structures. However, ecologists and landscape managers argue that eliminating the natural vegetation from the riverbanks also means eliminating biotopes, strengthening anthropisation of the landscape, as well as limiting recreations areas. In the context of the third correction of the Rhone in Switzerland, the discussion on new levee geometries and the implementation of woody vegetation on them, lead to a detailed analysis of this issue for this specific case. The objective of this study was to describe quantitatively the processes and factors that influence the root distribution on levees and test modeling approaches for the simulation of vertical root distribution with laboratory and field data. An extension of an eco-hydrological analytic model that considers climatic and pedological condition for the quantification of vertical root distribution was validated with data provided by the University of Vienna (BOKU) of willows' roots (Salix purpurea) grown under controlled conditions. Furthermore, root distribution data of four transversal sections of a levee near Visp (canton Wallis, Switzerland) was used to validate the model. The positions of the levee's sections were chosen based on the species and dimensions of the woody vegetation. The dominant species present in the sections were birch (Betula pendula) and poplar (Populus nigra). For each section a grid of 50x50 cm was created to count and measure the roots. The results show that vertical distribution of root density under controlled growing conditions has an exponential form, decreasing with increasing soil depth, and can be well described by the eco-hydrological model. Vice versa, field

  5. [Clinical application of blocking screws and rooting technique in the treatment of distal tibial fracture with interlocking intramedullary nail].

    Science.gov (United States)

    Zhu, Hai-Bing; Wu, Li-Guo; Fang, Zhi-Song; Luo, Cong-Feng; Wang, Qing-Feng; Ma, Yi-Ping; Gao, Hong; Fu, Guo-Hai; Hu, Cheng-Ting

    2012-07-01

    To introduce the clinical method of blocking screws and rooting technique in the treatment of distal tibial fracture with interlocking intramedullary nails. From June 2006 to March 2011, 26 patients with distal tibial fracture were treated with interlocking intramedullary nails using blocking screws and rooting technique, included 18 males and 8 females with an average age of 46.2 years old ranging from 24 to 64 years. According to AO classification: 10 cases of type A1, 4 cases of type A2, 8 cases of type B1, 4 cases of type B2. The average distance of the fractures end to the ankle joint was 85 mm ranging from 55 to 125 mm, the mean time between injured and operation was 4.5 days. The patients were evaluated with pain, range of motion, walking. All cases were followed-up for 6 to 22 months (averaged 15 months). According to Iowa ankle joint grading system,the score was improved from preoperative (66.8 +/- 8.2) to postoperative (94.6 +/- 4.8). All fractures had united, and got satisfactory reduction and stable fixation with no complications had happen such as breakage of screw. Fixation with interlocking intramedullary nail using blocking screws and rooting technique in treating distal tibial fracture, is a safe and effective technique for the improvement of stability.

  6. The effect of metal artifacts on the identification of vertical root fractures using different fields of view in cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moudi, Ehsan; Haghanifar, Sina; Madani, Zahrasadat; Bijani, Ali; Nabavi, Zeynab Sadat [Babol University of Medical Science, Babol (Iran, Islamic Republic of)

    2015-09-15

    The aim of this study was to investigate the effects of metal artifacts on the accurate diagnosis of root fractures using cone-beam computed tomography (CBCT) images with large and small/limited fields of view (FOVs). Forty extracted molar and premolar teeth were collected. Access canals were made in all teeth using a rotary system. In half of the teeth, fractures were created by the application of mild pressure with a hammer. The teeth were then randomly put into a wax rim on an acryl base designed in the shape of a mandible. CBCT scans were obtained using a Newtom 5G system with FOVs of 18 cm×16 cm and 6 cm×6 cm. A metal pin was then placed into each tooth, and CBCT imaging was again performed using the same fields of view. All scans were evaluated by two oral and maxillofacial radiologists. The specificity, sensitivity, positive predictive value, negative predictive value, and likelihood ratios (positive and negative) were calculated. The maximum levels of sensitivity and specificity (100% and 100%, respectively) were observed in small volume CBCT scans of teeth without pins. The highest negative predictive value was found in the small-volume group without pins, whereas the positive predictive value was 100% in all groups except the large-volume group with pins.

  7. Allgöwer-Donati Versus Vertical Mattress Suture Technique Impact on Perfusion in Ankle Fracture Surgery: A Randomized Clinical Trial Using Intraoperative Angiography.

    Science.gov (United States)

    Shannon, Steven F; Houdek, Matthew T; Wyles, Cody C; Yuan, Brandon J; Cross, William W; Cass, Joseph R; Sems, Stephen A

    2017-02-01

    The purpose of this study was to evaluate which primary wound closure technique for ankle fractures affords the most robust perfusion as measured by laser-assisted indocyanine green angiography: Allgöwer-Donati or vertical mattress. Prospective, randomized. Level 1 Academic Trauma Center. Thirty patients undergoing open reduction internal fixation for ankle fractures were prospectively randomized to Allgöwer-Donati (n = 15) or vertical mattress (n = 15) closure. Demographics were similar for both cohorts with respect to age, sex, body mass index, surgical timing, and OTA/AO fracture classification. Skin perfusion (mean incision perfusion and mean perfusion impairment) was quantified in fluorescence units with laser-assisted indocyanine green angiography along the lateral incision as well as anterior and posterior to the incision at 30 separate locations. Minimum follow-up was 3 months with a mean follow-up 4.7 months. Allgöwer-Donati enabled superior perfusion compared with the vertical mattress suture technique. Mean incision perfusion for Allgöwer-Donati was 51 (SD = 13) and for vertical mattress was 28 (SD = 10, P ankle fractures. Theoretically, this may enhance soft tissue healing and decrease the risk of wound complications. Surgeons may take this into consideration when deciding closure techniques for ankle fractures. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  8. Splinting of Longitudinal Fracture: An Innovative Approach

    Directory of Open Access Journals (Sweden)

    Rashmi Bansal

    2016-01-01

    Full Text Available Trauma may result in craze lines on the enamel surface, one or more fractured cusps of posterior teeth, cracked tooth syndrome, splitting of posterior teeth, and vertical fracture of root. Out of these, management of some fractures is of great challenge and such teeth are generally recommended for extraction. Literature search reveals attempts to manage such fractures by full cast crown, orthodontic wires, and so forth, in which consideration was given to extracoronal splinting only. However, due to advancement in materials and technologies, intracoronal splinting can be achieved as well. In this case report, longitudinal fractures in tooth #27, tooth #37, and tooth #46 had occurred. In #27, fracture line was running mesiodistally involving the pulpal floor resulting in a split tooth. In teeth 37 and 46, fractures of the mesiobuccal cusp and mesiolingual cusp were observed, respectively. They were restored with cast gold inlay and full cast crown, respectively. Longitudinal fracture of 27 was treated with an innovative approach using intracanal reinforced composite with Ribbond, external reinforcement with an orthodontic band, and full cast metal crown to splint the split tooth.

  9. [Long-Term Outcomes of the Treatment of Pediatric Femoral Shaft Fractures Treated with Bryant's Vertical Traction].

    Science.gov (United States)

    Urban, J; Toufar, P; Kloub, M

    2017-01-01

    fractures is a very well described phenomenon. The size of femoral overgrowth described in our study was similar to that referred to in the available literature. A method frequently used abroad is the so-called home traction. This method, however, has so far failed to take root in our country, even though this therapeutic technique would be appreciated by parents. CONCLUSIONS The treatment of femoral shaft fractures by Bryant's vertical traction, in children up to the weight of 15 kg, is a simple and safe method with excellent functional outcomes and minimum serious complications. When treating the children with the body weight more than 15 kg, the risk of bullae formation increases, therefore in this weight category treatment shall be decided upon on a case by case basis. The resulting average overgrowth of injured femur was 0.9 cm which corresponds with the findings of other authors. The treatment method using the Bryant's traction is well tolerated by parents, even though most of them would welcome the option of home traction. Key words: traction, femur fracture, overgrowth, children.

  10. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    Science.gov (United States)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  11. Crown and crown-root fractures: an evaluation of the treatment plans for management proposed by 154 specialists in restorative dentistry.

    Science.gov (United States)

    de Castro, Mara Antonio Monteiro; Poi, Wilson Roberto; de Castro, José Carlos Monteiro; Panzarini, Sônia Regina; Sonoda, Celso Koogi; Trevisan, Carolina Lunardelli; Luvizuto, Eloá Rodrigues

    2010-06-01

    Traumatic tooth injuries involve function and aesthetics and cause damage that range from minimal enamel loss to complex fractures involving the pulp tissue and even loss of the tooth crown. Technical knowledge and clinical experience are essential to establish an accurate diagnosis and provide a rational treatment. The purpose of this study was to evaluate the knowledge of Restorative Dentistry specialists about the management of crown and crown-root fractures based on treatment plans proposed by these professionals for these cases. A descriptive questionnaire was mailed to 245 Restorative Dentistry specialists with questions referring to their professional profile and the treatment plans they would propose for the management of crown and crow-root fractures resulting from dental trauma. One hundred and fifty-four questionnaires were returned properly filled. The data were subjected to descriptive statistics and the chi-square test was used to determine the frequency and the level of the significance among the variables. The analysis of data showed that in spite of having a specialist title, all interviewees had great difficulty in planning the treatments. As much as 42.8% of the participants were unable to treat all types of dental trauma. Complicated and uncomplicated crown-root fractures posed the greatest difficulties for the dentists to establish adequate treatment plans because these fractures require multidisciplinary knowledge and approach for a correct case planning and prognosis.

  12. Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2011-12-01

    Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel are studied computationally. The studied fractures are both natural and excavation damage fractures. The emphasis is on the detailed modelling of geometry in 3D in contrast to the traditional radionuclide transport studies that often concentrate on chain decays, sorption, and precipitation at the expense of the geometry. The built computer model is used to assess the significance of components near a deposition hole for radionuclide transport and to estimate the quality of previously used modelling techniques. The results show nearly exponential decrease of radionuclide mass in the bentonite buffer when the release route is a thin natural fracture. The results also imply that size is the most important property of the tunnel section for radionuclide transport. In addition, the results demonstrate that the boundary layer theory can be used to approximate the release of radionuclides with certain accuracy and that a thin fracture in rock can be modelled, at least to a certain limit, by using a fracture with wider aperture but with same flow rate as the thin fracture. (orig.)

  13. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  14. Vertically oriented structure and its fracture behavior of the Indonesia white-pearl oyster.

    Science.gov (United States)

    Chen, Guowei; Luo, Hongyun; Luo, Shunfei; Lin, Zhenying; Ma, Yue

    2017-02-01

    Structural calcites, aragonites, and the bonding organic network decide the growth, structure and mechanical properties of the mollusk bivalvia shell. Here, it was found out that the calcite prisms together with the coated organics construct another kind of 'brick and mortar' structure similar to the aragonite tablets. The calcite layer can be divided into three sublayers and direct evidences show that the calcite prisms are produced by two methods: nucleation and growing in the first sublayer; or fusing from the aragonites, which is quite different from some previous reports. The crystallographic orientation, micro hardness and crack propagations were tested and observed by XRD, micro harness tester, SEM and TEM. Submicron twin crystals were observed in the immature aragonite tablets. The fracture processes and the micro deformation of the aragonite tablets are detected by acoustic emission (AE) in the tensile tests, which gave the interpretation of the dynamical fracture processes: plastic deformation and fracture of the organics, and friction of the minerals at the first two stages; wear and fracture of the minerals at the third stage. Calcites and aragonites are combined and working together, like two layers of vertical 'brick and mortar's, ensuring the stable mechanical properties of the whole shell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Rehabilitation of complicated crown-root fracture by invisible approach

    Directory of Open Access Journals (Sweden)

    V Leela Rani

    2016-01-01

    Full Text Available Dental trauma is one of the most common and significant problems met in all dental offices almost every day. In particular, injury to the anterior teeth is more vulnerable as it may affect the psychosocial behavior, severe emotional complications can occur leading to disturbances in their mental attitude. Cosmetic (lingual orthodontics is the recent development in the field of dentistry in the last few decades. Patients are more concerned about their appearance during the treatment and are affected by psychosocial issues because of labially placed brackets, thus leading to the evolution of lingual orthodontic appliances. In this article, we are sharing our clinical experience treating a complicated crown-root fracture using the lingual orthodontic technique.

  16. Sectional Fixed Orthodontic Extrusion Technique in Management of Teeth with Complicated Crown-Root Fractures: Report of Two Cases

    Directory of Open Access Journals (Sweden)

    S. Nagarajan M. P. Sockalingam

    2018-01-01

    Full Text Available Complicated crown-root fractures account for a small percentage of traumatic dental injuries seen in children; however, management of these injuries can be very challenging to clinicians. Factors such as complexity of the injury, patient’s age and dentition stage, patient’s cooperation, and parental demands may have some bearing on the type of treatment undertaken and its outcomes. In some children, these injuries may have significant impact on their quality of life. The purpose of this article is to describe two cases of complicated crown-root fracture which were successfully managed through orthodontic extrusion using a sectional fixed orthodontic technique. The basis for the treatment technique and its favourable outcomes were highlighted with its advantages and drawbacks.

  17. Damping ratio analysis of tooth stability under various simulated degrees of vertical alveolar bone loss and different root types.

    Science.gov (United States)

    Ho, Kuo-Ning; Lee, Sheng-Yang; Huang, Haw-Ming

    2017-08-03

    The purpose of this study was to evaluate the feasibility of using damping ratio (DR) analysis combined with resonance frequency (RF) and periotest (PTV) analyses to provide additional information about natural tooth stability under various simulated degrees of alveolar vertical bone loss and various root types. Three experimental tooth models, including upper central incisor, upper first premolar, and upper first molar were fabricated using Ti6Al4V alloy. In the tooth models, the periodontal ligament and alveolar bone were simulated using a soft lining material and gypsum, respectively. Various degrees of vertical bone loss were simulated by decreasing the surrounding bone level apically from the cementoenamel junction in 2-mm steps incrementally downward for 10 mm. A commercially available RF analyzer was used to measure the RF and DR of impulse-forced vibrations on the tooth models. The results showed that DRs increased as alveolar vertical bone height decreased and had high coefficients of determination in the linear regression analysis. The damping ratio of the central incisor model without a simulated periodontal ligament were 11.95 ± 1.92 and 27.50 ± 0.67% respectively when their bone levels were set at 2 and 10 mm apically from the cementoenamel junction. These values significantly changed to 28.85 ± 2.54% (p = 0.000) and 51.25 ± 4.78% (p = 0.003) when the tooth model was covered with simulated periodontal ligament. Moreover, teeth with different root types showed different DR and RF patterns. Teeth with multiple roots had lower DRs than teeth with single roots. Damping ratio analysis combined with PTV and RF analysis provides more useful information on the assessment of changes in vertical alveolar bone loss than PTV or RF analysis alone.

  18. Autotransplantation of Mandibular Third Molar with Buccal Cortical Plate to Replace Vertically Fractured Mandibular Second Molar: A Novel Technique.

    Science.gov (United States)

    Zufía, Juan; Abella, Francesc; Trebol, Ivan; Gómez-Meda, Ramón

    2017-09-01

    Tooth replacement often leads to inadequate vertical volume in the recipient site bone when a tooth has been extracted because of a vertical root fracture (VRF). This case report presents the autotransplantation of a mandibular third molar (tooth #32) with the attached buccal cortical plate to replace a mandibular second molar (tooth #31) diagnosed with a VRF. After extraction of tooth #31, the recipient socket was prepared based on the size measured in advance with cone-beam computed tomographic imaging. The precise and calculated osteotomy of the cortical bone of tooth #32 allowed for the exact placement of the donor tooth in the position of tooth #31. The total extraoral time was only 25 minutes. The block was fixed to the recipient socket with an osteosynthesis screw and splinted with a double resin wire for 8 weeks. At the 6-month follow-up, the screw was removed, and the stability of the tooth and the regeneration obtained throughout the vestibular area were confirmed. At the 2-year follow-up, the transplanted tooth was asymptomatic and maintained a normal bone level. Advantages of autotransplantation over dental implants include maintenance of proprioception, possible orthodontic movements, and a relatively low cost. This case report demonstrates that an autotransplantation of a third molar attached to its buccal cortical plate is a viable option to replace teeth with a VRF. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Comparative Analysis of Crack Propagation in Roots with Hand and Rotary Instrumentation of the Root Canal -An Ex-vivo Study.

    Science.gov (United States)

    Kumari, Manju Raj; Krishnaswamy, Manjunath Mysore

    2016-07-01

    Success of any endodontic treatment depends on strict adherence to 'endodontic triad'. Preparation of root canal system is recognized as being one of the most important stages in root canal treatment. At times, we inevitably end up damaging root dentin which becomes a Gateway for infections like perforation, zipping, dentinal cracks and minute intricate fractures or even vertical root fractures, thereby resulting in failure of treatment. Several factors may be responsible for the formation of dentinal cracks like high concentration of sodium hypochlorite, compaction methods and various canal shaping methods. To compare and evaluate the effects of root canal preparation techniques and instrumentation length on the development of apical root cracks. Seventy extracted premolars with straight roots were mounted on resin blocks with simulated periodontal ligaments, exposing 1-2 mm of the apex followed by sectioning of 1mm of root tip for better visualization under stereomicroscope. The teeth were divided into seven groups of 10 teeth each - a control group and six experimental groups. Subgroup A & B were instrumented with: Stainless Steel hand files (SS) up to Root Canal Length (RCL) & (RCL -1 mm) respectively; sub group C & D were instrumented using ProTaper Universal (PTU) up to RCL and (RCL -1mm) respectively; subgroup E & F were instrumented using ProTaper Next (PTN) up to RCL & (RCL -1 mm) respectively. Stereomicroscopic images of the instrumentation sequence were compared for each tooth. The data was analyzed statistically using descriptive analysis by 'Phi' and 'Cramers' test to find out statistical significance between the groups. The level of significance was set at phand file group showed most cracks followed by ProTaper Universal & ProTaper Next though statistically not significant. Samples instrumented up to 1mm short of working length (RCL-1mm) showed lesser number of cracks. All groups showed cracks formation, the stainless steel group being the highest

  20. Effects of root radius, stress, crack growth and rate on fracture instability

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, F A

    1965-01-01

    Of various criteria for fracture at the root of a notch, the energy, local stress, and displacement criteria have limited validity. More appropriate is the history of both stress and strain over a small region ahead of the crack, as required for fracture by the coalescence of holes. Expressions are given for crack initiation, growth, and subsequent instability in anti-plane strain of a nonhardening material. Instability is shown to depend primarily on those strain increments arising from crack growth at constant load rather than on those from increasing load at constant crack length. Thus final instability conditions are similar for single and double- ended cracks, round notches, and cracks cut under constant load. Round notches may give instability, restabilization and final instability. The growth and coalescence of holes in front of a crack in a linearly viscous material is studied for both tensile and anti-plant-strain cracks. The absence of residual strain eliminates instability, but the crack continually accelerates. (26 refs.)

  1. Does a trochanteric lag screw improve fixation of vertically oriented femoral neck fractures? A biomechanical analysis in cadaveric bone.

    Science.gov (United States)

    Hawks, Michael A; Kim, Hyunchul; Strauss, Joseph E; Oliphant, Bryant W; Golden, Robert D; Hsieh, Adam H; Nascone, Jason W; O'Toole, Robert V

    2013-10-01

    We assessed the biomechanical performances of a trochanteric lag screw construct and a traditional inverted triangle construct in the treatment of simulated Pauwels type 3 femoral neck fractures. An inverted triangle construct (three 7.3-mm cannulated screws placed in inverted triangle orientation) and a trochanteric lag screw construct (two 7.3-mm cannulated screws placed across the superior portion of the femoral neck and one 4.5-mm lag screw placed perpendicular to the fracture in superolateral to inferomedial orientation) were tested in nine matched pairs of non-osteoporotic human cadaveric femora. We used a previously described vertically oriented femoral neck fracture model and testing protocol that incrementally loaded the constructs along the mechanical axis of the femur to 1400 N. Specimens that survived incremental loading underwent cyclic loading. Apparent construct stiffness, force at 3mm of displacement, and survival of incremental loading were recorded. The trochanteric lag screw group had a 70% increase in stiffness (261 N/mm [29 standard deviation] versus 153 N/mm [16 standard deviation]; P=0.026) and a 43% increase in force required for displacement (620 N versus 435 N; P=0.018) compared with the inverted triangle group. One trochanteric lag screw and no inverted triangle specimen survived incremental loading. A trochanteric lag screw construct applied to vertically oriented femoral neck fractures provides marked improvement in mechanical performance compared with the inverted triangle construct. © 2013.

  2. Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analysis

    Science.gov (United States)

    JøRgensen, Peter R.; Hoffmann, Martin; Kistrup, Jens P.; Bryde, Claus; Bossi, Rossana; Villholth, Karen G.

    2002-11-01

    This study investigates vertical flow and pesticide transport along fractures in water saturated unoxidized clayey till. From two experimental fields, each 40 m2, 96% and 98%, respectively, of total vertical flow was conducted along fractures in the till, while the remaining 2-4% of flow occurred in the clay matrix at very slow flow rate. An applied dye tracer was observed only along 10-26% of the total fracture length measured on the horizontal surface of the experimental fields. In vertical sections the dyed fracture portions constituted root channels, which penetrated the till vertically along the fractures into the local aquifer at 5 m depth. No dye tracer was observed in the fractures without root channels or in the unfractured clay matrix, suggesting that root growth along the fracture surfaces was the principal agent of fracture aperture enhancement. Using hydraulic fracture aperture values determined from large undisturbed column (LUC) collected from one of the experimental fields, it was estimated that 94% of flow in the fractures was conducted along the fracture root channels, while only 6% of flow was conducted along the fracture sections without root channels. For natural vertical hydraulic gradients (0.8-2.3 at the site), flow rates of 0.8-2 km/d were determined for a fracture root channel, while fracture sections without root channels revealed flow rates of 9-22 m/d. Corresponding flow rates in the unfractured matrix were 7-19 mm/yr. For infiltrated bromide (nonreactive tracer) and mobile pesticides mecoprop (MCPP) and metsulfuron, very rapid migration (0.28-0.5 m/d) and high relative breakthrough concentrations (30-60%) into the aquifer were observed to occur along the fracture root channels using a constant hydraulic gradient of 1. Only traces were measured from infiltration of the strongly sorbed pesticide prochloraz. The concentrations of the bromide and pesticides in the monitoring wells were modeled with a discrete fracture matrix diffusion

  3. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Maria Estivalete MARCHIONATTI

    2014-10-01

    Full Text Available Objective: Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods: Ninety roots were randomly distributed into 3 groups (n=10 (C-MC: control; P-MC: polyether; AS-MC: addition silicone to test bond strength and 6 groups (n=10 (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline, and the teeth cut into 3 slices (2 mm, which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min performed on all groups. Results: Periodontal ligament simulation did not affect the bond strength (p=0.244 between post and dentin. Simulation of periodontal ligament (p=0.153 and application of mechanical cycling (p=0.97 did not affect fracture resistance. Conclusions: The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study.

  4. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site

    NARCIS (Netherlands)

    Wang, Peng; Mommer, L.; Ruijven, van J.; Berendse, F.; Maximov, T.; Heijmans, M.M.P.D.

    2016-01-01

    Aims

    Shrub expansion is common in the tundra biome and has been linked to climate warming. However, the underlying mechanisms are still not fully understood. This study aimed to investigate the seasonal and vertical rooting patterns of different plant functional types, which is important

  5. A new method for pressure test analysis of a vertically fractured well producing commingled zones in bounded square reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1997-07-15

    Although hydraulically or naturally fractured wells located in stratified bounded reservoirs are common, reliable techniques available to analyze the pressure test data for such reservoirs are lacking. This paper presents a mathematical model that describes the pressure behavior of a vertically fractured well located in a stratified, bounded, square reservoir. The fracture can be either a uniform flux or an infinite conductivity fracture. It was found that the dimensionless pressure function and its derivative and the fractional production rate from the different layers are mainly controlled by the fracture penetration into the formation, and that transmissibility and storativity affect the fractional production rate and the pressure derivative but have little effect on the dimensionless pressure function. Type curves of dimensionless pressure and dimensionless pressure derivative can be used to evaluate the reservoir characteristics. The selection of the appropriate type curve is guided by the behavior of the layer fractional production rate obtained from flow rate survey carried out during well testing. Type curves for uniform flux and infinite conductivity fractures exhibit similar features. Two examples are presented to demonstrate the application of the new method of analysis presented in this paper

  6. Evaluation of resistance of teeth subjected to fracture after endodontic treatment using different root canal sealers: An in vitro study

    Directory of Open Access Journals (Sweden)

    S S Bhat

    2012-01-01

    Full Text Available Aims: The aim of this study was to compare the ex-vivo effects of different root canal sealers on the fracture resistance of endodontically treated teeth. Materials and Methods: Seventy-five freshly extracted human mandibular premolars were used for the study. The length was standardized to 14 mm and all the teeth were biomechanically prepared and divided into five different groups based on the type of root canal sealers used. Group I:- Roeko seal + gutta percha, Group II: AH plus ® root canal sealer + gutta percha, Group III: PULPDENT root canal sealer + gutta percha, Group IV: Zinc oxide-eugenol sealer + gutta percha, Group V: Control (unobturated teeth. The teeth were embedded in acrylic resin blocks and compressive strengths were measured using universal testing machine (Instron. Statistical Analysis Used: One-way ANOVA, unpaired t- test Results: Data obtained were statistically evaluated using one-way ANOVA and unpaired t-test. All groups showed a statistically significant result (P < 0.05. Teeth obturated with Group I and Group II showed higher resistance to fracture than teeth obturated with other three Groups. It was seen that the teeth obturated with group III showed a better fracture resistance than Group IV and there was no statistical significance found between Group and Group V. Conclusions: From this study, it has been concluded that both the resin based sealers that were used in this study were equally effective compared to that of the zinc oxide-based sealers and the control group. However, no significant results were obtained when the comparison was made between zinc oxide-eugenol and gutta-percha and the control group.

  7. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-chao; Zhan, Jie-min; Wu, Neng-you; Luo, Ying-ying; Cai, Wen-hao

    2016-01-01

    Yangbajing geothermal field is the first high-temperature hydrothermal convective geothermal system in China. Research and development of the deep fractured granite reservoir is of great importance for capacity expanding and sustaining of the ground power plant. The geological exploration found that there is a fractured granite heat reservoir at depth of 950–1350 m in well ZK4001 in the north of the geothermal field, with an average temperature of 248 °C and a pressure of 8.01–11.57 MPa. In this work, electricity generation potential and its dependent factors from this fractured granite reservoir by water circulating through vertical wells are numerically investigated. The results indicate that the vertical well system attains an electric power of 16.8–14.7 MW, a reservoir impedance of 0.29–0.46 MPa/(kg/s) and an energy efficiency of about 29.6–12.8 during an exploiting period of 50 years under reference conditions, showing good heat production performance. The main parameters affecting the electric power are water production rate and injection temperature. The main parameters affecting reservoir impedance are reservoir permeability, injection temperature and water production rate. The main parameters affecting the energy efficiency are reservoir permeability, injection temperature and water production rate. Higher reservoir permeability or more reasonable injection temperature or water production rate within certain ranges will be favorable for improving the electricity generation performance. - Highlights: • We established a numerical model of vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 16.8–14.7 MW with an efficiency of about 29.6–12.8. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  8. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  9. Locking compression plate osteosynthesis of complicated mandibular fractures in six horses.

    Science.gov (United States)

    Kuemmerle, J M; Kummer, M; Auer, J A; Nitzl, D; Fürst, A E

    2009-01-01

    Complicated mandibular fractures were recognised in one foal, one pony and four horses. The foal was two months old while the adult animals ranged in age from 12 to 24 years. Three horses had a unilateral horizontal ramus fracture. Two fractures were open and one was closed. Comminution was present in one of these patients while the other two horses had marked displacement of the fragments. Two suffered from comminuted fractures of the horizontal and vertical ramus of the mandible. One of these patients had open and infected fractures. One foal had a bilateral horizontal ramus fracture with marked periosteal 'new bone' formation and malalignement which required corrective osteotomy. Each horse underwent locking compression plate (LCP) osteosynthesis consisting of open fracture reduction and application of one to three 4.5/5.0 mm LCP at the ventral, lateral or caudal aspect of the mandible under fluoroscopic control. Two 3.5 mm LCP were used in the foal. Plate fixation was supported by application of a cerclage wire construct between the incisor and premolar teeth in most patients. Complete fracture healing, with an excellent functional and cosmetic outcome, was achieved in all of the patients. Complications encountered included seroma formation, screw and wire breakage, as well as implant and apical tooth root infections. The LCP was removed after fracture healing had occurred in four patients.

  10. Comparison of surgical techniques of 111 medial malleolar fractures classified by fracture geometry.

    Science.gov (United States)

    Ebraheim, Nabil A; Ludwig, Todd; Weston, John T; Carroll, Trevor; Liu, Jiayong

    2014-05-01

    Evaluation of operative techniques used for medial malleolar fractures by classifying fracture geometry has not been well documented. One hundred eleven patients with medial malleolar fractures (transverse n = 63, oblique n = 29, vertical n = 7, comminuted n = 12) were included in this study. Seventy-two patients had complicating comorbidities. All patients were treated with buttress plate, lag screw, tension band, or K-wire fixation. Treatment outcomes were evaluated on the basis of radiological outcome (union, malunion, delayed union, or nonunion), need for operative revision, presence of postoperative complications, and AOFAS Ankle-Hindfoot score. For transverse fractures, tension band fixation showed the highest rate of union (79%), highest average AOFAS score (86), lowest revision rate (5%), and lowest complication rate (16%). For oblique fractures, lag screws showed the highest rate of union (71%), highest average AOFAS score (80), lowest revision rate (19%), and lowest complication rate (33%) of the commonly used fixation techniques. For vertical fractures, buttress plating was used in every case but 1, achieving union (whether normal or delayed) in all cases with an average AOFAS score of 84, no revisions, and a 17% complication rate. Comminuted fractures had relatively poor outcomes regardless of fixation method. The results of this study suggest that both tension bands and lag screws result in similar rates of union for transverse fractures of the medial malleolus, but that tension band constructs are associated with less need for revision surgery and fewer complications. In addition, our data demonstrate that oblique fractures were most effectively treated with lag screws and that vertical fractures attained superior outcomes with buttress plating. Level III, retrospective comparative series.

  11. Dynamic Torque and Vertical Force Analysis during Nickel-titanium Rotary Root Canal Preparation with Different Modes of Reciprocal Rotation.

    Science.gov (United States)

    Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi

    2017-10-01

    The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Ordinary Cannulated Compression Screws or Headless Cannulated Compression Screws? A Synthetic Bone Biomechanical Research in the Internal Fixation of Vertical Femoral Neck Fracture

    Directory of Open Access Journals (Sweden)

    Baokun Zhang

    2018-01-01

    Full Text Available Purpose. The purpose of this study is to verify whether the headless cannulated compression screw (HCCS has higher biomechanical stability than the ordinary cannulated compression screw (OCCS in the treatment of vertical femoral neck fractures. Materials and Methods. 30 synthetic femur models were equally divided into 2 groups, with 50°, 60°, and 70° Pauwels angle of femoral neck fracture, under 3D printed guiding plates and C-arm fluoroscopic guidance. The femur molds were fixed with three parallel OCCSs as OCCS group and three parallel HCCSs as HCCS group. All specimens were tested for compressive strength and maximum load to failure with a loading rate of 2 mm/min. Results. The result showed that there was no significant difference with the compressive strength in the Pauwels angle of 50° and 60°. However, we observed that the maximum load to failure with the Pauwels angle of 50°, 60°, and 70° and the compressive strength with 70° of HCCS group showed better performance than the OCCS group. Conclusion. HCCS performs with better biomechanical stability than OCCS in the treatment of vertical femoral neck fracture, especially with the Pauwels angle of 70°.

  13. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  14. Influence of side-groove root radius on the ductile fracture toughness of miniature C(T) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.

    2009-05-15

    The use of miniature C(T) specimens, MC(T), for fracture toughness measurements in the upper shelf regime has been investigated at SCK-CEN since 2004, in the framework of the Electrabel/Tractebel SCK-CEN Convention (now General Framework Agreement SUEZ-SCK-CEN). This geometry has been used and validated on both unirradiated (2004-05) and irradiated (2006) materials, mainly reactor pressure vessel (RPV) steels. While side-grooved MC(T) specimens have shown in all conditions a systematically lower tearing resistance and ductile crack initiation toughness as compared to standard-size 1TC(T) samples, the only plain-sided MC(T) specimen tested in 2005 exhibited very high ductile fracture toughness, thus pointing at a strong influence of side-grooving on the upper shelf properties of MC(T) specimens. This study investigates the influence of side-grooving on the initiation toughness and tearing resistance of MC(T) specimens, as a function of the root radius of the side-groove (ranging from 0.1 to 1 mm) and in comparison with plain-sided MC(T) and reference 1TC(T) samples. The material used is the well characterized DIN 22NiMoCr37 RPV steel, which had been used in the European project which generated the famous EURO fracture toughness data set.

  15. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    Science.gov (United States)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  16. Effect of MTA and Portland Cement on Fracture Resistance of Dentin

    Directory of Open Access Journals (Sweden)

    Maryam Forghani

    2013-06-01

    Full Text Available Background and aims. It is important to evaluate the effects of endodontic materials on tooth structures to avoid endodontic treatment failure. The aim of the present study was to investigate the effect of mineral trioxide aggregates (MTA and Portland cement (PC on fracture resistance of dentin. Materials and methods. Thirty-six freshly extracted human single-rooted premolar teeth were selected. The crowns were removed and the roots were randomly divided into two experimental groups and one control group. The root samples were longitudinally divided into two halves and a dentin bar (2×2×10 mm was cut from each root section for short-term (2 weeks and long-term (12 weeks evaluations. The root sections in the experimental groups were exposed to MTA or PC, while keeping the control group specimens in physiologic saline. The fracture resistance of each specimen was measured using an Instron testing machine. The results were statistically analyzed using ANOVA, a post hoc Tukey test and paired ttest at 5% significance level. Results. The fracture resistance of MTA-treated specimens significantly increased between 2 and 12 weeks (P0.05. Conclusion. The results showed that MTA increased the fracture resistance of root dentin, while PC had no significant effect on dentin fracture resistance.

  17. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  18. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    Science.gov (United States)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

  19. Fracture detection using subsurface electromagnetic techniques

    International Nuclear Information System (INIS)

    Zhou, Q.; Becker, A.; Goldstein, N.E.; Morrison, H.F.; Lee, K.H.

    1987-01-01

    Audio frequency subsurface electromagnetic (EM) techniques using cross-hole and in-hole arrays for fracture detection are evaluated numerically. The fracture zone is represented by a thin rectangular conductor with finite dimensions, embedded in a conductive host rock. Because of its practical advantages, the EM source considered in this study is a grounded vertical electrical dipole (G.V.E.D.) placed in a vertical bore hole. Three source-receiver configurations are considered. The first is the cross-hole configuration with the source and receiver moving parallel to each other in separate holes. The second configuration is a fixed source in one hole and a moving receiver in the other. Finally, the author also treat the case of a tandem source and receiver at fixed separation traversing a single hole. In all cases the conductive fracture zone is not intersected by either hole. Comparisons between the grounded electric dipole and the vertical magnetic dipole indicate clear advantages for the former

  20. Assessing the Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Sweep Imaging with Fourier Transform (SWIFT) Magnetic Resonance Imaging (MRI)

    Science.gov (United States)

    Schuurmans, Tyler J.

    Introduction: Magnetic Resonance Imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth due to more advantageous contrast, without ionizing radiation. An MRI technique called Sweep Imaging with Fourier Transform (SWIFT) has overcome many of the inherent difficulties of conventional MRI with detecting fast-relaxing signals from densely mineralized dental tissues. The objectives of this in vitro investigation were to develop MRI criteria for root crack/fracture identification in teeth and to establish intra- and inter-rater reliabilities and corresponding sensitivity and specificity values for the detection of tooth-root cracks/fractures in SWIFT MRI and limited field of view (FOV) CBCT. Materials and Methods: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and 6 dentists, including 3 endodontists and 1 Oral and Maxillofacial (OMF) radiologist. Twenty-nine human adult teeth previously extracted following clinical diagnosis by a board-certified endodontist of a root crack/fracture were frequency-matched to 29 non-cracked controls. Crack/fracture status confirmation was performed with magnified visual inspection, transillumination and vital staining. Samples were scanned with two 3D imaging modalities: 1) SWIFT MRI (10 teeth/scan) via a custom oral radiofrequency (RF) coil and a 90cm, 4-T magnet; 2) Limited FOV CBCT (1 tooth/scan) via a Carestream (CS) 9000 (Rochester, NY). Following a training period, a blinded 4-member panel (3 endodontists, 1 OMF radiologist) evaluated the images with a proportion randomly re-tested to establish intra-rater reliability. Overall observer agreement was measured using Cohen's kappa and levels of agreement judged using the criteria of Landis and Koch. Sensitivity and specificity were computed with 95% confidence interval (CI); statistical significance was set at alpha ≤ 0.05. Results: MRI-based crack/fracture criteria were defined as 1-2 sharply

  1. Natural convection and dispersion in a tilted fracture

    International Nuclear Information System (INIS)

    Woods, A.W.; Linz, S.J.

    1992-01-01

    In many geophysical situations, fluid is contained in long narrow fractures embedded within an impermeable medium of different thermal conductivity; and there may be a uniform vertical temperature gradient imposed upon the system. We show that whenever the slot is tilted to the vertical, convection develops in the fluid, even if the background temperature increases with height. Using typical values for the physical properties of a water-filled fracture, we show that the Earth's geothermal gradient produces a convective flow in a fracture; this has an associated dispersion coefficient D T ∼10 2 -10 3 D in fractures about a centimetre wide. We show that this shear dispersion could transport radioactive material, of half-life 10 4 years, tens of metres along the fracture within one half-life; without this dispersion, the material would only diffuse a few metres along the fracture within one half-life. (author)

  2. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    Science.gov (United States)

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  3. Development of Plastic Gear for Power Transmission : Abnormal Wear on the Tooth Root and Tooth Fracture near Pitch Point

    OpenAIRE

    Terashima, Kenichi; Tsukamoto, Naohisa; Nishida, Noriteru; Shi, Jiasun

    1986-01-01

    Plastic gears have many excellent characteristics which are locking in metallic gears, such as corrosion resistance, self-lubrication, quiet running, and so forth. The meshing behavior of plastic gears is very different from that of metallic gears. Therefore, the life estimation is very difficult for plastic gears. In this paper, generating and growing mechanisms of abnormal wear which appears fatally near the root of plastic tooth are analyzed, and then it is clarified that tooth fractures w...

  4. Evaluation of Fractured Basement Complex Rock Porosity by ...

    African Journals Online (AJOL)

    current resistivity sounding as complementary geophysical technique to Schlumberger vertical electrical sounding in characterizing fractured geologic systems. Previously, Schlumberger vertical electrical sounding was used to collect data.

  5. Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis

    Science.gov (United States)

    Mullen, J. L.; Hangarter, R. P.

    2003-05-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.

  6. Intermaxillary Fixation Screw Morbidity in Treatment of Mandibular Fractures

    DEFF Research Database (Denmark)

    Florescu, Vlad-Andrei; Kofod, Thomas; Pinholt, Else Marie

    2016-01-01

    Purpose The aim of the present retrospective study was to investigate the morbidity of screws used for intermaxillary fixation (IMF) in the treatment of mandibular fractures. A review of the published data was also performed for a comparison of outcomes. Our hypothesis was that the use of screws...... for IMF of mandibular fractures would result in minimal morbidity. Materials and Methods Patients treated for mandibular fractures from 2007 to 2013, using screws for IMF, using the international diagnosis code for mandibular fracture, DS026, were anonymously selected (Department of Oral and Maxillofacial...... Surgery, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark). The fracture type, radiographic findings, treatment modality, screw type and number, and root damage were recorded. For the outcome comparison, a review of the published data regarding iatrogenic dental root damage caused...

  7. Fracture mapping for radionuclide migration studies in the Climax granite

    International Nuclear Information System (INIS)

    Thorpe, R.; Springer, J.

    1981-05-01

    As part of LLNL's program on radionuclide migration through fractured rock, major geologic discontinuities have been mapped and characterized at the 420 m level in the Climax Stock, adjacent to LLNL's Spent Fuel Test. Persistence or continuity of features was the principal sampling criterion, and ninety major fractures and faults were mapped in the main access and tail drifts. Although the purpose and nature of this study was different from previous fracture surveys in the Climax Stock, the results are generally consistent in that three predominant fracture sets are identified: NW strike/vertical, NE strike/vertical, NW strike/subhorizontal. The frequency of major features in the main access drift is somewhat higher than in the tail drift. Those mapped in the main access drift are generally braided, stepped, or en echelon, while those in the tail drift appear to be more distinct and planar. Several of the fractures in the tail drift lie in the NE/vertical set, while most form an entirely different set oriented N5E/55NW. Subhorizontal fractures were common to both drifts. An area of seepage associated with some of these low-angle features was mapped in the main access drift

  8. Evaluation of Fracture Resistance in Root Canal-Treated Teeth ...

    African Journals Online (AJOL)

    2018-06-11

    Jun 11, 2018 ... Objective: This study aimed to evaluate the effects of different coronal restoration techniques on fracture ... Therefore, the application of horizontal fiber posts in. MOD cavities has .... Table 1: Median and 25% and 75% quartile values of the groups n ..... restorations on fracture resistance and failure mode of.

  9. Management of recurrent fracture of central incisor with internal resorption using light transmitting (luminex post

    Directory of Open Access Journals (Sweden)

    Hariharan V

    2010-01-01

    Full Text Available The normal root canal anatomy may be altered in various pathological processes and making it very difficult and at times impossible to achieve ideal obturation by normal methods. Internal resorption is one among them. There are several treatment protocols advised for this pathological condition. A crown-root fracture is defined as a fracture involving enamel, dentin and cementum and accounts for 5% of all traumatic injuries to the permanent dentition. In anterior teeth, these fractures are usually caused by direct trauma and often complicated in fully erupted teeth. In cases where the fracture line extends down along the long axis of the root, extraction of the tooth is indicated. The purpose of this report is to present the use of light transmitting post system to reinforce the crown root fractured maxillary central incisor due to trauma and internal resorption.

  10. The application of vertical seismic profiling and cross-hole tomographic imaging for fracture characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.

    1990-01-01

    In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs

  11. [Distal clavicle fracture].

    Science.gov (United States)

    Seppel, G; Lenich, A; Imhoff, A B

    2014-06-01

    Reposition and fixation of unstable distal clavicle fractures with a low profile locking plate (Acumed, Hempshire, UK) in conjunction with a button/suture augmentation cerclage (DogBone/FibreTape, Arthrex, Naples, FL, USA). Unstable fractures of the distal clavicle (Jäger and Breitner IIA) in adults. Unstable fractures of the distal clavicle (Jäger and Breitner IV) in children. Distal clavicle fractures (Jäger and Breitner I, IIB or III) with marked dislocation, injury of nerves and vessels, or high functional demand. Patients in poor general condition. Fractures of the distal clavicle (Jäger and Breitner I, IIB or III) without marked dislocation or vertical instability. Local soft-tissue infection. Combination procedure: Initially the lateral part of the clavicle is exposed by a 4 cm skin incision. After reduction of the fracture, stabilization is performed with a low profile locking distal clavicle plate. Using a special guiding device, a transclavicular-transcoracoidal hole is drilled under arthroscopic view. Additional vertical stabilization is arthroscopically achieved by shuttling the DogBone/FibreTape cerclage from the lateral portal cranially through the clavicular plate. The two ends of the FibreTape cerclage are brought cranially via adjacent holes of the locking plate while the DogBone button is placed under the coracoid process. Thus, plate bridging is achieved. Finally reduction is performed and the cerclage is secured by surgical knotting. Use of an arm sling for 6 weeks. Due to the fact that the described technique is a relatively new procedure, long-term results are lacking. In the short term, patients postoperatively report high subjective satisfaction without persistent pain.

  12. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    Science.gov (United States)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  13. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    Science.gov (United States)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2017-11-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  14. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  15. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  16. The persistence of the gravity signal in flax roots

    Science.gov (United States)

    Hasenstein, Karl H.

    Although the presentation time of gravitropism has been studied, no data exist as to how long a reorientation stimulus affects the gravitropic response of a root. We tested the duration of gravitropic curvature in roots of Linum usitatissimum after reversing a one hour, 90 degree gravistimulus by increasing time intervals in vertical orientation before clinorotating the roots and acquiring infrared digital images. Clinorotation was performed either parallel or perpendicular to the gravity vector. Under either condition the gravistimulus affected curvature during clinorotation only between two to three minutes. Maximal curvature after one minute of vertical reorientation was 15 degrees within one hour. After three minutes in vertical orientation the observed curvature was not statistically different from vertically growing roots. In both orientations, maximum curvature occurred after 1hr. Perpendicular (horizontal) clinorotation showed decreasing curvature with increasing reorientation time. Parallel (vertical) clinorotation resulted in greater variability to the reorientation time. These data indicate that the gravity stimulus operates essentially memory free and that clinorotation affects the gravity response. Therefore all aspects of clinorotation need to be studied before an assessment of clinostats for the simulation of microgravity is possible and a time limit for memory effects of mechanostimulation can be determined.

  17. Effect of water table fluctuations on phreatophytic root distribution.

    Science.gov (United States)

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Insufficiency fracture of the pelvis after the radiotherapy for carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Nishimura, Tetsuo; Shimizu, Teppei; Sugiyama, Akira; Ichinohe, Kenji; Teshima, Takeshi; Takahashi, Motoichiro; Takai, Michikatsu; Kaneko, Masao

    1990-01-01

    Bone injury after radiotherapy for carcinoma of the uterine cervix has been reported since early days of this century. Recently, the concept of insufficiency fracture has been confirmed. Insufficiency fracture is one of the stress fractures and occurs when the elastic resistance of bone is inadequate to withstand normal or physiological stress. In the American and European studies, radiotherapy is known as a cause of insufficiency fracture. There are no reports on insufficiency fracture in the Japanese literatures. Four cases of carcinomas of the uterine cervix presented pelvic insufficiency fractures following radiotherapy. In the pubic bone, a vertical parasymphyseal fracture with mixed lytic and sclerotic changes of surrounding tissue is characteristic. Sacral insufficiency fracture shows a vertical or horizontal line with lytic and sclerotic appearance. Bone scintigraphy is a sensitive modality for the early detection. H-shaped configuration is diagnostic for sacral insufficiency fracture. CT is an accurate technique demonstrating a vertical fracture and excluding the malignant bony lesion. Although radiological findings of insufficiency fracture are similar to bone malignancy, differential diagnosis from malignant lesions is possible. Bony symptoms of all patients disappeared without specific treatments. In the follow-up study of patients with carcinomas of the uterine cervix after radiotherapy, it is important to have the consideration on insufficiency fracture. (author)

  19. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  20. VSP [Vertical Seismic Profiling] and cross hole tomographic imaging for fracture characterization

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Myer, L.R.; Karasaki, K.; Daley, T.M.; Long, J.C.S.

    1989-09-01

    For the past several years LBL has been carrying out experiments at various fractured rock sites to determine the fundamental nature of the propagation of seismic waves in fractured media. These experiments have been utilizing high frequency (1000 to 10000 Hz.) signals in a cross-hole configuration at scales of several tens of meters. Three component sources and receivers are used to map fracture density, and orientation. The goal of the experiments has been to relate the seismological parameters to the hydrological parameters, if possible, in order to provide a more accurate description of a starting model for hydrological characterization. The work is ultimately aimed at the characterization and monitoring of the Yucca Mountain site for the storage of nuclear waste. In addition to these controlled experiments multicomponent VSP work has been carried out at several sites to determine fracture characteristics. The results to date indicate that both P-wave and S-wave can be used to map the location of fractures. In addition, fractures that are open and conductive are much more visible to seismic waves that non-conductive fractures. The results of these tests indicate direct use in an unsaturated environment. 12 refs., 10 figs

  1. Optimizing fracture and completion design in the Westerose field

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Norman, S. [Missouri Univ., Rolla, MO (United States); Griffiths, E.; Barnhart, W. [Pan-Canadian Petroleum Ltd., Calgary, AB (Canada); Aunger, D.; Kenny, L.; Halvaci, M.

    1998-12-31

    An experimental study was conducted to determine the feasibility of developing additional gas reserves in the tight sands located between the main bar trends in the Westerose gas field, located 75 km south of Edmonton, Alberta. As part of the study, fracturing and completion alternatives in the Glauconitic `bar` and `interbar` sands were analyzed and compared. Optimal fracture designs for vertical wells were determined for each type of sand. Vertical well performance was compared to stimulated and unstimulated horizontal wells drilled either parallel or perpendicular to the minimum in-situ stress. Results indicated that in-situ permeabilities in the interbar sands were lower than anticipated. It was also shown that over the permeability ranges studied, predicted rates matched actual rates for both vertical fractured and multifractured horizontal wells, suggesting that analytical models can be used to assess anticipated well performance. A further conclusion drawn from the study was that by stimulating a wide variety of permeability ranges, well orientations, anisotropy, fracture orientations and completion options can be determined. 12 refs., 7 tabs., 4 figs.

  2. Root Growth and Water distribution in living walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars

    of functional living walls and this thesis is a first step of understanding the essential but hidden part inside the growing medium, i.e. the roots. Ensuring successful performance of the plants in a living wall is complex and the choice of growing medium, plant species and planting position are important....... for root growth. This thesis investigates the correlations between the growing media and root and shoots growth, and studies root growth patterns of different plant species and effects of planting position and root interactions of plants growing in living walls. There are a number of challenges with living...... walls; the vertical orientation of the growing medium, plants are growing vertically above or below each other in a limited rooting volume; there is an increased exposure to weather and the plants can react differently to water conditions and competition from other plants. Plant growth is the core...

  3. Influence of Tube Current Settings on Diagnostic Detection of Root Fractures Using Cone-beam Computed Tomography: An In Vitro Study.

    Science.gov (United States)

    Tangari-Meira, Ricardo; Vancetto, José Ricardo; Dovigo, Lívia Nordi; Tosoni, Guilherme Monteiro

    2017-10-01

    This study assessed the influence of tube current settings (milliamperes [mA]) on the diagnostic detection of root fractures (RFs) using cone-beam computed tomographic (CBCT) imaging. Sixty-eight human anterior and posterior teeth were submitted to root canal preparation, and 34 root canals were filled. The teeth were divided into 2 groups: the control group and the fractured group. RFs were induced using a universal mechanical testing machine; afterward, the teeth were placed in a phantom. Images were acquired using a Scanora 3DX unit (Soredex, Tuusula, Finland) with 5 different mA settings: 4.0, 5.0, 6.3, 8.0, and 10.0. Two examiners (E1 and E2) classified the images according to a 5-point confidence scale. Intra- and interexaminer reproducibility was assessed using the kappa statistic; diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUROC). Intra- and interexaminer reproducibility showed substantial (κE1 = 0.791 and κE2 = 0.695) and moderate (κE1 × E2 = 0.545) agreement, respectively. AUROC was significantly higher (P ≤ .0389) at 8.0 and 10.0 mA and showed no statistical difference between the 2 tube current settings. Tube current has a significant influence on the diagnostic detection of RFs in CBCT images. Despite the acceptable diagnosis of RFs using 4.0 and 5.0 mA, those settings had lower discrimination abilities when compared with settings of 8.0 and 10.0 mA. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Core-logs of the vertical borehole V2

    International Nuclear Information System (INIS)

    Carlsson, L.; Egerth, T.; Westlund, B.; Olsson, T.

    1982-08-01

    In the hydrogeological programme of the Stripa Project, borehole V2 was prolonged to a final depth of 822 m. The previous core from 0-471.4 m was relogged. The drill core was logged with regard to rock characteristics, fracture frequency, dipping and filling. The results are presented as core-logs and fracture diagrams. Borehole V2 shows similar characteristics as found in other drillings in the Stripa Mine. It penetrates Stripa granite to its full depth. recorded fractures shows a clear predominance of medium-steep fractures, while flat-lying fractures are more sparsly occuring, a fact which is even more pronounced below 400 m depth. Due to the vertical direction of the borehole, steeply dipping fractures are underestimated in the core. The mean fracture frequency, related to the total length of the core, is 2.1 fractures/m. Chlorite, calcite and epidote are the dominating coating minerals in the fractures, each making up about 25-30 percent of all coated fractures. (Authors)

  5. Study of oil palm root architecture with variation of crop stage and soil type vulnerable to drought

    Science.gov (United States)

    Safitri, Lisma; Suryanti, Sri; Kautsar, Valensi; Kurniawan, Agung; Santiabudi, Fajar

    2018-03-01

    Root arhitecture is affected by watertable level, characteristic of soil, organic matter and also the crop stages. Root architecture spread horizontally and vertically which each consist of primary, secondary, tertiary and quaternary downward root. The oil palm root observation with variation of crop stage and soil type showed that the root of oil palm plant year 2008 on spodosols soil spread along 650 cm horizontally from the trunk and penetrate downward in range of 9-28 cm vertically. Planted in the same type of soil, the root of oil palm plant year 2004 spread along 650 cm horizontally and reached to downward in a larger range from 3 to 57 cm vertically. As a comparison, the root architecture of oil palm on inceptisols soil established the range much greater vertically than the previous. The root of oil palm plant year 2008 spread along 640 cm horizontally and penetrate downward in range of 52-90 cm vertically. With the variation of crop age, the root of oil palm plant year 2003 spread along 650 cm horizontally and reached to downward in a larger range from 150 to 200 cm vertically. Based on this study, root architecture of oil palm was varied and need to be detailed. The precise root architecture of oil palm allows a better understanding on hydrological properties of oil palm root particularly which is cultivated on soil type vulnerable to drought. Referring to this root architecture, it was enable to develop the study on early drought detection of oil palm to optimise production and towards oil palm sustainability.

  6. Control of gravitropic orientation. I. Non-vertical orientation by primary roots of maize results from decay of competence for orthogravitropic induction

    Science.gov (United States)

    LaMotte, Clifford E.; Pickard, Barbara G.

    2004-01-01

    Plant organs may respond to gravity by vertical (orthogravitropic), oblique (plagiogravitropic) or horizontal (diagravitropic) growth. Primary roots of maize (Zea mays L.) provide a good system for studying such behaviours because they are reportedly capable of displaying all three responses. In current work using maize seedlings of the Silver Queen cultivar, stabilisation of growth at an oblique orientation was commonplace. Hypothetically, plagiogravitropism may be accomplished either by a process we call graded orthogravitropism or by hunting about a sensed non-vertical setpoint. In graded orthotropism primary bending is unidirectional and depends on facilitative stimuli that determine its extent. The hallmark of the setpoint mechanism is restorative curvature of either sign following a displacement; both diagravitropism and orthogravitropism are based on setpoints. Roots settled in a plagiogravitropic orientation were tested with various illumination and displacement protocols designed to distinguish between these two hypotheses. The tests refuted the setpoint hypothesis and supported that of graded orthotropism. No evidence of diagravitropism could be found, thus, earlier claims were likely based on inadequately controlled observations of graded orthotropism. We propose that orthotropism is graded by the sequential action of dual gravity receptors: induction of a vectorial gravitropic response requires gravitational induction of a separate facilitative response, whose decay in the absence of fresh stimuli can brake gravitropism at plagiotropic angles.

  7. MR imaging of occult fractures of the knee

    International Nuclear Information System (INIS)

    Mink, J.H.; Deutsch, A.L.

    1988-01-01

    The authors encountered 65 radiographically occult fractures that they classified into five types. Bone bruises were a result of direct trauma or were associated with ligamentous injury. They were characterized by geographic foci of decreased signal on short repetition time (TR), short echo time (TE) sequences. Stress fractures were linear or globular foci of low signal on short TR, short TE sequences. Osteochondral fractures were displaced or impacted types; the latter were often associated with an anterior cruciate ligament tear. Tibial fractures were minimally displaced, vertically oriented fractures extending into the plateaus. Femoral fractures were Y-shaped, extending across the supracondylar region

  8. Simulating root carbon storage with a coupled carbon — Water cycle root model

    Science.gov (United States)

    Kleidon, A.; Heimann, M.

    1996-12-01

    Is it possible to estimate carbon allocation to fine roots from the water demands of the vegetation? We assess this question by applying a root model which is based on optimisation principles. The model uses a new formulation of water uptake by fine roots, which is necessary to explicitly take into account the highly dynamic and non-steady process of water uptake. Its carbon dynamics are driven by maximising the water uptake while keeping maintenance costs at a minimum. We apply the model to a site in northern Germany and check averaged vertical fine root biomass distribution against measured data. The model reproduces the observed values fairly well and the approach seems promising. However, more validation is necessary, especially on the predicted dynamics of the root biomass.

  9. Fracture toughness of austenitic stainless steel weld metal at 4 K

    International Nuclear Information System (INIS)

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort

  10. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-Chao; Zhan, Jie-Min; Wu, Neng-You; Luo, Ying-Ying; Cai, Wen-Hao

    2016-01-01

    Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950 ~ 1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01 ~ 11.57 MPa; in this well there mainly produces liquid and steam two-phase flow. In this work we numerically investigated the electricity generation potential from the fractured granite reservoir through a single vertical well, analyzed the process and mechanism of the two-phase flow, and evaluated main factors affecting the heat production and electricity generation. The results show that under the reference conditions the system attains a pump power of 0.02 ~ 0.16 MW, an electrical power of 2.71 ~ 2.69 MW, and an energy efficiency of 68.06 ~ 16.34, showing favorable electricity generation performance. During the production period, the bottomhole production pressure gradually decreases, and this makes the pump power increasing and the energy efficiency decreasing. When the bottomhole pressure is lower than the saturated vapor pressure, the liquid water begins to evaporate and the bottomhole wellbore begins to produce the mixture of liquid and steam. Main factors affecting the performance are reservoir porosity, permeability and fluid production rate. Higher reservoir porosity or higher permeability or lower fluid production rate will increase the bottomehole pressure, decrease the pump power and improve the energy efficiency. - Highlights: • We established a numerical model of a single vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 2.71 ~ 2.69 MW with an efficiency of about 68.06 ~ 16.34. • Electric power mainly depends on the reservoir porosity and water production rate. • Higher permeability within a certain range is favorable for electricity generation.

  11. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction

    Science.gov (United States)

    Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.

    2018-01-01

    Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).

  12. The Effect of Diode Laser With Different Parameters on Root Fracture During Irrigation Procedure.

    Science.gov (United States)

    Karataş, Ertuğrul; Arslan, Hakan; Topçuoğlu, Hüseyin Sinan; Yılmaz, Cenk Burak; Yeter, Kübra Yesildal; Ayrancı, Leyla Benan

    2016-06-01

    The aim of this study is to compare the effect of a single diode laser application and agitation of EDTA with diode laser with different parameters at different time intervals on root fracture. Ninety mandibular incisors were instrumented except the negative control group. The specimens were divided randomly into 10 groups according to final irrigation procedure: (G1) non-instrumented; (G2) distilled water; (G3) 15% EDTA; (G4) ultrasonically agitated EDTA; (G5) single 1.5W/100 Hz Diode laser; (G6) single 3W/100 Hz Diode laser; (G7) 1.5W/100 Hz Diode laser agitation of EDTA for 20 s; (G8) 1.5W/100 Hz Diode laser agitation of EDTA for 40 s; (G9) 3W/100 Hz Diode laser agitation of EDTA for 20 s; and (G10) 3W/100 Hz Diode laser agitation of EDTA for 40 s. The specimens were filled, mounted in acrylic resin, and compression strength test was performed on each specimen. Statistical analysis was carried out using one way ANOVA and Tukey's post hoc tests (P = 0.05). The statistical analysis revealed that there were statistically significant differences among the groups (P Laser-agitated irrigation with a 3W/100 Hz Diode laser for both 20 s and 40 s decreased the fracture resistance of teeth. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture

    Science.gov (United States)

    Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2017-12-01

    Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on

  14. Similar Fracture Patterns in Human Nose and Gothic Cathedral.

    Science.gov (United States)

    Lee, Shu Jin; Tse, Kwong Ming; Lee, Heow Pueh

    2015-10-01

    This study proposes that the bony anatomy of the human nose and masonry structure of the Gothic cathedral are geometrically similar, and have common fracture patterns. We also aim to correlate the fracture patterns observed in patients' midface structures with those seen in the Gothic cathedral using computational approach. CT scans of 33 patients with facial fractures were examined and compared with computer simulations of both the Gothic cathedral and human nose. Three similar patterns were found: (1) Cracks of the nasal arch with crumpling of the vertical buttresses akin to the damage seen during minor earthquakes; (2) lateral deviation of the central nasal arch and collapse of the vertical buttresses akin to those due to lateral forces from wind and in major earthquakes; and (3) Central arch collapse seen as a result of collapse under excessive dead weight. Interestingly, the finding of occult nasal and septal fractures in the mandible fractures with absence of direct nasal trauma highlights the possibility of transmission of forces from the foundation to the arch leading to structural failure. It was also found that the structural buttresses of the Gothic cathedral delineate the vertical buttresses in the human midface structure. These morphologic similarities between the human nose and Gothic cathedral will serve as a basis to study the biomechanics of nasal fractures. Identification of structural buttresses in a skeletal structure has important implications for reconstruction as reestablishment of structural continuity restores normal anatomy and architectural stability of the human midface structure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. In vitro fracture resistance of endodontically treated central incisors with varying ferrule heights and configurations.

    Science.gov (United States)

    Tan, Philip L B; Aquilino, Steven A; Gratton, David G; Stanford, Clark M; Tan, Swee Chian; Johnson, William T; Dawson, Deborah

    2005-04-01

    The in vitro effectiveness of a uniform circumferential ferrule has been established in the literature; however, the effect of a nonuniform circumferential ferrule height on fracture resistance is unknown. This in vitro study investigated the resistance to static loading of endodontically treated teeth with uniform and nonuniform ferrule configurations. Fifty extracted intact maxillary human central incisors were randomly assigned to 1 of 5 groups: CRN, no root canal treatment (RCT), restored with a crown; RCT/CRN, no dowel/core, restored with a crown; 2 FRL, 2-mm ferrule, cast dowel/core and crown; 0.5/2 FRL, nonuniform ferrule (2 mm buccal and lingual, 0.5 mm proximal), cast dowel/core and crown; and 0 FRL, no ferrule, cast dowel/core and crown. The teeth were prepared to standardized specifications and stored for 72 hours in 100% humidity prior to testing. Testing was conducted with a universal testing machine with the application of a static load, and the load (N) at failure was recorded. Statistical analysis was performed with a 1-way analysis of variance and the Tukey Honestly Significant Difference test (alpha=.05). The mode of fracture was noted by visual inspection for all specimens. There was strong evidence of group differences in mean fracture strength ( P <.0001). Following adjustment for all pairwise group comparisons, it was found that the lack of a ferrule resulted in a significantly lower mean fracture strength (0 FRL: 264.93 +/- 78.33 N) relative to all other groups. The presence of a nonuniform (0.5 to 2-mm vertical height) ferrule (0.5/2 FRL: 426.64 +/- 88.33 N) resulted in a significant decrease ( P =.0001) in mean fracture strength when compared with the uniform 2-mm vertical ferrule (2 FRL: 587.23 +/- 110.25 N), the group without RCT (CRN: 583.67 +/- 86.09 N), and the RCT-treated tooth with a crown alone (CRN/RCT: 571.04 +/- 154.86 N). The predominant mode of failure was an oblique fracture extending from the lingual margin to the facial

  16. [Root canal treatment of mandibular first premolar with 4 root canals: a case report].

    Science.gov (United States)

    Liu, Xin-yang; Zhan, Fu-Liang

    2015-10-01

    The mandibular first premolar can be considered one of the most challenging teeth to treat, due to the complexity of its root canal morphology and increased incidence of multiple canals. A case of endodontic treatment of a mandibular first premolar exhibiting a total of 4 distinct root canals and 4 apical foramina was described. Anatomic variation of root canal morphology should be considered in endodontic treatment to ensure a favorable healing outcome, and its identification could be enhanced by careful examination using a dental operating microscope. Obturation of root canals using a warm vertical compaction technique with a highly-radiopaque root canal sealer, such as AH Plus, after careful ultrasonic activated irrigation might allow the flow of sealer into the narrowed but unprepared part of the canal, thereby facilitating optimum chemo-mechanical debridement of the root canal system.

  17. Factors affecting treatment for platform fracture of tibia%影响胫骨平台骨折疗效的因素

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ 64 cases of tibia platform fracture were received and treated from February1994 to December 2000. The patients were guided for rehabilitation treatment as early function exercise and herb washing esc, the effects were satisfactory and it is reported as following. 1 Objects and methods 1.1 Objects 64 cases,39 male,25 female, aged 16~ 72 years, 35 cases were at the left and 29 were at the right. 52 cases were treated in one week and 12 were from one week to two weeks.The fractures were of three types: There were 37 cases of exstrophy type, Degree I: Split fracture or compress fracture of tibia external condyle with little or no transportation. The indented articular facet of the compress was no more than 0.5 cm. There were 15 cases of Degree I in the group. Degree II: 1/3 articular facet at the outside of the external condyle was of split fracture and there were external transportation, the indentation of the internal 2/3 articular facet caused by the external condyle of the femur was no more than 1.0 cm. There were 13 cases of degree II in the group. Degree III: Fracture on both condyles and there were 7 cases of Degree III in the group. There were 18 cases of entropion type and 9 cases of vertical type in the group. 1.2 Methods ( 1) Non- operation treatment ① The lower limbs were fixed with plaster support for two weeks, after swelling at the knee joints disappeared, legs were fixed for another 2~ 4 weeks with plaster support or tube support, there were 30 cases in the group and the method was suitable for Degree I and II of the exstrophy type and entropion or vertical types with little transportation.② Bone traction for 2 weeks, and 2~ 4 weeks of lower limb plaster support or tube support, or continual bone traction combined with early function exercise, there were 9 cases in the group and the method was suitable for Degree III and IV of the exstrophy type, entropion and vertical types with major transportation.( 2) Operation treatment ① Open

  18. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils

    Directory of Open Access Journals (Sweden)

    U. Rodríguez-Robles

    2017-11-01

    Full Text Available While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR and electrical resistivity tomography (ERT, two geophysical methods advocated by Jayawickreme et al. (2014 to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil–bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.

  19. Radiographic evaluation of maxillofacial fractures

    International Nuclear Information System (INIS)

    Litwan, M.; Fliegel, C.

    1986-01-01

    The course and configuration of typical maxillofacial fractures (type Le Fort I-III) and lateral maxillary fractures including the zygomatic arch were reconstructed in detail by application of barium paste on a bony skull and radiogrpahs in standard projections were performed and evaluated. It was obvious from the resulting radiographs that for most maxillofacial fractures a half axial or Water's view was most helpful. Lateral views only give additional information when there is a considerable degree of dislocation of fragments. Comparison with a prediatric skull of 8 years of age demonstrated that fractures of the zygomatic arch in this age group cannot be demonstrated by the typical submento-vertical view, but are shown on a Towne projection. The radiographic appearance of important maxillofacial fractures is demonstrated. The necessity of further studies in cases where reconstructive surgery appears necessary is discussed and CT rather then conventional tomography is advocated. (orig.) [de

  20. Effect of MET on formation and vigor of wheat roots

    International Nuclear Information System (INIS)

    Wang Bingkui; Jin Ziyu; Zhao Miaozhen; Zhao Yanshen

    1993-01-01

    Effect of MET on the formation and vigor of roots of wheat seedlings were studied. The results showed that 50 ∼ 200 ppm MET inhibited vertical elongation of roots, increased root, shoot ratio and enhanced the formation and vigor of roots. But MET had no effect on the dry weight of roots. The activity of peroxidase was decreased and the proportion of assimilates in roots was increased by MET treatment compared with the control

  1. The effect of EDTA in attachment gain and root coverage.

    Science.gov (United States)

    Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R

    2006-06-01

    Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).

  2. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    Science.gov (United States)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  3. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    Science.gov (United States)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  4. Temperature sensing by primary roots of maize

    Science.gov (United States)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  5. Multidisciplinary treatment of a fractured maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Neela

    2017-01-01

    Full Text Available Subgingivally fractured incisors are still a challenge to treat. Restoration of severely damaged teeth requires careful attention and comprehensive preplanned treatment. Here, a patient who had traumatic injury to the upper left central incisor which led to an oblique fracture involving enamel, dental and extending into the root below the gingival margin was saved from extraction by accelerated forced eruption of a root portion, allowing placement of crown, and eliminating the need for a fixed partial denture. A tooth otherwise would have gone for extraction routinely was thus saved and restored through a multidisciplinary approach by a combined orthodontic, periodontal and endodontic treatment.

  6. Case report 491: Stress fracture of the right sacrum

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, T.A.; Nguyen, T.H.; Daffner, R.H.; Lupetin, A.R.; Deeb, Z.L.

    1988-07-01

    A case of stress fracture of the right sacrum in a postpartum woman has been presented. Key features in making the diagnosis include a history of pain in the sacrum, considerable weight gain during the pregnancy and pronounced increased physical activity in the immediate postpartum period. CT, particularly, and MRI were critical in making the diagnosis. A low signal area on the T-1 neglected image was considered characteristic for the sacral fracture. In the CT studies a vertical lucency thru a zone of sclerosis is classical for a fracture, whether an insufficiency fracture or a fatigue fracture.

  7. Influence of temperature and rooting-promoter on the formation of root-primodia and on the rooting of chrysanthemum cuttings under storage

    International Nuclear Information System (INIS)

    Nishio, J.; Fukuda, M.

    1998-01-01

    In order to promote rooting for direct planting cuttings in a lighting cultivation of chrysanthemum, we clarified the effects of light, temperature and term of storage of the cuttings, and analyzed ways of using rooting promoters as a pre-treatment of cuttings for root-primodia formation and rooting. Light as a pre-treatment had little effect, so it seemed to be not necessary for the formation of root primodia. The formation of the root-primodia was most hastened at 25 degrees C; inversely, it was slowed down at low temperatures, that is, the root-primodia were formed in four days at 25 degrees C, five days at 20 degrees C, and seven days at 15 degrees C. With the use of rooting promoters as a pre-treatment for the rooting of cuttings, the root-primodia were formed faster when the whole of cuttings were dipped in 40 mg/L solution of indelebutyric acid (IBA) than when the base of cuttings were dipped or sprayed 400 mg/L solution of IBA. It was appropriate that cuttings were dipped in IBA then put in in plastic-pots (7.5cm) vertically, packed in polyethylene-bags and stored in a corrugated carton box

  8. Effect of Different Torque Settings on Crack Formation in Root Dentin.

    Science.gov (United States)

    Dane, Asım; Capar, Ismail Davut; Arslan, Hakan; Akçay, Merve; Uysal, Banu

    2016-02-01

    The aim of the present study was to observe the incidence of cracks in root canal dentin using the ProTaper Universal system (Dentsply Maillefer, Ballaigues, Switzerland) at low- and high-torque settings. Sixty-nine mandibular premolar teeth that had been extracted for different reasons were selected. The teeth were divided into 3 groups: an unprepared control group, a low-torque settings group (SX = 3, S1 = 2, S2 = 1, F1 = 1.5, F2 = 2, F3 = 2, F4 = 2 N/cm), and a high-torque settings group (SX = 4, S1 = 4, S2 = 1.5, F1 = 2, F2 = 3, F3 = 3, F4 = 3 N/cm). After a root canal procedure, all the teeth were horizontally sectioned at 2, 4, 6, and 8 mm from the apex. Then, under a stereomicroscope, all the slices were examined to determine the presence of cracks. A chi-square test was used for data analysis. The significance level was set at P = .05. There were no cracks in the unprepared control group. Vertical root fractures were not observed in any of the groups. There were significantly fewer cracks (17.4% of the sections) in the low-torque group than in the high-torque group (29.4% of the sections) (P torque than at low-torque settings. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Relationship between root growth, temperature and anion uptake

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The uptake and release were studied of /sup 35/S-sulfate ions by whole intact roots of maize seedlings. From the total incorporated sulfur only 20% were released back to the unlabelled culture solution. In correspondence to the physiological and biochemical-structural vertical gradient of the growing differentiating roots, the release of /sup 35/S from the apical root part was much lower than from the differentiated tissues.

  10. Structural and neural network analyses of fracture systems at the Aespoe Hard Rock Laboratory, SE Sweden

    International Nuclear Information System (INIS)

    Sirat, M.

    1999-01-01

    The > 10,000 fractures documented in the 450 m deep Aespoe Hard Rock Laboratory (HRL) provide a unique opportunity to study brittle deformation of a Swedish bedrock mass. The fracture population consists of six major sets, one sub-horizontal and five sub-vertical. A classical structural analysis explored the interrelations between geometry and frequency of both dry and wet fractures with respect to depth and in-situ stresses. Three main findings are: In-situ stresses govern frequency distributions of dilated, hence water-bearing fractures. About 68.5% of sub-horizontal fractures are dilated in the thrust regime above a depth of ca. 230 m while 53% of sub-vertical fractures are dilated in the underlying wrench regime. Fractures curve both horizontally and vertically, a finding confirmed by the application of artificial neural networks that included Back-Propagation and Self-Organizing (Kohonen) networks. The asymmetry of the total fracture population and tilts of the sub-Cambrian peneplain demonstrates that multiple reactivations of fractures have tilted the Aespoe rock mass 6 deg to the west. The potential space problem raised by this tilt is negated by systematic curvature of steep fractures, some of which sole out to gently dipping fracture zones. Fractures probably developed their curvature when they formed deep in crystalline crust in Precambrian times but have since reactivated at shallow depths. These findings add significantly to the conceptual model of Aespoe and should be taken into account in future studies regarding the isolation of Sweden's high-grade radioactive waste in crystalline bedrock

  11. Production performance laws of vertical wells by volume fracturing in CBM reservoirs

    Directory of Open Access Journals (Sweden)

    Liehui Zhang

    2017-05-01

    Full Text Available Volume fracturing technology has been widely applied in the development of coalbed methane (CBM reservoirs. As for the stimulated reservoir volume (SRV created by volume fracturing, the seepage laws of fluids are described more accurately and rationally in the rectangular composite model than in the traditional radial composite model. However, the rectangular composite model considering SRV cannot be solved using the analytical or semi-analytical function method, and its solution from the linear flow model has larger errors. In view of this, SRV areas of CBM reservoirs were described by means of dual-medium model in this paper. The complex CBM migration mechanisms were investigated comprehensively, including adsorption, desorption, diffusion and seepage. A well testing model for rectangular composite fracturing wells in CBM reservoirs based on unsteady-state diffusion was built and solved using the boundary element method combined with Laplace transformation, Stehfest numerical inversion and computer programming technology. Thus, production performance laws of CBM reservoirs were clarified. The flow regimes of typical well testing curves were divided and the effects on change laws of production performance from the boundary size of gas reservoirs, permeability of volume fractured areas, adsorption gas content, reservoir permeability and SRV size were analyzed. Eventually, CBM reservoirs after the volume fracturing stimulation were described more accurately and rationally. This study provides a theoretical basis for a better understanding of the CBM migration laws and an approach to evaluating and developing CBM reservoirs efficiently and rationally.

  12. Vertical force and torque analysis during mechanical preparation of extracted teeth using hand ProTaper instruments.

    Science.gov (United States)

    Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa

    2011-08-01

    The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  13. Ultrasonographic diagnosis of pancreatic fracture

    International Nuclear Information System (INIS)

    Woo, Seong Ku; Lim, Jae Hoon; Ko, Young Tae; Choi, Yong Dae; Yoon, Yup; Kim, Soo yong

    1983-01-01

    The pancreatic fracture, known also as complete transection of the pancreas, is severe injury of the pancreas characterized by complete vertical transection of its body overlying the body of the vertebra. The authors diagnosed three cases of traumatic fracture of the pancreas by ultrasonography and these were confirmed surgically. Ultrasonography disclosed an anechoic fluid collection between the separated parenchyma of the body of the pancreas anterior to the superior mesenteric artery. The remaining pancreas enlarged diffusely and decreased in echogenecity. Associated feature was accumulation of fluid in the lesser sac and the peritoneal cavity

  14. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    Science.gov (United States)

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  15. The Role of Texture, Cracks, and Fractures in Highly Anisotropic Shales

    Science.gov (United States)

    Baird, Alan F.; Kendall, J. Michael; Fisher, Quentin J.; Budge, Jessica

    2017-12-01

    Organic shales generally have low permeability unless fractures are present. However, how gas, oil, and water flows into these fractures remains enigmatic. The alignment of clay minerals and the alignment of fractures and cracks are effective means to produce seismic anisotropy. Thus, the detection and characterization of this anisotropy can be used to infer details about lithology, rock fabric, and fracture and crack properties within the subsurface. We present a study characterizing anisotropy using S wave splitting from microseismic sources in a highly anisotropic shale. We observe very strong anisotropy (up to 30%) with predominantly VTI (vertical transverse isotropy) symmetry, but with evidence of an HTI (horizontal transverse isotropy) overprint due to a NE striking vertical fracture set parallel to the maximum horizontal compressive stress. We observe clear evidence of a shear wave triplication due to anisotropy, which to our knowledge is one of only a very few observations of such triplications in field-scale data. We use modal proportions of minerals derived from X-ray fluorescence data combined with realistic textures to estimate the contribution of intrinsic anisotropy as well as possible contributions of horizontally aligned cracks. We find that aligned clays can explain much of the observed anisotropy and that any cracks contributing to the vertical transverse isotropy (VTI) must have a low ratio of normal to tangential compliance (ZN/ZT), typical of isolated cracks with low hydraulic connectivity. Subhorizontal cracks have also been observed in the reservoir, and we propose that their reactivation during hydraulic fracturing may be an important mechanism to facilitate gas flow.

  16. CT-guided screw fixation of vertical sacral fractures in local anaesthesia using a standard CT; CT-kontrollierte Schraubenosteosynthese von vertikalen Frakturen des hinteren Beckenringes in Lokalanaesthesie

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, G.; Dehne, I. [Thueringen-Klinik, Saalfeld (Germany). Radiologische Klinik; Roehner, U.; Will, T.; Petereit, U. [Thueringen-Klinik, Saalfeld (Germany). Orthopaedics and Trauma Surgery

    2014-12-15

    To evaluate time efficiency, radiation dose, precision and complications of percutaneous iliosacral screw placement under CT-guidance in local anaesthesia. Retrospective analysis of 143 interventions in 135 patients during a period of 42 months. Implant failures could be evaluated in 85/182 screws and bony healing or refracturing in 46/182 screws. A total of 182 iliosacral screw placements in 179 vertical sacral fractures (105 unilateral, 37 bilateral) took place in 135 patients. 166/179 of the sacral fractures were detected in Denis zone 1, 10 in Denis zone 2 and 3 in Denis zone 3. No screw misplacements including the simultaneous bilateral procedures were noted. The average time for a unilateral screw placement was 23 minutes (range: 14-52 minutes) and 35 minutes (range: 21-60 minutes) for simultaneous bilateral screwing. The dose length product was 365 mGy x cm (range: 162-1014 mGy x cm) for the unilateral and 470 mGy x cm (range: 270-1271 mGy x cm) for the bilateral procedure. 1 gluteal bleeding occurred as the only acute minor complication (0.7%). Fracture healing was verified with follow-up CTs in 42/46 sacral fractures after screw placement. Backing out occurred in 12/85 screws between 6 and 69 days after intervention. In 8 patients contralateral stress fractures were detected after unilateral screw placement between day 10 and 127 (average: 48 days). CT-guided iliosacral screw placement in sacral fractures is a safe tool providing a very high precision. The radiation dose is in the order of a diagnostic CT of the pelvis for both unilateral and bilateral screws. Contralateral stress fractures in unilateral screw placements have to be considered during the first weeks after intervention.

  17. Rock mechanics in the disposal of radioactive wastes by hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    McClain, W C

    1968-01-01

    The ultimate capacity of a hydraulic-fracturing waste disposal facility is governed primarily by the integrity of the rocks overlying the injected wastes. The objective of this study is to analyze theoretically the stresses and strains generated by the injected wastes in an effort to understand the behavior of the system sufficiently well that the failure mechanism can be predicted and the capacity of the injection well estimated. The surface uplifts at Oak Ridge National Laboratory's fracturing site were compared with theoretical curves obtained by assuming the uplifts to be inversely analogous to the subsidence which occurs over mining excavations. This analysis, based on assumptions of homogeneity, isotropy, and linear elasticity, provided considerable insight into the mechanics of the process. The most probable mechanism of failure of the rock appears to be by the formation of a vertical instead of a horizontal fracture. Fracture orientation is controlled primarily by the orientation of the principal stress field in the rock. Each successive waste injection slightly modifies this stress field toward a condition more favorable to the formation of a vertical fracture. (16 refs.)

  18. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture.

    Science.gov (United States)

    Sheng, Lihong; Hu, Xiaomei; Du, Yujuan; Zhang, Guifang; Huang, Hai; Scheres, Ben; Xu, Lin

    2017-09-01

    Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16 LBD16 also functions in LR formation and is activated in that context by ARF7 / 19 and not by WOX11 This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11 -mediated and non- WOX11 -mediated roots. The discovery of WOX11 -mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues. © 2017. Published by The Company of Biologists Ltd.

  19. The relationship between root growth, temperature and anion uptake

    International Nuclear Information System (INIS)

    Holobrada, M.; Mistrik, I.; Kolek, J.

    1980-01-01

    The uptake and release were studied of 35 S-sulfate ions by whole intact roots of maize seedlings. From the total incorporated sulfur only 20% were released back to the unlabelled culture solution. In correspondence to the physiological and biochemical-structural vertical gradient of the growing differentiating roots, the release of 35 S from the apical root part was much lower than from the differentiated tissues. (author)

  20. A versatile stereo photogrammetry based technique for measuring fracture mode displacements in structures

    DEFF Research Database (Denmark)

    Alvarado, Jonathan Shmueli; Eder, Martin Alexander; Tesauro, Angelo

    2015-01-01

    The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types. Further......The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types......-made automated image processing software (AIPS) allows a rapid and reliable evaluation of a multitude of subsequently taken measurements at a high-precision level. The SDMS is used to measure the LRDs at three different locations close to the trailing edge of a wind turbine rotor blade. In addition...

  1. Experimental and numerical study of radial lateral fracturing for coalbed methane

    International Nuclear Information System (INIS)

    Fu, Xuan; Li, Gensheng; Huang, Zhongwei; Liang, Yuesong; Xu, Zhengming; Jin, Xiao

    2015-01-01

    Drilling ultra-short radius horizontal laterals in a vertical well and then operating hydraulic fracturing (radial lateral fracturing, abbreviated as RLF) is proposed as a prospective novel method to increase the single-well productivity for coalbed methane (CBM) development. The objective of this article is to find the best fracture network profile RLF can generate and what kind of formation is suitable for this fracturing technique. Experiments using a true tri-axial fracturing simulation system are designed to analyse the influence of different lateral length, count and azimuth on the fracturing initiation and propagation. A numerical simulation is also carried out to study the sensitivity of the coal integrity and in situ stress state on the fracture initiation type. Our work shows that: the best effect of RLF is achieved when it initiates from the bedding plane where the laterals lie and forms a fracture network with one main horizontal fracture connecting multiple vertical fractures; the breakdown and injection pressure will be decreased by increasing the lateral length and count; increasing the lateral length can enlarge the horizontal fracture area; the optimal lateral design for horizontal initiation is four laterals with the phase of 90° and each lateral is at 45° from the horizontal stress; RLF is suitable for the intact coal seams in which cracks or cleats are not well developed and the overburden stress should be close to or less than the maximum horizontal stress. This paper will provide the experimental support and theoretical bases for CBM RLF design. (paper)

  2. A lower border augmentation technique to allow implant placement after a bilateral mandibular fracture as a complication of vertical distraction osteogenesis: a case report.

    Science.gov (United States)

    Perdijk, F B T; Meijer, G J; Soehardi, A; Koole, R

    2013-07-01

    As with other techniques, vertical distraction osteogenesis (VDO) can also induce complications. The case of a patient with a residual alveolar ridge in the symphyseal area of 8 mm is presented. After performing VDO, the patient returned at 1-day postoperatively complaining of pain and dislocation of the distractor device, due to a fracture of the lower mandibular segment on the right side. After removal of the distractor device and application of osteosynthesis plates, the patient returned 2 weeks later due to a second fracture of the lower segment, yet on the left side. After removing the osteosynthesis material, stabilization of the mandible was achieved with an acrylic splint, which was fixated with peri-mandibular wiring. Finally, reconstruction was accomplished by lower border onlay grafting, limited to the symphyseal area, in preparation for implant insertion. Ultimately, after a healing period of 5 months, two endosseous implants were installed. The patient's function has remained satisfactory for 3 years. Reinforcement of the extreme resorbed edentulous mandible after fracture healing by lower border bone augmentation can be a reliable method to allow implant installation in a second stage. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  4. Fractographic Examination of the Vertical Stabilizer and Rudder from American Airlines Flight 587

    Science.gov (United States)

    Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.

    2005-01-01

    The first major structural component failure of a composite part on a commercial airplane occurred during the crash of American Airlines Flight 587. The fractured composite lugs that attached the vertical stabilizer to the aircraft tail and the fractured composite honeycomb rudder were examined as part of the National Transportation Safety Board investigation of the accident. In this paper the composite fractures are described and the resulting clues to the failure events are discussed.

  5. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  6. Locking compression plate osteosynthesis of complicated mandibular fractures in six horses

    OpenAIRE

    Kümmerle, Jan M; Kummer, Martin R; Auer, Jörg A; Nitzl, Dagmar; Fürst, Anton

    2009-01-01

    Complicated mandibular fractures were recognised in one foal, one pony and four horses. The foal was two months old while the adult animals ranged in age from 12 to 24 years. Three horses had a unilateral horizontal ramus fracture. Two fractures were open and one was closed. Comminution was present in one of these patients while lthe other two horses had marked displacement of the fragments. Two suffered from comminuted fractures of the horizontal and vertical ramus of the mandible. One of th...

  7. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments.

  8. Effects of mineral content on the fracture properties of equine cortical bone in double-notched beams.

    Science.gov (United States)

    McCormack, Jordan; Stover, Susan M; Gibeling, Jeffery C; Fyhrie, David P

    2012-06-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r(2)=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r(2)=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r(2)=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with a hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Spatial root distribution of plants growing in vertical media for use in living walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    Background and Aims: For plants growing in living walls, the growth potential is correlated to the roots ability to utilize resources in all parts of the growing medium and thereby to the spatial root distribution. The aim of the study was to test how spatial root distribution was affected...... root growth was limited for plants in the middle or lower parts of the medium and 15N measurements confirmed that only plants in the bottom of the box had active roots in the bottom of the medium. The species differed in root architecture and spatial root distribution. Conclusions: The choice...... by growing medium, planting position and competition from other plants. Methods: Five species (Campanula poscharskyana cv. 'Stella', Fragaria vesca cv. 'Småland', Geranium sanguineum cv. 'Max Frei', Sesleria heufleriana and Veronica officinalis cv. 'Allgrün') were grown in three growing media (coir and two...

  10. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2004-07-19

    Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over

  11. An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells with Non-Uniform Hydraulic Fracture Properties

    Directory of Open Access Journals (Sweden)

    Youwei He

    2018-02-01

    Full Text Available Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF and non-uniform properties of fractures (NPF. The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it’s significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.

  12. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  13. Technical Quality of Root Fillings Performed by Undergraduate Students: A Radiographic Study

    Directory of Open Access Journals (Sweden)

    Tatjana Vukadinov

    2014-01-01

    Full Text Available Aim. The aim of this study was to evaluate the radiographic technical quality of endodontic treatment performed by undergraduate students at the School of Dentistry, Faculty of Medicine, University of Novi Sad, Serbia. Materials and Methods. Electronic records of 220 patients treated by final-year undergraduate students during the school year 2011/2012 were examined, and the final sample consisted of 212 patients, 322 teeth, and 565 root canals. The criteria for overall radiographic adequacy of root canal fillings were defined as the presence of adequate length and density and absence of iatrogenic errors (ledge, fractured instrument, untreated canal, and apical transportation. Chi-square test was used to determine statistical significance between different parameters. Results. Adequate root canal fillings were found in 74.22% of the teeth. The percentage of root fillings with adequate length and density was 89.73% and 92.6%, respectively. Fractured instruments and ledges were present in 16 root canals (2.8%, while the presence of missed canal and apical transportation was observed in 2 cases, each (0.3%. Conclusions. Overall, the technical quality of root canal fillings performed by undergraduate students was satisfactory.

  14. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  15. Fracture gradient: a new methodology that allows for more safety and economy; Gradiente de fratura: nova metodologia proporciona seguranca e economia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Helio M.R. dos [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao; Foutoura, Sergio A.B. da [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    1990-12-31

    The purpose of this paper is to show the influence of in-situ stresses and well geometry (direction and inclinational) on the fracture gradient. The results that are presented, obtained through computer simulation using an analytical model of the stresses around the well, show that in some cases it may be very dangerous to use fracture gradient data from vertical wells when dealing with non vertical wells. Likewise, it may also be unsafe to use results from absorption tests as the fracture gradient for the complete phase. The paper also indicates that, depending on the in-situ stresses and on the geometry of the well, the fracture gradient of a non-vertical well may be larger or smaller than that of vertical wells. Another aspects emphasized is that, through the use of more accurate calculations of the fracture gradient, it is possible to obtain great cost reduction, due to the fact that the casing strings will be designed in a more appropriate manner. (author) 12 refs., 4 figs.

  16. Vertical Distribution of Pasteuria penetrans Parasitizing Meloidogyne incognita on Pittosporum tobira in Florida.

    Science.gov (United States)

    Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A; McSorley, Robert; Stamps, Robert H; Crow, William T

    2017-09-01

    Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans . For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent.

  17. L5 radiculopathy due to sacral stress fracture

    International Nuclear Information System (INIS)

    Aylwin, Anthony; Saifuddin, Asif; Tucker, Stuart

    2003-01-01

    We report the case of a 70-year-old man who presented with a history of left buttock pain with radiation into the left leg in an L5 distribution. MRI of the lumbar spine revealed a left sacral stress fracture with periosteal reaction involving the left L5 nerve root anterior to the sacral ala. With spontaneous healing of the fracture, the patient's symptoms resolved completely. (orig.)

  18. Understanding the etiology of the posteromedial tibial stress fracture.

    Science.gov (United States)

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  20. Comparison of fracture and deformation in the rotary endodontic instruments: Protaper versus K-3 system.

    Science.gov (United States)

    Nagi, Sana Ehsen; Khan, Farhan Raza; Rahman, Munawar

    2016-03-01

    This experimental study was done on extracted human teeth to compare the fracture and deformation of the two rotary endodontic files system namely K-3 and Protapers. It was conducted at the dental clinics of the Aga Khan University Hospital, Karachi, A log of file deformation or fracture during root canal preparation was kept. The location of fracture was noted along with the identity of the canal in which fracture took place. The fracture in the two rotary systems was compared. SPSS 20 was used for data analysis. Of the 172(80.4%) teeth possessing more than 15 degrees of curvature, fracture occurred in 7(4.1%) cases and deformation in 10(5.8%). Of the 42(19.6%) teeth possessing less than 15 degrees of curvature, fracture occurred in none of them while deformation was seen in 1(2.4%). There was no difference in K-3 and Protaper files with respect to file deformation and fracture. Most of the fractures occurred in mesiobuccal canals of maxillary molars, n=3(21.4%). The likelihood of file fracture increased 5.65-fold when the same file was used more than 3 times. Irrespective of the rotary system, apical third of the root canal space was the most common site for file fracture.

  1. Root strength changes after logging in southeast Alaska

    Science.gov (United States)

    R. R. Ziemer; D. N. Swanston

    1977-01-01

    Abstract - A crucial factor in the stability of steep forested slopes is the role of plant roots in maintaining the shear strength of soil mantles. Roots add strength to the soil by vertically anchoring through the soil mass into failures in the bedrock and by laterally tying the slope together across zones of weakness or instability. Once the covering vegetation is...

  2. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The

  3. On the nature of groundwater flow paths: Observations at fractures and fracture coating at road-cuts

    International Nuclear Information System (INIS)

    Lindberg, A.; Hellmuth, K.-H.

    2001-01-01

    Preliminary investigations were conducted at fractures and their surface coatings exposed along recently quarried road-cuts to the north and east of Helsinki. While (sub)horizontal fractures were usually rare at depths more than a few meters, (sub)vertical fractures were dominating. Fracture fillings/coatings were mostly absent in the formers and generally thin in the latters. Often these fillings/coatings were representative for processes which occurred in the far past at conditions others than present ambient ones. But, on the other hand only a few cases of more intense rock matrix alteration in connection with these processes were observed. Post-glacial weathering has caused at many of the investigated sites surficial oxidation of Fe(II)-rich minerals which has led to mostly thin coatings of fracture surfaces by soft amorphous Fe(III)-oxyhydroxides. Surface coatings were generally homogeneous with fairly even surface structures. It was found that at road-cuts huge areas of undamaged fracture surfaces were accessable to investigations. These can serve for demonstration purposes for the nature of contact surface between groundwater and rock. Despite some oxidation, these exposures give a fairly representative impression of the situation at greater depth where similar fracture types were reported in repository site investigations. (orig.)

  4. Notch constraint effects on the dynamic fracture toughness of an unaged beta titanium alloy

    International Nuclear Information System (INIS)

    Rack, H.J.

    1975-01-01

    The influence of notch included angle and root radius on the apparent dynamic fracture toughness of an unaged metastable beta titanium alloy, Ti--3Al--8V--6Cr--4Zr--4Mo, has been examined. The apparent fracture toughness, K/sub Id/(rho), increases with both notch radius, rho and included angle, ω. These results have been compared with the theoretical predictions of Tetelman, et al. and Smith. The comparisons show that neither theory accurately describes the effect of varying notch constraint on the apparent dynamic fracture toughness. Although preliminary considerations indicate that qualitative descriptions of notch acuity effects may be given by recent finite element analysis of the stress and strain distributions below a notch root, there is presently no quantitative basis for determining the true dynamic fracture toughness of materials from the results of blunt notch experiments. (auth)

  5. Sacral Stress Fracture in an Amateur Badminton Player

    Directory of Open Access Journals (Sweden)

    Yusuke Yuasa

    2017-01-01

    Full Text Available Sacral stress fractures are rare among athletes but have been reported most frequently in long distance runners. We report herein the first case of a sacral stress fracture in an amateur badminton player. A 16-year-old, left-handed adolescent girl, who had just started to play badminton 3 months previously, complained of acute left buttock pain when she received a shuttlecock. Magnetic resonance imaging revealed a linear lesion of the left sacrum with low signal intensity on T1- and high signal intensity on T2-weighted images, which was consistent with a stress fracture. Conservative treatment with rest relieved her symptoms. Her fracture was considered to have occurred due to repetition of an exercise that caused excessive vertical power.

  6. A numerical study of water percolation through an unsaturated variable aperture fracture under coupled thermomechanical effects

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Hale, F.V.

    1991-12-01

    In calculation of ground water travel times associated with performance assessment of a nuclear waste repository, the role of fractures may turn out to be very important. There are two aspects related to fracture flow that have not been fully resolved. The first is the effect of coupled thermomechanical impact on fracture apertures due to the thermal output of the nuclear waste repository. The second is the effect of the variable aperture nature of the fractures. The present paper is an exploratory study of the impact of these two effects on water percolation through unsaturated fractures. The paper is divided into two main sections. the first section describes a calculation of the thermomechanical behavior of the geologic formation around a waste repository. In this exploratory study we assume two major fractures, one vertical and one horizontal through the repository center. Temperatures and thermally induced stress fields are calculated. The second part of the paper considers the unsaturated case and describes a study of water infiltration from the land surface through the vertical fracture to the repository

  7. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  8. Malunited fracture of the body and condyle of the mandible : A Case Report

    OpenAIRE

    Ramakrishna Yeluri; Sudhindra Baliga; Autar Krishen Munshi

    2010-01-01

    Mandibular fractures are the most common facial fractures seen in hospitalized children and their incidence increases with age. Treatment options include soft diet, intermaxillary fixation with eyelet wires, arch bars, circummandibular wiring, or stents. Alternative options include open reduction and internal fixation through either an intraoral or extraoral approach. Many factors complicate the management of pediatric mixed-dentition mandibular fractures: tooth eruption, short roots, develop...

  9. Estimation of fracture parameters using elastic full-waveform inversion

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution and suffer from uncertainties in the inverted parameters. Here, we propose to estimate the spatial distribution and physical properties of fractures using full-waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. A shape regularization term is added to the objective function to improve the estimation of the fracture azimuth, which is otherwise poorly constrained. The cracks are assumed to be penny-shaped to reduce the nonuniqueness in the inverted fracture weaknesses and achieve a faster convergence. To better understand the inversion results, we analyze the radiation patterns induced by the perturbations in the fracture weaknesses and orientation. Due to the high-resolution potential of elastic FWI, the developed algorithm can recover the spatial fracture distribution and identify localized “sweet spots” of intense fracturing. However, the fracture azimuth can be resolved only using long-offset data.

  10. Finite element analysis and fracture resistance testing of a new intraradicular post

    Directory of Open Access Journals (Sweden)

    Eron Toshio Colauto Yamamoto

    2012-08-01

    Full Text Available OBJECTIVES: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the São José dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. MATERIAL AND METHODS: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10 and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. RESULTS: The fracture test presented the following averages and standard deviation: G1 (45.63±8.77, G2 (49.98±7.08, G3 (43.84±5.52, G4 (47.61±7.23. Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. CONCLUSIONS: The experimental post (original and modified versions presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008-PA/CEP.

  11. Longitudinal stress fracture: patterns of edema and the importance of the nutrient foramen

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Joseph G.; Widman, David; Holsbeeck, Marnix van [Department of Radiology, Henry Ford Hospital, Detroit, MI 48202 (United States)

    2003-01-01

    We reviewed the MR appearances of six cases of longitudinal stress fracture of the lower extremity.Results. One fracture was in the femur and five were in the tibia. Four of the tibial fractures showed edema starting in the mid-tibia at the level of the nutrient foramen with the fracture on the anteromedial cortex. The other tibial fracture started at the nutrient foramen. Three fractures (two tibial and the femur fracture) showed eccentric marrow edema; all fractures showed either eccentric periosteal reaction or soft tissue edema.Conclusion. Primary diagnosis of longitudinal stress fracture is made by finding a vertical cleft on one or more axial images. Secondary signs of position of the nutrient foramen and patterns of edema may be useful. (orig.)

  12. Evaluation of Different Restoration Combinations Used in the Reattachment of Fractured Teeth: A Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Nagihan Guven

    2018-01-01

    Full Text Available Objective. The purpose of this study was to test different restoration combinations used for constructing fractured endodontically treated incisors by reattaching their fractured fragments. Methods. Seven types of 3-D FEM mathematical root canal-filled models were generated, simulating cases of (OB reattaching fractured fragments; (CrPL reattaching fractured fragments + ceramic palatinal laminate; (CmPL reattaching fractured fragments + composite palatinal laminate; (CM reattaching fractured fragments + coronal 1/3 of the root was filled using core material; (BP reattaching fractured fragments + glass fiber post; (CP composite resin restoration + glass fiber post; and (OC composite resin restoration. A 100-N static oblique force was applied to the simulated teeth with 135° on the node at 2 mm above the cingulum to analyze the stress distribution at the tooth. Results. For enamel tissue, the highest stress values were observed in model BP, and the lowest stress values were observed in model CmPL. For dentine tissue, the highest stress concentrations were observed around the fracture line for all models. Conclusions. Reattachment of fractured fragments by bonding may be preferred as a restoration option for endodontically treated incisors; also, palatinal laminate decreases the stress values at tooth tissues, especially at the enamel and the fracture line.

  13. SPATIAL AND VERTICAL DISTRIBUTION OF LITTER AND BELOWGROUND CARBON IN A BRAZILIAN CERRADO VEGETATION

    Directory of Open Access Journals (Sweden)

    Vinícius Augusto Morais

    2017-03-01

    Full Text Available Forest ecosystems contribute significantly to store greenhouse gases. This paper aimed to investigate the spatial and vertical distribution of litter, roots, and soil carbon. We obtained biomass and carbon of compartments (litter, roots, and soil in a vegetation from Cerrado biome, state of Minas Gerais, Brazil. The materials were collected in 7 0.5 m² sub-plots randomly allocated in the vegetation. Root and soil samples were taken from five soil layers across the 0-100 cm depth. Roots were classified into three diameter classes: fine (10 mm roots. The carbon stock was mapped through geostatistical analysis. The results indicated averages of soil carbon stock of 208.5 Mg.ha-1 (94.6% of the total carbon, root carbon of 6.8 Mg.ha-1 (3.1%, and litter of 5 Mg.ha-1 (2.3%. The root carbon was majority stored in coarse roots (83%, followed by fine (10%, and medium roots (7%. The largest portion of fine roots concentrated in the 0-10 cm soil depth, whereas medium and coarse roots were majority in the 10-20 cm depth. The largest portion of soil (53% and root (85% carbon were stored in superficial soil layers (above 40 cm. As conclusion, the carbon spatial distribution follows a reasonable trend among the compartments. There is a vertical relation of which the deeper the soil layer, the lower the soil and root carbon stock. Excepting the shallowest layer, coarse roots held the largest portion of carbon across the evaluated soil layers.

  14. [Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, Min; Hu, Wen-jie; Rong, Qi-guo

    2015-12-18

    To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and post-core restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

  15. A Generic analytical solution for modelling pumping tests in wells intersecting fractures

    Science.gov (United States)

    Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe

    2018-04-01

    The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of

  16. [The clinical effect of root amputation in the treatment of periodontal/alveolar abscess].

    Science.gov (United States)

    Tan, Baochun; Wu, Wenlei; Sun, Weibin; Xiao, Jianping

    2012-06-01

    To study the clinical effect of root amputation in the treatment of periodontal/alveolar abscess teeth with one severe lesion root. 30 periodontal/alveolar abscess teeth with one severe lesion root were chosen in the study. After root canal treatment, supragingival scaling, subgingival scaling and root planning, occlusal adjustment were done. Then the teeth were treated by root amputation. The clinical effect was evaluated 3 months, 6 months and 1 year after surgery. One year after surgery, 27 of 30 teeth were successful, 1 mandibular molar occurred root fracture, 1 mandibular molar was removed because of tooth loosening secondary to periodontal damage. 1 patient lost. Root amputation is an effective solution of periodontal/alveolar abscess.

  17. Fracture analyses and test of regions with nozzle and hole and curvature influence in nuclear vessel

    International Nuclear Information System (INIS)

    Wang Baisong; Xu Dinggen; Ye Weijuan; Hu Yinbiao; Liang Xingyun; Gu Shaode; Zhou Peiying

    1993-08-01

    For the calculations of stress intensity factor K 1 of surface crack in the regions with nozzle and hole and the curvature influence on nuclear vessel, a improved 3-D collapsed isoparametric singular element with quarter-points was presented. The square root singularity in the vertical planes of crack was derived. The methods of transitional element and calculating K 1 from displacements were extensively used in 3- D case. The SIF K 1 of the corner crack in inner wall of the nozzle of RPV (reactor pressure vessel) for a typical 300 MW nuclear plant was calculated, and it was verified by 3-D photo-elastic test and diffusion of light test. The engineering fracture analysis and evaluation of the outside surface crack in the circular are transitional region of the head flange of RPV are also completed

  18. A method for retrieving endodontic or atypical nonendodontic separated instruments from the root canal: a report of two cases.

    Science.gov (United States)

    Monteiro, Jardel Camilo do Carmo; Kuga, Milton Carlos; Dantas, Andrea Abi Rached; Jordão-Basso, Keren Cristina Fagundes; Keine, Katia Cristina; Ruchaya, Prashant Jay; Faria, Gisele; Leonardo, Renato de Toledo

    2014-11-01

    This clinical report presents a new method for retrieving separated instruments from the root canal with minimally invasive procedures. The presence of separated instrument in root canal may interfere in the endodontic treatment prognosis. There are several recommended methods to retrieve separated instruments, but some are difficult in clinically practice. This study describes two cases of separated instrument removal from the root canal using a stainless-steel prepared needle associated with a K-file. Case 1 presented a fractured gutta-percha condenser within the mandibular second premolar, it was separated during incorrect intracanal medication calcium hydroxide placement. Case 2 had a fractured sewing needle within the upper central incisor that the patient used to remove food debris from the root canal. After cervical preparation, the fractured instruments were fitted inside a prepared needle and then an endodontic instrument (#25 K-file) was adapted with clockwise turning motion between the needle inner wall and the fragment. The endodontic or atypical nonendodontic separated instrument may be easily pull on of the root canal using a single and low cost device. The methods for retrieving separated instruments from root canal are difficult and destructive procedures. The present case describes a simple method to solve this problem.

  19. High-resolution Fracture Characterization Using Elastic Full-waveform Inversion

    KAUST Repository

    Zhang, Z.; Tsvankin, I.; Alkhalifah, Tariq Ali

    2017-01-01

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution. Here, we propose to estimate both the spatial distribution and physical properties of fractures using full waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. To better understand the inversion results, we analyze the FWI radiation patterns of the fracture weaknesses. A shape regularization term is added to the objective function to improve the inversion for the horizontal weakness, which is otherwise poorly constrained. Alternatively, a simplified model of penny-shaped cracks is used to reduce the nonuniqueness in the inverted weaknesses and achieve a faster convergence.

  20. High-resolution Fracture Characterization Using Elastic Full-waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution. Here, we propose to estimate both the spatial distribution and physical properties of fractures using full waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. To better understand the inversion results, we analyze the FWI radiation patterns of the fracture weaknesses. A shape regularization term is added to the objective function to improve the inversion for the horizontal weakness, which is otherwise poorly constrained. Alternatively, a simplified model of penny-shaped cracks is used to reduce the nonuniqueness in the inverted weaknesses and achieve a faster convergence.

  1. Pathological (late) fractures of the mandibular angle after lower third molar removal: a case series.

    Science.gov (United States)

    Cutilli, Tommaso; Bourelaki, Theodora; Scarsella, Secondo; Fabio, Desiderio Di; Pontecorvi, Emanuele; Cargini, Pasqualino; Junquera, Luis

    2013-04-30

    Pathological (late) fracture of the mandibular angle after third molar surgery is very rare (0.005% of third molar removals). There are 94 cases reported in the literature; cases associated with osseous pathologies such as osteomyelitis or any local and systemic diseases that may compromise mandibular bone strength have not been included. We describe three new cases of pathological (late) fracture of the mandibular angle after third molar surgery. The first patient was a 27-year-old Caucasian man who had undergone surgical removal of a 3.8, mesioangular variety, class II-C third molar 20 days before admission to our clinic. The fracture of his left mandibular angle, complete and composed, occurred during chewing. The second patient was a 32-year-old Caucasian man. He had undergone surgical removal of a 3.8, mesioangular variety, class II-B third molar 22 days before his admission. The fracture, which occurred during mastication, was studied by computed tomography that showed reparative tissue in the fracture site. The third patient was a 36-year-old Caucasian man who had undergone surgical removal of a 3.8, vertical variety, class II-C third molar 25 days before the observation. In this case the fracture of his mandibular angle was oblique (unfavorable), complete and composed. The fracture had occurred during chewing. We studied the fracture by optical projection tomography and computed tomography.All of the surgical removals of the 3.8 third molars, performed by the patients' dentists who had more than 10 years of experience, were difficult. We treated the fractures with open surgical reduction, internal fixation by titanium miniplates and intermaxillary elastic fixation removed after 6 weeks. The literature indicates that the risk of pathological (late) fracture of the mandibular angle after third molar surgery for total inclusions (class II-III, type C) is twice that of partial inclusions due to the necessity of ostectomies more generous than those for partial

  2. Numerical methods for coupled fracture problems

    Science.gov (United States)

    Viesca, Robert C.; Garagash, Dmitry I.

    2018-04-01

    We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.

  3. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  4. Role of disc area and trabecular bone density on lumbar spinal column fracture risk curves under vertical impact.

    Science.gov (United States)

    Yoganandan, Narayan; Moore, Jason; Pintar, Frank A; Banerjee, Anjishnu; DeVogel, Nicholas; Zhang, JiangYue

    2018-04-27

    While studies have been conducted using human cadaver lumbar spines to understand injury biomechanics in terms of stability/energy to fracture, and physiological responses under pure-moment/follower loads, data are sparse for inferior-to-superior impacts. Injuries occur under this mode from underbody blasts. determine role of age, disc area, and trabecular bone density on tolerances/risk curves under vertical loading from a controlled group of specimens. T12-S1 columns were obtained, pretest X-rays and CTs taken, load cells attached to both ends, impacts applied at S1-end using custom vertical accelerator device, and posttest X-ray, CT, and dissections done. BMD of L2-L4 vertebrae were obtained from QCT. Survival analysis-based Human Injury Probability Curves (HIPCs) were derived using proximal and distal forces. Age, area, and BMD were covariates. Forces were considered uncensored, representing the load carrying capacity. The Akaike Information Criterion was used to determine optimal distributions. The mean forces, ±95% confidence intervals, and Normalized Confidence Interval Size (NCIS) were computed. The Lognormal distribution was the optimal function for both forces. Age, area, and BMD were not significant (p > 0.05) covariates for distal forces, while only BMD was significant for proximal forces. The NCIS was the lowest for force-BMD covariate HIPC. The HIPCs for both genders at 35 and 45 years were based on population BMDs. These HIPCs serve as human tolerance criteria for automotive, military, and other applications. In this controlled group of samples, BMD is a better predictor-covariate that characterizes lumbar column injury under inferior-to-superior impacts. Published by Elsevier Ltd.

  5. Risk factors of neurological lesions in low cervical spine fractures and dislocations

    Directory of Open Access Journals (Sweden)

    COELHO DANILO GONÇALVES

    2000-01-01

    Full Text Available Eighty-nine patients with lower cervical spine fractures or dislocations were evaluated for risk factors of neurological lesion. The age, sex, level and pattern of fracture and sagittal diameter of the spinal canal were analysed. There were no significant differences on the age, gender, level and Torg's ratio between intact patients and those with nerve root injury, incomplete or complete spinal cord injuries. Bilateral facet dislocations and burst fractures are a significant risk factor of spinal cord injury.

  6. Treatment of Pediatric Condylar Fractures: A 20-Year Experience.

    Science.gov (United States)

    Ghasemzadeh, Ali; Mundinger, Gerhard S; Swanson, Edward W; Utria, Alan F; Dorafshar, Amir H

    2015-12-01

    The purpose of this study was to define patterns of injury and treatment for condylar and subcondylar fractures and evaluate short-term outcomes in the pediatric population. A retrospective chart review was performed on pediatric patients with mandibular condylar fractures who presented between 1990 and 2010. Computed tomographic imaging was reviewed for all patients to assess fracture characteristics. Mandibular fractures were codified using the Strasbourg Osteosynthesis Research Group and Lindahl classification methods. Sixty-four patients with 92 condylar fractures were identified. Of these patients, 29 had isolated condylar fracture and 35 had a condylar fracture associated with an additional mandibular arch fracture. The most common fracture patterns were diacapitular fracture in the Strasbourg Osteosynthesis Research Group system (n = 46) and vertical condylar head fracture in the Lindahl system (n = 14). Condylar fracture with additional mandibular arch fractures were treated with maxillomandibular fixation more often than patients with condylar fracture [n = 40 (74.1 percent) versus n = 14 (25.9 percent); p = 0.004]. No condylar fracture was treated in an open fashion. Forty-three patients returned for follow-up. The median follow-up period was 81 days (interquartile range, 35 to 294 days). Ten patients had complications (23.3 percent). The most common complication was malocclusion (n = 5). Nine of 10 patients with complications had condylar fracture with an additional mandibular arch fracture. Closed treatment of condylar fractures yields satisfactory results in pediatric patients. Pediatric patients with condylar fractures combined with additional arch fractures experience a higher rate of unfavorable outcomes.

  7. The function of stilt roots in the growth strategy of Socratea exorrhiza (Arecaceae at two neotropical sites

    Directory of Open Access Journals (Sweden)

    Gregory R Goldsmith

    2007-12-01

    Full Text Available Arboreal palms have developed a variety of structural root modifications and systems to adapt to the harsh abiotic conditions of tropical rain forests. Stilt roots have been proposed to serve a number of functions including the facilitation of rapid vertical growth to the canopy and enhanced mechanical stability. To examine whether stilt roots provide these functions, we compared stilt root characteristics of the neotropical palm tree Socratea exorrhiza on sloped (>20º and flat locations at two lowland neotropical sites. S. exorrhiza (n=80 trees did not demonstrate differences in number of roots, vertical stilt root height, root cone circumference, root cone volume, or location of roots as related to slope. However, we found positive relationships between allocation to vertical growth and stilt root architecture including root cone circumference, number of roots, and root cone volume. Accordingly, stilt roots may allow S. exorrhiza to increase height and maintain mechanical stability without having to concurrently invest in increased stem diameter and underground root structure. This strategy likely increases the species ability to rapidly exploit light gaps as compared to non-stilt root palms and may also enhance survival as mature trees approach the theoretical limits of their mechanical stability. Rev. Biol. Trop. 55 (3-4: 787-793. Epub 2007 December, 28.Comparamos características físicas de raíces aéreas de la palmera Socratea exorrhiza en sitios inclinados (pendiente>20º y sitios planos, en dos lugares neotropicales. S. exorrhiza (n=80 árboles no muestra diferencias en el número de raíces, la altura vertical de las raíces, la circunferencia y la masa del cono de las raíces, o la posición de las raíces en los sitios con pendiente. Encontramos relaciones positivas entre el crecimiento vertical y la arquitectura de las raíces aéreas, incluso entre el número de raíces, la circunferencia del cono de las raíces, y la masa del

  8. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  9. Evaluation of the reinforcement effect on teeth with different apical foramen diameters of retrograde or orthograde MTA application with internal matrix

    Directory of Open Access Journals (Sweden)

    Emre Bayram

    2016-01-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effect of the apical foramen diameter and different application methods of Mineral Trioxide Aggregate (MTA on the fracture resistance of simulated immature teeth using a Universal Testing Machine. MATERIALS AND METHOD: Ninety extracted human teeth were used for the fracture resistance test. The apical foramen was prepared to a diameter of 1.0 mm or 1.4 mm to simulate the open apex of immature teeth. MTA was mixed according to manufacturer's recommendations and placed into the root canals with different apical foramen diameter by four different root filling techniques: retrograde, two-phased orthograde, and ortograde with or without internal matrix. Prepared roots were marked 2 mm below the cemento-enamel junction and embedded in transparent acrylic resin in cylinder moulds. Vertical force was applied along the long axis of the tooth at a speed of 5 mm/min, and the maximum resistance to fracture for each tooth was determined in Newton. A software package was used for the statistical analysis. The data were analyzed by using one-way ANOVA and post-hoc Tukey tests. RESULTS: A statistically significant difference could not be observed between the groups (p>0.05 whereas statistically significant differences were found between the test groups and the control groups (p<0.05. CONCLUSION: There was no significant difference between different vertical root filling techniques in increasing the fracture strength of the teeth. The diameter of the apical foramen did not have a significant effect on the fracture resistance.

  10. Root distribution pattern of Colocasia- 32P plant injection technique

    International Nuclear Information System (INIS)

    Eapen, Suja; Salam, M.A.; Wahid, P.A.

    1995-01-01

    A 32 P plant injection technique was employed to study the variation in the root production and distribution patterns of colocasia var. Cheruchempu grown in the coconut garden and in the open. Root production of colocasia was more with the plants grown in the open compared to the plants grown in the coconut garden. The root distribution pattern of colocasia differed with light environments under which the plants are grown. Colocasia grown in the coconut garden developed a compact root system while that grown in the open condition developed a spreading root system. The root zone comprising 20 cm laterally around the plant and 40 cm vertically from the surface (L 0-20 D 0-40 ) can be considered as the active root zone of colocasia. (author). 9 refs., 4 figs., 1 tab

  11. FRACOR-software toolbox for deterministic mapping of fracture corridors in oil fields on AutoCAD platform

    Science.gov (United States)

    Ozkaya, Sait I.

    2018-03-01

    Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.

  12. Burst fracture of the fifth lumber vertebra

    International Nuclear Information System (INIS)

    Cao Hetao; Hu Zhenmin; Shi Yuxin

    1999-01-01

    Objective: To investigate the stability of the fifth lumber vertebra after burst fracture. Methods: 7 patients with burst fracture of the fifth lumber vertebra were examined by X-ray and CT, and followed for 6-36 months. The changes of wedge index, lordosis, degree of spinal canal stenosis and neurological features were observed during the episode and followed up. Results: The three spinal column structure was disrupted in 6 of 7 patients. The anterior and mid columns were involved in 1 case. Spinal stenosis of first and second degrees was seen in 3 cases, and in one case, there was no spinal canal stenosis. Lower lumber motor-root deficits were found in 2 of 7 patients and resolved in follow up. There was no tendency of progressive collapse of the vertebral body and spinal stenosis. Conclusions: Burst fracture of the fifth lumber vertebra was specific, most of them were stable fractures, although two or three columns of the spine were disrupted and accompanied by spinal canal stenosis

  13. Burst fracture of the fifth lumber vertebra

    Energy Technology Data Exchange (ETDEWEB)

    Hetao, Cao; Zhenmin, Hu; Yuxin, Shi [Affiliated Hosptial of Nantong Medical College, JS, Nantong (China). Dept. of Radiology

    1999-04-01

    Objective: To investigate the stability of the fifth lumber vertebra after burst fracture. Methods: 7 patients with burst fracture of the fifth lumber vertebra were examined by X-ray and CT, and followed for 6-36 months. The changes of wedge index, lordosis, degree of spinal canal stenosis and neurological features were observed during the episode and followed up. Results: The three spinal column structure was disrupted in 6 of 7 patients. The anterior and mid columns were involved in 1 case. Spinal stenosis of first and second degrees was seen in 3 cases, and in one case, there was no spinal canal stenosis. Lower lumber motor-root deficits were found in 2 of 7 patients and resolved in follow up. There was no tendency of progressive collapse of the vertebral body and spinal stenosis. Conclusions: Burst fracture of the fifth lumber vertebra was specific, most of them were stable fractures, although two or three columns of the spine were disrupted and accompanied by spinal canal stenosis

  14. The failures of root canal preparation with hand ProTaper.

    Science.gov (United States)

    Bătăiosu, Marilena; Diaconu, Oana; Moraru, Iren; Dăguci, C; Tuculină, Mihaela; Dăguci, Luminiţa; Gheorghiţă, Lelia

    2012-07-01

    The failures of root canal preparation are due to some anatomical deviation (canal in "C" or "S") and some technique errors. The technique errors are usually present in canal root cleansing and shaping stage and are the result of endodontic treatment objectives deviation. Our study was made on technique errors while preparing the canal roots with hand ProTaper. Our study was made "in vitro" on 84 extracted teeth (molars, premolars, incisors and canines). The canal root of these teeth were cleansed and shaped with hand ProTaper by crown-down technique and canal irrigation with NaOCl(2,5%). The dental preparation control was made by X-ray. During canal root preparation some failures were observed like: canal root overinstrumentation, zipping and stripping phenomenon, discarded and/or fractured instruments. Hand ProTaper represents a revolutionary progress of endodontic treatment, but a deviation from accepted rules of canal root instrumentation can lead to failures of endodontic treatment.

  15. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    Science.gov (United States)

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  16. Studies on rooting pattern of sugarcane using 32P

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Agrawal, M.P.; Ghosh, A.K.

    1975-01-01

    Studies employing 32 P injection in sugarcane shoot and assay of 32 P activity in soil cores both in horizontal and vertical directions from the centre of the clumps revealed that most of the roots are restricted within the first 15 cm depth and their horizontal spread is confined largely to 25 cm. The technique has been standardised for use with other types of studies involving root foraging or activity. The above findings are in confirmation of the earlier data obtained by actual excavation of the roots and also observations made by exposing the roots in-situ. The advantage of the radioactive technique lies in accessing, with better precision, the zone of feeding of active roots, an information which could not be obtained by actual excavation of the roots which may include even the dead ones. (author)

  17. Maxillary second molar with four roots and five canals

    Directory of Open Access Journals (Sweden)

    Xinjia Sha

    2018-06-01

    Full Text Available In this case report, we present a maxillary second molar variant, which had two palatal roots with two canals and two buccal roots with three canals, including a second mesiobuccal canal. A 44-year-old female patient complained about a tooth crown fracture and severe pain in her right maxillary second molar. A clinical intraoral inspection and radiography were carried out on the tooth, and a diagnosis of chronic apical periodontitis was made. Four roots (two buccal and two palatal and five canals (three buccal and two palatal were found. The anatomical variation of the tooth was further confirmed by cone-beam computed tomography, a cone-fit procedure, and a radiograph with a shifted projection angle. Root-canal treatment was performed under an endodontic microscope.

  18. Nursery Cultural Practices and Morphological Arrtibutes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance

    Science.gov (United States)

    Glyndon E. Hatchell; H. David Muse

    1990-01-01

    Longleaf pine seedlings performed satisfactorily after planting on deep sands in South Carolina in dry years when: (1) They were vertically root-pruned in the nursery. (2) They had 14 or more first-order lateral roots and nonfibrous root systems. (3) They had six or more first-order lateral roots and highly fibrous root systems.

  19. Postprocedural problems in an overdenture population: a longitudinal study.

    Science.gov (United States)

    Ettinger, Ronald L; Qian, Fang

    2004-05-01

    This study reports on endodontic and other post-procedural problems experienced by overdenture patients from 1973 to 1996. There were 395 subjects enrolled in the study; 273 fulfilled the recall criteria. At recall, all subjects were examined by a single examiner, and appropriate maintenance care was performed. The 273 subjects had 666 abutments and 626 endodontically treated teeth; of these, 51 subjects had postprocedural problems in 81 teeth. Thus, 87.1% of the endodontically treated teeth had no postprocedural problems, and 12.9% had postprocedural problems. Of the subpopulation with postprocedural problems, the most common problem was endodontically treated teeth developing periradicular lesions (37.0%) because of recurrent caries causing loss of the restoration sealing the root canal. Twenty of the 30 teeth were successfully retreated. The next most common problem was vertical root fractures (30.9%), followed by vital teeth developing periradicular lesions (19.8%). Most of the failures could have been prevented by better oral hygiene. Vertical root fractures were statistically associated with abutments in the maxilla and opposed by natural teeth; protection of these abutments with thimble crowns could prevent fractures.

  20. A Biomechanical Study Comparing Helical Blade with Screw Design for Sliding Hip Fixations of Unstable Intertrochanteric Fractures

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2013-01-01

    Full Text Available Dynamic hip screw (DHS is a well-established conventional implant for treating intertrochanteric fracture. However, revision surgery sometimes still occurs due to the cutting out of implants. A helical blade instead of threaded screw (DHS blade was designed to improve the fixation power of the osteoporotic intertrochanteric fracture. In this study, the biomechanical properties of DHS blade compared to the conventional DHS were evaluated using an unstable AO/OTA 31-A2 intertrochanteric fracture model. Fifty synthetic proximal femoral bone models with such configuration were fixed with DHS and DHS blade in five different positions: centre-centre (CC, superior-centre (SC, inferior-center (IC, centre-anterior (CA, and centre-posterior (CP. All models had undergone mechanical compression test, and the vertical and rotational displacements were recorded. The results showed that DHS blade had less vertical or rotational displacement than the conventional DHS in CC, CA, and IC positions. The greatest vertical and rotational displacements were found at CP position in both groups. Overall speaking, DHS blade was superior in resisting vertical or rotational displacement in comparison to conventional DHS, and the centre-posterior position had the poorest performance in both groups.

  1. Roots of two transcendental equations determining the frequency spectra of standing spherical electromagnetic waves

    International Nuclear Information System (INIS)

    Pexton, R.L.; Steiger, A.D.

    1977-01-01

    Roots of the transcendental equations j/sub l/(lambda)/y/sub l/(lambda) =j/sub l/(αlambda) i/sub l/ (a)/i/sub j/(a)-j/sub l/(αlambda)/√vertical-barepsilonvertical-bar]/[y/sub l/ (αlambda) i/sub l/(a)/i/sub l/(a)-y/sub l/ (αlambda)/√vertical-barepsilonvertical-bar]/a=αlambda√vertical-barepsilonvertical-bar and [etaj/sub l/(eta)-lj/sub l/(eta)]/[etay/sub l/ (eta)-ly/sub l/(eta)]=vertical-barepsilonvertical-barβj/sub l/(β)/(1+vertical-barepsilonvertical-bar) -lj/sub l/(β)+√vertical-barepsilonvertical-barβj/sub l/(β) i/sub l/ (b)/(1+vertical-barepsilonvertical-bar) i/sub l/(b)]/[vertical-barepsilonvertical-barβy/sub l/ (β)/(1+vertical-barepsilonvertical-bar)-ly/sub l/(β)+√vertical-barepsilonvertical-barβy/sub l/(β) i/sub l/(b)/(1+vertical-barepsilonvertical-bar) i/sub l/(b)]/β =αeta/b=β√vertical-barepsilonvertical-bar for the spherical Bessel functions of the first and second kind, j/sub l/(x) and y/sub l/(x), and for the modified spherical Bessel functions of the first kind, i/sub l/(x), have been computed. The ranges for the parameters √vertical-barepsilonvertical-bar and α, the order l and the root index n are: √vertical-barepsilonvertical-bar=1.0, 10.0 100.0, 500.0; α=0.1(0.1)0.7; lambda=1(1)15; n=1(1)30

  2. Simulation study of the VAPEX process in fractured heavy oil system at reservoir conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azin, Reza; Ghotbi, Cyrus [Department of Chemical and Petroleum Engineering, Sharif Univ. Tech., Tehran (Iran); Kharrat, Riyaz; Rostami, Behzad [Petroleum University of Technology Research Center, Tehran (Iran); Vossoughi, Shapour [4132C Learned Hall, Department of Chemical and Petroleum Engineering, Kansas University, Lawrence, KS (United States)

    2008-01-15

    The Vapor Extraction (VAPEX) process, a newly developed Enhanced Oil Recovery (EOR) process to recover heavy oil and bitumen, has been studied theoretically and experimentally and is found a promising EOR method for certain heavy oil reservoirs. In this work, a simulation study of the VAPEX process was made on a fractured model, which consists of a matrix surrounded by horizontal and vertical fractures. The results show a very interesting difference in the pattern of solvent flow in fractured model compared with the conventional model. Also, in the fractured system, due to differences in matrix and fracture permeabilities, the solvent first spreads through the fractures and then starts diffusing into matrix from all parts of the matrix. Thus, the solvent surrounds the oil bank, and an oil rather than the solvent chamber forms and shrinks as the process proceeds. In addition, the recovery factor is higher at lower solvent injection rates for a constant pore volume of the solvent injected into the model. Also, the diffusion process becomes important and higher recoveries are obtained at low injection rates, provided sufficient time is given to the process. The effect of inter-connectivity of the surrounding fractures was studied by making the side vertical fractures shorter than the side length of the model. It was observed that inter-connectivity of the fractures affects the pattern of solvent distribution. Even for the case of side fractures being far apart from the bottom fracture, the solvent distribution in the matrix was significantly different than that in the model without fractures. Combination of diffusion phenomenon and gravity segregation was observed to be controlling factors in all VAPEX processes simulated in fractured systems. The early breakthrough of the solvent for the case of matrix surrounded by the fracture partially inhibited diffusion of the solvent into the oil and consequently the VAPEX process became the least effective. It is concluded

  3. Vertical Root Fracture Detection Using Limited-FOV Cone-Beam Computed Tomography

    Science.gov (United States)

    2012-06-01

    instrumented with 0.04 taper ProFile (DENTSPLY Tulsa Dental Specialties, Tulsa, OK) nickel titanium rotary files to a master apical file size of...A thesis submitted to the Faculty of the Endodontics Graduate Program Naval Postgraduate Dental School Uniformed Services...Dental Program Navy Medicine Professional Development Center Terry D. Webb, DDS, MS CAPT, DC, USN Chairman, Endodontics Dept. Glen M. Imamura, S

  4. Apical root resorption of incisors after orthodontic treatment of impacted maxillary canines: a radiographic study.

    Science.gov (United States)

    Brusveen, Elin Marie Gravdal; Brudvik, Pongsri; Bøe, Olav Egil; Mavragani, Maria

    2012-04-01

    The purpose of the study was to evaluate impacted maxillary canines as risk factor for orthodontic apical root resorption. The sample comprised 66 patients treated with fixed appliances. Thirty-two patients with a unilateral impacted maxillary canine, which was distanced from the roots of the incisors at a preliminary phase of treatment before bonding, formed the impaction group, and 34 patients without impactions served as the controls. Root shortening was calculated by using pretreatment and posttreatment intraoral radiographs. Inclination of the eruption path of the impacted canine relative to the midline, axis of the lateral incisor, and nasal line, root development, and the medial and vertical positions of the impacted tooth were recorded on orthopantomograms and lateral cephalometric films. The follicle/tooth ratio was evaluated by using periapical radiographs. No significant difference in apical resorption of the maxillary incisors was detected between the impaction and control groups, or between the incisors of the impacted and contralateral sides in the same subject. Likewise, no difference in the severity of root resorption was found between the incisors of impacted side alone and the incisors of the control group. Mesial and vertical inclinations of the impacted canines were negatively related to a lateral incisor's root resorption. No correlations were found between resorption and medial or vertical position of the crown of the canine. The follicle/tooth ratio was significantly related to the mesial inclination of the impacted canine, but not to root resorption. An impacted maxillary canine, after being distanced from the incisor roots, does not seem to be a risk factor for apical root resorption during orthodontic treatment. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Hydraulic fracturing in well ONM 15, Hassi-Messaoud field

    Energy Technology Data Exchange (ETDEWEB)

    Kerbouc, P

    1968-01-01

    In the Hassi-Messaoud field, hydraulic fracturing has been an extremely difficult problem because of the difficult conditions, and numerous tests run with conventional techniques which have had good results elswhere in the Sahara and worldwide, have given poor results. In Dec. 1967, the CFP(A) succeeded in an experimental fracturing operation on the ONM 15 well, increasing the production from 1 to 11 mU3D/hr. The principal results were: (1) in the sandstone reservoir of Hassi-Messaoud, the fracture was successfully propped with high-strength glass beads; (2) the orientation of the fracture was vertical; and (3) in certain favorable cases, such as wells that were mudded off or had a permeability barrier close to the well, the productivity can be increased by a factor of 10. However, it can still not be stated that hydraulic fracturing will be an economic stimulation method for the Hassi-Messaoud reservoir.

  6. Threading the Needle: Intrapelvic Displacement of a Femoral Neck Fracture through the Obturator Foramen

    Directory of Open Access Journals (Sweden)

    Gautham Prabhakar

    2018-01-01

    Full Text Available Despite timely and appropriate management, displaced femoral neck fractures are often devastating injuries for the young patient. The risk of negative sequelae is further amplified with increasing displacement and vertical fracture patterns. Open anatomic reduction with rigid internal fixation is essential to maximize the healing potential in displaced fractures of the femoral neck. Successful primary osteosynthesis of significantly displaced femoral neck fractures in the young patient has been reported in the literature. We present a unique case of open reduction and internal fixation of a high-energy femoral neck fracture with extrusion of the head through the obturator foramen into the pelvis without associated acetabular or pelvic injury.

  7. Investigation of fracture-matrix interaction: Preliminary experiments in a simple system

    International Nuclear Information System (INIS)

    Foltz, S.D.

    1992-01-01

    Paramount to the modeling of unsaturated flow and transport through fractured porous media is a clear understanding of the processes controlling fracture-matrix interaction. As a first step toward such an understanding, two preliminary experiments have been performed to investigate the influence of matrix imbibition on water percolation through unsaturated fractures in the plane normal to the fracture. Test systems consisted of thin slabs of either tuff or an analog material cut by a single vertical fracture into which a constant fluid flux was introduced. Transient moisture content and solute concentration fields were imaged by means of x-ray absorption. Flow fields associated with the two different media were significantly different owing to differences in material properties relative to the imposed flux. Richards' equation was found to be a valid means of modeling the imbibition of water into the tuff matrix from a saturated fracture for the current experiment

  8. Hydraulic Fracturing At Sedimentary Basin Scale Fracturation hydraulique à l'échelle des bassins sédimentaires

    Directory of Open Access Journals (Sweden)

    Schneider F.

    2006-12-01

    Full Text Available One key point for simulating the hydraulic fracturing at basin scale, is to be able to compute the stress tensor. This is generally not addressed in basin model because of the complexity of this problem. In order to get access to the stress tensor we have to assume that:- one of the principal stress is vertical and equals the overburden weight;- the horizontal stress is deduced from the vertical stress with the K0 coefficient that is a function of depth and of the tectonical setting. Consolidation is considered here as the combined effect of the mechanical compaction and the chemical compaction. The mechanical compaction is mainly caused by the rearrangement of grains during burial and could be represented at the macroscopical scale by an elastoplastic rheology. The chemical compaction is considered here as resulting from dissolution-precipitation mechanisms, generally induced by stress (pressure-solution. The chemical compaction could be represented at the macroscopical scale by a viscoplastic rheology. The complete elastoplastic yield is defined by the union of the consolidation elastoplastic yield and of the different failure criteria that could be seen as elastobrittle yields. Thus, the elastoplastic yield is composed of six elementary elastoplastic yields which define the onset of vertical compaction, horizontal compaction, vertical tensile fracturing, horizontal tensile fracturing, subvertical shear fracturing, and subhorizontal shear fracturing. Due to the consolidation, most of the parameters that describe the physical properties of the sediments evolve with the geological times. One difficulty is to quantify the degree of evolution of the porous medium during its geological history. Here, we have chosen to measure the evolution of the sediments by their porosity. The local simulations showed that fracturing may occur is numerous configurations. Some of these configurations indicate that the sediments can reach the limit of its elastic

  9. kISMET: Stress and fracture characterization in a deep mine

    Science.gov (United States)

    Oldenburg, C. M.; Dobson, P. F.; Daley, T. M.; Birkholzer, J. T.; Cook, P. J.; Ajo Franklin, J. B.; Rutqvist, J.; Siler, D.; Kneafsey, T. J.; Nakagawa, S.; Wu, Y.; Guglielmi, Y.; Ulrich, C.; Marchesini, P.; Wang, H. F.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Mattson, E.; Huang, H.; Johnson, T. C.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2016-12-01

    We are developing a community facility called kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) at the Sanford Underground Research Facility (SURF) in Lead, SD. The purpose of kISMET is to investigate stress and the effects of rock fabric on hydraulic fracturing. Although findings from kISMET may have broad applications that inform stress and fracturing in anisotropic rock, results will be most applicable to improving control of hydraulic fracturing for enhanced geothermal systems (EGS) in crystalline rock. At the kISMET site on the 4850 ft (1480 m depth) level of SURF, we have drilled and cored an array of nearly vertical boreholes in Precambrian phyllite. The array consists of four 50-m deep monitoring boreholes surrounding one 100-m deep borehole forming a 6 m-wide five-spot pattern at a depth of 1530 m. Previous investigations of the stress field at SURF suggest that the principal stress s1 is nearly vertical. By aligning the kISMET boreholes approximately with σ1, fractures created in the center borehole should in theory be perpendicular to σ3, the least principal horizontal stress. But the phyllite at kISMET has a strong fabric (foliation) that could influence fracturing. Stress measurements and stimulation using hydraulic fracturing will be carried out in the center borehole using a straddle packer and high-pressure pump. We will use an impression packer and image logs after stress testing and stimulation to determine fracture orientation and extent at the center borehole. In order to study the control of stress, rock fabric, and stimulation approach on size, aperture, and orientation of hydraulic fractures, we will carefully monitor the stress measurements and stimulation. For example, we will use continuous active source seismic (CASSM) in two of the monitoring boreholes to measure changes in seismic-wave velocity as water fills the fracture. Second, near real-time electrical resistance tomography (ERT) will be used in

  10. Multiple fracture planes in deuteron irradiated metals

    International Nuclear Information System (INIS)

    Jones, W.R.; Johnson, P.B.

    1987-01-01

    Evidence has been found of multiple fracture planes in the blistering and flaking of metals observed at room temperature following irradiation at 120 K with 200 keV deuterons. In particular, two fracture planes are identified in copper, gold and stainless steel and three in aluminium. In nickel only one fracture plane is found. Qualitative models are proposed which explain the different fracture planes that are observed. In these models it is proposed that several mechanisms are important. (i) High levels of compressional stress in the implanted layer inhibits bubble nucleation and bubble growth in the depth region near the maxima in the damage and gas deposition profiles. (ii) The lateral stress varies from compression in the implant region to tension in the material below. In the region of tension bubble growth is enhanced. The vertical gradient in the lateral stress may also assist gas to move deeper into the target to further enhance bubble growth in this region. (iii) Shear resulting from differential expansion due to a combination of radiation induced swelling and localised heating is an important mechanism leading to fracture. (orig.)

  11. Analysis of the pressure response of high angle multiple (HAM) fractures intersecting a welbore; Kokeisha multi fracture (HAM) kosei ni okeru atsuryoku oto kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ujo, S; Osato, K [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arihara, N [Waseda University, Tokyo (Japan); Schroeder, R

    1996-05-01

    This paper reports pressure response analysis on wells piercing a high angle multi (HAM) fracture model. In this model which is defined on a three-dimensional space, a plurality of slanted fractures intersect with wells at high angles (however, intersection of fractures with each other is not considered). With respect to the pressure response analysis method using this model, the paper presents a basic differential equation on pressure drawdown and boundary conditions in the wells taking flows in the fractures pseudo-linear, as well as external boundary conditions in calculation regions (a reservoir spreads to an infinite distance, and its top and bottom are closed by non-water permeating beds). The paper also indicates that results of calculating a single vertical fracture model and a slanted fracture model by using a numerical computation program (MULFRAC) based on the above equations agree well respectively with the existing calculation results (calculations performed by Erlougher and Cinco et al). 5 refs., 6 figs.

  12. 2D Geoelectric Imaging of the Uneme-Nekhua Fracture Zone

    Directory of Open Access Journals (Sweden)

    Muslim B. Aminu

    2014-01-01

    Full Text Available We have employed 2D geoelectric imaging to reveal the geometry and nature of a fracture zone in Uneme-Nekhua, southwestern Nigeria. The fracture zone is discernable from an outcropping rock scarp and appears to define the course of a seasonal stream. Data were acquired using the dipole-dipole survey array configuration with electrode separation of 6 m and a maximum dipole length of 60 m. Three traverses with lengths varying between 72 m and 120 m were laid orthogonal to the course of the seasonal stream. 2D geoelectric images of the subsurface along the profiles imaged a north-south trending fracture zone. This fracture zone appears to consist of two vertical fractures with more intense definition downstream. The eastern fracture is buried by recent sediment, while the western fracture appears to have experienced more recent tectonic activity as it appears to penetrate through the near surface. Perhaps at some point, deformation ceased on the eastern fracture and further strain was transferred to the western fracture. The fracture zone generally defines the course of the north-south seasonal stream with the exception of the downstream end where the fracture appears to have died out entirely. Two associated basement trenches lying parallel to and east of the fracture zone are also imaged.

  13. Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA)

    NARCIS (Netherlands)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Tveranger, Jan

    2014-01-01

    Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors

  14. Three Cases of Spine Fractures after an Airplane Crash.

    Science.gov (United States)

    Lee, Han Joo; Moon, Bong Ju; Pennant, William A; Shin, Dong Ah; Kim, Keung Nyun; Yoon, Do Heum; Ha, Yoon

    2015-10-01

    While injuries to the spine after an airplane crash are not rare, most crashes result in fatal injuries. As such, few studies exist that reported on spine fractures sustained during airplane accidents. In this report, we demonstrate three cases of spine fractures due to crash landing of a commercial airplane. Three passengers perished from injuries after the crash landing, yet most of the passengers and crew on board survived, with injuries ranging from minor to severe. Through evaluating our three spine fracture patients, it was determined that compression fracture of the spine was the primary injury related to the airplane accident. The first patient was a 20-year-old female who sustained a T6-8 compression fracture without neurologic deterioration. The second patient was a 33-year-old female with an L2 compression fracture, and the last patient was a 49-year-old male patient with a T8 compression fracture. All three patients were managed conservatively and required spinal orthotics. During the crash, each of these patients were subjected to direct, downward high gravity z-axis (Gz) force, which gave rise to load on the spine vertically, thereby causing compression fracture. Therefore, new safety methods should be developed to prevent excessive Gz force during airplane crash landings.

  15. Three Cases of Spine Fractures after an Airplane Crash

    Science.gov (United States)

    Lee, Han Joo; Moon, Bong Ju; Pennant, William A.; Shin, Dong Ah; Kim, Keung Nyun; Yoon, Do Heum

    2015-01-01

    While injuries to the spine after an airplane crash are not rare, most crashes result in fatal injuries. As such, few studies exist that reported on spine fractures sustained during airplane accidents. In this report, we demonstrate three cases of spine fractures due to crash landing of a commercial airplane. Three passengers perished from injuries after the crash landing, yet most of the passengers and crew on board survived, with injuries ranging from minor to severe. Through evaluating our three spine fracture patients, it was determined that compression fracture of the spine was the primary injury related to the airplane accident. The first patient was a 20-year-old female who sustained a T6-8 compression fracture without neurologic deterioration. The second patient was a 33-year-old female with an L2 compression fracture, and the last patient was a 49-year-old male patient with a T8 compression fracture. All three patients were managed conservatively and required spinal orthotics. During the crash, each of these patients were subjected to direct, downward high gravity z-axis (Gz) force, which gave rise to load on the spine vertically, thereby causing compression fracture. Therefore, new safety methods should be developed to prevent excessive Gz force during airplane crash landings. PMID:27169094

  16. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests Influência do material de inclusão e da simulação do ligamento periodontal nos ensaios de resistência à fratura

    Directory of Open Access Journals (Sweden)

    Carlos José Soares

    2005-03-01

    Full Text Available The aim of this study was to evaluate the influence of the embedment material and periodontal ligament simulation on fracture resistance of bovine teeth. Eighty bovine incisor teeth were randomized into 8 groups (n = 10, embedded in acrylic or polystyrene resin using 4 types of periodontal ligament simulation: 1 - absence of the ligament; 2 - polyether impression material; 3 - polysulfide impression material; 4 - polyurethane elastomeric material. The specimens were stored at 37°C and 100% humidity for 24 hours. Specimens were submitted to tangential load on the palatal surface at 0.5 mm/minute crosshead speed until fracture. The fracture modes were analyzed as follows: 1 - coronal fracture; 2 - cemento-enamel junction fracture; 3 - partial root fracture; 4 - total root fracture. Statistical analyses by two-way ANOVA and Tukey's test were applied (p O objetivo deste estudo foi avaliar a influência do material de inclusão e da simulação de ligamento periodontal na resistência à fratura de dentes bovinos. Oitenta incisivos bovinos foram divididos em 8 grupos (n = 10 e, então, incluídos em cilindros com dois materiais, resina acrílica ou resina de poliestireno, usando-se quatro tipos de simulação do ligamento periodontal: 1 - ausência do ligamento; 2 - material de moldagem à base de poliéter; 3 - material de moldagem à base de polissulfeto; e 4 - material elastomérico à base de poliuretano. As amostras foram armazenadas em 100% de umidade a 37°C por 24 horas e então submetidas a carregamento tangencial na superfície palatina com velocidade de 0,5 mm/minuto até a fratura. Os padrões de fratura foram analisados de acordo com: 1 - fraturas coronais; 2 - fratura da junção esmalte-cemento; 3 - fratura parcial da raiz; 4 - fratura radicular total. A análise estatística empregou análise de variância fatorial e teste de Tukey (p < 0,05. Os resultados mostram que o método de inclusão e a simulação do ligamento periodontal

  17. The healing of fractured bones

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G E [Central Electricity Generating Board, Cheltenham (United Kingdom)

    1997-04-01

    A method utilising neutron beams of width 1 mm, used on D1B (2.4 A) and D20 (1.3 A) to study the healing of fractured bones is presented. It is found that the callus bone uniting the fractured tibia of a sheep, whose healing had been encouraged by daily mechanical vibration over a period of three months, showed no trace of the large preferential vertical orientation of the apatite crystals which is characteristic of the normal bone. Nevertheless the bone had regained about 60% of its mechanical strength and the callus bone, although not oriented, was well crystallized. It is considered that the new monochromator for D20, expected to give increased intensity at 2.5 A, will be of considerable advantage. (author). 2 refs.

  18. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Science.gov (United States)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  19. Malunited fracture of the body and condyle of the mandible : A Case Report.

    Science.gov (United States)

    Yeluri, Ramakrishna; Baliga, Sudhindra; Munshi, Autar Krishen

    2010-07-01

    Mandibular fractures are the most common facial fractures seen in hospitalized children and their incidence increases with age. Treatment options include soft diet, intermaxillary fixation with eyelet wires, arch bars, circummandibular wiring, or stents. Alternative options include open reduction and internal fixation through either an intraoral or extraoral approach. Many factors complicate the management of pediatric mixed-dentition mandibular fractures: tooth eruption, short roots, developing tooth buds and growth issues. One major factor is the inherent instability of the occlusion in the mixed deciduous-permanent tooth phase. This case report documents a child in mixed dentition period with a complication arising due to direct fixation of the fractured mandible.

  20. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  1. An evaluation of information on vertical crustal movements pertaining to deep disposal

    International Nuclear Information System (INIS)

    Gale, J.E.; Quinlan, G.; Rogerson, R.; Welhan, J.

    1986-03-01

    The geological and historical information on the magnitude and distribution of uplift and differential movements of rock masses as well as groundwater flow system transients that result from glacial unloading, erosion and tectonic stress have been reviewed. Data presented in the literature show that vertical crustal movements have occurred during the Cenozoic. In addition, the literature indicates significant transients exist in groundwater flow systems. The documented evidence of vertical crustal movements, plus supporting data on the stress-permeability constitutive relationships for discontinuities in fractured crystalline rocks, and three-dimensional modelling capability justifies a detailed analysis of the effects of vertical uplift on bedrock and on groundwater as they pertain to the deep disposal of radioactive waste. 159 annotated refs

  2. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  3. Genomic Regions Influencing Seminal Root Traits in Barley

    Directory of Open Access Journals (Sweden)

    Hannah Robinson

    2016-03-01

    Full Text Available Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.. Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH population (ND24260 × ‘Flagship’ comprising 330 lines genotyped with diversity array technology (DArT markers were evaluated for seminal root angle (deviation from vertical and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL for seminal root traits (root angle, two QTL; root number, five QTL were detected in the DH population. A major QTL influencing both root angle and root number (/ was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L., and sorghum [ (L. Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.

  4. Ex vivo fracture resistance of direct resin composite complete crowns with and without posts on maxillary premolars.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Bell, A.M. Le; Kreulen, C.M.; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H.J.

    2005-01-01

    AIM: To investigate ex vivo the fracture resistance and failure mode of direct resin composite complete crowns with and without various root canal posts made on maxillary premolars. METHODOLOGY: The clinical crowns of 40 human extracted single-rooted maxillary premolars were sectioned at the

  5. Nasolacrimal obstruction caused by root abscess of the upper canine in a cat.

    Science.gov (United States)

    Anthony, James M G; Sandmeyer, Lynne S; Laycock, Amanda R

    2010-03-01

    A 10-year-old, castrated male domestic short hair cat was presented to the Small Animal Clinic at the Western College of Veterinary Medicine with a presenting complaint of chronic, ocular discharge from the left eye. Ocular examination confirmed epiphora and mucopurulent discharge but there were no apparent reasons for the ocular discharge, and nasolacrimal obstruction was suspected. The cat had swelling of the left side of the face, severe periodontal disease and a fractured upper left canine tooth with pulpal exposure. Dacryocystorhinography revealed narrowing of the nasolacrimal duct above the root of the fractured upper left canine and dental radiographs showed a severe periapical lucency at the apex of the upper left canine tooth. The fractured canine tooth was removed. Subsequently, the ocular discharge and facial swelling resolved. After 2 years, the epiphora has never reoccurred. This is a noteworthy case because a suspected root abscess resulted in extralumenal compression of the nasolacrimal duct, which shows the importance of a thorough oral examination when nasolacrimal obstruction is evident.

  6. On the accuracy of Rüger's approximation for reflection coefficients in HTI media: implications for the determination of fracture density and orientation from seismic AVAZ data

    International Nuclear Information System (INIS)

    Ali, Aamir; Jakobsen, Morten

    2011-01-01

    We have investigated the accuracy of Rüger's approximation for PP reflection coefficients in HTI media (relative to an exact generalization of Zoeppritz to anisotropy derived by Schoenberg and Protazio) within the context of seismic fracture characterization. We consider the inverse problem of seismic amplitude-versus-angle and azimuth (AVAZ) inversion with respect to fracture density and azimuthal fracture orientation, as well as the forward problem of calculating PP reflection coefficients for different contrasts and anisotropy levels. The T-matrix approach was used to relate the contrast and anisotropy level to the parameters of the fractures (in the case of a single set of vertical fractures). We have found that Rüger's approximation can be used to recover the true fracture density with small uncertainty if, and only if, the fracture density and contrast are significantly smaller than the values that are believed to occur in many practically interesting cases of fractured (carbonate) reservoirs. In one example involving a minimal contrast and a fracture density in the range 0.05–0.1, Rüger's approximation performed satisfactorily for inversion, although the forward modelling results were not very accurate at high incident angles. But for fracture densities larger than 0.1 (which we believe may well occur in real cases), Rüger's approximation did not perform satisfactorily for forward or inverse modelling. However, it appears that Rüger's approximation can always be used to obtain estimates of the azimuthal fracture orientation with small uncertainty, even when the contrast and anisotropy levels are extremely large. In order to illustrate the significance of our findings within the context of seismic fracture characterization, we analysed a set of synthetic seismic AVAZ data associated with a fault facies model where the fracture density decreases exponentially with distance from the fault core, and a set of real seismic AVAZ data involving offset

  7. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    Science.gov (United States)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  8. An interdisciplinary approach to treat crown‑root‑fractured tooth ...

    African Journals Online (AJOL)

    Restoration of a crown‑root subgingival fractured tooth, especially at anterior aesthetic zones is still a great challenge for restorative dentists. Crown lengthening procedure alone has the disadvantage of high gingival curve of the final restoration, which was not discontinuous to adjacent teeth and thus compromise cosmetic ...

  9. Optimum development of a thin box-shaped reservoir with multiply fractured horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Lietard, O.; Hegeman, P.

    1998-12-31

    An improved definition of the productivity index of multiply fractured wells is proposed, based on the use of Dietz`s shape factors for vertical wells centered in independent box-shaped drainage areas of equal size in a reservoir. Pseudo-radial flow around each fracture is taken into account and pressure drops in the reservoir are accurately estimated. By using the corrected Gringarten mathematical approach, it is confirmed that orthogonal fractures provide much better productivity than a single collinear fracture even at constant material usage. Up to five-fold improvements have been registered when the number of fractures was equal to 1.8 times the reservoir shape ratio (length over width). For best results, the well should be cased and cemented, and hydraulic fractures should be propagated one by one through short perforation clusters. 18 refs., 10 figs., 1 appendix.

  10. Radionuclide transport in fractured rock: quantifying releases from final disposal of high level waste

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2013-01-01

    Crystalline rock has been considered as a potentially suitable matrix for high-level radioactive waste (HLW) repository because it is found in very stable geological formations and may have very low permeability. In this study the adopted physical system consists of the rock matrix containing a discrete horizontal fracture in a water saturated porous rock and a system of vertical fractures as a lineament. The transport in the fractures - horizontal and vertical, is assumed to obey a relation convection-diffusion, while the molecular diffusion is considered dominant mechanism of transport in porous rock. In this model the decay chain is considered. We use a code in Fortran 90, where the partial differential equations that describe the movement of radionuclides were discretized by finite differences methods. We use the fully implicit method for temporal discretization schemes. The simulation was performed with relevant data of nuclides in spent fuel for performance assessment in a hypothetical repository, thus quantifying the radionuclides released into the host rock. (author)

  11. Parameters controlling fracturing distribution: example of an Upper Jurassic marly-calcareous formation (eastern Paris Basin)

    International Nuclear Information System (INIS)

    Andre, G.; Rebours, H.; Wileveau, Y.; Proudhon, B.

    2006-01-01

    Study of fractures along a 490-m vertical section of marl/limestone alternations in the Upper Jurassic (Meuse/Haute-Marne underground research laboratory-eastern Paris Basin) reveals their organization and the different states of palaeo-stress. Type and extension of tectonic structures seem to be controlled principally by lithology and secondary by depth. Also, it appears deviations of Alpine palaeo-stresses between Kimmeridgian and Oxfordian formations. These deviations are related to the presence of marl/limestone contacts. The vertical evolution of current horizontal maximum stress shows a similar behaviour, with deviations at the walls of Callovo-Oxfordian argilites. These results allow us to point out and to discuss the impact of lithology, rheology and depth on fracturing occurrence and distribution. Furthermore, this study suggests the role of Callovo-Oxfordian as a barrier for fracture development between the limestones of Dogger and Oxfordian formations. (authors)

  12. Failure analysis of eleven Gates Glidden drills that fractured intraorally during post space preparation. A retrieval analysis study.

    Science.gov (United States)

    Al Jabbari, Youssef S; Fournelle, Raymond; Al Taweel, Sara M; Zinelis, Spiros

    2017-07-19

    The purpose of this study was to determine the failure mechanism of clinically failed Gates Glidden (GG) drills. Eleven retrieved GG drills (sizes #1 to #3) which fractured during root canal preparation were collected and the fracture location was recorded based on macroscopic observation. All fracture surfaces were investigated by a SEM. Then the fractured parts were embedded in acrylic resin and after metallographic preparation, the microstructure and elemental composition was evaluated by SEM and EDS. The Vickers hardness (HV) of all specimens was also determined. Macroscopic examination and SEM analysis showed that the drills failed near the hand piece end by torsional fatigue with fatigue cracks initiating at several locations around the circumference and propagating toward the center. Final fracture followed by a tensile overloading at the central region of cross section. Microstructural analysis, hardness measurements and EDS show that the drills are made of a martensitic stainless steel like AISI 440C. Based on the findings of this study, clinicians should expect fatigue fracture of GG drills that have small size during root canal preparation. Selection of a more fatigue resistant stainless steel alloy and enhancing the instrument design might reduce the incidence of quasi-cleavage fracture on GG drills.

  13. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  14. Possible origin, nature, extent and tectomic position of joints and fracture in salt formations

    International Nuclear Information System (INIS)

    Weiss, H.M.

    1984-01-01

    The evaluation of about 500 bibliographic references for the safe ultimate storage in salt leds to the following results: fractures in rock salt and potash salt are formed in all types of storage, fractures are less numerous in a vertical storage than in a horizontal storage, nevertheless fissures are found in salt fomations containing liquids or gas undergoing rock pressures, fractures can be created during salt formation. Datation of formations by geologic methods and K-Ar method are considered. Deep formations (about 300m) are liquid and gas-tight, if homogenous and non perturbated. In all German permian formations are found indications of brine accumulation along fractures and tectonic zones

  15. Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Ali Shafiei

    2018-02-01

    Full Text Available In this paper, we characterized the natural fracture systems and inferred the state of in situ stress field through an integrated study in a very complex and heterogeneous fractured carbonate reservoir. Relative magnitudes and orientations of the in-situ principal stresses in a naturally fractured carbonate heavy oil field were estimated with a combination of available data (World Stress Map, geological and geotectonic evidence, outcrop studies and techniques (core analysis, borehole image logs and Side View Seismic Location. The estimates made here using various tools and data including routine core analysis and image logs are confirmatory to estimates made by the World Stress Map and geotectonic facts. NE-SW and NW-SE found to be the dominant orientations for maximum and minimum horizontal stresses in the study area. In addition, three dominant orientations were identified for vertical and sub-vertical fractures atop the crestal region of the anticlinal structure. Image logs found useful in recognition and delineation of natural fractures. The results implemented in a real field development and proved practical in optimal well placement, drilling and production practices. Such integrated studies can be instrumental in any E&P projects and related projects such as geological CO2 sequestration site characterization.

  16. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT

    Directory of Open Access Journals (Sweden)

    Bilge Gülsüm NUR

    2014-12-01

    Full Text Available Objective This study aimed to assess the quality of root fillings, coronal restorations, complications of all root-filled teeth and their association with apical periodontitis (AP detected by cone-beam computed tomography (CBCT images from an adult Turkish subpopulation. Material and Methods The sample for this study consisted of 242 patients (aging from 15 to 72 years with 522 endodontically treated teeth that were assessed for technical quality of the root canal filling and periapical status of the teeth. Additionally, the apical status of each root-filled tooth was assessed according to the gender, dental arch, tooth type and age classification, undetected canals, instrument fracture, root fracture, apical resorption, apical lesion, furcation lesion and type and quality of the coronal structure. Statistical analysis was performed using percentages and chi-square test. Results The success rate of the root canal treatment was of 54.4%. The success rates of adequate and inadequate root canal treatment were not significantly different (p>0.05. Apical periodontitis was found in 228 (45.6% teeth treated for root canals. Higher prevalence of AP was found in patients aging from 20 to 29 years [64 (27% teeth] and in anterior (canines and incisors teeth [97 (41% teeth]. Conclusions The technical quality of root canal filling performed by dental practitioners in a Turkish subpopulation was consistent with a high prevalence of AP. The probable reasons for this failure are multifactorial, and there may be a need for improved undergraduate education and postgraduate courses to improve the clinical skills of dental practitioners in endodontics.

  17. Influence of nickel-titanium rotary systems with varying tapers on the biomechanical behaviour of maxillary first premolars under occlusal forces: a finite element analysis study.

    Science.gov (United States)

    Askerbeyli Örs, S; Serper, A

    2018-05-01

    To evaluate the effect of three nickel-titanium (Ni-Ti) rotary systems with varying tapers on stress distribution and to analyse potential fracture patterns as well as the volume of fracture-susceptible regions in two-rooted maxillary premolars. The root canals of three single-rooted premolars were prepared with either HeroShaper (Micro-Mega, Besançon, France) to (size 30, .04 taper), Revo-S (Micro-Mega) to AS30 (size 30, .06 taper) or ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) to F3 (size 30, .09 taper) Ni-Ti files. The three root canals were scanned using micro-computed tomography (μCT) (Skyscan 1174, Skyscan, Kontich, Belgium) and modelled according to the μCT data. An intact tooth model with a root length of 16 mm was also constructed based on μCT images of an extracted maxillary premolar with two roots. New models were constructed by replacing both of the original canals of the intact two-rooted premolar model with the modelled canals prepared with the HeroShaper, Revo-S or ProTaper Universal system. Occlusal forces of 200 N were applied in oblique and vertical directions. Finite element analysis was performed using Abaqus FEA software (Abaqus 6.14, ABAQUS Inc., Providence, RI, USA). Upon the application of oblique occlusal forces, the palatal external cervical root surface and the bifurcation (palatal side of the buccal root) in tooth models experienced the highest maximum principal (Pmax) stresses. The application of vertical forces resulted in minor Pmax stress values. Models prepared using the ProTaper system exhibited the highest Pmax stress values. The intact models exhibited the lowest Pmax stress values followed by the models prepared with the HeroShaper system. The differences in Pmax stress values amongst the different groups of models were mathematically minimal under normal occlusal forces. Rotary systems with varying tapers might predispose the root fracture on the palatal side of the buccal root and cervical palatal

  18. Root canal shaping using rotary nickel-titanium files in preclinical dental education in Turkey.

    Science.gov (United States)

    Ünal, Gül Çelik; Maden, Murat; Orhan, Ekim Onur; Sarıtekin, Erdal; Teke, Anıl

    2012-04-01

    The purposes of this study were to evaluate the ability of a group of third-year dental students without any endodontic clinical experience to use the ProTaper Instruments (Dentsply Maillefer) to decrease the amount of straightening of curved canals on human molar teeth and to determine the incidence of instrument fractures and instrumentation time. Thirty-one undergraduate dental students in Turkey received a training session. The students prepared a total of 144 root canals in human mandibular or maxillary molar teeth with ProTaper. Fifty-six teeth were excluded due to unreadable image, misinformation, or straight or severe curve. Using pre- and post-preparation digital radiographs, the straightening of curved root canals was investigated. Loss of working length and incidence of fracture were also noted. A total of eighty-eight curved root canals were selected. Mesiobuccal or mesiolingual roots with curvatures of between 20° and 43° as assessed by Schneider's method and working length of between 15 mm and 22.5 mm were included in the study. The means of the curved root canals before and after the instrumentation were 29.5° ± 6° and 27° ± 6.3°, respectively. The means of the working length before and after the instrumentation were 19 mm ± 2.1 mm and 18.3 mm ± 1.9 mm, respectively. A statistically significant difference between straightening of curved root canals and loss of working length was found between before and after instrumentation (psession.

  19. Cemental tear: To know what we have neglected in dental practice

    Directory of Open Access Journals (Sweden)

    Po-Yuan Jeng

    2018-04-01

    Full Text Available Cemental tear is a special kind of root surface fracture, contributing to periodontal and periapical breakdown. However, it is a challenge for doctors to diagnose, resulting in delayed or improper treatment. We reviewed the predisposing factors, location, radiographic/clinical characteristics, diagnosis and treatments of cemental tears. From the literature, patients with cemental tear were mainly males, over 60 year-old. Possible predisposing factors include gender, age, tooth type, traumatic occlusal force and vital teeth. Cemental tears were common in upper and lower anterior teeth, single or multiple, and can be present in cervical, middle and apical third of roots. Morphology of cemental tears can be either piece-shaped or U-shaped. Clinically, cemental tear shows a unitary periodontal pocket and signs/symptoms mimicking localized periodontitis, apical periodontitis and vertical root fractures. Treatment of cemental tears include scaling, root planning, root canal treatment, periodontal/periapical surgery, guided tissue regeneration, bone grafting, and intentional replantation. Recurrence of cemental tear is possible especially when the fracture involves root apex. Extraction is recommended for teeth with poor prognosis. In conclusion, cemental tears can involve both periodontal and periapical area. Dentists should understand the predisposing factors and clinical features of cemental tears for early diagnosis/treatment to prevent bone loss/tooth extraction. Keywords: Cemental tear, Clinical characteristics, Surface root fracture, Periodontal/periapical breakdown, Recurrence, Predisposing factors

  20. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  1. Malunited fracture of the body and condyle of the mandible : A Case Report

    Directory of Open Access Journals (Sweden)

    Ramakrishna Yeluri

    2010-01-01

    Full Text Available Mandibular fractures are the most common facial fractures seen in hospitalized children and their incidence increases with age. Treatment options include soft diet, intermaxillary fixation with eyelet wires, arch bars, circummandibular wiring, or stents. Alternative options include open reduction and internal fixation through either an intraoral or extraoral approach. Many factors complicate the management of pediatric mixed-dentition mandibular fractures: tooth eruption, short roots, developing tooth buds and growth issues. One major factor is the inherent instability of the occlusion in the mixed deciduous-permanent tooth phase. This case report documents a child in mixed dentition period with a complication arising due to direct fixation of the fractured mandible.

  2. Plasticity, Fracture and Friction in Steady-State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1997-01-01

    perpendicular to the direction of motion is derived theoretically in a consistent manner. The perpendicular reaction force is of paramount importance for prediction the structural damage of a ship hull because it governs the vertical ship motion and rock penetration which is strongly coupled with the horizontal...... extension of the presented plate model to include more structural members as for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force...

  3. Parameters controlling fracturing distribution: example of an Upper Jurassic marly-calcareous formation (eastern Paris Basin); Parametres controlant la distribution de la fracturation: exemple dans une serie marno-calcaire du Jurassique superieur (Est du bassin de Paris)

    Energy Technology Data Exchange (ETDEWEB)

    Andre, G.; Rebours, H.; Wileveau, Y. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Laboratoire de recherche souterrain de Meuse/Haute-Marne, 55 - Bure (France); Proudhon, B. [GEO.TER, 34 - Clapiers (France)

    2006-10-15

    Study of fractures along a 490-m vertical section of marl/limestone alternations in the Upper Jurassic (Meuse/Haute-Marne underground research laboratory-eastern Paris Basin) reveals their organization and the different states of palaeo-stress. Type and extension of tectonic structures seem to be controlled principally by lithology and secondary by depth. Also, it appears deviations of Alpine palaeo-stresses between Kimmeridgian and Oxfordian formations. These deviations are related to the presence of marl/limestone contacts. The vertical evolution of current horizontal maximum stress shows a similar behaviour, with deviations at the walls of Callovo-Oxfordian argilites. These results allow us to point out and to discuss the impact of lithology, rheology and depth on fracturing occurrence and distribution. Furthermore, this study suggests the role of Callovo-Oxfordian as a barrier for fracture development between the limestones of Dogger and Oxfordian formations. (authors)

  4. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Schöning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2012-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute a significant factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  5. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Ahrens, B.; Schoning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.; Reichstein, M.

    2013-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  6. Genomic Regions Influencing Seminal Root Traits in Barley.

    Science.gov (United States)

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  7. Subsurface fracture surveys using a borehole television camera and an acoustic televiewer

    International Nuclear Information System (INIS)

    Lau, J.S.O.; Auger, L.F.

    1987-01-01

    Borehole television survey and acoustic televiewer logging provide rapid, cost-effective, and accurate methods of surveying fractures and their characteristics within boreholes varying in diameter from 7.6 to 15.3 cm. In the television survey, a camera probe is used to inspect the borehole walls. Measurements of location, orientation, infilling width, and aperture of fractures are made on the television screen and recorded on computer data record sheets. All observations are recorded on video cassette tapes. With the acoustic televiewer, oriented images of fractures in the borehole walls are recorded on a strip-chart log and also on video cassette tapes. The images are displayed as if the walls were split vertically along magnetic north and spread out horizontally. Measurements of fracture characteristics are made on the strip-chart log, using a digitizing table and a microcomputer, and the data recorded on floppy diskettes. In both surveys, an inclined fracture is displayed as a sinusoidal curve, from which the apparent orientation of the fracture can be measured. Once the borehole orientation is known, the true orientation of the fracture can be computed from its apparent orientation. Computer analysis of the fracture data, provides a rapid assessment of fracture occurrence, fracture aperture, and statisically significant concentrations of fracture orientations

  8. Fracture network model of the groundwater flow in the Romuvaara site

    International Nuclear Information System (INIS)

    Poteri, A.; Laitinen, M.

    1997-01-01

    In the study, computer codes are employed to analyse the groundwater flow patterns in the sparcely fractured intact rock at the Romuvaara site. The new fracture data gathered during the detailed site characterisation phase demonstrated that the characteristic properties of fractures can be estimated quite reliably from few boreholes and outcrops. Results obtained by employing new methods, like the use of borehole-TV, changed the fracture intensity of the potential water conducting fractures compared to the earlier model. In the preliminary site investigation phase only the orientated fractures were used to derive the parameters of the intact rock. In the present model all the fractures outside the known fracture zones are used. The hydraulic conductivity tensor of the intact rock was estimated with the fracture network model. The flow simulations were calculated for a 16 x 16 x 16 m 3 rock volume and about 2000 fractures. The flow rate distribution through the cross sectional area of the disposal canisters was calculated for a set of ten realisations and a large number of different canister positions. The total number of canister positions simulated was 2200. The flow distribution in larger volume was studied using a method that searched the flow routes of highest conductance. The flow routes were examined into north-south, east-west and vertical directions. Flow routes along homogeneous and heterogeneous fractures were compared. (21 refs.)

  9. Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators: Some Results of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) Program

    Science.gov (United States)

    Moses, Robert W.

    1997-01-01

    A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Buffeting alleviation results when using the rudder are presented for comparison. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.

  10. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation

    Science.gov (United States)

    Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei

    2017-12-01

    Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.

  11. Sacral Fracture Nonunion Treated by Bone Grafting through a Posterior Approach

    Directory of Open Access Journals (Sweden)

    Sang Yang Lee

    2013-01-01

    Full Text Available Nonunion of a sacral fracture is a rare but serious clinical condition which can cause severe chronic pain, discomfort while sitting, and significant restriction of the level of activities. Fracture nonunions reportedly occur most often after nonoperative initial treatment or inappropriate operative treatment. We report a case of fracture nonunion of the sacrum and pubic rami that resulted from non-operative initial treatment, which was treated successfully using bone grafting through a posterior approach and CT-guided percutaneous iliosacral screw fixation combined with anterior external fixation. Although autologous bone grafting has been the gold standard for the treatment of pelvic fracture nonunions, little has been written describing the approach. We utilized a posterior approach for bone grafting, which could allow direct visualization of the nonunion site and preclude nerve root injury. By this procedure, we were able to obtain the healing of fracture nonunion, leading to pain relief and functional recovery.

  12. Lumbar nerve root avulsions with secondary ipsilateral hip dysplasia in a child

    Energy Technology Data Exchange (ETDEWEB)

    Polyzoidis, Konstandinos; Vranos, Georgios [Department of Neurosurgery, Medical School, University of Ioannina, 45110, Ioannina (Greece); Petropoulou, Calliope; Argyropoulou, Paraskevi I.; Argyropoulou, Maria I. [Department of Radiology, Medical School, University of Ioannina, 45110, Ioannina (Greece); Sarmas, Ioannis [Department of Neurology, Medical School, University of Ioannina, 45110, Ioannina (Greece)

    2002-09-01

    We report on an 8-year-old child with avulsions of the left L3, L4 and L5 nerve roots and traumatic meningoceles that were not associated with lumbar spine or pelvic girdle fractures. The patient had a history of a road traffic accident. Plain radiographs of the pelvis revealed left hip dysplasia. The magnetic resonance imaging findings of the lumbar spine are illustrated. The pathogenesis of lumbar nerve root avulsions and their association with ipsilateral hip dysplasia are discussed. (orig.)

  13. Lumbar nerve root avulsions with secondary ipsilateral hip dysplasia in a child

    International Nuclear Information System (INIS)

    Polyzoidis, Konstandinos; Vranos, Georgios; Petropoulou, Calliope; Argyropoulou, Paraskevi I.; Argyropoulou, Maria I.; Sarmas, Ioannis

    2002-01-01

    We report on an 8-year-old child with avulsions of the left L3, L4 and L5 nerve roots and traumatic meningoceles that were not associated with lumbar spine or pelvic girdle fractures. The patient had a history of a road traffic accident. Plain radiographs of the pelvis revealed left hip dysplasia. The magnetic resonance imaging findings of the lumbar spine are illustrated. The pathogenesis of lumbar nerve root avulsions and their association with ipsilateral hip dysplasia are discussed. (orig.)

  14. Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.

    Science.gov (United States)

    Williams, G R; Doran, P M

    2000-01-01

    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved

  15. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.; Siegrist, B.; Vesper, S.

    1997-01-01

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months

  16. LINK BETWEEN SKELETAL RELATIONS AND ROOT RESORPTION IN ORTHODONTIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Cristina Teodora Preoteasa

    2011-09-01

    Full Text Available External root resorption is one of the possible complications of the orthodontic treatment, severe cases presenting a higher frequency. The aim of the present study was to test the existence of a relation between the severity of root resorption and the sagittal or vertical skeletal relations. A cross-sectional study was conducted on a group of 55 patients with fixed orthodontic devices, applied bimaxillarily for at least 6 months. The sample presented mostly mild or moderate apical root resorption, with an average value of 1.31 mm (standard deviation 0.60. Patients with abnormal sagittal skeletal relations presented a more severe root resorption compared to those with a normal pattern. The tendency towards more severe external root resorption was also noticed in cases with mandibular clockwise rotation and hiperdivergent facial pattern. A good knowledge on the variables associated to severe root resorption is essential for the identification of the high risk patients, as well as for the selection of the best suited treatment alternative in terms of low probability of root resorption occurrence.

  17. Fracture resistance of structurally compromised and normal endodontically treated teeth restored with different post systems: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2012-01-01

    Full Text Available Background: With the aim of developing methods that could increase the fracture resistance of structurally compromised endodontically treated teeth, this study was conducted to compare the effect of three esthetic post systems on the fracture resistance and failure modes of structurally compromised and normal roots. Materials and Methods: Forty five extracted and endodontically treated maxillary central teeth were assigned to 5 experimental groups (n=9. In two groups, the post spaces were prepared with the corresponding drills of the post systems to be restored with double taper light posts (DT.Light-Post (group DT.N and zirconia posts (Cosmopost (group Zr.N. In other 3 groups thin wall canals were simulated to be restored with Double taper Light posts (DT.W, double taper Light posts and Ribbond fibers (DT+R.W and Zirconia posts (Zr.W. After access cavity restoration and thermocycling, compressive load was applied and the fracture strength values and failure modes were evaluated. Data were analyzed using two-way ANOVA, Tukey and Fisher exact tests (P<0.05. Results: The mean failure loads (N were 678.56, 638.22, 732.44, 603.44 and 573.67 for groups DT.N, Zr.N, DT.W, DT+R.W and Zr.w respectively. Group DT+R.W exhibited significantly higher resistance to fracture compared to groups Zr.N, DT.W and Zr.w (P<0.05. A significant difference was detected between groups DT.N and Zr.W (P=0.027. Zirconia posts showed significantly higher root fracture compared to fiber posts (P=0.004. Conclusion: The structurally compromised teeth restored with double taper light posts and Ribbond fibers showed the most fracture resistance and their strengths were comparable to those of normal roots restored with double taper light posts. More desirable fracture patterns were observed in teeth restored with fiber posts.

  18. Inferring biological evolution from fracture patterns in teeth.

    Science.gov (United States)

    Lawn, Brian R; Bush, Mark B; Barani, Amir; Constantino, Paul J; Wroe, Stephen

    2013-12-07

    It is hypothesised that specific tooth forms are adapted to resist fracture, in order to accommodate the high bite forces needed to secure, break down and consume food. Three distinct modes of tooth fracture are identified: longitudinal fracture, where cracks run vertically between the occlusal contact and the crown margin (or vice versa) within the enamel side wall; chipping fracture, where cracks run from near the edge of the occlusal surface to form a spall in the enamel at the side wall; and transverse fracture, where a crack runs horizontally through the entire section of the tooth to break off a fragment and expose the inner pulp. Explicit equations are presented expressing critical bite force for each fracture mode in terms of characteristic tooth dimensions. Distinctive transitions between modes occur depending on tooth form and size, and loading location and direction. Attention is focussed on the relatively flat, low-crowned molars of omnivorous mammals, including humans and other hominins and the elongate canines of living carnivores. At the same time, allusion to other tooth forms - the canines of the extinct sabre-tooth (Smilodon fatalis), the conical dentition of reptiles, and the columnar teeth of herbivores - is made to highlight the generality of the methodology. How these considerations impact on dietary behaviour in fossil and living taxa is discussed. © 2013 Elsevier Ltd. All rights reserved.

  19. An in-vitro comparison of canal debridement efficiency between three systems of Rotary, Reciprocal and Vertical

    Directory of Open Access Journals (Sweden)

    Sheykhrezaee MS.

    2004-08-01

    Full Text Available Statement of Problem: Total removal of tissues and remnant microorganisms as well as canal shaping are the essential objectives of endodontic therapy. A successful endodontic treatment is obtained through Shilder’s principals, however; complete observation of this technique using stainless steel files manually is problematic and time-consuming. Modern technology, in order to eliminate such problems, has presented new facilities such as Nickel-Titanium (NiTi files and engine driven instruments. Purpose: The aim of this in-vitro study was to compare the canal debridement efficiency of three engine driven instruments: Rotary, Reciprocal and Vertical. Materials and Methods: In this experimental study, 60 mesial roots of human first and second mandibular molars were divided into three groups randomly. In each sample, one canal was considered as case, the other one as control. Files used in Reciprocal and vertical groups were of handy Ni-Ti type and in rotary group, rotary Ni-Ti files were used. After debridement, the roots were sectioned at 3mm and 5mm from anatomic apex, stained and examined under light microscope. Comparison criteria between case and control groups were based on residual debris and predentin and the level of root canal preparation and shaping after debridement. Data were subjected to kruskal-Wallis non-parametric test. Results: There was no significant difference between the efficiency of debridement at 3mm and 5mm sections between all groups. But difference in time consumption was significant ranked from the shortest to the longest as rotary, reciprocal and vertical. Conclusion: The efficiency of debridement between the three automated instruments was approximately equal, however; the instrumentation time was different between three groups. Rotary system was the fastest one, as compared with reciprocal (second and vertical (last. It may be concluded that rotary system has a superiority over the other two groups in conventional

  20. The effect of immediate and delayed post-space preparation using extended working time root canal sealers on apical leakage

    Directory of Open Access Journals (Sweden)

    G. Chen

    2013-03-01

    Conclusion: Extended working time root canal sealers do not affect microleakage results using a warm gutta-percha vertical compaction technique. The sealing ability of extended working time root canal sealers on high heat conditions is as good as the standard working time root canal sealer during post-space preparation of different intervals.

  1. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  2. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  3. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  4. Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators-Some Results of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) Program

    Science.gov (United States)

    Moses, Robert W.

    1997-01-01

    Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.

  5. Radar Mapping of Fractures and Fluids in Hydrocarbon Reservoirs

    Science.gov (United States)

    Stolarczyk, L. G.; Wattley, G. G.; Caffey, T. W.

    2001-05-01

    A stepped-frequency radar has been developed for mapping of fractures and fluids within 20 meters of the wellbore. The operating range has been achieved by using a radiating magnetic dipole operating in the low- and medium-frequency bands. Jim Wait has shown that the electromagnetic (EM) wave impedance in an electrically conductive media is largely imaginary, enabling energy to be stored in the near field instead of dissipated, as in the case for an electric dipole. This fact, combined with the low attenuation rate of a low-frequency band EM wave, enables radiation to penetrate deeply into the geology surrounding the wellbore. The radiation pattern features a vertical electric field for optimum electric current induction into vertical fractures. Current is also induced in sedimentary rock creating secondary waves that propagate back to the wellbore. The radiation pattern is electrically driven in azimuth around the wellbore. The receiving antenna is located in the null field of the radiating antenna so that the primary wave is below the thermal noise of the receiver input. By stepping the frequency through the low- and medium-frequency bands, the depth of investigation is varied, and enables electrical conductivity profiling away from the wellbore. Interpretation software has been developed for reconstructive imaging in dipping sedimentary layers. Because electrical conductivity can be related to oil/water saturation, both fractures and fluids can be mapped. Modeling suggests that swarms of fractures can be imaged and fluid type determined. This information will be useful in smart fracking and sealing. Conductivity tomography images will indicate bed dip, oil/water saturation, and map fluids. This paper will provide an overview of the technology development program.

  6. Comparative Study of Three Rotary Instruments for root canal Preparation using Computed Tomography

    International Nuclear Information System (INIS)

    Mohamed, A.M.E.

    2015-01-01

    Cleaning and shaping the root canal is a key to success in root canal treatment. This includes the removal of organic substrate from the root canal system by chemo mechanical methods, and the shaping of the root canal system into a continuously tapered preparation. This should be done while maintaining the original path of the root canal. Although instruments for root canal preparation have been progressively developed and optimized, a complete mechanical debridement of the root canal system is rarely achievable. One of the main reasons is the geometrical dis symmetry between the root canal and preparation instruments. Rotary instruments regardless of their type and form produce a preparation with a round outline if they are used in a simple linear filing motion, which in most of the cases do not coincide with the outline of the root canal. Root canal preparation in narrow, curved canals is a challenge even for experienced endodontists. Shaping of curved canals became more effective after the introduction of nickel-titanium (Ni-Ti) endodontic instruments. Despite the advantages of Ni-Ti rotary instruments, intra canal fracture is the most common procedural accident that occurs with these instruments during clinical use. It is a common experience between clinicians that Ni-Ti rotary instruments may undergo unexpected fracture without any visible warning, such as any previous permanent defect or deformation. Pro Taper Ni-Ti instruments were introduced with a unique design of variable taper within one instrument and continuously changing helical angles. Pro Taper rotary instruments are claimed to generate lower torque values during their use because of their modified nonradial landed cross-section that increases the cutting efficiency and reduces contact areas. On the other hand, the variable taper within one instrument is believed to reduce the ‘taper lock’ effect (torsional failure) in comparison with similarly tapered instruments. Nevertheless, Pro Taper

  7. Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1996-01-01

    perpendicular to the direction of motion is derived theoretically in a new consistent manner. The perpendicular reaction force is of paramount importance for predicting the structural damage of a ship hull because it governs the vertical ship motion and rock penetration which is strongly coupled...... extension of the presented plate model to include more structural members as for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force...

  8. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  9. Volume fracturing of deep shale gas horizontal wells

    Directory of Open Access Journals (Sweden)

    Tingxue Jiang

    2017-03-01

    Full Text Available Deep shale gas reservoirs buried underground with depth being more than 3500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV, low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1 × 104 m3/d and 17.5 × 104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50 × 108 m3 gas from the interval of 3500–4000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6000 m.

  10. Pharmacognostic study of Lantana camara Linn. root

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2012-05-01

    Full Text Available Objective: The study was carried out to perform the pharmacognostic evaluation of Lantana camara Linn. root. Method: The pharmacognostic evaluation was done in terms of organoleptic, macro-microscopy, fluorescence analysis and physicochemical parameters. Results: The characteristic macroscopic features showed that the root consists of 25-40 cm long, 0.2-4.0 cm thick pieces which are usually branched, shallow, tough, creamish-brown externally, outer surface rough due to longitudinal wrinkles, with hard fracture, characteristic odour and pungent taste. The main microscopic characters of the root shows exfoliating cork, consisting of about 10-15 rows of tangentially elongated, thick-walled cells followed by cortex consisting of polygonal parenchymatous cells, a few containing rhomboidal shaped calcium oxalate crystals. Endodermis consists of 3-4 layers of non-lignified, thick-walled rounded parenchymatous cells followed by a single layer of non-lignified pericycle. Phloem, a wide zone of xylem consisting of lignified pitted vessels and bi-to triseriate medullary rays are also present. Proximate physicochemical analysis of the root power showed loss on drying, total ash, water soluble ash, sulphated ash values as 0.52, 4.26, 3.8 and 5.8 % w/w respectively. Successive extraction of the root powder with petroleum ether, chloroform, alcohol, water yielded 0.19, 0.35, 2.19 and 2.0 % w/w respectively. Fluorescence study imparted characteristic colors to the root powder when observed under visible, short and long wavelength light. Conclusions: Various pharmacognostic parameters evaluated in this study helps in identification and standardization of Lantana camara L. root in crude form.

  11. [Forensic Analysis of the Characteristics of Pelvic Fracture in 65 Road Traffic Accident Death Cases].

    Science.gov (United States)

    Zhang, W

    2016-12-01

    To analyze the characteristics and mechanisms of pelvic fractures in the cases of road traffic accident deaths. Total 65 cases of road traffic accident deaths with pelvic fracture were collected, and the sites, characteristics and injury mechanisms of pelvic fracture were statistically analyzed. Among the 65 cases of pelvic fracture, 38 cases of dislocation of sacroiliac joint were found, and most combined with pubis symphysis separation or fracture of pubis. In the fractures of pubis, ischium and acetabulum, linear fractures were most common, while comminuted fractures were most common in sacrum and coccyx fractures. There were 54 cases combined with pelvic soft tissue injury, and 8 cases with pelvic organ injury and 44 cases with abdominal organ injury. In the types of pelvic ring injury, 32 cases were separation, 49.32%, followed by compression, 26.15% and only one case was verticality, 1.54%. Detailed and comprehensive examination of the body and determination of the pelvic fracture type contribute to analyze the mechanisms of injury. Copyright© by the Editorial Department of Journal of Forensic Medicine

  12. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  13. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  14. Clinical analysis of heat gutta-percha vertical condensation in the treatment of pulpitis and periapical periodontitis

    Directory of Open Access Journals (Sweden)

    Li Fan

    2016-07-01

    Full Text Available Objective: To explore the clinical effect of heat gutta-percha vertical condensation in the treatment of pulpitis and periapical periodontitis. Methods: A total of 120 patients with pulpitis and periapical periodontitis who were admitted in our hospital from February, 2015 to February, 2016 were included in the study and randomized into the observation group and the control group. The patients in the observation group were given heat gutta-percha vertical condensation for root canal filling, while the patients in the control group were given cold gutta-percha lateral condensation root canal filling. The root canal filling was evaluated. The changes of GI, SBI, and PD before and after treatment were observed. Results: The correct filling, shorting filling, and extra filling in the observation group were significantly superior to those in the control group. After treatment, GI, SBI, and PD were significantly reduced, and the reduced degree in the observation group was significantly superior to that in the control group. Conclusions: Heat gutta-percha vertical condensation in the treatment of pulpitis and periapical periodontitis can significantly enhance the therapeutic effect, and improve GI, SBI, and PD, with a significant clinical effect; therefore, it deserves to be widely recommended.

  15. Hydrologic control on the root growth of Salix cuttings at the laboratory scale

    Science.gov (United States)

    Bau', Valentina; Calliari, Baptiste; Perona, Paolo

    2017-04-01

    Riparian plant roots contribute to the ecosystem functioning and, to a certain extent, also directly affect fluvial morphodynamics, e.g. by influencing sediment transport via mechanical stabilization and trapping. There is much both scientific and engineering interest in understanding the complex interactions among riparian vegetation and river processes. For example, to investigate plant resilience to uprooting by flow, one should quantify the probability that riparian plants may be uprooted during specific flooding event. Laboratory flume experiments are of some help to this regard, but are often limited to use grass (e.g., Avena and Medicago sativa) as vegetation replicate with a number of limitations due to fundamental scaling problems. Hence, the use of small-scale real plants grown undisturbed in the actual sediment and within a reasonable time frame would be particularly helpful to obtain more realistic flume experiments. The aim of this work is to develop and tune an experimental technique to control the growth of the root vertical density distribution of small-scale Salix cuttings of different sizes and lengths. This is obtained by controlling the position of the saturated water table in the sedimentary bed according to the sediment size distribution and the cutting length. Measurements in the rhizosphere are performed by scanning and analysing the whole below-ground biomass by means of the root analysis software WinRhizo, from which root morphology statistics and the empirical vertical density distribution are obtained. The model of Tron et al. (2015) for the vertical density distribution of the below-ground biomass is used to show that experimental conditions that allow to develop the desired root density distribution can be fairly well predicted. This augments enormously the flexibility and the applicability of the proposed methodology in view of using such plants for novel flow erosion experiments. Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F

  16. Low-temperature X-ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Echlin, P [Univ. of Cambridge, England; Lai, C E; Hayes, T L

    1982-06-01

    The fracture faces of bulk-frozen tissue offer a number of advantages for the analysis of diffusible elements. They are easy to prepare, remain uncontaminated, and, unlike most frozen-hydrated sections, can be shown to exist in a fully hydrated state throughout examination and analysis. Root tips of Lemna minor briefly treated with a polymeric cryoprotectant are quench frozen in melting nitrogen. Fractures are prepared using the AMRAY Biochamber, lightly etched if necessary to reveal surface detail and carbon coated while maintaining the specimen at 110 K. The frozen-hydrated fracture faces are analyzed at 110 K using the P/B ratio method which is less sensitive to changes in surface geometry and variations in beam current. The method has been used to investigate the distribution of seven elements (Na/sup +/, Mg/sup + +/, P, S, Cl/sup -/, K/sup +/ and Ca/sup + +/) in the developing vascular tissue of the root tip. The microprobe can measure relative elemental ratios at the cellular level and the results from this present study reveal important variations in different parts of the root. The younger, more actively dividing cells, appear to have a slightly higher concentration of diffusible ions in comparison to the somewhat older tissues which have begun to differentiate into what are presumed to be functional vascular elements.

  17. Usefulness of MR imaging in pathologic fracture of long bone

    International Nuclear Information System (INIS)

    Lim, Hyo Soon; Park, Jin Gyoon; Song, Jae Min; Chung, Tae Woong; Yoon, Woong; Kang, Heoung Kyun

    2002-01-01

    The purpose of this study was to evaluate the usefulness of MR imaging of pathologic fractures of the long bones. In 18 patients aged between four and 75 (mean, 25.8) years with histologically confirmed pathologic fractures of the long bones, plain radiographs and MR images were retrospectively analyzed. The former were examined with regard to location and type of fracture, and the presence or absence of underlying disease causing fracture; and the latter in terms of underlying disease, extraosseous mass formation, and soft tissue change. The long bones involved were the femur in nine patients, the humerus in six, and the tibia in three. Underlying diseases were metastatic tumor (n=6), benign bone tumor (n=5), primary malignant bone tumor (n=4), osteomyelitis (n=2), and eosinophilic granuloma (n=1). Plain radiographs showed the fracture site as the metaphysis in ten cases, the disphysis in five, and the metadisphysis in one. Fractures were either transverse (n=10), oblique (n=3), spiral (n=1), vertical (n=1), or telescopic (n=1). In two cases, the fracture line was not visible. MR images revealed underlying diseases in all cases. Two benign bone tumors took the form of a cystic mass, hematoma was seen in three cases. Where pathologic fracture of a long bone had occurred, or a pathologic fracture in which the findings of plain radiography were equivocal, MR imaging was useful for evaluating the pattern and extent of an underlying lesion

  18. Graviresponsiveness of surgically altered primary roots of Zea mays

    Science.gov (United States)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  19. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  20. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  1. Core electron-root confinement (CERC) in helical plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Ida, K.; Maassbcrg, H.

    2006-10-01

    The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r , in the core region are common fractures for this improved confinement. Such observations are consistent with a transition to the electron-root' solution of the ambipolarity condition for E r in the context of the neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The electron heat diffusivity is much reduced due to the electron-root E r compared to that with E r =0 assumed, which clearly demonstrates that 1/v ripple diffusion (ν being the collision frequency) in low-collisional helical plasmas could be overcome. The magnetic configuration properties play important roles in this transition, and thresholds are found for the collisionality and electron cyclotron heating (ECH) power. (author)

  2. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    Science.gov (United States)

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  3. First successful multistage hydraulic fracture monitoring for a horizontal well in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Guillermo; Rios, Austreberto; Riano, Juan M. [PEMEX, Mexico, DF (Mexico); Sanchez, Adrian; Bustos, Tomas [Schlumberger, Mexico DF (Mexico)

    2008-07-01

    In their constant effort to increase the production from Chicontepec, PEMEX drilled a multilateral well with three horizontal lateral sections; the intention was to increase the production in comparison with vertical wells. In the second arm of this well four intervals were identified to be fractured, this was a new approach since it was the first occasion that multiple fractures were planned in a horizontal well. An important part of the project was the evaluation of the effectiveness of the hydraulic fracturing. This evaluation was performed by micro seismic monitoring during the treatment. This technology allows the detection of events generated during the fluid injection in the reservoir, with receivers located in a nearby monitoring well. The interpretation of this data allows the identification in 3 D space of the fracture locations. This information is valuable for optimization of subsequent treatments and for planning the field development. The data is recorded in real time and can be used to make decisions during the fracturing operation. In this paper we describe the results of the hydraulic fracturing monitoring performed in four intervals in a horizontal well showing the geometry and direction of each one of the fractures. (author)

  4. Calculation of gas migration in fractured rock

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1987-09-01

    Calculations are presented for rock properties characteristic to the Forsmark area. The rock permeability was determined by flow tests in vertical boreholes. It is assumed that the permeability distribution obtained from these boreholes is representative also for the permeability distribution along the repository cavern. Calculations were worked out for two different types of boundary conditions, one in which a constant gas flow rate equivalent to a gas production of 33000 kg/year was assumed and the other in which a constant gas cushion of 0.5 metres was assumed. For the permeability distribution considered, the breakthrough at the sea bottom occurred within one hour. The gaswater displacement took place mainly through the fractures of high permeability and practically no flow took place in the fractures of low permeability. (orig./DG)

  5. Fracture toughness evaluation of small notched specimen in consideration of notch effect and loading rate

    International Nuclear Information System (INIS)

    Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il

    2000-01-01

    Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)

  6. Fluorescence Imaging of the Cytoskeleton in Plant Roots.

    Science.gov (United States)

    Dyachok, Julia; Paez-Garcia, Ana; Yoo, Cheol-Min; Palanichelvam, Karuppaiah; Blancaflor, Elison B

    2016-01-01

    During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

  7. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  8. Nouvelles méthodes d'identification des fractures par diagraphie acoustique en full wave form New Methods of Identifying Fractures by Full Wave Form Acoustic Logging

    Directory of Open Access Journals (Sweden)

    Denis A.

    2006-11-01

    the Stoneley wave are proposed. For each of them, an application to data obtained from deep drilling illustrates their potential for use. The first method consists in quantifying, in the frequency domain, the frequency modifications of the Stoneley wave as it passes a fracture. For this we have adapted the coherency function (Fig. 2. The second method is based on an examination of the deformation of the shape of the Stoneley wave in the vicinity of or opposite fractured levels (Fig. 3. The third and last method adapts geometric inversion techniques to acoustic logging. This enables us to use the energy of the Stoneley wave (Fig. 4 to obtain attenuation logs with a maximum vertical resolution (Fig. 5. For all these methods, the vertical resolution obtained is equivalent to the displacement interval of the logging tool inside the borehole. A quick inventory of the methods normally used for detecting fractured zones has been made. The impossibility of such methods to position and assess the importance of each fracture making up a fractured zone, particularly because of low vertical resolution, shows the great contribution of the methods proposed for better identifying fractures.

  9. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  10. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  11. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  12. Effect of inadequate ferrule segment location on fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Satheesh B Haralur

    2018-01-01

    Full Text Available Introduction: The circumferential 2 mm ferrule during the fabrication of the crown is strongly advocated for the long-term clinical success. During the routine clinical practice, the dentist encounters the endodontically treated tooth (ETT with inadequacy of the ferrule in some segment due to caries, abrasion, and erosions. The aim of this in vitro study was to investigate the consequence of inadequate segmental ferrule location on fracture strength of the root canal-treated anterior and posterior teeth. Materials and Methods: Fifty each maxillary canine and mandibular premolar intact human teeth were root canal treated and sectioned at 2 mm above the cementum-enamel junction. The teeth samples were divided into 5 groups of 10 each. The G-I and G-V samples had the 360° ferrule and complete absence of the ferrule, respectively. The G-II had the inadequate ferrule on the palatal surface, while G-III and G-IV had inadequate ferrule at buccal and proximal area. Teeth samples were subsequently restored with glass-reinforced fiber post, composite core, and full veneer metal crown. The samples were tested with universal testing machine under static load to record the fracture resistance. The acquired data were subjected to ANOVA and Tukey's post hoc statistical analysis. Results: The G-I with circumferential ferrule showed the higher fracture resistance. The teeth samples with lack of the ferrule had the least fracture resistance. Among the segmental absence of ferrule, teeth samples with lack of the proximal ferrule were least affected. Deficiency of a ferrule on the lingual wall significantly affected the fracture strength in both anterior and posterior ETT. Conclusions: The ETT with sectional inadequacy of the ferrule is significantly more effective in resisting the fracture in comparison to the complete absence of the ferrule.

  13. Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

  14. Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.

    Science.gov (United States)

    Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M

    2005-10-01

    To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. Pro

  15. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots

    Science.gov (United States)

    Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.

    1999-01-01

    The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.

  16. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  17. [Operative treatment of sacroiliac joint fracture and dislocation in Tile C pelvic fracture with Colorado 2 system].

    Science.gov (United States)

    Liu, Shuping; Zhou, Qing; Liu, Yuehong; Chen, Xi; Zhou, Yu; Zhang, Desheng; Fang, Zhi; Xu, Wei

    2011-12-01

    To explore the effectiveness of Colorado 2 system in the stability reconstruction of sacroiliac joint fracture and dislocation in Tile C pelvic fracture. Between February 2009 and January 2011, 8 cases of Tile C pelvic fracture were treated with Colorado 2 system. There were 3 males and 5 females with an average age of 34.4 years (range, 22-52 years). Fractures were caused by traffic accident in 3 cases, by falling from height in 3 cases, and by crash of heavy object in 2 cases. According to Tile classification, 5 cases were classified as C1-2, 2 cases as C1-3, and 1 case as C2. The time between injury and operation was 5-10 days (mean, 7 days). After skeletal traction reduction, Colorado 2 system was used to fix sacroiliac joint, and reconstruction plate or external fixation was selectively adopted. The postoperative X-ray films showed that the reduction of vertical and rotatory dislocation was satisfactory, posterior pelvic ring achieved effective stability. All the incisions healed by first intention, and no blood vessel or nerve injury occurred. Eight patients were followed up 6-24 months (mean, 12 months). No loosening or breakage of internal fixation was observed and no re-dislocation of sacroiliac joint occurred. The bone healing time was 6-12 months (mean, 9 months). According to Majeed's functional criterion, the results were excellent in 5 cases, good in 2 cases, and fair in 1 case at last follow-up. Colorado 2 system could provide immediate stability of pelvic posterior ring and good maintenance of reduction effect, which is an effective method in the therapy of sacroiliac joint fracture and dislocation in Tile C pelvic fracture.

  18. Cervical spine fracture in a boxer a rare but important sporting injury ...

    African Journals Online (AJOL)

    Cervical vertebral injuries are rare in boxing. The case of an adult boxer with an isolated vertical fracture of the anterior arch of the atlas is described. The mechanism of injury, clinical presentation, complications and treatment are discussed. Measures to prevent head and neck injury in boxing are discussed.

  19. Nigerian Journal of Clinical Practice - Vol 19, No 2 (2016)

    African Journals Online (AJOL)

    Effect of whitening toothpastes on bonding of restorative materials to enamel of primary teeth · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... Influence of different final irrigation regimens and various endodontic filling materials on vertical root fracture resistance · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Methodology for using root locus technique for mobile robots path planning

    Directory of Open Access Journals (Sweden)

    Mario Ricardo Arbulú Saavedra

    2015-11-01

    Full Text Available This paper shows the analysis and the implementation methodology of the technique of dynamic systems roots location used in free-obstacle path planning for mobile robots. First of all, the analysis and morphologic behavior identification of the paths depending on roots location in complex plane are performed, where paths type and their attraction and repulsion features in the presence of other roots similarly to the obtained with artificial potential fields are identified. An implementation methodology for this technique of mobile robots path planning is proposed, starting from three different methods of roots location for obstacles in the scene. Those techniques change depending on the obstacle key points selected for roots, such as borders, crossing points with original path, center and vertices. Finally, a behavior analysis of general technique and the effectiveness of each tried method is performed, doing 20 tests for each one, obtaining a value of 65% for the selected method. Modifications and possible improvements to this methodology are also proposed.

  1. Fracture overprinting history using Markov chain analysis: Windsor-Kennetcook subbasin, Maritimes Basin, Canada

    Science.gov (United States)

    Snyder, Morgan E.; Waldron, John W. F.

    2018-03-01

    The deformation history of the Upper Paleozoic Maritimes Basin, Atlantic Canada, can be partially unraveled by examining fractures (joints, veins, and faults) that are well exposed on the shorelines of the macrotidal Bay of Fundy, in subsurface core, and on image logs. Data were collected from coastal outcrops and well core across the Windsor-Kennetcook subbasin, a subbasin in the Maritimes Basin, using the circular scan-line and vertical scan-line methods in outcrop, and FMI Image log analysis of core. We use cross-cutting and abutting relationships between fractures to understand relative timing of fracturing, followed by a statistical test (Markov chain analysis) to separate groups of fractures. This analysis, previously used in sedimentology, was modified to statistically test the randomness of fracture timing relationships. The results of the Markov chain analysis suggest that fracture initiation can be attributed to movement along the Minas Fault Zone, an E-W fault system that bounds the Windsor-Kennetcook subbasin to the north. Four sets of fractures are related to dextral strike slip along the Minas Fault Zone in the late Paleozoic, and four sets are related to sinistral reactivation of the same boundary in the Mesozoic.

  2. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  3. Vertical distribution of the root system of linseed (Linum usitatissimum L. and legumes in pure and mixed sowing

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2015-03-01

    Full Text Available Root competition for below-ground resources between edible plants may provide for long-term sustainability of agriculture systems. Intercropping can be more productive than a pure crop due to taking advantage of the morphological differences between species. In pure cropping, all biophysical interactions between plants occur through soil conditions. In intercropping, competition for water and nutrients is of major importance, but if the roots of one species occupy the zone just underneath the roots of the other crop, they can better use the resources of the root zone of the crop. The root system demonstrates a high degree of plasticity in its development in response to local heterogeneity of the soil profile and plant density. This study aimed at determining: (i the morphological characteristics of the root systems of linseed, pea and vetch depending on the method of sowing; (ii the root distribution in various soil types and at different soil profile depths (0–15 cm, 15–30 cm. Two three-year field experiments were conducted on two soil types in south Poland: soil A – Luvic Phaeozem (s1 and soil B – Eutric Cambisol (s2. These results show that linseed was more aggressive toward both legumes in mixture, but it produced lower yield compared to pure cropping. The environmental stress of plants in mixtures increased the relative weight of roots, which resulted in decreasing the root-shoot ratio (RSR.

  4. Rooting Depths of Red Maple (Acer Rubrum L.) on Various Sites in the Lake States

    Science.gov (United States)

    Carl L. Haag; James E. Johnson; Gayne G. Erdmann

    1989-01-01

    Rooting depth and habit of red maple were observed on 60 sites in northern Wisconsin and Michigan as part of a regional soil-site studay. Vertical woody root extension on dry, outwash sites averaged 174 cm, which was significantly greater than the extension on sites with fragipans (139 cm) and on wet sites (112 cm). Site index was higher on wet sites and non-woody...

  5. Micromechanical of fracture initiation for an AISI 4140 loaded in the I mode at low temperature

    International Nuclear Information System (INIS)

    Darwish, F.A.I.

    1984-01-01

    The variation of fracture morphology with the notch sharpness for an AISI 4140 steel tested at liquid nitrogen temperature in different micro-structural states is presented. The appearance in some cases of a shear lip along the root of rounded notches is presented and discussed in terms of the sequence of local events leading to microcrack formation. The dependence of the steel toughness on the fracture morphology is also presented and discussed. (Author) [pt

  6. Fracture Energy Estimation of DCB Specimens Made of Glass/Epoxy: An Experimental Study

    Directory of Open Access Journals (Sweden)

    V. Alfred Franklin

    2013-01-01

    Full Text Available This paper examines critical load and corresponding displacement of double cantilever beam (DCB composite specimens made of glass/epoxy of three different layups. Experiments were conducted on these laminates, and the fracture energy, GIc, was evaluated considering the root rotation at the crack tip. The present model requires the applied load-displacement history and crack extension to estimate fracture energy. Reduction schemes based on cubic and power law are also proposed to determine Young’s modulus and energy release rate and found good agreement with the published and test results.

  7. Strain Paths and Fractures in Rotational Symmetric Multi Stage Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P.A.F.

    2008-01-01

    A multi stage strategy, which allows forming of SPIF parts with vertical walls, is investigated with emphasis on strain paths and fracture strains. Whereas downwards movement of the tool pin results in deformation close to plane strain upwards moving tool results in biaxial strains. A good correl...

  8. Small fractures in deep sea sediments: indicators of pore fluid migration along compaction faults

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1989-01-01

    A long piston core taken from the Southern Nares Abyssal Plain, intersected four fractures in plastic sediments between 17 and 25 m below the sea floor. Faults have been identified from seismic reflection surveys of sediments in this area. The sampled fractures all occurred in oxidized brown clays. Each fracture consisted of a simple plane having apparent dips ranging from 52-63 0 . One fracture had a well developed pale brown alteration halo extending out to 1.5 cm along this plane. Two fractures had no apparent alteration halo, but one fracture appeared to have fine-scale anastomosing features surrounding the main slip plane. Selective chemical tests for labile metal content in sediments surrounding the fractures revealed that about 70% of the reducible manganese, and 40% of the reducible iron had been leached from the sediments in the alteration halo surrounding the fracture plane. These results suggest that reducing pore fluids had migrated along the fracture plane to cause the observed effects. Implications of this study are that compaction faults may act as episodic conduits for vertical advection of pore water during dewatering of unconsolidated sediments. This may be a significant factor to be considered in assessing the effectiveness of deep sea sediment barriers for radioactive waste disposal. (author)

  9. Diagnosis and decision making in endodontics with the use of cone beam computed tomography

    NARCIS (Netherlands)

    Metska, M.E.

    2014-01-01

    In the current thesis the use of cone beam computed tomography (CBCT) in endodontics has been evaluated within the framework of ex vivo and in vivo studies. The first objective of the thesis was to examine whether CBCT scans can be used for the detection of vertical root fractures in endodontically

  10. Alveolar process fractures in the permanent dentition. Part 2. The risk of healing complications in teeth involved in an alveolar process fracture.

    Science.gov (United States)

    Lauridsen, Eva; Gerds, Thomas; Andreasen, Jens Ove

    2016-04-01

    To analyze the risk of pulp canal obliteration (PCO), pulp necrosis (PN), repair-related resorption (RRR), infection-related resorption (IRR), ankylosis-related resorption (ARR), marginal bone loss (MBL), and tooth loss (TL) for teeth involved in an alveolar process fracture and to identify possible risk factors. A total of 91 patients with 223 traumatized teeth. The risks of PCO, PN, RRR, IRR, ARR, MBL, and TL were analyzed separately for teeth with immature and mature root development using Kaplan-Meier and Aalen-Johansen methods. Possible risk factors for PN (age, fracture in relation to apex, displacement, gingival injury, degree of repositioning, type of splint, duration of splinting, treatment delay, and antibiotics) were analyzed for mature teeth using Cox regression. The level of significance was 5%. Immature: No severe complications (PN, IRR, ARR, MBL, or TL) were diagnosed during follow up. Mature: Estimated risk after a 10-year follow up: PN: 56% (95% confidence interval (CI): 48.1-63.9), IRR: 2.5% (95% CI: 0-5.1), ARR: 2.1% (95% CI: 0.1-4.1), MBL: 2.4% (95% CI: 0.3-4.4), and TL: 7.8% (95% CI: 0-15.7). The following factors significantly increased the risk of PN in teeth with mature root development: fracture in relation to apex (hazard ratio (HR): 2.6 (95% CI: 0.2 - 5.7), P = 0.01), displacement in the horizontal part of the fracture >2 mm (HR: 1.8; 95% CI: 1.1-3.2, P = 0.03), incomplete repositioning (HR: 2.1 (95% CI: 1.3-3.5), P = 0.003), and age >30 years (HR: 2.3 (95% CI: 1.1-4.6), P = 0.02). The type of splint (rigid or flexible), the duration of splinting (more or less than 4 weeks), and the administration of antibiotics did not affect the risk of PN. Teeth involved in alveolar process fractures appear, apart from PN, to have a good prognosis. A conservative treatment approach is recommended. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. MR imaging of the lumber spine; Visualization capability of the nerve root

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Kazumasa; Hieda, Hiroshi; Goto, Takeshi; Goto, Hiroshi; Koga, Hiromichi; Hiraoka, Kouji (Moji Rousai Hospital, Fukuoka (Japan))

    1991-01-01

    We studied visualization capability of the nerve root in mainly coronary section pattern using magnetic resonance imaging (MRI). MRI was carried out in 91 patients with lumbago and sciatica. Coronary section was additionally photographed in 58 cases of these patients (32 with intervertebral hernia, 20 with spinal canal stenosis, 2 with spondylolytic spondylolisthesis, 2 with compression fracture and the other 2 patients). The visualization capability of the nerve root was studied with photographing 2 pulse systems of the coronary section by using spin echo and field echo methods. The high signal area of the cerebrospinal fluid and nerve root in the normal lumbar vertebra was noted by field echo method, and pattern that is visualized by myelogram was obtained. The coincidence of the main foci (disturbed lesions of the nerve root) in the intervertebral hernia and coronary section pattern was noted in 21 of 32 cases (64.5%) with considerably high ratio. The condition of the nerve root in the blocked lesion was visualized in the spinal canal stenosis. (author).

  12. Pharmacognostic Investigation of Clerodendrum phlomidis Linn. f. Root

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2014-05-01

    Full Text Available The present study was aimed to perform the pharmacognostic evaluation of Clerodendrum phlomidis Linn. f. root in terms of organoleptic, fluorescence analysis, macro-microscopy and physicochemical parameters.The characteristic macroscopic study showed that the root consists of 7-15 cm long, 0.2 -3.0 cm thick pieces which are cylindrical, tough and yellowish-brown externally, with hard fracture and slightly astringent taste. The main microscopic characters of the root show exfoliating cork, having10-15 rows of tangentially elongated, thick-walled cells. Cortex consists of round to oval parenchymatous cells, a few containing rhomboid shaped calcium oxalate crystals. Endodermis consists of 3- 4 layers of non-lignified, thick-walled rounded parenchymatous cells followed by a single pericyclic layer. Phloem consists of isodiametric, thin-walled, parenchymatous cells whereas xylem contains lignified pitted vessels. Medullary rays consisting of biseriate layer of lignified and radially elongated parenchymatous cells is narrower in the xylem region during wider in the phloem region. The physicochemical analysis of the root, i.e., total ash, water-soluble ash, sulphated ash are 7.8, 0.9 and 10.3 (% w/w respectively. Further successive extraction of the root powder with petroleum ether, chloroform, alcohol, water yielded 2.2, 2.4, 12.4 and 9.6 (% w/wextracts respectively. Fluorescence study imparted characteristic colours to the root powder when observed under visible, short and long wavelength light. Various pharmacognostic parameters evaluated in this study helps inbotanical identification and standardization of Clerodendrum phlomidis L. root part in crude form and provide the authentic data for the researchers and scientists involved in carrying out further research on this plant part.

  13. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  14. Early Reconstruction of Orbital Roof Fractures: Clinical Features and Treatment Outcomes

    Directory of Open Access Journals (Sweden)

    Jin Woo Kim

    2012-01-01

    Full Text Available BackgroundOrbital roof fractures are frequently associated with a high energy impact to the craniofacial region, and displaced orbital roof fractures can cause ophthalmic and neurologic complications and occasionally require open surgical intervention. The purpose of this article was to investigate the clinical features and treatment outcomes of orbital root fractures combined with neurologic injuries after early reconstruction.MethodsBetween January 2006 and December 2008, 45 patients with orbital roof fractures were admitted; among them, 37 patients were treated conservatively and 8 patients underwent early surgical intervention for orbital roof fractures. The type of injuries that caused the fractures, patient characteristics, associated fractures, ocular and neurological injuries, patient management, and treatment outcomes were investigated.ResultsThe patients underwent frontal craniotomy and free bone fragment removal, their orbital roofs were reconstructed with titanium micromesh, and associated fractures were repaired. The mean follow up period was 11 months. There were no postoperative neurologic sequelae. Postoperative computed tomography scans showed anatomically reconstructed orbital roofs. Two of the five patients with traumatic optic neuropathy achieved full visual acuity recovery, one patient showed decreased visual acuity, and the other two patients completely lost their vision due to traumatic optic neuropathy. Preoperative ophthalmic symptoms, such as proptosis, diplopia, upper eyelid ptosis, and enophthalmos were corrected.ConclusionsEarly recognition and treatment of orbital roof fractures can reduce intracranial and ocular complications. A coronal flap with frontal craniotomy and orbital roof reconstruction using titanium mesh provides a versatile method and provides good functional and cosmetic results.

  15. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  16. Responses of seminal wheat seedling roots to soil water deficits.

    Science.gov (United States)

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  18. Biplanar fixation of acromio-clavicular joint dislocation associated with coracoid process fracture: Case report

    Directory of Open Access Journals (Sweden)

    Radwan G. Metwaly

    2018-06-01

    Full Text Available Introduction: Acromioclavicular (AC joint injury associated with coracoid process (CP fracture is a rare injury and only case reports had been published in the literature. Although AC joint injury is not uncommon, there is controversy as regard the best stabilization method whether to use wires, hook plate, arthroscopic reconstruction or the recently described techniques of anatomic restoration of both the coracoclavicular (CC and acromioclavicular (AC ligaments to add stability in both the vertical as well as the horizontal plane for the AC joint. Isolated CP fracture rarely necessitates surgical intervention; but in association with AC joint injury; a controversy as regard best management, surgical approach, technique of stabilization and implant used is present due to paucity of literature. Patient and method: A 36 years old manual worker who sustained a combined injury of AC joint (grade III and CP comminuted base fracture had been treated surgically in our hospital using a biplanar fixation technique; blind 4 mm cannulated screw for the CP fracture and anatomic reconstruction of the AC ligament using FibreTape (Arthrex, Naples, FL; to add stability in both the vertical and horizontal plane. Follow up was done for one year. Results: After completion of rehabilitation program, patient could return to work with no shoulder pain in ten weeks postoperatively. Till the last follow up there was no evidence of loss of reduction or shoulder pain with a Constant score of 86. Conclusion: Our technique in combined AC joint and CP fracture, address both injuries to add biplanar AC joint stability allowing accelerated rehabilitation and avoids metal hardware complications. Keywords: Acromioclavicular, Coracoid process, Anatomic reconstruction, And horizontal stability

  19. The Potential Impacts of Hydraulic Fracturing on Agriculture

    OpenAIRE

    Beng Ong

    2014-01-01

    Hydraulic fracturing (or “fracking”) is a method of extracting oil and natural gas trapped in deep rock layers underground by pumping water, sand, and other chemicals/additives at high pressures into a well drilled vertically, and then horizontally into the rocks.Advocates of fracking in U.S. have skillfully positioned domestic natural gas as a sensible alternative energy to the country’s goals of reducing carbon emissions and dependence on foreign oil, while simultaneously creating jobs loca...

  20. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  1. Diffusive Imaging of Hydraulically Induced and Natural Fracture Systems

    Science.gov (United States)

    Eftekhari, B.; Marder, M. P.; Patzek, T. W.

    2017-12-01

    Hydraulic fracturing of tight shales continues to provide the US with a major source of energy. Efficiency of gas recovery in shales depends upon the geometry of the resulting network of fractures, the details of which are not yet fully understood. The present research explores how much of the underlying geometry can be deduced from the time dependence of the flow of gas out of the reservoir. We consider both ideal and real gas. In the case of real gas, we calculate production rate for parallel planar hydrofractures embedded in an infinite reservoir. Transport is governed by a nonlinear diffusion equation, which we solve exactly with a scaling curve. The scaling curve production rate declines initially as 1 over square root time, then as an exponential, and finally as 1 over square root of time again at late time. We show that for a given hydraulically fractured well, the onsets of transition between different decline regimes provides a direct estimate of a characteristic spacing of the underlying fracture network. We show that the scaling solution accurately fits the production history of more than 15,000 wells in the Barnett Shale. Almost all of the wells either have not yet transitioned into the late time decline or have been refractured while in exponential decline. However, there are 36 wells which show the late time transition. These allow us to calculate the characteristic spacing, which turns out to have a mode at about 10 m, a minimum at 1.6 m and a maximum at 13.3 m. We estimate that over 30 years these wells will produce on average about 45% more gas because of diffusion from the infinite external reservoir than they would if this contribution is neglected. Finally, we compute the rate at which ideal gas diffuses within an infinite region of rock into a specific absorbing fractal fracture network, which we model using geological constraints and percolation theory. Our solution employs a Brownian walk and the first passage kinetic Monte Carlo algorithm

  2. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    Science.gov (United States)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  3. Quantifying root-reinforcement of river bank soils by four Australian tree species

    Science.gov (United States)

    Docker, B. B.; Hubble, T. C. T.

    2008-08-01

    The increased shear resistance of soil due to root-reinforcement by four common Australian riparian trees, Casuarina glauca, Eucalyptus amplifolia, Eucalyptus elata and Acacia floribunda, was determined in-situ with a field shear-box. Root pull-out strengths and root tensile-strengths were also measured and used to evaluate the utility of the root-reinforcement estimation models that assume simultaneous failure of all roots at the shear plane. Field shear-box results indicate that tree roots fail progressively rather than simultaneously. Shear-strengths calculated for root-reinforced soil assuming simultaneous root failure, yielded values between 50% and 215% higher than directly measured shear-strengths. The magnitude of the overestimate varies among species and probably results from differences in both the geometry of the root-system and tensile strengths of the root material. Soil blocks under A. floribunda which presents many, well-spread, highly-branched fine roots with relatively higher tensile strength, conformed most closely with root model estimates; whereas E. amplifolia, which presents a few, large, unbranched vertical roots, concentrated directly beneath the tree stem and of relatively low tensile strength, deviated furthest from model-estimated shear-strengths. These results suggest that considerable caution be exercised when applying estimates of increased shear-strength due to root-reinforcement in riverbank stability modelling. Nevertheless, increased soil shear strength provided by tree roots can be calculated by knowledge of the Root Area Ratio ( RAR) at the shear plane. At equivalent RAR values, A. floribunda demonstrated the greatest earth reinforcement potential of the four species studied.

  4. Root damage induced by intraosseous anesthesia. An in vitro investigation.

    Science.gov (United States)

    Graetz, Christian; Fawzy-El-Sayed, Karim-Mohamed; Graetz, Nicole; Dörfer, Christof-Edmund

    2013-01-01

    The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this 'worst case scenario' comparing five commercially available IOA systems. Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p ≤ 0.05. All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper, Anesto, Intraflow, Stabident) or 100% (X-Tip) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper), 40% (Anesto), 60% (Intraflow), 90% (Stabident) and 100% (X-Tip) of all perforations. Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems.

  5. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    Science.gov (United States)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  6. Fatigue fracture of cutter blade made of high-speed steel

    Directory of Open Access Journals (Sweden)

    Beata Letkowska

    2015-04-01

    Full Text Available The quality of the surface of cyclically loaded components is very important. Many observations confirm that the root cause of the micro cracks (causing the fatigue fracture are primarily a surface's defects appearing during production process. These surface defects can be also caused by engraving processes used to perform identification marks. This paper presents the failure analysis of broken blade of the cutter Ku 500VX. The blade was subject of standard metallographic examination, hardness measurements, fractography analysis and metallographic studies using stereoscopic, light and scanning electron microscopes. The damage of the blade was caused by changes of the structure (formation of the brittle micro dendritic structure that occurred during manual electric engraving process when the material was heated till its melting point. As a result the stresses occurred in surface what provided to micro cracking and to propagate the fatigue fracture. The origin of this fatigue fracture was in the place where the inscription was made.

  7. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  8. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  9. Radionuclide Transport in Fractured Rock: Numerical Assessment for High Level Waste Repository

    Directory of Open Access Journals (Sweden)

    Claudia Siqueira da Silveira

    2013-01-01

    Full Text Available Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture in water saturated porous rock. Transport in the fracture is assumed to obey an advection-diffusion equation, while molecular diffusion is considered the dominant mechanism of transport in porous matrix. The partial differential equations describing the movement of radionuclides were discretized by finite difference methods, namely, fully explicit, fully implicit, and Crank-Nicolson schemes. The convective term was discretized by the following numerical schemes: backward differences, centered differences, and forward differences. The model was validated using an analytical solution found in the literature. Finally, we carried out a simulation with relevant spent fuel nuclide data with a system consisting of a horizontal fracture and a vertical fracture for assessing the performance of a hypothetical repository inserted into the host rock. We have analysed the bentonite expanded performance at the beginning of fracture, the quantified radionuclide released from a borehole, and an estimated effective dose to an adult, obtained from ingestion of well water during one year.

  10. Effect of boundary conditions on pressure behavior of finite-conductivity fractures in bounded stratified reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1996-08-15

    In this study, a mathematical model was developed to model the pressure behavior of a well located in a bounded multilayer reservoir and crossed by a finite-conductivity vertical fracture. It was found that the dimensionless pressure function and its derivative strongly depend on fracture conductivity and fracture extension during early times. The effect of reservoir heterogeneity on the pressure function is negligible compared to that on the pressure derivative. Both functions exhibit four flow periods: bilinear, formation linear, pseudoradial and pseudosteady-state which are separated by transition periods. One or more of these flow periods may be missing. Data obtained from a long test and which are characterized by a unit slope line indicate that the well is intercepted by deeply extended fractures. It has been found that the fractional production rates of different layers are a good measure of reservoir and fracture characteristics. Flowmeter survey data can be used to eliminate the non-uniqueness problem when using the type curves presented in this study

  11. In Vitro Evaluation of the Effect of Tooth Structure Loss on Fracture Resistance of Endodontically Treated Teeth

    Directory of Open Access Journals (Sweden)

    Shirinzad M

    2017-06-01

    Full Text Available Introduction: Since preserving the structure of treated teeth is a critical success factor, studying the effects of tooth structure loss on fracture resistance of the tooth tissue appears necessary. The aim of this study was to evaluate the consequences of the loss of different tissues regarding fracture resistance of teeth undergoing root canal treatment without the use of indirect restorations. Methods :In this experimental study, 70 healthy maxillary first premolar teeth were randomly divided into 7 groups of 10 members, including control group, endodontic access preparation only, MOD cavity preparation, cutting buccal cusp, cutting palatal cusp, cutting buccal cusp and marginal ridge, and cutting the palatal cusp and marginal ridge. The coronal section of teeth was restored incrementally with light cure composite. Finally, samples underwent compressive load with 45˚ angle from each cusp slope in the middle of cusp with an instant speed of 1 mm per min in the Instron machine. Fracture resistance was measured and samples were examined under stereo-microscope to evaluate the mode of failure. Results: The resistance to fracture in root canal treated teeth in different groups in order from first to seventh was 797.13 ± 52.92, 722.50 ± 131.40, 432.15 ± 203.20, 592.66 ± 195.86 124.53 ± 33.09, 85.17 ± 18.45, and 26.03 ± 5.21 Newton. ANOVA test showed statistically significant differences between the groups in terms of their fracture resistance (P = 0.000. Conclusions: The results showed that fracture resistance levels of teeth were significantly affected by amount of their tissue loss. In this study, removal of teeth palatal cusp and marginal ridge had a significant effect on decreasing the fracture resistance, while removing the buccal cusps alone cannot have a significant effect.

  12. Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland–Grassland

    DEFF Research Database (Denmark)

    Arndal, Marie Frost; Tolver, Anders; Larsen, Klaus Steenberg

    2018-01-01

    in single-factor experiments. In a Danish heathland ecosystem, we investigated both individual and combined effects of elevated CO2, warming and drought on fine root length, net production and standing biomass by the use of minirhizotrons, ingrowth cores and soil coring. Warming increased the net root...... production from ingrowth cores, but decreased fine root number and length in minirhizotrons, whereas there were no significant main effects of drought. Across all treatments and soil depths, CO2 stimulated both the total fine root length (+44%) and the number of roots observed (+39%), with highest relative......Belowground plant responses have received much less attention in climate change experiments than aboveground plant responses, thus hampering a holistic understanding of climate change effects on plants and ecosystems. In addition, responses of plant roots to climate change have mostly been studied...

  13. Comparison of relationship between antral floor and maxillary root apex in bisecting and panoramic techniques

    International Nuclear Information System (INIS)

    You, Dong Soo; Kim, In Soo

    1986-01-01

    This study was performed to compare the difference of intraoral bisecting and panoramic techniques in evaluating the relationship of antral floor and maxillary roots. The vertical distances form maxillary root apices to antral floor were measured on both orthopantomograms and bisecting projections obtained form fifth subjects. The results were as follows: 1. Tooth lengths measured on orthopantomogram were larger than on bisecting projection and the magnification ratios were 1.08-1.17. 2. The dimensions from maxillary root apices to antral floor measured on orthopantomogram were larger than on bisecting projection. 3. The above results held true regardless of age and sex.

  14. Identification of the Procedural Accidents During Root Canal Preparation Using Digital Intraoral Radiography and Cone Beam Computed Tomography

    OpenAIRE

    Csinszka K.-Ivácson A.-; Maria Monea Adriana; Monica Monea; Mihai Pop; Angela Borda

    2016-01-01

    Crown or root perforation, ledge formation, fractured instruments and perforation of the roots are the most important accidents which appear during endodontic therapy. Our objective was to evaluate the value of digital intraoral periapical radiographs compared to cone beam computed tomography images (CBCT) used to diagnose some procedural accidents. Material and methods: Eleven extracted molars were used in this study. A total of 18 perforations and 13 ledges were created artifically and 10 i...

  15. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    International Nuclear Information System (INIS)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun

    2017-01-01

    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  16. Stress analysis and optimization of Nd:YAG pulsed laser processing of notches for fracture splitting of a C70S6 connecting rod

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Shuqing; Gao, Yan; Zhao, Yong; Lin, Baojun [Jilin University, Changchun (China)

    2017-05-15

    The pulsed laser pre-processing of a notch as the fracture initiation source for the splitting process is the key mechanism of an advanced fracture splitting technology for C70S6 connecting rods. This study investigated the stress field of Nd:YAG pulsed laser grooving, which affects the rapid fracture initiation at the notch root and the controlled crack extension in the critical fracture splitting quality, to improve manufacturing quality. Thermal elastic-plastic incremental theory was applied to build the finite element analysis model of the stress field of pulsed laser grooving for fracture splitting based on the Rotary-Gauss body heat source. The corresponding numerical simulation of the stress field was conducted. The changes and distributions of the stress during pulsed laser grooving were examined, the influence rule of the primary technological parameters on the residual stress was analyzed, and the analysis results were validated by the corresponding cutting experiment. Results showed that the residual stress distribution was concentrated in the Heat-affected zone (HAZ) near the fracture splitting notch, which would cause micro-cracks in the HAZ. The stress state of the notch root in the fracture initiation direction was tensile stress, which was beneficial to the fracture initiation and the crack rapid extension in the subsequent fracture splitting process. However, the uneven distribution of the stress could lead to fracture splitting defects, and thus the residual stress should be lowered to a reasonable range. Decreasing the laser pulse power, increasing the processing speed, and lowering the pulse width can lower the residual stress. Along with the actual production, the reasonable main technological parameters were obtained.

  17. Fracture toughness of A533B. Part 2. Review of data pertinent to upper shelf temperatures

    International Nuclear Information System (INIS)

    Druce, S.G.; Eyre, B.L.; Belcher, W.P.A.

    1978-08-01

    This report is the second in a series of three examining the state of the art of elastoplastic fracture mechanics as applied to A533B pressure vessel steel in the upper shelf temperature regime. Part II presents a review of fracture toughness data for A533B Class 1 plate tested in the longitudinal (RW) orientation. Data from USA, UK and Scandinavian sources published prior to September 1976 has been included. It is concluded that previous studies using a maximum load criterion have over-estimated the initiation toughness in the upper shelf regime. Results derived from J integral tests now show the mean toughness at 275 0 C to vary between 141 ksi sq. root in and 154 ksi sq. root in depending on the exact analytical procedure used. Limited statistical analysis of the results obtained using several heats of material suggest that standard deviation of the scatter of results is approximately 11% of the mean value. Recommendations for future work to improve our understanding of the fracture properties of A533B and similar medium strength high toughness materials, and their application to large structures, are presented. (author)

  18. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  19. Evaluation of the maxillary premolar roots dissociation using radiographic holders with conventional and digital radiography

    Directory of Open Access Journals (Sweden)

    Marcia Regina Ramalho da Silva Bardauil

    2010-09-01

    Full Text Available This in vivo study evaluated the dissociation quality of maxillary premolar roots combining variations of vertical and horizontal angulations by using X-ray holders (Rinn -XCP, and made a comparison between two types of intraoral radiography systems - conventional film (Kodak Insight, Rochester, USA and digital radiography (Kodak RVG 6100, Kodak, Rochester, USA. The study sample was comprised of 20 patients with a total of 20 maxillary premolars that were radiographed, using the paralleling angle technique (GP, with a 20º variation of the horizontal angle (GM and 25º variation of the horizontal angle combined with 15º vertical angle (GMV. Each image was independently analyzed by two experienced examiners. These examiners assigned a score to the diagnostic capability of root dissociation and the measurement of the distance between the apexes. Statistical data was derived using the Wilcoxon Signed Rank test, Friedman and T test. The means of the measured distances between buccal and lingual root apexes were greater for the GMV, which ranged from 2.3 mm to 3.3 mm. A statistically significant difference was found between GM and GMV when compared to GP with p < 0.01. An established best diagnostic dissociation roots image was found in the GMV. These results support the use of the anterior X-ray holders which offer a better combined deviation (GMV to dissociate maxillary premolar roots in both radiography systems.

  20. The comparison of microbial leakage in roots filled with resilon and gutta-percha: An in vitro study.

    Science.gov (United States)

    Shashidhar, C; Shivanna, Vasundhara; Shivamurthy, Gb; Shashidhar, Jyothi

    2011-01-01

    The objective of this study was to compare bacterial leakage using streptococcus mutans through gutta-percha and a thermoplastic synthetic polymer based root canal filling material (Resilon) using two filling techniques. A total of 90 single-rooted extracted human teeth were subjected for the study. Teeth were divided into 6 groups of 10 and 3 control groups of 10 teeth each. All the samples were decoronated and the coronal surfaces of the roots were prepared perpendicular to the long axis of the root with a high-speed handpiece and a multipurpose bur using air water spray. The length of all the roots was prepared approximately 16 mm from the coronal surface to the apex of the root. Roots were filled using lateral and vertical condensation techniques with gutta-percha and AH26 sealer (Group 1 and 2) or with gutta-percha and epiphany sealer (Group 3 and 4). Group 5 and 6 were filled with Resilon and epiphany sealer using the lateral and vertical condensation techniques. A split chamber microbial leakage model was used in which S. mutans placed in the upper chamber could reach the lower chamber only through the filled root canal. Group 7 and 8 (positive control) were filled with Resilon and gutta-percha without sealer and tested with bacteria, whereas Group 7 (negative control) was sealed with wax to test the seal between the chambers. Data were analyzed using Kruskal-Wallis test and Mann-Whitney U test. All positive groups (Group 7 and 8) showed leakage within 1 hour of the start of the study (100%), whereas none of the negative control (Group 9) leaked. The roots obturated with Resilon and epiphany (Group 5 and 6) showed minimal leakage, i.e., each with 6 leakages, which was significantly less than gutta-percha (Group 1-4), in which approximately 80% of specimens with either sealer or techniques leaked. Kruskal-Wallis test showed statistical significance when all groups were compared (P<0.05). Mann-Whitney U test compared the respective groups and found Resilon

  1. Biomechanical investigation of impact induced rib fractures of a porcine infant surrogate model.

    Science.gov (United States)

    Blackburne, William B; Waddell, J Neil; Swain, Michael V; Alves de Sousa, Ricardo J; Kieser, Jules A

    2016-09-01

    This study investigated the structural, biomechanical and fractographic features of rib fractures in a piglet model, to test the hypothesis that fist impact, apart from thoracic squeezing, may result in lateral costal fractures as observed in abused infants. A mechanical fist with an accelerometer was constructed and fixed to a custom jig. Twenty stillborn piglets in the supine position were impacted on the thoracic cage. The resultant force versus time curves from the accelerometer data showed a number of steps indicative of rib fracture. The correlation between impact force and number of fractures was statistically significant (Pearson׳s r=0.528). Of the fractures visualized, 15 completely pierced the parietal pleura of the thoracic wall, and 5 had butterfly fracture patterning. Scanning electron microscopy showed complete bone fractures, at the zone of impact, were normal to the axis of the ribs. Incomplete vertical fractures, with bifurcation, occurred on the periphery of the contact zone. This work suggests the mechanism of rib failure during a fist impact is typical of the transverse fracture pattern in the anterolateral region associated with cases of non-accidental rib injury. The impact events investigated have a velocity of ~2-3m/s, approximately 2×10(4) times faster than previous quasi-static axial and bending tests. While squeezing the infantile may induce buckle fractures in the anterior as well as posterior region of the highly flexible bones, a fist punch impact event may result in anterolateral transverse fractures. Hence, these findings suggest that the presence of anterolateral rib fractures may result from impact rather than manual compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Science.gov (United States)

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  3. Endodontic Management of the Three-Rooted Mandibular First Permanent Molar: a Case Report.

    Science.gov (United States)

    Štamfelj, Iztok

    2014-09-01

    The distal root of the mandibular first permanent molar (MFPM) contains one or two canals. More rarely, the second/third distal canal is found in a separate root in a distolingual (DL) position - a radix entomolaris (RE). In Caucasians, this occurs in less than 4% of cases, but it is equally important to be aware of this possibility. Careful examination of the preoperative periapical radiographs (orthoradial and mesially angled) and inspection of the pulp chamber floor during endodontic management may indicate that this radicular variant is present. RE's lingual inclination and buccolingual curvature must be taken into account during cleaning and shaping of the canal within this root to avoid procedural errors, such as straightening and ledging of the root canal, perforation or instrument fracture. The aim of the present paper was to discuss a case report of a young patient, referred to an endodontic office after a ledge was created by inappropriate instrumentation of a buccolingually curved RE canal.

  4. Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system.

    Science.gov (United States)

    Aarrouf, J; Schoevaert, D; Maldiney, R; Perbal, G

    1999-04-01

    The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, during a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.

  5. Technical Quality of Root Canal Treatment Performed by Undergraduate Clinical Students of Isfahan Dental School.

    Science.gov (United States)

    Saatchi, Masoud; Mohammadi, Golshan; Vali Sichani, Armita; Moshkforoush, Saba

    2018-01-01

    The aim of the present study was to evaluate the radiographic quality of RCTs performed by undergraduate clinical students of Dental School of Isfahan University of Medical Sciences. In this cross sectional study, records and periapical radiographs of 1200 root filled teeth were randomly selected from the records of patients who had received RCTs in Dental School of Isfahan University of Medical Sciences from 2013 to 2015. After excluding 416 records, the final sample consisted of 784 root-treated teeth (1674 root canals). Two variables including the length and the density of the root fillings were examined. Moreover, the presence of ledge, foramen perforation, root perforation and fractured instruments were also evaluated as procedural errors. Descriptive statistics were used for expressing the frequencies of criteria and chi square test was used for comparing tooth types, tooth locations and academic level of students ( P students was not satisfactory and incidence of procedural errors was considerable.

  6. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    Science.gov (United States)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  7. The study of crosslinked fluid leakoff in hydraulic fracturing physical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Grothe, Vinicius Perrud; Ribeiro, Paulo Roberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Sousa, Jose Luiz Antunes de Oliveira e [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia. Dept. de Estruturas; Fernandes, Paulo Dore [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2000-07-01

    The fluid loss plays an important role in the design and execution of hydraulic fracturing treatments. The main objectives of this work were: the study of the fluid loss associated with the propagation of hydraulic fractures generated at laboratory; and the comparison of two distinct methods for estimating leakoff coefficients - Nolte analysis and the filtrate volume vs. square root of time plot. Synthetic rock samples were used as well as crosslinked hydroxypropyl guar (HPG) fluids in different polymer concentrations. The physical simulations comprised the confinement of (0.1 x 0.1 x 0.1) m{sup 3} rock samples in a load cell for the application of an in situ stress field. Different flow rates were employed in order to investigate shear effects on the overall leakoff coefficient. Horizontal radial fractures were hydraulically induced with approximate diameters, what was accomplished by controlling the injection time. Leakoff coefficients determined by means of the pressure decline analysis were compared to coefficients obtained from static filtration tests, considering similar experimental conditions. The research results indicated that the physical simulation of hydraulic fracturing may be regarded as an useful tool for evaluating the effectiveness of fracturing fluids and that it can supply reliable estimates of fluid loss coefficients. (author)

  8. Evaluation of geophysical techniques for identifying fractures in program wells in Deaf Smith County, Texas: Revision 1, Topical report

    International Nuclear Information System (INIS)

    Gillespie, R.P.; Siminitz, P.C.

    1987-08-01

    Quantitative information about the presence and orientation of fractures is essential for the understanding of the geomechanical and geohydrological behavior of rocks. This report evaluates various borehole geophysical techniques for characterizing fractures in three Civilian Radioactive Waste Management (CRWM) Program test wells in the Palo Duro Basin in Deaf Smith County, Texas. Emphasis has been placed on the Schlumberger Fracture Identification Log (FIL) which detects vertical fractures and provides data for calculation of orientation. Depths of FIL anomalies were compared to available core. It was found that the application of FIL results to characterize fracture frequency or orientation is inappropriate at this time. The uncertainties associated with the FIL information render the information unreliable. No geophysical logging tool appears to unequivocally determine the location and orientation of fractures in a borehole. Geologic mapping of the exploratory shafts will ultimately provide the best data on fracture frequency and orientation at the proposed repository site. 22 refs., 6 figs., 3 tabs

  9. Oil recovery enhancement from fractured, low permeability reservoirs. [Carbonated Water

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods.Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks.Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  10. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    Science.gov (United States)

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  11. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  12. ProTaper rotary instrument fracture during root canal preparation: a comparison between rotary and hybrid techniques.

    Science.gov (United States)

    Farid, Huma; Khan, Farhan Raza; Rahman, Munawar

    2013-03-01

    This study aimed to compare the frequency of ProTaper rotary instrument fracture with rotary (conventional) and hybrid (rotary and hand files) canal preparation techniques. Secondary objectives were to determine whether there was an association of ProTaper file fracture with the canal curvature and to compare the mean time required for canal preparation in the two techniques. An in vitro experiment was conducted on 216 buccal canals of extracted maxillary and mandibular first molars. After creating an access cavity and a glide path for each canal, a periapical radiograph was taken and the canal curvature was measured with Schneider's technique. The canals were then randomly divided into Group A (rotary technique) and Group B (hybrid technique). The length of ProTaper files were measured before and after each canal preparation. Time taken for each canal preparation was recorded. A total of seven ProTaper files fractured in Group A (P=0.014) in canals with a curvature >25 degrees (PProTaper rotary files, although time consuming, was safer in canals having a curvature greater than 25 degrees.

  13. Root activity and soil feeding zones of some Bajra hybrids (Pennisetum typhoids Stapf.)

    International Nuclear Information System (INIS)

    Shriniwas

    1980-01-01

    Root activity and soil feeding zones of five bajra hybrids (Hybrid D-356, HB-3, HB-4, HB-1 and Bil-3B) were determined under natural field conditions by placement of 32 P labelled superphosphate enclosed in gelatinous capsules at different soil locations around the plant. Percent root activity varied significantly from one depth to another and it decreased with increase in depths and lateral distances. More than 44 percent of the root activity occurred in a soil feeding zone consisting of 0-15 cm depth having double of this much lateral distance. Percent root activity in HB-3 and HB-4 was almost found identical both horizontally and vertically. Hybrid D-356 and HB-1 approximated more than 38 percent root activity in a soil feeding zone of 0-15 cm in depth and 0-10 cm in lateral distance. 32 P placement in capsules appeared to hold promise over Hall's technique since it overcomes the differences caused by disturbance of the feeding activity of roots at the point of 32 P injection into the soil. (author)

  14. Root damage induced by intraosseous anesthesia–An in vitro investigation

    Science.gov (United States)

    Fawzy-El-Sayed, Karim M.; Graetz, Nicole; Dörfer, Christof-Edmund

    2013-01-01

    Objectives: The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this ‘worst case scenario’ comparing five commercially available IOA systems. Material and Methods: Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p≤0.05. Results: All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper®, Anesto®, Intraflow®, Stabident®) or 100% (X-Tip®) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper®), 40% (Anesto®), 60% (Intraflow®), 90% (Stabident®) and 100% (X-Tip®) of all perforations. Conclusion: Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems. Key words:Intraosseous anesthesia, complication, root damage. PMID:23229260

  15. Management of horizontal crown fracture caused by traumatic injury with endorestoration treatment

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2011-09-01

    Full Text Available Background: Traumatic injuries of teeth are the main cause of emergency treatment in dental practice. The horizontal crown fracture more frequently observed usually occurs in maxillary anterior region and young male patients. The most common type of coronal fracture is in the middle third, followed by root and apical part. Purpose: The aim of this case report is to present the management of crown fracture of teeth with pulp exposure caused by dental trauma with endorestoration treatment in order to reconstruct the shape and the function of the teeth. Case: A 22 years old male with horizontal crown fracture of anterior teeth. The patient asked for aesthetic dental treatment both for its form and function. Case management: This horizontal crown fracture of anterior teeth with pulp exposure caused by dental trauma still could be reconstructed, mainly by endorestoration treatment. The endodontic treatment with post and core insertion in the root canal then would increase its retention. Later, the porcelain crown would aesthetically recover its original form and function, therefore, it would improve the patient’s confidence and teeth function. Conclusion:  Endorestoration treatment on anterior teeth with harizontal crown fractures and pulp exposure is able to recover the normal function, aesthetic, and self-confidence.Latar belakang: Trauma pada gigi merupakan penyebab utama perawatan darurat dalam praktek dokter gigi. Fraktur mahkota horisontal pada umunya terjadi pada gigi anterior rahang atas dan terjadi pada penderita pria muda. Jenis yang paling sering dari fraktur mahkota adalah pada sepertiga tengah, daerah akar dan apical. Tujuan: Laporan kasus ini menjelaskan penatalaksanaan fraktur mahkota gigi dengan pulpa terbuka akibat trauma dengan perawatan endorestorasi untuk mengembalikan bentuk dan fungsi gigi. Kasus: Penderita pria umur 22 tahun dengan fraktur mahkota horizontal pada gigi anterior. Penderita tersebut menginginkan perawatan

  16. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    The Western Ghats of Kerala, India is prone to shallow landslides and consequent debris flows. An earlier study (Kuriakose et al., DOI:10.1002/esp.1794) with limited data had already demonstrated the possible effects of vegetation on slope hydrology and stability. Spatially distributed root cohesion is one of the most important data necessary to assess the effects of anthropogenic disturbances on the probability of shallow landslide initiation, results of which are reported in sessions GM6.1 and HS13.13/NH3.16. Thus it is necessary to the know the upper limits of reinforcement that the roots are able to provide and its spatial and vertical distribution in such an anthropogenically intervened terrain. Root tensile strength and root pull out tests were conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) Gambooge (Garcinia gummi-gutta), 8) Coffee (Coffea Arabica) and 9) Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested had a length of 15 cm. Root pull out tests were conducted in the field. Root tensile strength vs root diameter, root pull out strength vs diameter, root diameter vs root depth and root count vs root depth relationships were derived. Root cohesion was computed for nine most dominant plants in the region using the perpendicular root model of Wu et al. (1979) modified by Schimidt et al. (2001). A soil depth map was derived using regression kriging as suggested by Kuriakose et al., (doi:10.1016/j.catena.2009.05.005) and used along with the land use map of 2008 to distribute the

  17. Measuring the initial earth pressure of granite using hydraulic fracturing test; Goseong and Yuseong areas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Won, Kyung Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report provides the initial earth pressure of granitic rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are obtained by hydraulic fracturing test in three boreholes drilled up to 350{approx}500 m depth at the Yuseong and Goseong sites. These sites were selected based on the result of preliminary site evaluation study. The boreholes are NX-size (76 mm) and vertical. The procedure of hydraulic fracturing test is as follows: - Selecting the testing positions by preliminary investigation using BHTV logging. - Performing the hydraulic fracturing test at each selected position with depth.- Estimating the shut-in pressure by the bilinear pressure-decay-rate method. - Estimating the fracture reopening pressure from the pressure-time curves.- Estimating the horizontal principal stresses and the direction of principal stresses. 65 refs., 39 figs., 12 tabs. (Author)

  18. Anterior process calcaneal fractures: a systematic evaluation of associated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Petrover, David [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Hopital Beaujon, Service de Radiologie, Paris (France); Schweitzer, Mark E. [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Laredo, J.D. [Hopital Lariboisiere, Service de Radiologie, Paris (France)

    2007-07-15

    The objective was to evaluate the association, by MRI, of anterior calcaneal process fractures with tarsal coalitions, ankle sprains, and bifurcate ligament abnormalities. A retrospective review of 1,479 foot and ankle MR images was performed, over a period of 5 years, for isolated anterior process fractures of the calcaneus. Fifteen 1.5-T MR examinations were systematically evaluated by two radiologists in consensus. Marrow edema patterns, presence of a calcaneonavicular coalition, as well as bifurcate and anterior talofibular ligaments, were evaluated. There were 15 fractures of the anterior calcaneal process with an incidence of 1%. The average patient age was 51 years (range 25-82). Twelve patients were women and 3 were men. The majority of the fractures (14 out of 15) presented as an edema pattern on T2-weighted images, either diffuse (9 out of 15), or vertical (5 out of 15). One case did not show marrow edema, but rather a hypointense line. Nine patients (60%) demonstrated calcaneonavicular coalition and anterior calcaneal process fracture. In 6 patients (50%) the anterior talofibular ligament (ATFL) was thickened. Three patients did not have axial images, and were classified as non-conclusive for the ATFL evaluation. The bifurcate ligament was thickened with hyperintense signal demonstrating a sprain in 9 out of 13 (69%). Only 2 patients (16.5%) had an anterior calcaneal process fracture without any associated abnormality. We believe that there is a probable association of anterior process fractures and calcaneonavicular coalitions. We also feel, based on our results and the prior literature that there is likely also an association with both ATFL injuries and bifurcate ligament injuries. (orig.)

  19. Anterior process calcaneal fractures: a systematic evaluation of associated conditions

    International Nuclear Information System (INIS)

    Petrover, David; Schweitzer, Mark E.; Laredo, J.D.

    2007-01-01

    The objective was to evaluate the association, by MRI, of anterior calcaneal process fractures with tarsal coalitions, ankle sprains, and bifurcate ligament abnormalities. A retrospective review of 1,479 foot and ankle MR images was performed, over a period of 5 years, for isolated anterior process fractures of the calcaneus. Fifteen 1.5-T MR examinations were systematically evaluated by two radiologists in consensus. Marrow edema patterns, presence of a calcaneonavicular coalition, as well as bifurcate and anterior talofibular ligaments, were evaluated. There were 15 fractures of the anterior calcaneal process with an incidence of 1%. The average patient age was 51 years (range 25-82). Twelve patients were women and 3 were men. The majority of the fractures (14 out of 15) presented as an edema pattern on T2-weighted images, either diffuse (9 out of 15), or vertical (5 out of 15). One case did not show marrow edema, but rather a hypointense line. Nine patients (60%) demonstrated calcaneonavicular coalition and anterior calcaneal process fracture. In 6 patients (50%) the anterior talofibular ligament (ATFL) was thickened. Three patients did not have axial images, and were classified as non-conclusive for the ATFL evaluation. The bifurcate ligament was thickened with hyperintense signal demonstrating a sprain in 9 out of 13 (69%). Only 2 patients (16.5%) had an anterior calcaneal process fracture without any associated abnormality. We believe that there is a probable association of anterior process fractures and calcaneonavicular coalitions. We also feel, based on our results and the prior literature that there is likely also an association with both ATFL injuries and bifurcate ligament injuries. (orig.)

  20. Management of foreign object in the root canal of central incisor tooth

    Directory of Open Access Journals (Sweden)

    Mothanna Alrahabi

    2014-01-01

    Full Text Available There are several reports describing the impaction of foreign objects into the exposed pulp chambers and canals by patients, especially children as they often have the habit of inserting foreign objects in the oral cavity. These objects will become a potent source of infection.This case report describes the retrieval of a foreign object impacted into the root canal of a 12-year-old male patient who was referred to the endodontic specialty clinic at Taibah University College of Dentistry. The patient′s chief complaint was a pain in the upper left central tooth. Clinical examination revealed a complicated enamel-dentin fracture with a large caries cavity. A periapical radiographic image showed a radiopaque object in the root canal system. Stainless steel Hedstrom files were used to retrieve the object from the canal. Following a proper cleaning and shaping of the root canal system, an intra-canal calcium hydroxide dressing was placed for 1 week. The root canal system was then filled with sealer and gutta-percha using the lateral compaction technique and the tooth received an aesthetic restoration.

  1. Conservative orthodontic fixed appliance management of pediatric mandibular bilateral condylar fracture.

    Science.gov (United States)

    Xu, Yanhua; Gong, Siew-Ging; Zhu, Fangyong; Li, Ming; Biao, Xu

    2016-07-01

    Management of mandibular condylar fractures is difficult in children with their inherently dynamic and unstable deciduous and mixed dentitions. We present a variation of the conservative fixed orthodontic approach that was used as an adjunct to aid in the reduction of a bilateral condylar fracture in a pediatric patient. A boy, aged 10 years 9 months, came with clinical signs and symptoms of mandibular fracture after being involved in a motor vehicle accident. A computed tomography scan showed a vertical fracture on the left condylar head, a displaced fracture of the right condylar neck, and a mandibular symphysis fracture. The patient was treated with an orthodontic fixed appliance instead of an arch bar splint, followed by elastic traction to achieve a proper occlusion and condylar remodeling. Follow-up appointments were made 2 weeks and 1, 2, 20, 37, and 49 months after treatment. Clinical recovery was observed 2 months after treatment. At the follow-up appointments at 20, 37, and 49 months, jaw function and occlusal relationship remained stable, and no ankylosis was observed. The computed tomography scans showed that the right condyle had remodeled, and the left condyle exhibited a slight curve in the head at 49 months posttreatment. The patient's satisfaction with these treatment results was high. Conservative treatment of a mandibular fracture by fixed orthodontic means is a viable treatment option that is relatively straightforward and cost-effective and has a high level of patient acceptance and comfort. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  2. Endodontic management of a maxillary lateral incisor with an unusual root dilaceration diagnosed with cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammed Eid Mahgoub

    2017-01-01

    Full Text Available Anterior teeth may have aberrant anatomical variations in the roots and root canals. Root dilaceration is an anomaly characterized by the displacement of the root of a tooth from its normal alignment with the crown which may be a consequence of injury during tooth development. This report aims to present a successful root canal treatment of a maxillary lateral incisor with unusual palatal root dilaceration (diagnosed with cone beam computed tomography in which the access cavity was prepared from the labial aspect of the tooth to provide a straight line access to the root canal system which was instrumented using OneShape rotary file system and precurved K-files up to size 50 under copious irrigation of 2.5% NaOCl using a side-vented irrigation tip. The canal was then obturated using the warm vertical compaction technique.

  3. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    Science.gov (United States)

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  4. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1991-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  5. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M; Wuschke, D M; Brown, A; Hayles, J G; Kozak, E T; Lodha, G S; Thorne, G A [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1992-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  6. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  7. Fracture behavior of structurally compromised non-vital maxillary premolars restored using experimental fiber reinforced composite crowns.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Kreulen, C.M.; Bell-Ronnlof, A.M. Le; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H.J.

    2006-01-01

    PURPOSE: To study the fracture behavior of direct resin composite crowns with or without experimental fiber reinforcement. METHODS: Clinical crowns of single-rooted maxillary premolars were cut off at the cemento-enamel junction. Canals were prepared with Gates Glidden drills up to size 4. No

  8. Fractured Epikarst Bedrock as Water Source for Woody Plants in Savanna

    Science.gov (United States)

    Schwinning, S.; Goodsheller, K. R.; Schwartz, B. F.

    2010-12-01

    Study of the soil-vegetation-atmosphere system has been overwhelmingly dominated by systems with deep soils, yet large portions of the world are characterized by shallow soils underlain by fractured bedrock. In these systems, fractured bedrock may provide significant water storage, but we know little about the function of fractured bedrock as a water source for plants. In this study we examined the water use of three co-dominant tree species on the eastern rim of the karstic Edwards Plateau where the soil is extremely rocky, only 20 -30 cm thick, and overlies a well-developed epikarst. We used Granier sap flow sensors to estimate changes in sapflow velocity with the onset of summer drought. Simultaneously, we measured precipitation inputs and drip rates in a shallow cave below the field site. Precipitation, stem and drip water were also periodically sampled for stable isotope analysis to match stem water with potential source waters. The year of the study, 2009, was characterized by extreme drought conditions developing during summer. Sap flow rates began to decline in mid-May for all three species, but there were distinct species differences in the development of water stress: live oak (Quercus fusiformis) was the first to show significant loss of transpiration, reaching minimal sap flow values by early June. Cedar elm (Ulmus crassifolia) reached minimal sap flow values by early July, while Ashe juniper’s (Juniperus ashei) loss of transpiration was very gradual, continuing to decline until early August. The isotope ratios of hydrogen and oxygen in water were not significantly different between species, suggesting that root development and water uptake was similarly constrained for the three species. In summer, all stem water isotope ratios were enriched relative to precipitation, while all drip waters coincided with the local meteoric water line. This suggests that tree water sources were relatively shallow and water draining out of the root zone did not have a

  9. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.

    2016-05-18

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland

  10. Numerical modelling of fracture displacements due to thermal load from a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva; Olofsson, Stig-Olof [Itasca Geomekanik AB, Stockholm (Sweden)

    2002-01-01

    The objective of the project has been to estimate the largest shear displacements that could be expected on a pre-existing fracture located in the repository area, due to the heat release from the deposited waste. Two-dimensional numerical analyses using the 'Universal Distinct Element Code' (UDEC) have been performed. The UDEC models represent a vertical cross section of a KBS-3 type repository with a large planar fracture intersecting a deposition hole at the repository centre. The extension, dip and mechanical properties of the fracture were changed in different models to evaluate the influence of these parameters on fracture shear displacements. The fracture was modelled using a Coulomb slip criterion with no cohesion and no dilation. The rock mass surrounding the fracture was modelled as a homogeneous, isotropic and elastic material, with a Young's modulus of 40 GPa. The initial heat release per unit repository area was assumed to be 8W/m{sup 2} (total power/total repository area). The shear displacements occur due to the thermal expansion of the rock surrounding the heat generating canisters. The rock mass is almost free to expand vertically, but is constrained horizontally, which gives a temperature-induced addition of shear stresses in the plane of the fracture. The shear movement of the fracture therefore follows the temperature development in the surrounding rock and the maximum shear displacement develops about 200 years after the waste deposition. Altogether, twenty cases are analysed. The maximum shear displacement, which occurs at the fracture centre, amounts to 0.2-13.8 cm depending on the fracture parameters. Among the analysed cases, the largest shear values, about 13 cm, was calculated for the cases with about 700 m long fractures with a shear stiffness of 0.005 GPa/m. Also, for large fractures with a higher shear stiffness of 5 GPa/m, but with a low friction angle (15 deg), the shear displacement reaches similar magnitudes, about

  11. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    Science.gov (United States)

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (Ptibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Observation of localized strains on vertically grown single-walled carbon nanotube forests via polarized Raman spectroscopy

    International Nuclear Information System (INIS)

    Park, June; Seong, Maeng-Je; Heo, Kwang; Hong, Seunghun; Min, Yo-Sep

    2014-01-01

    Vertically grown single-walled carbon nanotube (V-SWCNT) forests, synthesized by water-assisted plasma-enhanced chemical vapor deposition, were studied using polarized micro-Raman spectroscopy. Among three different sections (root, center and end) along the vertical growth direction, the degree of V-SWCNT alignment was highest in the center section. Raman frequency red-shifts up to 7 and 13 cm −1 , for RBM and G-band, respectively, were observed in the center section, with respect to the Raman frequencies measured in the root and the end sections. Raman frequency downshift and concurrent linewidth broadening of the G-band, revealing a localized strain, were also observed in the center section. The existence of a localized strain in the center section of the V-SWCNT was further confirmed by observing a strong polarization anisotropy of up to 8 cm −1 in the G-band Raman frequency for different polarized Raman scattering configurations at the same probed spot. (paper)

  13. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  14. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, P. F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, P. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, T. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ulrich, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, D. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guglielmi, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ajo-Franklin, J. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, T. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, J. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Lord, N. E. [Univ. of Wisconsin, Madison, WI (United States); Haimson, B. C. [Univ. of Wisconsin, Madison, WI (United States); Sone, H. [Univ. of Wisconsin, Madison, WI (United States); Vigilante, P. [Univ. of Wisconsin, Madison, WI (United States); Roggenthen, W. M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Doe, T. W. [Golder Associates Inc., Toronto, ON (Canada); Lee, M. Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingraham, M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, E. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhou, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, P. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coblentz, D. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heise, J. [Stanford Underground Research Facility, Lead, SD (United States); Zoback, M. D. [Stanford Univ., CA (United States)

    2016-11-04

    In support of the U.S. DOE SubTER Crosscut initiative, we established a field test facility in a deep mine and designed and carried out in situ hydraulic fracturing experiments in the crystalline rock at the site to characterize the stress field, understand the effects of rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The project also included pre- and post-fracturing simulation and analysis, laboratory measurements and experiments, and we conducted an extended analysis of the local stress state using previously collected data. Some of these activities are still ongoing. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) experiments meet objectives in SubTER’s “stress” pillar and the “new subsurface signals” pillar. The kISMET site was established in the West Access Drift of SURF 4850 ft (1478 m) below ground (on the 4850L) in phyllite of the Precambrian Poorman Formation. We drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume at ~1528 m (5013 ft). Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale (~1 cm or smaller) changes in the mechanical properties of the rock. The load-displacement record on the core suggests that the elastic stiffness is anisotropic. Tensile strength ranges between 3-7.5 MPa and 5-12 MPa. Permeability measurements are planned, as are two types of laboratory miniature hydraulic fracturing experiments to investigate the importance of rock fabric (anisotropy and heterogeneity) on near-borehole hydraulic fracture generation. Pre-fracturing numerical simulations with INL’s FALCON discrete element code predicted a fracture radius of 1.2 m for a corresponding injection volume of 1.2 L for the planned fractures, and

  15. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  16. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  17. Interpretation of Microseismicity Observed From Surface and Borehole Seismic Arrays During Hydraulic Fracturing in Shale - Bedding Plane Slip Model

    Science.gov (United States)

    Stanek, F.; Jechumtalova, Z.; Eisner, L.

    2017-12-01

    We present a geomechanical model explaining microseismicity induced by hydraulic fracturing in shales developed from many datasets acquired with two most common types of seismic monitoring arrays, surface and dual-borehole arrays. The geomechanical model explains the observed source mechanisms and locations of induced events from two stimulated shale reservoirs. We observe shear dip-slip source mechanisms with nodal planes aligned with location trends. We show that such seismicity can be explained as a shearing along bedding planes caused by aseismic opening of vertical hydraulic fractures. The source mechanism inversion was applied only to selected high-quality events with sufficient signal-to-noise ratio. We inverted P- and P- and S-wave arrival amplitudes to full-moment tensor and decomposed it to shear, volumetric and compensated linear vector dipole components. We also tested an effect of noise presented in the data to evaluate reliability of non-shear components. The observed seismicity from both surface and downhole monitoring of shale stimulations is very similar. The locations of induced microseismic events are limited to narrow depth intervals and propagate along distinct trend(s) showing fracture propagation in direction of maximum horizontal stress from injection well(s). The source mechanisms have a small non-shear component which can be partly explained as an effect of noise in the data, i.e. events represent shearing on faults. We observe predominantly dip-slip events with a strike of the steeper (almost vertical) nodal plane parallel to the fracture propagation. Therefore the other possible nodal plane is almost horizontal. The rake angles of the observed mechanisms divide these dip-slips into two groups with opposite polarities. It means that we observe opposite movements on the nearly identically oriented faults. Realizing a typical structural weakness of shale in horizontal planes, we interpret observed microseismicity as a result of shearing

  18. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  19. Estimation of In Situ Stresses with Hydro-Fracturing Tests and a Statistical Method

    Science.gov (United States)

    Lee, Hikweon; Ong, See Hong

    2018-03-01

    At great depths, where borehole-based field stress measurements such as hydraulic fracturing are challenging due to difficult downhole conditions or prohibitive costs, in situ stresses can be indirectly estimated using wellbore failures such as borehole breakouts and/or drilling-induced tensile failures detected by an image log. As part of such efforts, a statistical method has been developed in which borehole breakouts detected on an image log are used for this purpose (Song et al. in Proceedings on the 7th international symposium on in situ rock stress, 2016; Song and Chang in J Geophys Res Solid Earth 122:4033-4052, 2017). The method employs a grid-searching algorithm in which the least and maximum horizontal principal stresses ( S h and S H) are varied, and the corresponding simulated depth-related breakout width distribution as a function of the breakout angle ( θ B = 90° - half of breakout width) is compared to that observed along the borehole to determine a set of S h and S H having the lowest misfit between them. An important advantage of the method is that S h and S H can be estimated simultaneously in vertical wells. To validate the statistical approach, the method is applied to a vertical hole where a set of field hydraulic fracturing tests have been carried out. The stress estimations using the proposed method were found to be in good agreement with the results interpreted from the hydraulic fracturing test measurements.

  20. Fracture mapping in geothermal fields with long-offset induction logging

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro [and others

    1997-12-31

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  1. An in vitro study to determine fracture resistance of tooth roots after different instrumentation techniques

    Directory of Open Access Journals (Sweden)

    Marri Shilpa Reddy

    2016-01-01

    Conclusion: Preparation of canals with a conventional hand instrumentation technique using 0.02 taper K-files showed highest fracture resistance with least amount of dentin removed at all levels followed by Endowave, ProTaper Hand, and Rotary files.

  2. Fracture Initiation of an Inhomogeneous Shale Rock under a Pressurized Supercritical CO2 Jet

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2017-10-01

    Full Text Available Due to the advantages of good fracture performance and the application of carbon capture and storage (CCS, supercritical carbon dioxide (SC-CO2 is considered a promising alternative for hydraulic fracturing. However, the fracture initiation mechanism and its propagation under pressurized SC-CO2 jet are still unknown. To address these problems, a fluid–structure interaction (FSI-based numerical simulation model along with a user-defined code was used to investigate the fracture initiation in an inhomogeneous shale rock. The mechanism of fracturing under the effect of SC-CO2 jet was explored, and the effects of various influencing factors were analyzed and discussed. The results indicated that higher velocity jets of SC-CO2 not only caused hydraulic-fracturing ring, but also resulted in the increase of stress in the shale rock. It was found that, with the increase of perforation pressure, more cracks initiated at the tip. In contrast, the length of cracks at the root decreased. The length-to-diameter ratio and the aperture ratio distinctly affected the pressurization of SC-CO2 jet, and contributed to the non-linear distribution and various maximum values of the stress in shale rock. The results proved that Weibull probability distribution was appropriate for analysis of the fracture initiation. The studied parameters explain the distribution of weak elements, and they affect the stress field in shale rock.

  3. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  4. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  5. Esthetic rehabilitation of complicated crown fractures utilizing rapid orthodontic extrusion and two different restoration modalities.

    Science.gov (United States)

    Milardovic Ortolan, Sladana; Strujic, Mihovil; Aurer, Andrej; Viskic, Josko; Bergman, Lana; Mehulic, Ketij

    2012-01-01

    This case report describes the management of a crown-root fractured maxillary right central incisor and a crown fractured maxillary left central incisor using two different techniques. A complex procedure was designed to manage this case including orthodontic extrusion to move the fracture line above the alveolar bone and surgical recontouring of the altered gingival margin. Finally, the right incisor was restored prosthodontically. Prosthetic treatment was based on performing a post and core, and all-ceramic crown on the extruded tooth. The left, less-damaged incisor was restored directly using composite resin. The treatment resulted in good esthetics and secured periodontal health. This case report demonstrates that a multidisciplinary treatment approach is a reliable and predictable option to save a tooth. How to cite this article: Ortolan SM, Strujic M, Aurer A, Viskic J, Bergman L, Mehulic K. Esthetic Rehabilitation of Complicated Crown Fractures Utilizing Rapid Orthodontic Extrusion and Two Different Restoration Modalities. Int J Clin Pediatr Dent 2012;5(1):64-67.

  6. Pharmacognostical and phytochemical studies on roots of Bombax ceiba Linn.

    Directory of Open Access Journals (Sweden)

    Pankaj H. Chaudhary

    2014-12-01

    Full Text Available Context: Bombax ceiba Linn. (Bombacaceae is a well-known plant for its antihypertensive, antioxidant, antidiabetic, aphrodisiac and uterine tonicity properties. Aims: To study pharmacognostical, physicochemical and phytochemically the roots of this plant. Methods: Pharmacognostical study included the macroscopic characters like size, color, surface characteristics, texture, fracture characteristics and odor of the roots. The intact root as well as powdered drug were studied under a microscope to analyze the cellular characteristics of the drug. Physicochemical parameter like extractive values, loss on drying (LOD, total ash, water-soluble and acid insoluble ash, foaming index and hemolytic index of Bombax ceiba root powder were determined as per WHO guidelines. Preliminary phytochemical screening and qualitative chemical examination studies have been carried out for the various phytoconstituents. HPTLC have also carried out using cyclohexane: diethyl ether: ethyl acetate as mobile phase. Results: Chemical evaluation and TLC studies shown presence of alkaloids, glycosides, flavonoids, steroids, saponins and tannins. The microscopic characters have shown presence of cork, cambium, xylem vessels, stone cells, starch grains, calcium oxalate crystals and phloem fibers. Microscopy analysis of the powder included the cork cells, fibers, calcium oxalate crystals and vessel. The presence of steroids was confirmed in HPTLC fingerprinting studies. Conclusions: Pharmacognostical and preliminary phytochemical screening of Bombax ceiba roots will be useful in order to authenticate, standardize and avoid any adulteration in the raw material. The diagnostic microscopic characters and physicochemical data will be helpful in the development of a monograph. The chromatographic fingerprinting profile can be used to standardize extracts and formulations containing Bombax ceiba roots.

  7. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    Science.gov (United States)

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  8. Clinical assessment tools identify functional deficits in fragility fracture patients

    Directory of Open Access Journals (Sweden)

    Ames TD

    2016-05-01

    Full Text Available Tyler D Ames,1 Corinne E Wee,1 Khoi M Le,1 Tiffany L Wang,1 Julie Y Bishop,2 Laura S Phieffer,2 Carmen E Quatman2 1The Ohio State University College of Medicine, 2Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA Purpose: To identify inexpensive, noninvasive, portable, clinical assessment tools that can be used to assess functional performance measures that may put older patients at risk for falls such as balance, handgrip strength, and lumbopelvic control.Patients and methods: Twenty fragility fracture patients and 21 healthy control subjects were evaluated using clinical assessment tools (Nintendo Wii Balance Board [WBB], a handheld dynamometer, and an application for the Apple iPod Touch, the Level Belt that measure functional performance during activity of daily living tasks. The main outcome measurements were balance (WBB, handgrip strength (handheld dynamometer, and lumbopelvic control (iPod Touch Level Belt, which were compared between fragility fracture patients and healthy controls.Results: Fragility fracture patients had lower scores on the vertical component of the WBB Torso Twist task (P=0.042 and greater medial–lateral lumbopelvic sway during a 40 m walk (P=0.026 when compared to healthy controls. Unexpectedly, the fracture patients had significantly higher scores on the left leg (P=0.020 and total components (P=0.010 of the WBB Single Leg Stand task as well as less faults during the left Single Leg Stand task (P=0.003.Conclusion: The clinical assessment tools utilized in this study are relatively inexpensive and portable tools of performance measures capable of detecting differences in postural sway between fragility fracture patients and controls. Keywords: fall risk, geriatric fracture, Nintendo Wii Balance Board, Level Belt, fragility fracture

  9. Geological discrete-fracture network model (version 1) for the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Fox, A.; Buoro, A.; Dahlbo, K.; Wiren, L.

    2009-10-01

    This report describes the methods, analyses, and conclusions of the modelling team in the production of a discrete-fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 500 m; an upper scale limit is not expressly defined, but the DFN model explicitly excludes structures at deformation-zone scales (∼ 500 m) and larger. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modelling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is currently planned to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches (as of July 2007), geological and structural data from cored boreholes (as of July 2007), and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory (January 2008). The modelling results suggest that the rock volume at Olkiluoto surrounding the ONKALO tunnel can be separated into three distinct volumes (fracture domains): an upper block, an intermediate block, and a lower block. The three fracture domains are bounded horizontally and vertically by large deformation zones. Fracture properties, such as fracture orientation and relative orientation set intensity, vary between fracture domains. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east, a subvertically-dipping fracture set striking roughly north-south, and a subverticallydipping fracture set

  10. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    Science.gov (United States)

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  11. Effect of Asparagus racemosus on fracture healing in rabbits: a radiographic and angiographic study

    International Nuclear Information System (INIS)

    Singh, Sunil; Singh, H.N.; Gangwar, A.K.; Devi, Kh. Sangeeta; Waghay, J.Y.

    2009-01-01

    New Zealand white rabbits (18) were randomly divided into groups I and II (control) having 9 animals in each group. The fracture of ulna was created in each animal under general anaesthesia using thiopental sodium (2.5%). Radius acted as a natural splint. The animals of group I were fed with powdered Asparagus racemosus along with rabbit feed throughout the study period. However, in group II animals only powdered rabbit feed was given. Healing at the fracture site was assessed by plain radiography and angiography at 7th, 14th, 21st and 28th day interval. Radiographical observation revealed a well organized and dense callus at 21st day in animals of group I whereas in animals of group II, callus of slightly less radiographic density was observed at this interval. Angiographic observation revealed hypervascularity at the fracture site at 7th and 14th day interval in group I animals. On day 14, in group II animals major vessels lack continuity along with reduced vascularity around the fracture site. The results of present study suggest that feeding of dry root powder of Asparagus racemosus promotes early fracture healing in rabbits

  12. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Salas Zamarripa, A., E-mail: a.salaszamarripa@gmail.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad S/N, Ciudad Universitaria, C.P. 66451, Apartado Postal 076 Suc. ' F' San Nicolas de los Garza, N.L. (Mexico); Pinna, C.; Brown, M.W. [Department of Mechanical Engineering, University of Sheffield. Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad S/N, Ciudad Universitaria, C.P. 66451, Apartado Postal 076 Suc. ' F' San Nicolas de los Garza, N.L. (Mexico)

    2011-12-15

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to

  13. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    International Nuclear Information System (INIS)

    Salas Zamarripa, A.; Pinna, C.; Brown, M.W.; Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P.

    2011-01-01

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 °C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 °C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 °C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: ► Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. ► A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 °C testing. ► Development of a quantitative methodology to obtain the percentage of modes of fracture within the fracture surface.

  14. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    Science.gov (United States)

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p  0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use.

    Science.gov (United States)

    Inan, Ugur; Gonulol, Nihan

    2009-10-01

    In recent years, a number of rotary nickel titanium (NiTi) systems have been developed to provide better, faster, and easier cleaning and shaping of the root canal system. Although the NiTi instruments are more flexible than the stainless steel files, the main problem with the rotary NiTi instruments is the failure of the instruments. The aim of this study was to evaluate the deformation and fracture rate of Mtwo rotary nickel-titanium instruments (VDW, Munich, Germany) discarded after routine clinical use. A total of 593 Mtwo rotary NiTi instruments were collected after clinical use from the clinic of endodontics over 12 months. The length of the files was measured using a digital caliper to determine any fracture, and then all the files were evaluated under a stereomicroscope for defects such as unwinding, curving, or bending and fracture. The fracture faces of separated files were also evaluated under a scanning electron microscope. The data were analyzed using a chi-square and z test. A percentage of all files (25.80%) showed defects, and the major defect was fracture (16.02%). The most frequently fractured file was #10.04 (30.39%). Deformations without fracture were mostly observed on #15.05 files (25.47%). A higher rate of deformation was observed for #10.04 and #15.05 files. Therefore, these files should be considered as single-use instruments. Because cyclic fatigue was the cause of 71.58% of the instrument fractures, it is also important not to exceed the maximum number of usage recommended by the manufacturer and discard the instruments on a regular basis.

  16. Endodontic and periodontal treatments of a geminated mandibular first premolar.

    Science.gov (United States)

    Aryanpour, S; Bercy, P; Van Nieuwenhuysen, J-P

    2002-02-01

    To describe a rare case of gemination involving a mandibular first premolar. The complex morphology of geminated teeth renders their endodontic and periodontal management difficult. Root canal and periodontal treatments were performed on a geminated mandibular first premolar with three canals. Clinical examination showed two separated crowns with united roots. Radiographically, two distinct pulp chambers with two joined and a third independent canal were seen. Conventional root canal treatment resulted in complete healing of the apical lesion. However, the occurrence of a vertical fracture led to the extraction of the mesial segment. At the follow-up visit, the distal segment was clinically healthy and continued to satisfy functional demands.

  17. A gas migration test in saturated, fractured rock - final report for the joint UKDOE/AECL project, phase 2

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A.

    1991-12-01

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model derived from Thunvik and Braester (1987). Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determined the hydraulic conductivity of individual gas flow paths in the fractured rock. (author). 23 refs., 5 tabs., 37 figs

  18. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    Science.gov (United States)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  19. Cement augmentation of implants--no general cure in osteoporotic fracture treatment. A biomechanical study on non-displaced femoral neck fractures.

    Science.gov (United States)

    Hofmann-Fliri, Ladina; Nicolino, Tomas I; Barla, Jorge; Gueorguiev, Boyko; Richards, R Geoff; Blauth, Michael; Windolf, Markus

    2016-02-01

    Femoral neck fractures in the elderly are a common problem in orthopedics. Augmentation of screw fixation with bone cement can provide better stability of implants and lower the risk of secondary displacement. This study aimed to investigate whether cement augmentation of three cannulated screws in non-displaced femoral neck fractures could increase implant fixation. A femoral neck fracture was simulated in six paired human cadaveric femora and stabilized with three 7.3 mm cannulated screws. Pairs were divided into two groups: conventional instrumentation versus additional cement augmentation of screw tips with 2 ml TraumacemV+ each. Biomechanical testing was performed by applying cyclic axial load until failure. Failure cycles, axial head displacement, screw angle changes, telescoping and screw cut-out were evaluated. Failure (15 mm actuator displacement) occurred in the augmented group at 12,500 cycles (± 2,480) compared to 15,625 cycles (± 4,215) in the non-augmented group (p = 0.041). When comparing 3 mm vertical displacement of the head no significant difference (p = 0.72) was detected between the survival curves of the two groups. At 8,500 load-cycles (early onset failure) the augmented group demonstrated a change in screw angle of 2.85° (± 0.84) compared to 1.15° (± 0.93) in the non-augmented group (p = 0.013). The results showed no biomechanical advantage with respect to secondary displacement following augmentation of three cannulated screws in a non-displaced femoral neck fracture. Consequently, the indication for cement augmentation to enhance implant anchorage in osteoporotic bone has to be considered carefully taking into account fracture type, implant selection and biomechanical surrounding. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Active vertical tail buffeting suppression based on macro fiber composites

    Science.gov (United States)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  2. Deformation and velocity measurements at elevated temperature in a fractured 0.5 M block of tuff

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.A.

    1996-01-01

    This paper presents preliminary results of laboratory tests conducted on small block samples of Topopah Spring tuff, in support of the Yucca Mountain Site Characterization Project. The overall objective of these tests is to investigate the thermal-mechanical, thermal-hydrological, and thermal-chemical response of the rock to conditions similar to the near-field environment (NFE) of a potential nuclear waste repository. We present preliminary results of deformation and elastic wave velocity measurements on a 0.5-m-scale block of Topopah Spring tuff tested in uniaxial compression to 8.5 MPa and at temperatures to 85 degree C. The Young's modulus was found to be about 7 to 31 GPa for vertical measurements parallel to the stress direction across parts of the block containing no fractures or a few fractures, and 0.5 to 0.9 GPA for measurements across individual fractures, at ambient temperature and 8.5 MPa maximum stress. During stress cycles between 5 and 8.5 MPa, the deformation modulus values for the matrix with fractures were near 15-20 GPa at ambient temperature but dropped to about 10 GPa at 85 degree C. Compressional wave velocities were found to be about 3.6 to 4.7 km/s at ambient temperature and stress. After the stress was cycled, velocities dropped to values as low as 2.6 km/s in the south end of the block where vertical cracks developed. Heating the block to about 85 degree C raised velocities to as much as 5.6 km/s in the upper third of the block

  3. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures)

    Energy Technology Data Exchange (ETDEWEB)

    Bohndorf, K. [Department of Radiology, Zentralklinikum Augsburg (Germany)

    1999-10-01

    Fractures involving the articulating surfaces of bone are a common cause of chronic disability after joint injury. Acute fractures of the articular surface typically run parallel to the surface and are confined to the cartilage and/or the immediate subchondral cancellous bone. They should be distinguished from vertical or oblique bone fractures with intra-articular extension. This article reviews the mechanism of acute articular surface injuries, as well as their incidence, clinical presentation, radiologic appearance and treatment. A classification is presented based on direct inspection (arthroscopy) and imaging (especially MRI), emphasizing the distinction between lesions with intact (subchondral impaction and subchondral bone bruises) and disrupted (chondral, osteochondral lesions) cartilage. Hyaline cartilage, subchondral bone plate and subchondral cancellous bone are to be considered an anatomic unit. Subchondral articular surface lesions, osteochondral fractures and solely chondral fractures are different manifestations of impaction injuries that affect the articulating surface. Of the noninvasive imaging modalities, conventional radiography and MRI provide the most relevant information. The appropriate use of short tau inversion recovery, T1-weighted and T2-weighted (turbo) spin-echo as well as gradient-echo sequences, enables MRI to classify the various acute articular surface lesions with great accuracy and provides therapeutic guidance. (orig.)

  4. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures)

    International Nuclear Information System (INIS)

    Bohndorf, K.

    1999-01-01

    Fractures involving the articulating surfaces of bone are a common cause of chronic disability after joint injury. Acute fractures of the articular surface typically run parallel to the surface and are confined to the cartilage and/or the immediate subchondral cancellous bone. They should be distinguished from vertical or oblique bone fractures with intra-articular extension. This article reviews the mechanism of acute articular surface injuries, as well as their incidence, clinical presentation, radiologic appearance and treatment. A classification is presented based on direct inspection (arthroscopy) and imaging (especially MRI), emphasizing the distinction between lesions with intact (subchondral impaction and subchondral bone bruises) and disrupted (chondral, osteochondral lesions) cartilage. Hyaline cartilage, subchondral bone plate and subchondral cancellous bone are to be considered an anatomic unit. Subchondral articular surface lesions, osteochondral fractures and solely chondral fractures are different manifestations of impaction injuries that affect the articulating surface. Of the noninvasive imaging modalities, conventional radiography and MRI provide the most relevant information. The appropriate use of short tau inversion recovery, T1-weighted and T2-weighted (turbo) spin-echo as well as gradient-echo sequences, enables MRI to classify the various acute articular surface lesions with great accuracy and provides therapeutic guidance. (orig.)

  5. Immediate implant placement in canine region using root membrane technique with follow up 2 years case report

    Directory of Open Access Journals (Sweden)

    Mohamed Dohiem

    2018-06-01

    Full Text Available Following tooth extraction the underlying bone would undergo a lot of a remodeling phases leading to horizontal and vertical bone loss especially in the anterior teeth which results in loss of buccal plate of bone. The presence of sufficient thickness of buccal bone is essential for preservation of natural look and installed implant. A technique was introduced to preserve the sufficient thickness of buccal plate in the anterior region known as root membrane (root shielding. This technique would aim to preserve the root periodontal ligament intact with the root to preserve the buccal plate of bone and prevent the ridge from collapsing thus achieving an esthetic appearance. This technique would Section of the teeth in two halves buccolingually, leaving the buccal fragment of root intact and then placing the implant lingual to it.

  6. The role of physical activity in bone health: a new hypothesis to reduce risk of vertebral fracture.

    Science.gov (United States)

    Sinaki, Mehrsheed

    2007-08-01

    Locomotion has always been a major criterion for human survival. Thus, it is no surprise that science supports the dependence of bone health on weight-bearing physical activities. The effect of physical activity on bone is site-specific. Determining how to perform osteogenic exercises, especially in individuals who have osteopenia or osteoporosis, without exceeding the biomechanical competence of bone always poses a dilemma and must occur under medical advice. This article presents the hypothesis that back exercises performed in a prone position, rather than a vertical position, may have a greater effect on decreasing the risk for vertebral fractures without resulting in compression fracture. The risk for vertebral fractures can be reduced through improvement in the horizontal trabecular connection of vertebral bodies.

  7. The influence of overload on the orientation of hydraulic fractures in Fazenda Alvorada - state of Bahia - Brazil

    International Nuclear Information System (INIS)

    Araujo, Paulo Fernando de

    2000-01-01

    Based on density logs, the overload of Fazenda Alvorada field located in the state of Bahia (Brazil) presents an anomalous behavior in relation to the same sedimentary package of the Reconcavo Basin. This anomaly is in function of a relative uplift accompanied of a concomitant bearing or not, with the uplift doing with that the gradients of fracture propagation usually present high values. Comparisons among the gradients of fracture propagation, obtained step-rate-tests accomplished in reservoirs different from 7-FAV-83-BA well, and the overload of this field allowed to identify occurrences of vertical and horizontal fractures. The objective of this work is to present as these results were obtained, as well as its importance in the stimulation projects and of secondary recovery. (author)

  8. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  9. Model of mechanical representation of the formation of natural fractures inside a petroleum reservoir; Modele de representation mecanique de la formation des fractures naturelles d'un reservoir petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Picard, D.

    2005-09-15

    The optimisation of the oil production requires a better characterisation of naturally fractured reservoirs. We consider and analyse two spatial distributions. One with systematic joints is arranged in an homogeneous way; joint spacing is linked to individual bedding thickness with propagation frequently interrupted by stratigraphic interfaces (single layer jointing). The second, so-called fracture swarms, consists in fractures clustering, where stratigraphic interfaces seem to play a minor role. The analysis is based on the singularity theory and matched asymptotic expansions method with a fine scale for local perturbations and a global one for general trends. We examine the conditions of fracture propagation that are determined herein using simultaneously two fracture criteria an energy and a stress condition. We consider two modes of loading. Usually, the joint (crack opening mode) and fracture swarm growths are explained by a first order phenomenon involving effective traction orthogonal to fracture plane. Although commonly used, this hypothesis seems unrealistic in many circumstances and may conflict with geological observations. Then, we try to describe fracture growth as a second order phenomena resulting from crack parallel compression. As far as propagation across layer interfaces is concerned, the effect of loading and geometry has been summarised in maps of fracture mechanisms, describing areas of 'step-over', 'straight through propagation' and 'crack arrest'. Fracture criteria, relative size of heterogeneities, contrast of mechanical properties between bed and layer are parameters of the problem. For fracture swarms, we present a discussion bringing out what is reasonable as a loading to justify their morphology. In particular, horizontal effective tension is unable to explain neighbouring joints. Simultaneous propagation of parallel near cracks is explained by finite width cracks growing under the influence of vertical

  10. Facies-related fracturing in turbidites: insights from the Marnoso-Arenacea Fm. (Northern Apennines, Italy)

    Science.gov (United States)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Bedogni, Enrico; Tinterri, Roberto; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2016-04-01

    Natural fractures deeply influence subsurface fluid flow, exerting a primary control on resources like aquifers, hydrocarbons and geothermal reservoirs, and on environmental issues like CO2 storage and nuclear waste disposal. In layered sedimentary rocks, depositional processes-imprinted rock rheology favours the development of both mechanical anisotropy and heterogeneity on a wide range of scales, and are thus expected to strongly influence location and frequency of fractures. To better constrain the contribution of stratigraphic, sedimentological and petrophysical attributes, we performed a high-resolution, multidisciplinary study on a selected stratigraphic interval of jointed foredeep turbidites in the Miocene Marnoso-arenacea Formation (Northern Apennines, Italy), which are characterised by a great lateral and vertical variability of grain-size and depositional structures. Statistical relationships among field and laboratory data significantly improve when the single facies scale is considered, and, for similar facies recording different evolutionary stages of the parent turbidity currents, we observed a direct correlation between the three-dimensional anisotropies of rock hardness tensors and the normalized fracture frequencies, testifying for the primary sedimentary flow-related control on fracture distributions.

  11. Self-designed femoral neck guide pin locator for femoral neck fractures.

    Science.gov (United States)

    Xia, Shengli; Wang, Ziping; Wang, Minghui; Wu, Zuming; Wang, Xiuhui

    2014-01-01

    Closed reduction and fixation with 3 cannulated screws is a widely accepted surgery for the treatment of femoral neck fractures. However, how to obtain optimal screw placement remains unclear. In the current study, the authors designed a guide pin positioning system for femoral neck fracture cannulated screw fixation and examined its application value by comparing it with freehand guide needle positioning and with general guide pin locator positioning provided by equipment manufacturers. The screw reset rate, screw parallelism, triangle area formed by the link line of the entry point of 3 guide pins, and maximum vertical load bearing of the femoral neck after internal fixation were recorded. As expected, the triangle area was largest in the self-designed positioning group, followed by the general positioning group and the freehand positioning group. The difference among the 3 groups was statistically significant (P.05). The authors’ self-designed guide pin positioning system has the potential to accurately insert cannulated screws in femoral neck fractures and may reduce bone loss and unnecessary radiation.

  12. Anisotropy, reversibility and scale dependence of transport properties in single fracture and fractured zone - Non-sorbing tracer experiment at the Kamaishi mine

    International Nuclear Information System (INIS)

    Sawada, Atushi; Uchida, Masahiro; Shimo, Michito; Yamamoto, Hajime; Takahara, Hiroyuki; Doe, T.W.

    2001-01-01

    A comprehensive set of the non-sorbing tracer experiments were run in the granodiorite of the Kamaishi mine located in the northern part of the main island of Japan-Honshu. A detailed geo-hydraulic investigation was carried out prior to performing the tracer migration experiments. The authors conducted a detailed but simple investigation in order to understand the spatial distribution of conductive fractures and the pressure field. Seven boreholes were drilled in the test area of which dimension is approximately 80 meters by 60 meters, revealing hydraulic compartmentalization and a heterogeneous distribution of conductive features. Central three boreholes which are approx. 2 to 4 meters apart form a triangle array. After identifying two hydraulically isolated fractures and one fractured zone, a comprehensive non-sorbing tracer experiments were conducted. Four different dipole fields were used to study the heterogeneity within a fracture. Firstly, anisotropy was studied using the central borehole array of three boreholes and changing injection/withdrawal wells. Secondly, dipole ratio was varied to study how prume spread could affect the result. Thirdly, reversibility was studied by switching injection/withdrawal wells. Lastly, scale dependency was studied by using outer boreholes. The tracer breakthrough curves were analyzed by using a streamline, analytical solution and numerical analysis of mass transport. Best-fit calculations of the experimental breakthrough curves were obtained by assigning apertures within the range of 1-10 times the square root of transmissivity and a dispersion length equal to 1/10 of the migration length. Different apertures and dispersion lengths were also interpreted in anisotropy case, reversibility case and scale dependency case. Fractured zone indicated an increased aperture and increased dispersivity

  13. Investigation of hydraulic fracture re-orientation effects in tight gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, B.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. The initial fracture opens in the direction of minimum stress and propagates into the direction of maximum stress. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the formation in the vicinity of the wellbore. Previous investigations by Elbel and Mack (1993) demonstrated that the stress alters during depletion and a stress reversal region appears. This behavior causes a different fracture orientation of the re-fracturing operation. For the investigation of re-fracture orientation a two-dimensional reservoir model has been designed using COMSOL Multiphysics. The model represents a fractured vertical well in a tight gas reservoir of infinite thickness. A time dependent study was set up to simulate the reservoir depletion by the production from the fractured well. The theory of poroelasticity was used to couple the fluid flow and geo-mechanical behavior. The stress state is initially defined as uniform and the attention is concentrated to the alteration of stress due to the lowered pore pressure. Different cases with anisotropic and heterogeneous permeability are set up to determine its significance. The simulation shows that an elliptical shaped drainage area appears around the fracture. The poroelastic behavior effects that the stress re-orientates and a stress reversal region originates, if the difference between minimum and maximum horizontal stresses is small. The consideration of time indicates that the dimension of the region initially extends fast until it reaches its maximum. Subsequently, the stress reversal region's extent shrinks slowly until it finally disappears. The reservoir characteristics, e.g. the

  14. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  15. Effect of piezocision on root resorption associated with orthodontic force: A microcomputed tomography study.

    Science.gov (United States)

    Patterson, Braydon M; Dalci, Oyku; Papadopoulou, Alexandra K; Madukuri, Suman; Mahon, Jonathan; Petocz, Peter; Spahr, Axel; Darendeliler, M Ali

    2017-01-01

    The purpose of this study was to investigate the effect of piezocision on orthodontically induced inflammatory root resorption. Fourteen patients were included in this split-mouth study; 1 side was assigned to piezocision, and the other side served as the control. Vertical corticotomy cuts of 4 to 5 mm in length were performed on either side of each piezocision premolar, and 150-g buccal tipping forces were applied to the premolars. After 4 weeks, the maxillary first premolars were extracted and scanned with microcomputed tomography. There was a significantly greater total amount of root resorption seen on the piezocision sides when compared with the control sides (P = 0.029). The piezocision procedure resulted in a 44% average increase in root resorption. In 5 patients, there was noticeable piezocision-related iatrogenic root damage. When that was combined with the orthodontic root resorption found on the piezocision-treated teeth, there was a statistically significant 110% average increase in volumetric root loss when compared with the control side (P = 0.005). The piezocision procedure that initiates the regional acceleratory phenomenon may increase the iatrogenic root resorption when used in conjunction with orthodontic forces. Piezocision applied close to the roots may cause iatrogenic damage to the neighboring roots and should be used carefully. Copyright © 2017.

  16. Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method

    Directory of Open Access Journals (Sweden)

    Xuguang Xing

    2018-05-01

    Full Text Available The laboratory methods used for the soil water retention curve (SWRC construction and parameter estimation is time-consuming. A vertical infiltration method was proposed to estimate parameters α and n and to further construct the SWRC. In the present study, the relationships describing the cumulative infiltration and infiltration rate with the depth of the wetting front were established, and simplified expressions for estimating α and n parameters were proposed. The one-dimensional vertical infiltration experiments of four soils were conducted to verify if the proposed method would accurately estimate α and n. The fitted values of α and n, obtained from the RETC software, were consistent with the calculated values obtained from the infiltration method. The comparison between the measured SWRCs obtained from the centrifuge method and the calculated SWRCs that were based on the infiltration method displayed small values of root mean square error (RMSE, mean absolute percentage error (MAPE, and mean absolute error. SWMS_2D-based simulations of cumulative infiltration, based on the calculated α and n, remained consistent with the measured values due to small RMSE and MAPE values. The experiments verified the proposed one-dimensional vertical infiltration method, which has applications in field hydraulic parameter estimation.

  17. Analysis of fracture surface of CFRP material by three-dimensional reconstruction methods

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.

    2009-01-01

    Fracture surfaces of CFRP (carbon Fiber Reinforced Polymer) materials, used in the nuclear fuel cycle, presents an elevated roughness, mainly due to the fracture mode known as pulling out, that displays pieces of carbon fibers after debonding between fiber and matrix. The fractographic analysis, by bi-dimensional images is deficient for not considering the so important vertical resolution as much as the horizontal resolution. In this case, the knowledge of this heights distribution that occurs during the breaking, can lead to the calculation of the involved energies in the process that would allows a better agreement on the fracture mechanisms of the composite material. An important solution for the material characterization, whose surface presents a high roughness due to the variation in height, is to reconstruct three-dimensionally these fracture surfaces. In this work, the 3D reconstruction was done by two different methods: the variable focus reconstruction, through a stack of images obtained by optical microscopy (OM) and the parallax reconstruction, carried through with images acquired by scanning electron microscopy (SEM). The results of both methods present an elevation map of the reconstructed image that determine the height of the surface pixel by pixel,. The results obtained by the methods of reconstruction for the CFRP surfaces, have been compared with others materials such as aluminum and copper that present a ductile type fracture surface, with lower roughness. (author)

  18. Identification of the Procedural Accidents During Root Canal Preparation Using Digital Intraoral Radiography and Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Csinszka K.-Ivácson A.-

    2016-09-01

    Full Text Available Crown or root perforation, ledge formation, fractured instruments and perforation of the roots are the most important accidents which appear during endodontic therapy. Our objective was to evaluate the value of digital intraoral periapical radiographs compared to cone beam computed tomography images (CBCT used to diagnose some procedural accidents. Material and methods: Eleven extracted molars were used in this study. A total of 18 perforations and 13 ledges were created artifically and 10 instruments were fractured in the root canals. Digital intraoral periapical radiographs from two angles and CBCT scans were made with the teeth fixed in position. The images were evaluated and the number of detected accidents were stated in percentages. Statistical analysis was performed using the chi square-test. Results: On digital periapical radiographs the evaluators identified 12 (66.66% perforations, 10 (100 % separated instruments and 10 (76.9% created ledges. The CBCT scans made possible the recognition of 17 (94.66 % perforations, 9 (90 % separated instruments and 13 (100% ledges. The totally recognized accidental procedures showed significant differences between the two groups. (p<0.05 Conclusion: Digital periapical radiographs are the most common imaging modalities used during endodontic treatments. Though, the CBCT allows a better identification of the procedural accidents.

  19. Open reduction and internal fixation of patellar fractures with tension band wiring through cannulated screws.

    Science.gov (United States)

    Malik, Mudasir; Halwai, Manzoor Ahmad

    2014-10-01

    The purpose of this study was to evaluate effectiveness and safety of a relatively new technique of open reduction and internal fixation of displaced transverse patellar fractures with tension band wiring (TBW) through parallel cannulated compression screws. A total of 30 patients with displaced transverse patellar fracture were enrolled in this prospective study. Of the 30 patients, 20 patients had trauma due to fall, 5 due to road traffic accident, 2 due to fall of heavy object on the knee, 2 due to forced flexion of knee, and 1 had fracture due to being beaten. All 30 patients were treated with vertical skin exposure, fracture open reduction, and internal fixation by anterior TBW through 4.0 mm cannulated screws. The postoperative rehabilitation protocol was standardized. The patients were followed postsurgery to evaluate time required for radiographic bone union, knee joint range of motion (ROM), loss of fracture reduction, material failure, and the overall functional result of knee using Bostman scoring. All the fractures healed radiologically, at an average time of 10.7 weeks (range, 8-12 weeks). The average ROM arc was 129.7 degrees (range, 115-140 degrees). No patient had loss of fracture reduction, implant migration, or material failure. The average Bostman score was 28.6 out of 30. Anterior TBW through cannulated screws for displaced transverse fractures is safe and effective alternative treatment. Good functional results and recovery can be expected. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  1. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    Science.gov (United States)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  2. A new method in predicting productivity of multi-stage fractured horizontal well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yunsheng Wei

    2016-10-01

    Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every

  3. Experimental Analysis of Hydraulic Fracture Growth and Acoustic Emission Response in a Layered Formation

    Science.gov (United States)

    Ning, Li; Shicheng, Zhang; Yushi, Zou; Xinfang, Ma; Shan, Wu; Yinuo, Zhang

    2018-04-01

    Microseismic/acoustic emission (AE) monitoring is an essential technology for understanding hydraulic fracture (HF) geometry and stimulated reservoir volume (SRV) during hydraulic fracturing in unconventional reservoirs. To investigate HF growth mechanisms and features of induced microseismic/AE events in a layered formation, laboratory fracturing experiments were performed on shale specimens (30 cm × 30 cm × 30 cm) with multiple bedding planes (BPs) under triaxial stresses. AE monitoring was used to reveal the spatial distribution and hypocenter mechanisms of AE events induced by rock failure. Computerized tomography scanning was used to observe the internal fracture geometry. Experimental results showed that the various HF geometries could be obviously distinguished based on injection pressure curves and AE responses. Fracture complexity was notably increased when vertically growing HFs connected with and opened more BPs. The formation of a complex fracture network was generally indicated by frequent fluctuations in injection pressure curves, intense AE activity, and three-dimensionally distributed AE events. Investigations of the hypocenter mechanisms revealed that shear failure/event dominated in shale specimens. Shear and tensile events were induced in hydraulically connected regions, and shear events also occurred around BPs that were not hydraulically connected. This led to an overestimation of HF height and SRV in layered formations based on the AE location results. The results also showed that variable injection rate and using plugging agent were conducive in promoting HF to penetrate through the weak and high-permeability BPs, thereby increasing the fracture height.

  4. Estimates of hydraulic fracturing (Frac) sand production, consumption, and reserves in the United States

    Science.gov (United States)

    Bleiwas, Donald I.

    2015-01-01

    The practice of fracturing reservoir rock in the United States as a method to increase the flow of oil and gas from wells has a relatively long history and can be traced back to 1858 in Fredonia, New York, when a gas well situated in shale of the Marcellus Formation was successfully fractured using black powder as a blasting agent. Nearly all domestic hydraulic fracturing, often referred to as hydrofracking or fracking, is a process where fluids are injected under high pressure through perforations in the horizontal portion of a well casing in order to generate fractures in reservoir rock with low permeability (“tight”). Because the fractures are in contact with the well bore they can serve as pathways for the recovery of gas and oil. To prevent the fractures generated by the fracking process from closing or becoming obstructed with debris, material termed “proppant,” most commonly high-silica sand, is injected along with water-rich fluids to maintain or “prop” open the fractures. The first commercial application of fracking in the oil and gas industry took place in Oklahoma and Texas during the 1940s. In 1949, over 300 wells, mostly vertical, were fracked (ALL Consulting, LLC, 2012; McGee, 2012; Veil, 2012) and used silica sand as a proppant (Fracline, 2011). The resulting increase in well productivity demonstrated the significant potential that fracking might have for the oil and gas industry.

  5. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    Science.gov (United States)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  6. A comparison between the effect of zirconia-coated FRC and glass fiber posts on the fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2014-04-01

    Full Text Available   Background and Aims : The root fracture resistance of endodontically treated teeth depends on the types of posts. The aim of this study was to compare the effect of two types of bonded non-metallic posts with different elasticity modulus on the fracture resistance of endodontically treated teeth under compressive loads.   Materials and Methods: In this in vitro experimental study, 20 fresh extracted mandibular premolars were selected and sectioned adjacent to the CEJ and then were endodontically treated. The specimens were randomly divided into two groups (n=10. After post space preparations, the fiber RTD Light posts (R.T.D, France and zirconia coated fiber posts (ICE light, Danville were cemented into the root canals. Composite resin (Lumiglass R.T.D, France cores were built up. Aluminium foil was used to mimic the PDL, and the specimens were embedded in acrylic resin and tested in a Universal Testing Machine. A compressive load was applied at a 90 degree angle until fracture at a crosshead speed of 1mm/min. Data were analyzed using one-way ANOVA and T test .   Results: The mean fracture resistance of R.T.D group was (1083.11 ± 156.74 (N and the mean of ICE light group was (865.18 ± 106.24 (N. The highest mean fracture resistance was observed in RTD fiberglass and a statistically significant difference was observed between the two groups (P<0.001.   Conclusion: FRC posts with zirconia coating due to unfavorable fractures of the teeth should be used with caution, and thus, fiber posts are preferred.

  7. Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Kim, Geon Young; Koh, Yong Kwon; Kim, Hyoung Soo

    2012-01-01

    The equation of the step-drawdown test 's w = BQ+CQ p ' written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated C (well head loss coefficient) and P (well head loss exponent) value of well head losses (CQ p ) ranged 3.689 x 10 -19 - 5.825 x 10 -7 and 3.459 - 8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The C and P value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of C and P value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between C and P value turned out very useful to interpret hydraulic properties of the fractured rocks.

  8. Fracture resistance of teeth submitted to several internal bleaching protocols.

    Science.gov (United States)

    Leonardo, Renato de Toledo; Kuga, Milton Carlos; Guiotti, Flávia Angélica; Andolfatto, Carolina; Faria-Júnior, Norberto Batista de; Campos, Edson Alves de; Keine, Kátia Cristina; Dantas, Andrea Abi Rached

    2014-03-01

    The aim of this study was to evaluate the fracture resistance of teeth submitted to several internal bleaching protocols using 35% hydrogen peroxide (35HP), 37% carbamide peroxide (37CP), 15% hydrogen peroxide with titanium dioxide nanoparticles (15HPTiO2) photoactivated by LED-laser or sodium perborate (SP). After endodontic treatment, fifty bovine extracted teeth were divided into five groups (n = 10): G1-unbleached; G2-35HP; G3-37CP; G4-15HPTiO2 photoactivated by LED-laser and G5-SP. In the G2 and G4, the bleaching protocol was applied in 4 sessions, with 7 days intervals between each session. In the G3 and G5, the materials were kept in the pulp teeth for 21 days, but replaced every 7 days. After 21 days, the teeth were subjected to compressive load at a cross head speed of 0.5 mm/min, applied at 135° to the long axis of the root using an eletromechanical testing machine, until teeth fracture. The data were submitted to ANOVA and Tukey tests (α = 5%). The 35HP, 37CP, 15HPTiO2 and SP showed similar fracture resistance teeth reduction (p > 0.05). All bleaching treatments reduced the fracture resistance compared to unbleached teeth (p endodontically-treated teeth, but there were no differences between each other. There are several internal bleaching protocols using hydrogen peroxide in different concentrations and activation methods. This study evaluated its effects on fracture resistance in endodontically-treated teeth.

  9. Study a possibility of saffron (Crocus sativus L. production in vertical culture

    Directory of Open Access Journals (Sweden)

    Lorin ali ahmad

    2017-06-01

    Full Text Available In recent years many research studies have been carried out to use a vertical planting system for production of some plants. Although saffron is one of the most expensive spices in the word, there is no investigation about saffron production in a vertical planting system. Therefore, the growth and production of saffron plant in two different systems (vertical and horizontal were studied in the agricultural research field of the Tarbiat Modares University during the 2013-2014 growing seasons. In the vertical system, saffron corms were planted in fabric bags containing potting soil. The fabric bags were hanged on a cube of metal with an area of each side of the cube being equal to 2.25 square meters. In the horizontal system, the corms were planted in three plots with the area of each plots being 2.25 square meters. The results showed that in the vertical planting system, the number of flowers, flower dry weight and dry weight of stigma per unit area of land (10 flower, 347.34 and 0.56 mg respectively were significantly higher than those obtained in the horizontal culture (They were almost three times higher .In contrast, the numbers and dry weight of lateral corms (2.4 corm and 0.36 g respectively and the dry weight of apical corm (0.88 g in the horizontal system were significantly greater than those obtained in the vertical system. Dry weight of leaf and root were significantly greater in the vertical system. The total number of buds and leaves were more in the horizontal culture. However, the maximum leaf length of the vertical planting system was higher than those of the horizontal system.

  10. Correlation between high resolution sequence stratigraphy and mechanical stratigraphy for enhanced fracture characteristic prediction

    Science.gov (United States)

    Al Kharusi, Laiyyan M.

    Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight

  11. On the mechanical interaction between a fluid-filled fracture and the earth's surface

    Science.gov (United States)

    Pollard, D.D.; Holzhausen, G.

    1979-01-01

    The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2

  12. A Prospective Study to Compare the Functional and Aesthetic Outcomes with and without Primary Bone Grafting in Facial Fractures

    Directory of Open Access Journals (Sweden)

    Narayanamurthy Sundaramurthy

    2017-10-01

    Full Text Available Introduction: Open Reduction and Internal Fixation (ORIF has been the gold standard in treatment of facial fractures. Bone grafts have been used to correct bone defects in face. Many studies assessing outcomes of ORIF and primary bone grafting separately have been published in literature. Aim: A prospective study to compare the functional and aesthetic outcomes with and without primary bone grafting in facial fractures. Materials and Methods: Thirty patients, admitted between January 2012 and December 2013, were divided into two groups. Group 1 patients underwent ORIF with primary bone grafting and in group 2, only ORIF was done. Clinical and functional, photographic and radiological assessments were done after one month and three months. Results: Mean value of vertical dystopia in groups 1 and 2 after three months postoperatively were 1.25mm and 0.67mm. Mean value of enophthalmos in groups 1 and 2 after three months postoperatively were 0.5mm and 1mm. Thus, vertical dystopia was corrected better without bone grafts and enophthalmos corrected better with bone grafts. Photographic assessment revealed no statistical difference between the two groups. Postoperatively, in upper face fractures, both groups had similar number of patients in grades 1 and 2. Only one patient from group 2 of midface fractures ended up with grade 3 asymmetry. Radiologically, in upper face fractures, group 2 had more mean projection, height and breadth deficits (1.28mm, 2.57mm and 2.42mm when compared to group 1 (0.67mm, 1.50mm and 0.50mm. The mean projection and height deficits were statistically better in group 1. In midface fractures, mean zygomatic complex projection and height deficits were more in group 2 (1.88mm and 0.63mm than group 1 (0.78mm and 0.44mm. The mean zygomatic complex projection was statistically better in group1. Postoperative complications were lesser with the bone graft group. Conclusion: Judicious use of bone grafts in comminuted facial and orbital

  13. Application of zipper-fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2015-03-01

    Full Text Available After several years of exploration practices in the Changning-Weiyuan national shale gas pilot zone, the industrial production has been achieved in a number of vertical and horizontal wells completed by SRV fracturing, and a series of independent shale gas reservoir stimulation technologies have come into being. Next, it is necessary to consider how to enhance the efficiency of fracturing by a factory-mode operation. This paper presents the deployment of Changning Well Pad A, the first cluster horizontal shale gas well group, and proposes the optimal design for the factory operation mode of this Pad according to the requirements of wellpad fracturing stimulation technologies and the mountainous landform in the Sichuan Basin. Accordingly, a zipper-fracturing mode was firstly adopted in the factory fracturing on wellpad. With the application of standardized field process, zipper operation, assembly line work, staggered placement of downhole fractures, and microseismic monitoring in real time, the speed of fracturing reached 3.16 stages a day on average, and the stimulated reservoir volume was maximized, which has fully revealed how the factory operation mode contributes to the large-scale SRV fracturing of horizontal shale gas cluster wells on wellpads in the aspect of speed and efficiency. Moreover, the fracturing process, operation mode, surface facilities and post-fracturing preliminary evaluation of the zipper-fracturing in the well group were examined comprehensively. It is concluded from the practice that the zipper-fracturing in the two wells enhanced the efficiency by 78% and stimulated reservoir volume by 50% compared with the single-well fracturing at the preliminary stage in this area.

  14. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  15. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  16. Relationship between root water uptake and soil respiration: A modeling perspective

    Science.gov (United States)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  17. Conceptual characterization of the system of fractures of the rock mass known as Sierra del Medio (Chubut)

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1990-01-01

    This work characterizes conceptually the system of fractures of the rock mass known as Sierra del Medio and its surroundings. The purpose of this characterization is to define the spectra of flow regimes which must be covered in computational models to be used in the prediction of the thermohydraulic effects of the eventual emplacement of a high-level radioactive waste repository. The analysis of the available data from previous studies was performed in order to determine qualitative data to be used in the stage of feasibility studied. The flow of water roughly N-S is defined by two systems of vertical, almost orthogonal fractures and surrounded by large faults. A set of hypotheses were considered which allow, supposing a given distribution of surface fractures, to establish the variations according to depth. The usual ways of obtaining the permeability and the hydraulic conductivity in fractured porous media are summarized in an appendix. (Author) [es

  18. Fracture resistance of upper central incisors restored with different posts and cores

    Directory of Open Access Journals (Sweden)

    Maryam Rezaei Dastjerdi

    2015-08-01

    Full Text Available Objectives To determine and compare the fracture resistance of endodontically treated maxillary central incisors restored with different posts and cores. Materials and Methods Forty-eight upper central incisors were randomly divided into four groups: cast post and core (group 1, fiber-reinforced composite (FRC post and composite core (group 2, composite post and core (group 3, and controls (group 4. Mesio-distal and bucco-lingual dimensions at 7 and 14 mm from the apex were compared to ensure standardization among the groups. Twelve teeth were prepared for crown restoration (group 4. Teeth in other groups were endodontically treated, decoronated at 14 mm from the apex, and prepared for posts and cores. Resin-based materials were used for cementation in groups 1 and 2. In group 3, composite was used directly to fill the post space and for core build-up. All samples were restored by standard metal crowns using glass ionomer cement, mounted at 135° vertical angle, subjected to thermomechanical aging, and then fractured using a universal testing machine. Kruskal-Wallis and Mann-Whitney U tests were used to analyze the data. Results Fracture resistance of the groups was as follows: Control (group 4 > cast post and core (group 1 > fiber post and composite core (group 2 > composite post and core (group 3. All samples in groups 2 and 3 fractured in restorable patterns, whereas most (58% in group 1 were non-restorable. Conclusions Within the limitations of this study, FRC posts showed acceptable fracture resistance with favorable fracture patterns for reconstruction of upper central incisors.

  19. CT-guided fixation of sacral fractures and sacrolilac joint disruptions

    International Nuclear Information System (INIS)

    Nelson, D.W.; Duwelius, P.

    1990-01-01

    Placement of sacral fixation screws at surgery is performed blindly (ie, by palpation). The authors of this paper employed CT to localize the screw between the neutral foramina and anterior sacral cortex and to decrease the morbidity associated with general anesthesia and surgery. Six patients underwent CT-guided sacral fixation performed by means of the 7.0 mm A0 cannulated screw system. All patients had reducible vertical sacral fractures or sacroiliac joint disruptions. Following placement of an epidural catheter for anesthesia, patients were scanned in the prone or decubitus position. Measurements for placement of the guide pin were made from the preliminary scans. Following CT confirmation of satisfactory guide pin placement across the fracture, the screw track was drilled, the screw length was determined, and the fixation screw was placed in position. A CT scan was obtained to evaluate the final position of the screw

  20. A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool

    Directory of Open Access Journals (Sweden)

    R. Dietzel

    2017-08-01

    Full Text Available Plant root material makes a substantial contribution to the soil organic carbon (C pool, but this contribution is disproportionate below 20 cm where 30 % of root mass and 50 % of soil organic C is found. Root carbon inputs changed drastically when native perennial plant systems were shifted to cultivated annual plant systems. We used the reconstruction of a native prairie and a continuous maize field to examine both the relationship between root carbon and soil carbon and the fundamental rooting system differences between the vegetation under which the soils developed versus the vegetation under which the soils continue to change. In all treatments we found that root C  :  N ratios increased with depth, and this plays a role in why an unexpectedly large proportion of soil organic C is found below 20 cm. Measured root C  :  N ratios and turnover times along with modeled root turnover dynamics showed that in the historical shift from prairie to maize, a large, structural-tissue-dominated root C pool with slow turnover concentrated at shallow depths was replaced by a small, nonstructural-tissue-dominated root C pool with fast turnover evenly distributed in the soil profile. These differences in rooting systems suggest that while prairie roots contribute more C to the soil than maize at shallow depths, maize may contribute more C to soil C stocks than prairies at deeper depths.

  1. Rhizoctonia root rot (Rhizoctoni solani K ü h n of sugar beet in province Vojvodina

    Directory of Open Access Journals (Sweden)

    Stojšin Vera B.

    2006-01-01

    Full Text Available Sugar beet root rot appears regularly each year, but its intensity depends on agro ecological conditions. The predominant causers of root rot in Vojvodina are fungi from Fusarium genus and species Macrophomina phaseolina. Over the last couple of years, more intense occurrence of Rhizoctonia root rot has been observed. Rhizoctonia solani, the causal agent of root rot is present in sugar beet fields. During 2000-2005, on the territory of Vojvodina, the frequency of Rhizoctonia solani in phytopathological isolations from rotted sugar beet roots was between 0,0-18,2%. The intensity of the disease depends on localities, agro ecological conditions and genotypes. Symptoms of Rhizoctonia root rot were registered at some localities in all regions of Vojvodina: Srem, Banat and Bačka. The disease appearance is above all local. It occurs in small patches, on heavy, non-structured soil and on depressed wet parts of plots. Individual diseased plants can be found during July. Brown rot appears on sugar beet roots, with dried tissue on surface, which is present on the tail as well as on the middle part and the head of root. Tissues with described symptoms are deeper regarding the healthy part of root. On vertical root section, the necrotic changes are clearly visible comparing to tissue section without symptoms. The heavily infected tissue forms fissures on roots in most cases. Besides the above-mentioned symptoms on roots, the plant wilting and leaf handle necrosis as well as leaf dying are also observed. When rot spreads to the whole root head, plants quickly die.

  2. Rearrangement moves on rooted phylogenetic networks.

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Lafond, Manuel; Pardi, Fabio; Scornavacca, Celine

    2017-08-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for

  3. Rearrangement moves on rooted phylogenetic networks.

    Directory of Open Access Journals (Sweden)

    Philippe Gambette

    2017-08-01

    Full Text Available Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide

  4. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  5. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  6. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  7. The effect of shape on the fracture of a soft elastic gel subjected to shear load.

    Science.gov (United States)

    Kundan, Krishna Kant; Ghatak, Animangsu

    2018-02-21

    For brittle solids, the fracture energy is the energy required to create a unit area of new surface through the process of division. For crosslinked materials, it is a function of the intrinsic properties like crosslinking density and bond strength of the crosslinks. Here we show that the energy released due to fracture can depend also on the shape of a joint made of this material. Our experiment involves two gel blocks connected via a thin gel disk. The disk is formed into different regular and exotic shapes, but with identical areas of cross-section. When one of the blocks is sheared with respect to the other, the shear load increases with vertical displacement, eventually causing a fracture at a threshold load. The maximum fracture load is different for different disks and among different regularly shaped disks, it is at a maximum for pentagon and hexagon shapes. The fracture energy release rate of the joint depends also on the aspect ratio (height/width) of the shapes. Our experiments also throw light on possible reasons for such a dependence on the shape of the joints.

  8. Marginal adaptation of newer root canal sealers to dentin: A SEM study.

    Science.gov (United States)

    Polineni, Swapnika; Bolla, Nagesh; Mandava, Pragna; Vemuri, Sayesh; Mallela, Madhusudana; Gandham, Vijaya Madhuri

    2016-01-01

    This in vitro study evaluated and compared the marginal adaptation of three newer root canal sealers to root dentin. Thirty freshly extracted human single-rooted teeth with completely formed apices were taken. Teeth were decoronated, and root canals were instrumented. The specimens were randomly divided into three groups (n = 10) based upon the sealer used. Group 1 - teeth were obturated with epoxy resin sealer (MM-Seal). Group 2 - teeth were obturated with mineral trioxide aggregate (MTA) based sealer (MTA Fillapex), Group 3 - teeth were obturated with bioceramic sealer (EndoSequence BC sealer). Later samples were vertically sectioned using hard tissue microtome and marginal adaptation of sealers to root dentin was evaluated under coronal and apical halves using scanning electron microscopy (SEM) and marginal gap values were recorded. The data were statistically analyzed by two-way ANOVA and Tukey's multiple post hoc test. The highest marginal gap was seen in Group 2 (apical-16680.00 nm, coronal-10796 nm) and the lowest marginal gap was observed in Group 1 (apical-599.42 nm, coronal-522.72 nm). Coronal halves showed superior adaptation compared to apical halves in all the groups under SEM. Within the limitations of this study epoxy resin-based MM-Seal showed good marginal adaptation than other materials tested.

  9. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    Science.gov (United States)

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either 100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from 100% displacement of the fracture compared with only 54% of the CnIR group (P fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  10. Study of pore pressure reaction on hydraulic fracturing

    Science.gov (United States)

    Trimonova, Mariia; Baryshnikov, Nikolay; Turuntaev, Sergey; Zenchenko, Evgeniy; Zenchenko, Petr

    2017-04-01

    We represent the results of the experimental study of the hydraulic fracture propagation influence on the fluid pore pressure. Initial pore pressure was induced by injection and production wells. The experiments were carried out according to scaling analysis based on the radial model of the fracture. All required geomechanical and hydrodynamical properties of a sample were derived from the scaling laws. So, gypsum was chosen as a sample material and vacuum oil as a fracturing fluid. The laboratory setup allows us to investigate the samples of cylindrical shape. It can be considered as an advantage in comparison with standard cubic samples, because we shouldn't consider the stress field inhomogeneity induced by the corners. Moreover, we can set 3D-loading by this setting. Also the sample diameter is big enough (43cm) for placing several wells: the fracturing well in the center and injection and production wells on two opposite sides of the central well. The experiment consisted of several stages: a) applying the horizontal pressure; b) applying the vertical pressure; c) water solution injection in the injection well with a constant pressure; d) the steady state obtaining; e) the oil injection in the central well with a constant rate. The pore pressure was recorded in the 15 points along bottom side of the sample during the whole experiment. We observe the pore pressure change during all the time of the experiment. First, the pore pressure changed due to water injection. Then we began to inject oil in the central well. We compared the obtained experimental data on the pore pressure changes with the solution of the 2D single-phase equation of pore-elasticity, and we found significant difference. The variation of the equation parameters couldn't help to resolve the discrepancy. After the experiment, we found that oil penetrated into the sample before and after the fracture initiation. This fact encouraged us to consider another physical process - the oil

  11. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    Science.gov (United States)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies

  12. Modelling of fractured reservoirs. Case of multi-scale media; Modelisation des reservoirs fractures. Cas des milieux multi-echelles

    Energy Technology Data Exchange (ETDEWEB)

    Henn, N.

    2000-12-13

    Some of the most productive oil and gas reservoirs are found in formations crossed by multi-scale fractures/faults. Among them, conductive faults may closely control reservoir performance. However, their modelling encounters numerical and physical difficulties linked with (a) the necessity to keep an explicit representation of faults through small-size grid blocks, (b) the modelling of multiphase flow exchanges between the fault and the neighbouring medium. In this thesis, we propose a physically-representative and numerically efficient modelling approach in order to incorporate sub-vertical conductive faults in single and dual-porosity simulators. To validate our approach and demonstrate its efficiency, simulation results of multiphase displacements in representative field sector models are presented. (author)

  13. Incidence and MR imaging features of fractures of the anterior process of calcaneus in a consecutive patient population with ankle and foot symptoms

    International Nuclear Information System (INIS)

    Ouellette, H.; Salamipour, H.; Thomas, B.J.; Kassarjian, A.; Torriani, M.

    2006-01-01

    To determine the incidence, appearances and associated injuries of fractures affecting the anterior process of calcaneus from a general population with foot and ankle symptoms. A retrospective review of foot and ankle MR imaging procedures was performed for detection of cases with a fracture affecting the anterior process of calcaneus over a four year period. Radiographs, MR imaging studies, radiology reports, medical records, and operative notes were reviewed. Imaging analysis included fracture pattern, displacement, associated fractures, and presence of tendon and ligamentous injuries. The incidence of anterior process of calcaneus fracture on MR imaging was 0.5% (14/2577). Fractures were more common in female subjects (71%, 10/14). Fracture orientation was predominantly vertical (93%, 13/14). No comminuted fractures were seen and only three fractures were displaced. Three of the eight MR imaging evident fractures of anterior process of calcaneus were seen on radiographs. Associated fractures of the talus (n=5), navicular bone (n=3), cuboid (n=2), and calcaneal body (n=1) were noted. Associated injuries to the anterior talofibular ligament (n=3) and tears of the peroneus brevis (n=3) and peroneus longus (n=1) tendons were present. All fractures were treated non-operatively. Two patients had subtalar joint steroid injection for symptomatic relief

  14. Incidence and MR imaging features of fractures of the anterior process of calcaneus in a consecutive patient population with ankle and foot symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, H.; Salamipour, H.; Thomas, B.J.; Kassarjian, A.; Torriani, M. [Division of Musculoskeletal Radiology, Massachusetts General Hospital, Boston, MA (United States)

    2006-11-15

    To determine the incidence, appearances and associated injuries of fractures affecting the anterior process of calcaneus from a general population with foot and ankle symptoms. A retrospective review of foot and ankle MR imaging procedures was performed for detection of cases with a fracture affecting the anterior process of calcaneus over a four year period. Radiographs, MR imaging studies, radiology reports, medical records, and operative notes were reviewed. Imaging analysis included fracture pattern, displacement, associated fractures, and presence of tendon and ligamentous injuries. The incidence of anterior process of calcaneus fracture on MR imaging was 0.5% (14/2577). Fractures were more common in female subjects (71%, 10/14). Fracture orientation was predominantly vertical (93%, 13/14). No comminuted fractures were seen and only three fractures were displaced. Three of the eight MR imaging evident fractures of anterior process of calcaneus were seen on radiographs. Associated fractures of the talus (n=5), navicular bone (n=3), cuboid (n=2), and calcaneal body (n=1) were noted. Associated injuries to the anterior talofibular ligament (n=3) and tears of the peroneus brevis (n=3) and peroneus longus (n=1) tendons were present. All fractures were treated non-operatively. Two patients had subtalar joint steroid injection for symptomatic relief.

  15. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  16. The use of a single titanium microplate in displaced pediatric parasymphysial mandibular fractures.

    Science.gov (United States)

    Abdullah, Walid A

    2009-07-01

    The objective of this study was to evaluate the use of one titanium microplate in the fixation of displaced pediatric parasymphysial mandibular fractures. The study was conducted on 7 children in the mixed dentition stage with displaced parasymphysial fracture. Patients' age ranged between 5 years 9 months and 8 years 4 months with an average of 7 years 1 month. Fractured bone segments were exposed, reduced and then fixed using 1.5 linear microplates at the inferior border of the mandible using monocortical screws, with 1.5 mm in diameter and 5 mm in length. Stainless steel wire was used as a tension band by ligating the teeth around the fracture line. Patients were followed up for occlusion and stability clinically and radiographically (panoramic X-ray and CT). According to clinical and radiographic post-operative follow-up, none of the patients showed displacement of the fixed bony segments. The present study concluded that using one microplate with 1.5 monocortical microscrews and dental tension band by a stainless steel wire could be adequate for fixing displaced pediatric parasymphysial mandibular fractures. This technique has the following advantages: decreases the amount of titanium used, decreases the risk of injury of the roots and teeth buds, and decreases the cost and time of surgery.

  17. Fault-Slip Data Analysis and Cover Versus Basement Fracture Patterns - Implications for Subsurface Technical Processes in Thuringia, Germany

    Science.gov (United States)

    Kasch, N.; Kley, J.; Navabpour, P.; Siegburg, M.; Malz, A.

    2014-12-01

    Recent investigations in Thuringia, Central Germany, focus on the potential for carbon sequestration, groundwater supply and geothermal energy. We report on the results of an integrated fault-slip data analysis to characterize the geometries and kinematics of systematic fractures in contrasting basement and cover rock lithologies. The lithostratigraphy of the area comprises locally exposed crystalline rocks and intermittently overlying Permian volcanic and clastic sedimentary rocks, together referred to as basement. A Late Permian sequence of evaporites, carbonates and shale constitutes the transition to the continuous sedimentary cover of Triassic age. Major NW-SE-striking fault zones and minor NNE-SSW-striking faults affect this stratigraphic succession. These characteristic narrow deforming areas ( 15 km) non-deforming areas suggesting localized zones of mechanical weakness, which can be confirmed by the frequent reactivation of single fault strands. Along the major fault zones, the basement and cover contain dominant inclined to sub-vertical NW-SE-striking fractures. These fractures indicate successive normal, dextral strike-slip and reverse senses of slip, evidencing events of NNE-SSW extension and contraction. Another system of mostly sub-vertical NNW-SSE- and NE-SW-striking conjugate strike-slip faults mainly developed within the cover implies NNE-SSW contraction and WNW-ESE extension. Earthquake focal mechanisms and in-situ stress measurements reveal a NW-SE trend for the modern SHmax. Nevertheless, fractures and fault-slip indicators are rare in the non-deforming areas, which characterizes Thuringia as a dual domain of (1) large unfractured areas and (2) narrow zones of high potential for technical applications. Our data therefore provide a basis for estimation of slip and dilation tendency of the contrasting fractures in the basement and cover under the present-day stress field, which must be taken into account for different subsurface technical

  18. Computed tomography of thoracic and lumbar spine fractures that have been treated with Harrington instrumentation

    International Nuclear Information System (INIS)

    Golimbu, C.; Firooznia, H.; Rafii, M.; Engler, G.; Delman, A.

    1984-01-01

    Twenty patients with fractures of the thoracic and lumbar spine underwent computed tomography (CT) following Harrington distraction instrumentation and a spinal fusion. CT was done to search for a cause of persistent cord or nerve root compression in those patients who failed to improve and completely recover their partial neurologic deficit (14 cases). The most common abnormality was the presence of residual bone fragments originating in the burst fracture of a vertebral body displaced posteriorly, into the spinal canal. In patients with complications in the late recovery period, CT found exuberant callus indenting the canal or lack of fusion of the bone grafts placed in the anterolateral aspect of the vertebral bodies. This experience indicates that CT is the modality of choice for spinal canal evaluation in those patients who fail to have an optimal clinical course following fractures of the thoracic and lumbar spine treated with Harrington rods

  19. ROOT - A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization

    CERN Document Server

    Naumann, Axel; Ballintijn, Maarten; Bellenot, Bertrand; Biskup, Marek; Brun, Rene; Buncic, Nenad; Canal, Philippe; Casadei, Diego; Couet, Olivier; Fine, Valery; Franco, Leandro; Ganis, Gerardo; Gheata, Andrei; Gonzalez~Maline, David; Goto, Masaharu; Iwaszkiewicz, Jan; Kreshuk, Anna; Marcos Segura, Diego; Maunder, Richard; Moneta, Lorenzo; Offermann, Eddy; Onuchin, Valeriy; Panacek, Suzanne; Rademakers, Fons; Russo, Paul; Tadel, Matevz

    2009-01-01

    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advance...

  20. Fracture propagation through a layered shale and limestone sequence at Nash Point, South Wales: Implications on the development of fracture networks in layered sequences

    Science.gov (United States)

    Forbes Inskip, N.; Meredith, P. G.; Gudmundsson, A.

    2017-12-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through sedimentary rocks composed of layers with different mechanical and elastic properties remains poor. Yet the mechanical layering is a key parameter controlling the propagation of fractures in sedimentary sequences. Here we report measurements of the contrasting properties of the Lower Lias at Nash Point, South Wales, which comprises a sequence of interbedded shale and limestone layers, and how those properties influence fracture propagation. The static Young's modulus (Estat) of both rock types has been measured parallel and normal to bedding. The shale is highly anisotropic, with Estat varying from 2.4 GPa, in the bedding-normal orientation, to 7.9 GPa, in the bedding-parallel orientation, yielding an anisotropy of 107%. By contrast the limestone has a very low anisotropy of 8%, with Estat values varying from 28.5 GPa, in the bedding-normal orientation, to 26.3 GPa in the bedding-parallel orientation. It follows that for a vertical fracture propagating in this sequence the modulus contrast is by a factor of about 12. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. Preliminary numerical modelling results (using a finite element modelling software) of induced fractures at Nash Point demonstrate a rotation of the maximum principal compressive stress across interfaces but also the concentration of tensile stress within the more competent (high Estat) limestone layers. The tensile strength (σT), using the Brazil-disk technique, and fracture toughness (KIc), using the semi-circular bend methodology, of both rock types have been measured. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15